
Alexander J. Summers

Program Verification

Exercise Sheet 9: Heap Reasoning and Permissions

Assignment 1 (Pure Assertions)

An IDF assertion is called pure if doesn’t contain any accessibility predicates. For example, x.f = 4
is a pure assertion. In practice, pure assertions are typically expressions, but can technically also
include the separating conjunction ∗.

1. Prove that, for all states H,P,σ and pure assertions A, if H,P,σ ⊧ A then H,∅, σ ⊧ A
(where ∅ represents the empty permissions mask, which maps all field locations to 0).

2. Prove that, for any assertion A′ and any pure assertion A the assertions A∗A′ and A∧A′
are logically equivalent (i.e. they are true in the same states)1.

Assignment 2 (Old Expressions and Procedure Calls)

Suppose that we include procedures into our small language. When using IDF for our small
language, the global (shared) state consists only of the heap itself (we don’t support global
variables). Just as in Boogie, it is convenient for procedure specifications to be able to relate
the values of this state before and after a procedure call. In IDF, we again have old expressions,
but here these affect heap-dependent expressions. For example, the meaning of an expressions
old(x.val) is the value that the heap location had in the pre-state of the current procedure.

A procedure which increments the val field of its parameter, could, for example, be specified
as follows:

procedure inc(x)

requires acc(x.val)
ensures acc(x.val) ∗ x.val==old(x.val)+1

{
x.val := x.val + 1

}

1Note that, as a simple consequence of this latter result, any pure assertion can be equivalently represented as
a (boolean-typed) expression.

1



1. Write an appropriate procedure (including a specification) which takes two parameters and
assigns the value of the val field of the second parameter to the val field of the first.

2. In the absence of global variables, we don’t need Boogie-style modifies clauses. Why are
these not needed in IDF for reasoning about the heap? Does your procedure specification
in the previous part precisely characterise which heap locations might be modified by the
procedure?

3. What might an appropriate Hoare Logic procedure call rule be, in this setting?

2


