
Alexander J. Summers

Program Verification

Exercise Solutions 2: Encoding Problems to SAT

Assignment 1 (Eliminating Equality)

The variation of Ackermannization should in the lectures to eliminate equality potentially gen-
erates many variables and extra conjuncts to express instances of the reflexivity, symmetry and
transitivity properties of equality.

1. We generate 2n new boolean variables; one for each pair of original term variables.

2. The number of possible instances is n instances of reflexivity, n2 of symmetry and n3 of
transitivity.

3. Here are a few ideas; if you have others, I’d be interested to hear them.

• We don’t need boolean variables to represent reflexive cases (equating a term with
itself); we could just translate such equalities to >. In this way, we also avoid the
need for adding instances of the reflexivity property entirely.

• For transitivity, we can avoid instances which only differ by symmetry with one of the
three axioms already chosen (however, this idea is subsumed by the next one).

• We can “build in” symmetry properties as part of our Ackermannization process in
the following way: choose any total ordering < on the original term variables in the
problem. Now, only introduce boolean variables eqx,y for pairs of variables x and y
such that x < y. When translating the original formula, translate equalities between
x and y to this, regardless of the order of the terms in the equality (i.e. y = x also
gets translated to eqx,y). Note that the case of reflexive equalities is already dealt
with above. In this way, we avoid the need for symmetry axioms entirely.

• For transitivity, we need to consider triples of term variables x,y and z. But there is
no need to consider choices in which any of these three variables are the same (the
property is then logically trivial). Similarly (by symmetry), once we instantiate the
property for x,y and z, there is no need to instantiate it also for z,y and x. We
could implement this by only instantiating for x < z combinations (according to the
ordering above).

1



• We can further optimize transitivity with the following idea: let ≡eq be the smallest
equivalence relation on the original term variables, such that x ≡eq y if x and y
form the two sides of some equality in the original formula. We only need generate
transitivity instances for triples of variables all in the same ≡eq-equivalence class. The
intuition behind this idea is that some variables might never (even via transitivity) get
compared with one another in constructing models for the original formula.

Assignment 2 (Eliminating Uninterpreted Functions)

We work on the inner terms first. Starting from:

f(g(x)) = x ∧ f(y) = x ∧ ¬(y = g(x))

we generate a new term variable gx to replace g(x), and a new term variable fy to replace f(y).
Since, so far there are no pairs of newly-introduced terms regarding the same top-level function
(just one for f and one for g), we don’t need to add any congruence constraints. The resulting
formula is:

f(gx) = x ∧ fy = x ∧ ¬(y = gx)

Now, we generate a new term variable fgx to replace the function application f(gx). Since we
have already introduced the term variable fy (for the same function f), we have to add the
congruence constraint: y = gx ⇒ fy = fgx , conjoining this to the new formula. We obtain:

fgx = x ∧ fy = x ∧ ¬(y = gx) ∧ (y = gx ⇒ fy = fgx)

This formula is satisfiable (in fact, we can almost “read off” a model from the conjunction of
equalities and inequalities): in any model M for which M(fgx) = M(x) = M(fy) and where
M(y) and M(gx) are interpreted as two different values. Note that the congruence conjunct is
satisfied, since the left-hand-side of the implication is false in such a model.

This also tells us how to build models for the original formula: take any model in which M(g)
is a mathematical function which does not map M(x) to M(y); i.e. M(g)(M(x)) should be
some value v in the model different from M(y). Furthermore, the interpretation of f in the
model (i.e. M(f)) must be a function which maps v to the same value as M(x), and which also
maps M(y) to this same value.

Assignment 3 (Sudoku Encodings)

In both encodings, we employ 93 variables vali,j,n to represent that the cell (i, j) has the value n.
To express that each cell has at least one value, we have to write 92 clauses, each of 9 disjuncts.
To express that each cell has at most one value requires 9·8

2
· 92 clauses, each of size 2 (one for

each pair of different possible values, for each cell).
The clauses so far express the constraints necessary for our modelling of a grid as boolean

variables to make sense. On top of these, we require the clauses to express the “rules”, as
discussed in the lectures. These require 27 instances of the eachValue “macro”; the difference
between the two encodings is in how this macro is defined.

2



In the first encoding, each instance of the macro generates 9 clauses, each of size 9. In the
second, the macro generates 8·7

2
· 9 = 784 clauses, each of size 2. Despite the high number of

clauses, this latter encoding is likely to perform significantly better: the many clauses of size 2
will cause many immediate unit propagation steps whenever a literal is chosen, while in the former
encoding, many literals must be chosen before making any “deductions” (conceptually, we have
to fill in all but one numbers of, e.g., a given row, before deducing the value of the last one).

Assignment 4 (Bit-blasting)

Suppose the first input is represented by a 2-length bit-vector b1b0, and the second by c1c0. Then,
we can write out the result via “long multiplication”. In evaluating additions, the result of adding
two bits is true when exactly one of the two is true (and causes a carry if both are true). To
conveniently represent “exactly one is true” we use the “xor” (⊕) connective (which has the
same precedence as ⇔), defined by e.g. A⊕B ≡ A∧¬B ∨¬A∧B. The arithmetic then works
out as follows:

b1 b0
* c1 c0

(b1 ∧ c0) (b0 ∧ c0)
+ (c1 ∧ b1) (c1 ∧ b0)

(c1 ∧ b1) (b1 ∧ c0 ⊕ c1 ∧ b0) (b0 ∧ c0)
+ (b1 ∧ c0 ∧ c1 ∧ b0)

(b1 ∧ c0 ∧ c1 ∧ b0) (c1 ∧ b1 ∧ (¬c0 ∨ ¬b0)) (b1 ∧ c0 ⊕ c1 ∧ b0) (b0 ∧ c0)

These resulting four formulas define the respective output bits of our multiplier.

3


