mzuri(:h Alexander J. Summers

Program Verification

Exercise Solutions 11:

Permissions and Concurrent Programs

Assignment 1 (Encoding Non-Determinism)

1. To avoid unjustified assumptions about several havoc statements yielding the same value,
we would need one extra parameter per havoc statement potentially executed in the method
body.

2. Methods containing havoc statements inside (unbounded) loops would need an statically-
unbounded number of extra parameters.

3. We could use an additional Ref value, and a field location of this Ref per type, to generate
fresh values of that type. We could use an extra parameter for this Ref; alternatively, we
could add a function extraRef () : Ref) to the program. Then, to simulate e.g. havoc
x statements for integer-typed variables x, we add a field intField : Int to the program
(of course, we should avoid clashes with any existing fields in the program, or else reuse
one of those fields).

We now encode a havoc x statement by temporarily adding permission to the extra field
location, reading its (arbitrary, unconstrained) value, and then removing the permission;
i.e. we would generate the following code to simulate a havoc x statement:

inhale acc(extraRef().intField)
x := extraRef().intField // read some value
exhale acc(extraRef().intField)

4. This approach can use the above code for each havoc statement; there is no restriction on
the number of such statements, since each time this code is executed, a newly-unconstrained
value will be generated (we keep no permission to the field(s) in between).



5. A non-deterministic choice s1[]s2 can be encoded as an if-condition on a havoc-ed boolean
value. Assuming we introduce an extra field boolField : Bool to the program, then
such a non-deterministic choice could be handled via:

var b: Bool // should be a fresh variable name for the program
inhale acc(extraRef () .boolField)
b := extraRef().boolField
exhale acc(extraRef().boolField)
if(b) {
sl
} else {
s2

Assignment 2 (Postcondition Permissions)

In Viper, function postconditions are not required to specify the permissions “returned” when
the function is invoked; this is because such functions cannot have side-effects, including on the
permissions held; they can be seen as evaluated in a fixed program state.

Viper methods, on the other hand, are required to explicitly specify permissions returned in their
postconditions; there is no assumption that the permissions in the precondition will necessarily
be the same as those in the postcondition. In the lectures, we briefly discussed two reasons for
this. Firstly, the permissions might be organised differently into different predicates (e.g. in the
prependLSeg method, from the list-examples.vpr file). Secondly, a method might allocate
new objects (and gain corresponding new permissions, e.g. via inhale statements); we want to
be able to return these extra permissions to the method caller.

Consider the encodings of concurrency features (structured parallelism and locks) presented in
slide deck 12. For such concurrent programs, it is sometimes necessary that a method postcon-
dition describes fewer permissions than were present in the method’s precondition.

1. Using the class from slide 276 as an example:

method rellock(x:LockableCounter)
requires acc(x.count) && x.count > 0 // implicitly: ensures true

{

release x

2. method relLock(x:Ref)
requires acc(x.count) && x.count > O // implicitly: ensures true

{

exhale acc(x.count) && x.count >= 0 // exhale the lock invariant

by

3. The permission to x.count is returned to the lock invariant (ready for the next thread to
lock the object).



4. A newly-forked thread would also entail an exhale of permissions. However, using only
structured parallelism, any such thread will also be joined in the same method body, and if
the method this thread executes has no way to “remove” permissions, then we will not be
able to construct an analogous example in which some permissions conceptually must be
transferred elsewhere by the end of a method execution.

5. With unstructured parallelism, it would be possible to fork a thread but not join it in the
same method scope. In this case, any permissions required by the newly-forked thread’s
precondition would be removed and not returned to the forking method'’s scope, as for the
relLock example above.



