mzuri(:h Alexander J. Summers

Program Verification

Exercise Sheet 7: Verification Condition Generation

Assignment 1 (Avoiding Duplication)

On slide 155, an alternative wip definition for non-deterministic choice is given, which avoids the
duplication of the current postcondition. The idea is to introduce a fresh propositional atom p,
and use a formula p & A to “define” p to be equivalent to A. This formula is then placed on
the left-hand-side of an implication: why is this the correct thing to do, rather than conjoining
it?

Assignment 2 (Multiple Verification Conditions)
Let s be the example program from slide 158:

if (x > 0) {
assert x = 2
} else {
assert x < 0;
assert x # 0

}

1. Show what verification conditions the wip* operator from slide 160 would compute for the
Hoare triple {true} s {x = 2}. Remember to rewrite assert statements as assert-assume
pairs (cf. slide 159) before applying the operator.

2. Which of the generated verification conditions (expressed as entailments) are true? What
errors should be reported for the program?

3. The verification condition corresponding to the postcondition x = 2 will end up being
duplicated. This illustrates a problem with the proposed definition of wip* for programs
with many branching statements: what is it?

4. How could you improve the definition of wip* to avoid this problem?



Assignment 3 (Labelling)

For the same program as in the previous question, show what the resulting program would be
after rewriting by applying the labels idea (as presented in the lecture).

Assuming the SMT solver supports labels (and interactive mode), describe a possible interaction
between a verification tool using the labels approach for error localisation and an SMT solver
(hint: this interaction should include several queries to the SMT solver).



