
Alexander J. Summers

Program Verification

Exercise Sheet 4: Quantifiers

NOTE: a typo was corrected in Assignment 1 (this affects Assignment 3).

Assignment 1 (Rewriting and Skolemization)

Transform the following formula into (an equisatisfiable formula in) extended CNF (all vari-
ables/constants are of some uninterpreted sort T ; c, g and s are uninterpreted):

∃z.¬((∀n.g(n, z) ∧ ∃m.(¬n = z ⇒ s(m) = n)) ⇒ c = z) ∧ ∀w.¬s(s(s(w))) = s(s(c))

Assignment 2 (Applying MBQI)

Consider the following formula:

∃x.(∀y.¬ f(y)=x) ∧ (∀z.¬ f(z)=z ∧ ¬ f(f(z))=z)

Does this formula have a model? If so, is there a lower bound on the size of possible models?
Apply Model-Based Quantifier Elimination to try to find a model for this formula - what

happens? You should try not to “guess” the right model straight away - keep the model as
simple as possible with respect to the ground constraints it needs to satisfy so far, as you work.

Assignment 3 (E-graphs and E-matching)

Take your answer from Assignment 1, and construct an E-graph to represent the ground facts
that will be added to the E-graph during initial DPLL search (without quantifier instantiations).
What would be appropriate triggers to add to the (two) ∀-quantifiers? Show how, once equipped
with these triggers, E-matching can show that the original formula is unsatisfiable.

Assignment 4 (Axiomatising Duplicate-Freeness)

Suppose we model infinite integer arrays (as a uninterpreted sort), using a function lookup(a, i)
to represent the value of looking-up (integer) index i of array a. Suppose further that we want
to express that an array a contains no duplicate values.

1



One way to do this, would be via a quantifier:

∀i : Int, j : Int.¬ i=j ⇒ ¬ lookup(a, i)=lookup(a, j)

Suppose now that we want to use e-matching with this quantifier, for example to deduce that
conjoining lookup(a, 0) = lookup(a, 1) gives us unsat. What triggers would we choose? How
many quantifier instantiations will potentially be made, in terms of the number of ground lookup
function applications in the input problem?

Can you think of an alternative way to express having no duplicate values, which would reduce
the potential number of quantifier instantiations?

2


