
Alexander J. Summers

Program Verification

Exercise Solutions 7: Verification Condition Generation

Assignment 1 (Avoiding Duplication)

Consider the alternative (wrong) definition, in which we conjoin the “definition” of the fresh
propositional variable; i.e. imagine that we defined wlp(s1 [] s2,A) = (p ⇔ A) ∧ wlp(s1,A) ∧

wlp(s2,A). As a precondition, this assertion is too strong for a number of reasons. Even the
single conjunct wlp(s1, p) would be too strong a requirement; since the propositional variable p
is fresh, there is no reasonable way in which we could guarantee that wlp(s1, p) holds (consider,
for a simple example, the case that s1 is simply skip; then we are left with p as a requirement).

Similarly, requiring (p ⇔ A) to hold in the precondition is too strong, since p is fresh. In-
stead, this formula should be assumed when requiring the other two conjuncts; the addition
of p is not meant to make the precondition stronger. This leads us to the correct definition:
wlp(s1 [] s2,A) = (p⇔ A) ⇒ wlp(s1, p) ∧wlp(s2, p)

This might seem surprising compared with the Tseitin CNF conversion (where the extra formula
was conjoined), but is is actually consistent: recall that we applied the Tseitin conversion directly
to the formula being checked for satisfiability; the Tseitin CNF conversion preserves satisfiability.
In the case of weakest-preconditions, we are generally not interested in their satisfiability, but
rather the satisfiability of their negations: recall that when we verify a program, we check an
entailment A′ ⊧ wlp(s,A), which, when encoded to an SMT problem, will mean that we ask
the SMT solver to check satisfiability of A′ ∧¬wlp(s,A). In particular, the weakest-precondition
will be negated in our satisfiability query. The alternative weakest-precondition definition we are
considering actually performs a Tseitin-like transformation to the negation of the formula: note
that ¬((p⇔ A) ⇒ wlp(s1, p) ∧wlp(s2, p) is equivalent to (p⇔ A) ∧¬(wlp(s1, p) ∧wlp(s2, p)).

Assignment 2 (Multiple Verification Conditions)

1. The following annotated version of the program may help explain the working of the al-
gorithm (intermediate results shown in braces). Recall that if-conditions are handled as
non-deterministic choices followed by assume statements (not shown explicitly, here). The

1



five formulas in the top-most set represent the results of applying wlp* to the program s:

{(x > 0⇒ x = 2), (x > 0⇒ (x = 2⇒ x = 2)), (x ≤ 0⇒ x < 0), (x ≤ 0⇒ (x < 0⇒ x ≠ 0)),
(x ≤ 0⇒ (x < 0⇒ (x ≠ 0⇒ x = 2)))}
if (x > 0) {

{x = 2, (x = 2⇒ x = 2)}
assert x = 2

{x = 2⇒ x = 2}
assume x = 2

{x = 2}
} else {

{x < 0, (x < 0⇒ x ≠ 0), (x < 0⇒ (x ≠ 0⇒ x = 2))}
assert x < 0;

{(x < 0⇒ x ≠ 0), (x < 0⇒ (x ≠ 0⇒ x = 2))}
assume x < 0;

{x ≠ 0, (x ≠ 0⇒ x = 2)}
assert x ≠ 0

{x ≠ 0⇒ x = 2}
assume x ≠ 0

{x = 2}
}

{x = 2}

2. Since the entailments will all have true (the precondition) on the left, the verification
conditions amount to showing validity of each of the five formulas. Of these, the two
formulas (x > 0 ⇒ (x = 2 ⇒ x = 2)), (x ≤ 0 ⇒ (x < 0 ⇒ x ≠ 0)) are valid, and the
remaining three formulas (x > 0 ⇒ x = 2), (x ≤ 0 ⇒ x < 0), (x ≤ 0 ⇒ (x < 0 ⇒ (x ≠

0 ⇒ x = 2))) are not valid. The first and last of the not valid formulas correspond to
postcondition failures (one for each branch), while the second corresponds to a failure for
the second assertion in the program.

3. Any verification conditions to be shown after a conditional branch will be duplicated once
per branch. This will lead to a number of verification conditions exponential in the number
of branches preceding the actual potential failure point (note that the same would occur
for assertions placed after if-conditionals). From an error reporting perspective, we will also
obtain multiple errors for the same source location, which might be confusing unless it is
clear that these come from different branches through the program.

4. We could change the case for non-deterministic choice (i.e. the case wlp*(s1[]s2,∆)) as
follows: for each input assertion (in ∆) to the wlp* operator, assign it an identifier which
is propagated throughout the steps of the algorithm (i.e. we track which output formula
corresponds to each input formula). Say a particular input formula A was originally in
∆, and suppose that A1 and A2 are the corresponding output formulas for each of the
recursive calls. Then, instead of putting both A1 and A2 into the resulting set, we replace
them with the single assertion A1∧A2. In this way, the number of assertions in the set will
remain linear in the number of potential error sources in the program.

2



Assignment 3 (Labelling)

After labelling, the program might look as follows:

if (x > 0) {

assert x = 2 ∨ l0
} else {

assert x < 0 ∨ l1;
assert x ≠ 0 ∨ l2

}

A possible interaction with the SMT solver might go as follows. First, we pass true ∧
¬(wlp(s, x = 2 ∨ l3)) to the SMT solver (the extra label l3 is to handle postcondition fail-
ures). We obtain a sat result, and a model in which l1 is false. This indicates a failure of the
second assertion. We then pass true ∧ l1 = true ∧ ¬(wlp(s, x = 2 ∨ l3)) to the SMT solver, and
again obtain sat, and a model in which l3 is false. This indicates a failure of the postcondition.
Finally, we pass true ∧ l1 = true ∧ l3 = true ∧ ¬(wlp(s, x = 2 ∨ l3)) and obtain an unsat result,
indicating that there are no further verification failures to report.

3


