
Alexander J. Summers

Program Verification

Exercise Sheet 10: Unbounded Heap Data Structures

Assignment 1 (List Segments)

Consider the lseg predicate from Slide 225.

1. Write an assertion using this predicate to describe a cyclic list.

2. The lseg predicate does not allow for “empty” segments; permission to the start ref-
erence’s fields is always contained inside. Write a definition for an alternative mylseg

predicate, which allows for possibly-empty list segments.

3. Can you use mylseg to describe cyclic lists?

4. Consider the addAtEnd and prependLseg methods, which were needed in order to verify
the iterative version of list append, in the lectures. These methods were not implemented
in the lecture; you can find the appropriate file lists.vpr on the course webpage, in which
the method declarations are included, but no bodies. Implement these methods, such that
your resulting code verifies (note that this file has been updated since the lecture, because
the specifications were not strong enough to make the task possible!).

Assignment 2 (Heap-based Matrices)

On slide 239, a Viper encoding of arrays is shown, using a custom domain and quantified per-
mission assertions. Suppose that we want to implement a similar encoding for heap-based square
matrices: a special case of two-dimensional arrays.

1. Write a corresponding Matrix domain definition (you might want to borrow ideas from the
Array domain).

2. What assertion would you use to describe full permission to all elements of a particular
matrix? (Hint: it should involve two quantifiers).

3. The current version of the Viper tools does not support quantified permissions under mul-
tiple (nested) quantifiers; only single quantifiers are supported. Describe an alternative

1



representation of matrices which requires only a single quantifier, using the original Array
domain. Can you think of any practical disadvantages of this encoding using single quan-
tifiers, compared to the more-direct two-dimensional quantification? (Hint: there may be
more than one problem).

2


