
Alexander J. Summers

Program Verification

Exercise Sheet 6: Hoare Logic and Weakest Preconditions

Assignment 1 (Alternative Hoare Logic Rules)

The lecture slides present alternative Hoare Logic rules for the havoc, assume and assert com-
mands. For each of these:

1. Show that an arbitrary instantiation of the alternative rule can be derived using the usual
rules. For example, show that the triple {A} havoc x {∃y.A[y/x]} is derivable (for any
assertion A and variable x) using the usual rules.

2. Show that an arbitrary instantiation of the corresponding usual rule can be derived using the
alternative rule plus other usual rules. For example, show that {∀y.A[y/x]} havoc x {A}
is derivable (for any assertion A and variable x) using the alternative (havoc-alt) rule with
the other usual rules.

Assignment 2 (Desugaring If-Conditions)

Consider the following desugaring of an if-condition: we rewrite if(b){s1}else{s2} into the program
(assume b; s1)[](assume ¬b; s2). Show that, for any input postcondition A (and for any b, s1,
s2), applying the wlp operator to these two statements yields equivalent results.

Assignment 3 (Dynamic Single Assignment)

The weakest precondition definitions presented in the lecture can produce exponentially large
formulas in some cases. This can be alleviated by converting the program into e.g. dynamic
single assignment (DSA) form: a program is in DSA form if, in each execution (trace) of the
program, each variable gets assigned-to at most once. This is a little more permissive than, say,
static single assignment; the same variable is allowed to be assigned-to in two exclusive branches
of the program.

A program can be converted to DSA form as follows: each original program variable x is
replaced with a number of versions x0, x1, . . . of that variable. During conversion, we need to
keep track of the latest version for each original program variable. We introduce a new version of

1



variable x whenever in the original program the program variable x gets assigned to or havoced.
When dealing with branches (for if or non-deterministic choice) we can allow the versions of
variables to evolve separately inside both branches. After the two branches, we have to merge
the versions of the same variable into one (if any new versions of that variable were introduced
in the branch). This can be achieved by adding one more version of each variable, and adding an
assignment statement at the end of each branch to assign the latest version in the branch to this
new variable. For example, the program x:=3; if (y > 4){x:=x+1}else{x:=x+1}; assert x > 1
would become x0:=3; if (y0 > 4){x1:=x0+1; x2:=x1}else{x1:=x0+1;x2:=x1}; assert x2 > 1
(in fact, this example illustrates a further possible optimisation when the “last” versions match
up in the two branches - what is it?).

The advantage of a program in DSA form is that assignment statements can be handled
differently; there is no need for the substitution employed in the wlp definition in the lectures1.
Instead, for a program in DSA form, we can rewrite all variable assignments as assume statements:
we replace x:=e with assume xn = e, where xn is the next version of the variable x. Similarly,
we can replace havoc x with just skip while again taking a new version of x to continue with.

Write a transformation function toDSA which takes an annotated program (of the syntax
described in the lectures) as input, and returns a new program which is a valid DSA transformation
of the original program. In the process, make your function eliminate variable assignments and
havoc statements (as described here), if statements as hinted at in Assignment 2, and while loops
as in lecture slide 148. Can you also eliminate skip from the necessary statement constructs?

1Furthermore, once substitutions are no-longer made during weakest-precondition calculations, any duplicated
formulas (e.g. in the rule for non-deterministic choice) can be factored out using additional propositional
variables, as in the Tseitin CNF transformation on Sheet 1.

2


