
Alexander J. Summers

Program Verification

Exercise Solutions 9: Heap Reasoning and Permissions

Assignment 1 (Pure Assertions)

1. By (structural) induction on A.

(Case A is e for some expression e:) Then we have:

H,P,σ ⊧ A ⇔ ⌈e⌋ = true
⇔ H,∅, σ ⊧ A

(Case A is A1 ∗A2 for some A1 and A2:) Then we have:

H,P,σ ⊧ A ⇔ ∃P1, P2. P = P1 ⊎ P2 and H,P1, σ ⊧ A1 and H,P2, σ ⊧ A2

⇒ H,∅, σ ⊧ A1 and H,∅, σ ⊧ A2 (by induction hypothesis, twice)
⇒ H,∅, σ ⊧ A1 ∗A2

All other cases follow analogously, by a straightforward induction argument.

2. To prove equivalence, we need to show, for all such A′ and A that: ∀H,P,σ.(H,P,σ ⊧
A ∗ A′ ⇔ H,P,σ ⊧ A ∧ A′). We show the ⇒ and ⇐ directions of this property, for
arbitrary such A′ and (pure) A, as follows:

(⇒:) To show this direction of the result, we need an additional lemma, effectively stating
that increasing the permissions held in a state will never make assertions false (this
result was discussed in the lecture). If we use P1 ⊑ P2 to mean that P2 has at least
as much permission as P1 for all locations, then lemma can be stated as follows:

∀A,H,P1, P2, σ.(if H,P1, σ ⊧ A and P1 ⊑ P2 then H,P2, σ ⊧ A)

This lemma can be proved by straightforward induction on A. Using the lemma, we
can now show the intended result:
Let H,P ,σ be arbitrary, and assume H,P,σ ⊧ A ∗ A′. Then, by definition, there
are some P1 and P2 such that: P = P1 ⊎ P2 and H,P1, σ ⊧ A and H,P2, σ ⊧ A′.
Note that, P1 ⊑ P and P2 ⊑ P . Therefore, by the lemma above, we have H,P,σ ⊧
A and H,P,σ ⊧ A′, and thus, H,P,σ ⊧ A ∧A′, as required.

(⇒:) Let H,P ,σ be arbitrary, and assume H,P,σ ⊧ A ∧ A′. By definition, H,P,σ ⊧ A
and H,P,σ ⊧ A′. By part (1), we have H,∅, σ ⊧ A. Therefore, since ∅ ⊎ P = P , we
have H,P,σ ⊧ A ∗A′, as required.

1



Assignment 2 (Old Expressions and Procedure Calls)

1.
procedure assign(x,y)

requires acc(x.val) ∗ acc(y.val, 12)
ensures acc(x.val) ∗ acc(y.val, 12) ∗ x.val==old(y.val)

{
x.val := y.val;

}
Note that the fractional amount chosen for y.val could equally be any fraction strictly
between 0 and 1.

2. The only global state in this case is the heap. Modifications to the heap are handled via
permission accounting: the heap locations whose values can be framed across a procedure
call are exacmply those to which (at least some fractional) permission is retained across the
call (i.e. not all of the caller’s permission is required by the precondition of the procedure).
Using a fractional permission allows for the possibility that a called can retain some permis-
sion to y.val (the exact choice of fractional amount could happen to be problematic, if a
caller happens not to have more than the chosen amount, but this is impossible to avoid
with only concrete fractional permissions, as covered in this course).

3. Here is an idea for a rule, inspired by that for global variables/modifies clauses on slide 201
(for a procedure p with precondition pre, postcondition post, formal in- and out-parameters
x⃗ and y⃗, respectively):

{e⃗′} = {e′ ∣ old(e′) ∈ post[e⃗/x⃗][z⃗/y⃗]} {z⃗} ∩ (FV (e⃗) ∪ {o⃗}) = ∅

{pre[e⃗/x⃗] ∧ o⃗ = e⃗′} call z⃗ := p(e⃗) {post[e⃗/x⃗][z⃗/y⃗][o⃗/old(e⃗′)]}

The idea here is that we can use additional variables o⃗ to equate with the values of each
expression e′ used in an old-expression in the postcondition of the procedure.

This rule works fine for old-expressions which do not occur under conditionals (such as the
simple examples discussed above). In general, however, this rule has the problem that for
old-expressions under conditionals in the postcondition, requiring us to nonetheless be able
to evaluate them in the state before the call might be overly-restrictive (as a trivial case,
suppose that false ==> old(x.f) occurred in the postcondition: then it would be fine
to call the procedure in a state in which no permission to x.f was held, but this rule would
not allow it). We could instead refine the rule to filter e⃗′ to include only expressions which
can evaluated in the pre-state (i.e. we hold sufficient permissions). We won’t formalise
the general rule, here (in practice, the general case can be handled in tools such as Viper
by allowing explicit evaluation of expressions in earlier states, via labelled-old expressions,
which avoids the need to “save” their values up-front).

2


