mzuri(:h Alexander J. Summers

Program Verification

Exercise Solutions 5: Encoding to SMT

Assignment 1 (Sequence Take and Drop)

Here is a possible axiomatisation in Viper:

domain Sequence {
function lookup(s:Sequence, i:Int) : Int
function length(s:Sequence) : Int
function take(s:Sequence, n: Int) : Sequence
function drop(s:Sequence, n: Int) : Sequence

axiom length_take {
forall s:Sequence, n:Int ::
{length(take(s,n))} {length(s),take(s,n)}
length(take(s,n))==
(n<=070:
(n >=length(s) 7 length(s) : n))
}
axiom length_drop {
forall s:Sequence, n:Int ::
{length(drop(s,n))} {length(s),drop(s,n)}
length(drop(s,n))==
(n <= 0 7 length(s)
(n >=length(s) 7 0: length(s)-n))
}
axiom lookup_take {
forall s:Sequence, n:Int, i:Int ::
{lookup(take(s,n),i)} {lookup(s,i), take(s,n)}
n>0&& i <n && i < length(s) ==>
lookup(take(s,n),i) == lookup(s,i)
}
axiom lookup_drop {
forall s:Sequence, n:Int, i:Int :: {lookup(drop(s,n),i)}
n < length(s) && i >= 0 && i < length(s)-n ==>
lookup(drop(s,n),i) == lookup(s,i+n)



axiom lookup_drop_two { // as above for i == j-n
forall s:Sequence, n:Int, j:Int :: {lookup(s,j), drop(s,n)}
n < length(s) & j >= n &% j < length(s) ==
lookup(drop(s,n),j-n) == lookup(s,j)

axiom length_pos {
forall s: Sequence :: length(s) >= 0
X
}

method test(sl: Sequence, s2:Sequence) {
assume length(sl) >= 5
assert lookup(take(s1,3),2) == lookup(drop(si,2),0)

assume take(sl,1) == take(s2,1)
assert lookup(s1,0) == lookup(s2,0) // needs 2nd triggers on lookup_take

assume drop(sl,1) == drop(s2,1)
assert lookup(sl,1) == lookup(s2,1) // needs lookup_drop_two

With respect to potential incompletenesses, there is the usual extensionality issue (see next
question); we might have two observationally-equivalent sequences that we cannot prove to be
equal. Leaving aside sequence equality, the need for the second sets of triggers on the first three
axioms lookup_take axiom, and for the lookup drop_two axiom might not be immediately
obvious. These allow the axiom to be instantiated in situations in which a lookup was performed
on the original sequence, not the sequence after the take or drop operation; they are the “inverse”
cases to those described by the first set of triggers. The test method illustrates an example in
which the second triggers on lookup_take are necessary to prove the assertion. Similarly, the
second axiom lookup drop_two covers the analogous situation for drop. The reason this can’t
be directly achieved with an extra set of triggers on lookup_drop is that the analogous triggers
to choose would be the terms {lookup(s,i+n) ,drop(s,n)}, but the first term cannot be used
in a trigger because of the integer + operator. Instead, the axiom lookup_drop_two expresses
this “inverse” case of triggering by adjusting the range of the quantified variable to range over the
index into s directly. This trick of rewriting axioms via arithmetic “shifts” to avoid problematic
arithmetic operators in triggers is quite commonly-useful.

Assignment 2 (Extensionality)

Extensionality can be expressed by the following axiom; the triggers chosen use the isSequence
function discussed in the question:
axiom extensionality {

forall sl:Sequence, s2:Sequence :: {isSequence(sl),isSequence(s2)}
length(sl) == length(s2) && (forall i:Int :: {lookup(sl,i),lookup(s2,i)}
lookup(sl,i) == lookup(s2,i)) ==> sl==82



This axiom will be instantiated for every pair of sequences in the problem (for which the
isSequence assumption is added), i.e. there will be quadratically-many instantiations per ground
sequence term. However, unlike in the previous exercise sheet, there isn't an obvious way to avoid
this; there is no way to e.g. write an “inverse” function from the (unboundedly-many) sequence
values to the sequence itself, which would be a way of characterising that a sequence is uniquely-
determined by its values.

Assignment 3 (Axiomatising Maps)

The axiomatisation of maps was covered in the lectures, but is included here for the simple
case described in the question. Adding the bulk-update operation requires a generalisation of
the axioms for defining map-lookup over map-update (select-store axioms). The main technical
difficulty is how to represent the condition for the bulk-update (defining which keys are to be
updated). To represent a general condition seems to require passing a function as an argument
to another function, which is not supported. Instead, we could represent these “filters” for the
bulk-updates using maps from integers (keys) to booleans. We take the slightly simpler approach
of defunctionalisation, here: we represent each desired filter function as an element of a new type
Filter, which we equip with a filter function that models applying the filter to a particular
key. We can then define, e.g. the Filter that is true exactly for even-number keys, by taking
an unknown value of type Filter and defining its behaviour via a quantifier. We can then pass
this Filter to our bulk-update operation:
domain Map {

function select(m: Map, key: Int) : Int

function store(m:Map, key: Int, value: Int) : Map

function update_all(m:Map, f:Filter, v:Int) : Map

axiom select_store_same {
forall m: Map, k: Int, v: Int :: {select(store(m,k,v),k)}
select(store(m,k,v) k) ==

axiom select_store_diff {
forall m: Map, kl: Int, k2: Int, v : Int ::
{select(store(m,kl,v),k2)} {select(m,k2), store(m ki,v)}
k1 != k2 ==> select(store(m,kl,v),k2) == select(m,k2)

axiom select_bulk_update {
forall m:Map, f:Filter, v:Int, k:Int
{select(update_all(m,f,v),k)} {select(m,k), update_all(m,f,v)}
select(update_all(m,f,v) k) ==
(filter(f,k) 7 v : select(m,k))



domain Filter {
function filter(f:Filter, i:Int) : Bool
}

method test(m : Map, f:Filter) {
assume select(m,3) == 2;
assume select(m,1) == 4;
assume forall i:Int :: {filter(f,i)}
filter(f,i) <==>1i % 2 ==
assert select(update_all(m,f,5),3) ==
assert select(update_all(m,f,5),4)

|
[
N



