
Alexander J. Summers

Program Verification

Exercise Solutions 10: Unbounded Heap Data Structures

Assignment 1 (List Segments)

Consider the lseg predicate from Slide 225.

1. A cyclic list starting and ending at reference x can be represented by a predicate instance
lseg(x,x).

2. predicate mylseg(start: Ref, end:Ref) {

start != end ==>

acc(start.val) && acc(start.next) && mylseg(start.next,end)

}

3. An instance of this predicate cannot represent cyclic lists. The problem is that an assertion
mylseg(x,x) is guaranteed not to contain any permissions, regardless of the value of
e.g. x.next; the recursive definition terminates too early.

4. The following implementations work. Note the assert statements, which guarantee that
the definitions of the relevant functions don’t terminate “too early”:

method addAtEnd(l1:Ref, l2:Ref)

requires lseg(l1,l2) && acc(l2.val) && acc(l2.next) && list(l2.next)

// last conjunct above was added (compared with original sheet)

ensures lseg(l1,old(l2.next)) && lsegelems(l1,old(l2.next)) ==

old(lsegelems(l1,l2)) ++ Seq(old(l2.val))

// this next postcondition was added (compared with original sheet)

ensures list(old(l2.next)) && elems(old(l2.next))==old(elems(l2.next))

{

unfold lseg(l1,l2)

var tmp : Ref := l2.next

if(l1.next == l2) {

assert unfolding list(l2.next) in l1.next != l2.next

fold lseg(l2,tmp)

fold lseg(l1,tmp)

1



} else {

assert unfolding lseg(l1.next,l2) in

unfolding list(l2.next) in l1.next != l2.next

addAtEnd(l1.next,l2)

fold lseg(l1,tmp)

}

}

method prependLseg(l1:Ref, l2:Ref)

requires lseg(l1,l2) && list(l2)

ensures list(l1) && elems(l1) == old(lsegelems(l1,l2) ++ elems(l2))

{

unfold lseg(l1,l2)

if(l1.next != l2) {

prependLseg(l1.next,l2)

assert unfolding list(l1.next) in l1.next != null

fold list(l1)

} else {

assert unfolding list(l2) in l2 != null

fold list(l1)

}

}

Assignment 2 (Heap-based Matrices)

1. domain HeapMatrix {

function cell(m: HeapMatrix, i: Int, j:Int): Ref

function dim(m: HeapMatrix): Int

// for expressing injectivity:

function first(r: Ref): HeapMatrix

function second(r: Ref): Int

function third(r: Ref): Int

// injectivity:

axiom all_diff {

forall m: HeapMatrix, i: Int, j: Int :: {cell(m, i, j)}

first(cell(m, i, j)) == m && second(cell(m, i, j)) == i

&& third(cell(m, i, j)) == j

}

axiom dim_nonneg {

forall m: HeapMatrix :: {dim(m)} dim(m) >= 0

}

}

field val : Int

2



2. For a given matrix m, the assertion would be forall i:Int, j:Int ::

0 <= i && i < dim(m) && 0 <= j && j < dim(m) ==> acc(cell(m,i,j).val)

3. We could represent square matrices of size N as arrays of size N*N, e.g. representing the
(i, j)-th cell with the location loc(a,i*N+j). In this representation, permission to the
whole matrix would be represented by the assertion forall i:Int ::

0 <= i && i < size(a) ==> acc(loc(a,i).val) which is supported by the current
tools. However, assertions denoting permission to single rows and columns of the matrix,
or functional properties of these (e.g. loop invariants describing an operation which has
so-far been performed on only a part of the matrix) will need to employ i*N+j expressions
to describe the appropriate matrix regions. The terms in which these expressions occur can
then typically not be used in triggers for the corresponding quantifiers, due to the usage of
interpreted arithmetic operators. Furthermore, this encoding employs non-linear arithmetic,
and support for this (undecidable) theory in the SMT solver is typically unreliable.

3


