Assignment 10 (Solution)

Exercise 1

Recall from the lecture that the pointer analysis abstract domain is defined
as follows:

Labs — ((PtrVar — P(AbsObj)) x (AbsObj x Field — P(AbsObj)))

That is, the abstract domain keeps two mappings at every program label.
The first one maps from pointer variables to a set of abstract objects they
point to. The second one maps from fields of abstract objects to a set of
abstract objects they point to.

1. Write down the formal definition for all abstract transformers that
capture the effect of program statements manipulating pointers on
the abstract domain:

e object creation, e.g., = = newObject
Solution: Let (my,mj) be a tuple where m,, is a pointer map
and my, is a heap map pointed to by some label [. The notation

m[z — y] denotes the map m modified so that z maps to y. We
define

[:= newObject'](my, mp) = (mplz — {1}], mp).

e comparison of two pointers, e.g., x =y
Solution: We define

[« = yl(mp, mp) = (mp[z = P,y = PJ,my),

where P = my(z) Nm,(y).
e pointer assignment, e.g., x =y
Solution: We define

[z = y](mp, mn) = (mp[z = my(y)], mn).

e pointer heap store, e.g., z.f =y
Solution: We define
[[J:f = y](mpvmh) = (mp’m;z)v
where

, _)mpo.f) Umy(y) if o € my(x)
mio-f) = {mh(o.f) otherwise.

e pointer heap load, e.g., x = y.f
Solution: We define

[1= 9. f1mpsmn) = (mp[2 Upeny i mn(0:£)])
2. Formally define the following things for the abstract domain.

e the partial order C
Solution:

Let a and b two elements of the abstract domain. For all labels [,

let ai,, aﬁl, bé, and bﬁl be mappings such that a(l) = (afmalh) and

b(l) = (b}, b},). We define
aCb < VI: (Vz: aé,(a:) C bi,(x)) A (V. f: as (z.f) C blh(:rf))

e the least element L
Solution: We define

1=l (mzf,mﬁ),

where my = Az. 0 and mj = M. f). 0.
e the greatest element T
Solution: We define

T =M. (m;—,m;—f),

where where m,, = Az. AbsObj and m,, = A(z.f). AbsObj.
e the meet operation M
Solution: We define

alb= . (mé, mk),

where

= Az. a]lo(:c) N bé(a:) and

m
b= A). (e f) N (. f).

m

e the join operation U
Solution: We define

aub:ALUﬁﬂmm,
where

i, Azx. ai,(a:) U bé(ac) and
mb = Nz.f). db,(z.f) Ubl (z.f).

m

Exercise 2

Consider the following program:

0: ¢ = newObject T;
1: t = c;

2: i = 0;

3: while (i < count) {
4: n = newObject T;
5: c.f = n;

6: cC = n;

7: it++;

8: }

9: c.f = t;
10: assert t !'= n;

1. Run the flow-sensitive pointer analysis from the lecture on it.

Solution:

0: ¢ = newObject T;
{t->{}, c—>{A0}, n—>{}}

1: t = c;
{t->{40}, c—>{A0}, n—>{}}
2: i = 0;

{t->{A0}, c—>{A0}, n—>{}}
3: while (i < count) {
{t->{A0}, c->{A0, A4}, n->{A4}, AO.f->{A4}, A4.f->{A4}}
4: n = newObject T;
{t->{A0}, c->{A0, A4}, n->{A4}, AO.f->{A4}, A4.f->{A4}}
5: c.f =n;
{t->{A0}, c->{A0, A4}, n->{A4}, AO.f->{A4}, Ad4.f->{A4}}

6: C = n;
{t->{A0}, c—->{A4}, n->{A4}, AO.f->{A4}, A4.f->{A4}}
7: i++;

{t->{A0}, c->{A4}, n—>{A4}, AO.f->{A4}, A4.f->{A4}}
8: }
{t->{A0}, c->{A0,A4}, n->{A4}, AO.f->{A4}, A4.f->{A4}}
9: c.f = t;
{t->{A0}, c—>{A0,A4}, n—>{A4}, AO.f->{A0,A4}, A4.f->{A0,A4}}
10: assert t != n;

2. Can you prove the assertion on line 10 using the results of the analysis?

Solution: No, since variables t and n could be both null.

Exercise 3

Write a program for which the flow-sensitive pointer analysis from the lecture
infers the following abstract state at the end of the program:

{a->{A0}, b->{A0,A1}, AO.f->{A0}, A1l.f->{AO0}}

Solution:

0: a = newlObject T;
{a->{A0}}
1: b = newObject T;
{a->{A0}, b->{A1}}
2: if (%) {
{a->{A0}, b->{A1}}
3: b = a;
{a—>{A0}, b->{A0}}
4: }
{a->{A0}, b—>{A0,A1}}
5: b.f = a;
{a->{A0}, b—>{A0,A1}, AO.f->{A0}, A1l.f->{AO}}

Exercise 4

Run both the flow-sensitive and the flow-insensitive pointer analysis on the
following program:

a = newObject T;
b = a;
: if (a == b) {
b = newObject T;
} else {
3

g W N = O

Solution:
1. Flow-sensitive pointer analysis:

0: a = newObject T;
{a—>{A0}}
1: b = a;
{a->{A0}, b->{A0}}
2: if (a == b) {
{a->{A0}, b->{A0}}
3: b = newObject T;
{a->{A0}, b->{A3}}
4: } else {
{a->{A0}, b->{A0}}
5: }
{ a->{A0}, b->{A0,A3} }

2. Flow-insensitive pointer analysis:

{a->{A0}, b->{A0,A3}}

