Assignment 1 (solution)

Exercise 1 - Design and Documentation

1. The design decisions would make sense if we would rarely modify the
source and the target - otherwise it would make more sense to have them
as arguments to shortestPath.

2. No, the shortest path does not exist if the source and the target are not
connected through edges. In that case, the method should return null. If
the source and the target are equal, then the shortestPath should return an
empty list. Otherwise, the method should return a list of nodes (without
including source and target), such that the sum of the distances of the
corresponding edges is minimum.

3. In order to improve the efficiency we could cache the shortest path by
recomputing it lazily or eagerly.

(a) Lazily:

class STGraph{
List<Edge> edges;
Node source;
Node target;

private List<Node> sp;

public STGraph(Node source, Node target){
this.source = source;
this.target = target;
this.edges = new ArrayList<Edge>();

sp = null;
}
public void setST(Node source, Node target){
this.source = source;
this.target = target;
sp = null;
}

void addEdge (Edge e){
edges.add(e);
sp = null;

}

List<Node> shortestPath(){
if(sp == null && areConnectedST()){
sp = computeShortestPath();
}

return sp;
}

private boolean areConnectedST({...}

private List<Node> computeShortestPath(){...}
}

(b) This should not influence the client-visible documentation, except
perhaps for the memory consumption.

(c) One could add the following documentation:

i. postcondition for addEdge: sp == null

ii. postcondition for shortestPath: old(sp == null & areConnectedST
O) 11| result == sp

(d) Eagerly:

class STGraph{
List<Edge> edges;
Node source;
Node target;

private List<Node> sp;

public STGraph(Node source, Node target){
this.source = source;
this.target = target;
this.edges = new ArraylList<Edge>();
sp = computeShortestPath();
}

public void setST(Node source, Node target){
this.source = source;
this.target = target;
sp = computeShortestPath();

}

public void addEdge (Edge e){
edges.add(e);
sp = computeShortestPath();
}

public List<Node> shortestPath(){
return sp;

}
private boolean areConnectedST({...}

private List<Node> computeShortestPath(){

if(lareConnectedST()){
return null;

}
// do the actual computation
/)

}

}

e This should not influence the client-visible documentation, except
for the complexity of the constructor, setsT and addEdge.

e One could add the following documentation:

(a) class invariant for class STGraph: areConnectedST()=> sp != null
(b) postcondition for shortestPath: result == sp

We could also think of a more involved design where we keep the intermediate
data of the shortest path algorithm and update it incrementally when adding
edges.

Exercise 2 - Design

1. This is one possible scenario:

(a) A new list’a’ is created (without keeping the reference to the array
passed to the constructor).

(b) This list 'b” is obtained by calling the method take on a’.
(c) The list b’ is modified by calling the method set.

(d) The list a” is modified by calling the method set and the elems are
cloned even though the array is technically not shared anymore

List<Integer> a = new List<Integer>(new Integer[]{10, 20, 30}, 3);
List<Integer> b = a.take(Q);

b.set(0, -5);

a.set(1l, 40);

2. One could use actual reference counting instead of using the boolean
field shared. This field has to be shared between the List objects, so we
cannot just replace the boolean with an int. For this reason, we decided
to create the wrapper class NumberOfReferences, as showed below:

class NumberOfReferences{
int counter;

NumberOfReferences (int counter){
this.counter = counter;

}

void increase(){
counter ++;

}

void decrease(){
counter --;

3

int getValue(){
return counter;

}

class List<E> {
E[] elems;
int len;
NumberOfReferences nr;

List(E[] e, int 1, NumberOfReferences nr){
elems = e;
len = 1;
this.nr = nr;
this.nr.increase();

3

void set(int index, E e){
if(nr.getValue() > 1){
elems = elems.clone();
nr.decrease();
nr = new NumberOfReferences(l);

}
elems[index] = e;

}

List<E> take(){
return new List<E>(elems, len - 1, nr);
}
}

3. No, the above solution cannot handle the following scenario:

(a) A new list ‘a” is created (List<Integer> a = new List<Integer>(new
Integer[]{10, 20, 30}, 3, new NumberOfReferences(@));)

(b) The list ‘b’ is obtained by calling the method take on "a’.

(c) Thelist b’ is not used anymore and is removed from the heap by the
garbage collector.

(d) The list‘a’ is modified by calling the method set and the elems are
still cloned, because the nr.getValue() is still 2.

To fix this inefficiency, one could implement a finalize method, where
the numberOfReferences in decreased before the object is eventually re-
moved from the heap:

class List<E> {
/)
// same as before

/)

@Override
protected void finalize(){
nr.decrease();
}
}

Exercise 3 - Requirements Elicitation

There is no authoritative solution to this exercise since it depends on the dis-
cussion in the exercise session. The following should be mainly seen as hints:

e Actors:

— Customer

— Flower Shop Manager

— Messenger

e Some open issues:

- How does the messenger communicate with the web browser?

— How are undelivered flower orders handled?

— Can he use the system to sell faster the flowers that will expire soon?

- Who is going to host the system?

e Scenarios:

— Scenario 1 (normal)

1.
2.

o G W

Jill wishes to purchase some flowers.

She logs into the internet browser with her user name and pass-
word.

She selects the flowers that she likes and presses check-out.

For the address, she selects her home address.

Jill pays with her credit card.

The system offers her a receipt for the delivery and her credit
card is charged.

— Scenario 2 (exceptional)

1.

2.
3.
4.

Bob wants to become a frequent customer for the web shop.
He enters the URL of the shop and selects new customer.

Bob gives his preferred username.

The system finds out that the selected username already exists
and notifies Bob that he has to choose a different one.

— Scenario 3 (unspecified)

*

%

*

*

Sarah has already checked out and printed her receipt.

She realizes that the address she selected was incorrect.

She immedjiately logs back in and selects her last order.

The system tells her that it hasn’t been prepared yet and that she
is able to modify the order.

She changes the address to the correct one and prints out the
new receipt.

¢ Non-functional requirements:

The clients should be able to use standard web browsers.

The response time of the system should be within 3 seconds.

The system should support at least 400 clients.

The system should use the existing point of sales system.

