
Assignment 10 (Solution)

Exercise 1

Recall from the lecture that the pointer analysis abstract domain is defined
as follows:

Labs→ ((PtrVar→ P(AbsObj))× (AbsObj× Field→ P(AbsObj)))

That is, the abstract domain keeps two mappings at every program label.
The first one maps from pointer variables to a set of abstract objects they
point to. The second one maps from fields of abstract objects to a set of
abstract objects they point to.

1. Write down the formal definition for all abstract transformers that
capture the effect of program statements manipulating pointers on
the abstract domain:

• object creation, e.g., x := newObjectl

Solution: Let (mp,mh) be a tuple where mp is a pointer map
and mh is a heap map pointed to by some label l. The notation
m[x 7→ y] denotes the map m modified so that x maps to y. We
define

[[x := newObjectl]](mp,mh) = (mp[x 7→ {l}],mh).

• comparison of two pointers, e.g., x = y

Solution: We define

[[x = y]](mp,mh) = (mp[x 7→ P, y 7→ P ],mh),

where P := mp(x) ∩mp(y).

• pointer assignment, e.g., x := y

Solution: We define

[[x := y]](mp,mh) = (mp[x 7→ mp(y)],mh).

1



• pointer heap store, e.g., x.f := y

Solution: We define

[[x.f := y]](mp,mh) = (mp,m
′
h),

where

m′
h(o.f) =

{
mh(o.f) ∪mp(y) if o ∈ mp(x)

mh(o.f) otherwise.

• pointer heap load, e.g., x := y.f

Solution: We define

[[x := y.f ]](mp,mh) =
(
mp

[
x 7→

⋃
o∈mp(y)

mh(o.f)
]
,mh

)
.

2. Formally define the following things for the abstract domain.

• the partial order v
Solution:

Let a and b two elements of the abstract domain. For all labels l,
let alp, a

l
h, blp, and blh be mappings such that a(l) = (alp, a

l
h) and

b(l) = (blp, b
l
h). We define

a v b ⇐⇒ ∀l :
(
∀x : alp(x) ⊆ blp(x)

)
∧
(
∀x.f : alh(x.f) ⊆ blh(x.f)

)
.

• the least element ⊥
Solution: We define

⊥ = λl.
(
m⊥

p ,m
⊥
h

)
,

where m⊥
p = λx. ∅ and m⊥

h = λ(x.f). ∅.
• the greatest element >

Solution: We define

> = λl.
(
m>

p ,m
>
h

)
,

where where m>
p = λx. AbsObj and m>

h = λ(x.f). AbsObj.

• the meet operation u
Solution: We define

a u b = λl. (ml
p,m

l
h),

where

ml
p = λx. alp(x) ∩ blp(x) and

ml
h = λ(x.f). alh(x.f) ∩ blh(x.f).

2



• the join operation t
Solution: We define

a t b = λl. (ml
p,m

l
h),

where

ml
p = λx. alp(x) ∪ blp(x) and

ml
h = λ(x.f). alh(x.f) ∪ blh(x.f).

Exercise 2

Consider the following program:

0: c = newObject T;

1: t = c;

2: i = 0;

3: while (i < count) {

4: n = newObject T;

5: c.f = n;

6: c = n;

7: i++;

8: }

9: c.f = t;

10: assert t != n;

1. Run the flow-sensitive pointer analysis from the lecture on it.

Solution:

0: c = newObject T;

{t->{}, c->{A0}, n->{}}

1: t = c;

{t->{A0}, c->{A0}, n->{}}

2: i = 0;

{t->{A0}, c->{A0}, n->{}}

3: while (i < count) {

{t->{A0}, c->{A0, A4}, n->{A4}, A0.f->{A4}, A4.f->{A4}}

4: n = newObject T;

{t->{A0}, c->{A0, A4}, n->{A4}, A0.f->{A4}, A4.f->{A4}}

5: c.f = n;

{t->{A0}, c->{A0, A4}, n->{A4}, A0.f->{A4}, A4.f->{A4}}

6: c = n;

{t->{A0}, c->{A4}, n->{A4}, A0.f->{A4}, A4.f->{A4}}

7: i++;

3



{t->{A0}, c->{A4}, n->{A4}, A0.f->{A4}, A4.f->{A4}}

8: }

{t->{A0}, c->{A0,A4}, n->{A4}, A0.f->{A4}, A4.f->{A4}}

9: c.f = t;

{t->{A0}, c->{A0,A4}, n->{A4}, A0.f->{A0,A4}, A4.f->{A0,A4}}

10: assert t != n;

2. Can you prove the assertion on line 10 using the results of the analysis?

Solution: No, since variables t and n could be both null.

Exercise 3

Write a program for which the flow-sensitive pointer analysis from the lecture
infers the following abstract state at the end of the program:

{a->{A0}, b->{A0,A1}, A0.f->{A0}, A1.f->{A0}}

Solution:

0: a = newObject T;

{a->{A0}}

1: b = newObject T;

{a->{A0}, b->{A1}}

2: if (*) {

{a->{A0}, b->{A1}}

3: b = a;

{a->{A0}, b->{A0}}

4: }

{a->{A0}, b->{A0,A1}}

5: b.f = a;

{a->{A0}, b->{A0,A1}, A0.f->{A0}, A1.f->{A0}}

Exercise 4

Run both the flow-sensitive and the flow-insensitive pointer analysis on the
following program:

0: a = newObject T;

1: b = a;

2: if (a == b) {

3: b = newObject T;

4: } else {

5: }

4



Solution:

1. Flow-sensitive pointer analysis:

0: a = newObject T;

{a->{A0}}

1: b = a;

{a->{A0}, b->{A0}}

2: if (a == b) {

{a->{A0}, b->{A0}}

3: b = newObject T;

{a->{A0}, b->{A3}}

4: } else {

{a->{A0}, b->{A0}}

5: }

{ a->{A0}, b->{A0,A3} }

2. Flow-insensitive pointer analysis:

{a->{A0}, b->{A0,A3}}

5


