
Assignment 10

Exercise 1

Recall (see slide 19 from the lecture “Applications”) that an interval trans-
former for an action has the type:

[[action]]i : (Var 7→ Li) 7→ (Var 7→ Li)

where Li are the elements of the interval domain (Li = {[x, y] | x, y ∈
Z∞, x ≤ y} ∪ {⊥i}).

1. Consider the interval maps:

m1 = x 7→ [−3, 8], y 7→ [0, 5]

m2 = x 7→ [−3, 8], y 7→ ⊥i

The interval transformer for ≤ is defined on slide 29. Apply the trans-
former to compute the result of:

[[x ≤ y]](m1) = [[x ≤ y]](m2) =

[[3 ≤ 5]](m1) = [[3 ≤ 5]](m2) =

[[5 ≤ 3]](m1) = [[5 ≤ 3]](m2) =

2. Define the interval transformer for assignment:

[[x := a]]i(m) =

3. Define the multiplication expression for interval elements:

〈a1 ∗ a2,m〉 ⇓i ?

4. Define the interval transformer for equality test:

[[x = y]]i(m) =

1



Exercise 2

Consider the following program:

foo (int x) {

1: y := 2

2: if (x <= y)

3: z := 3 * x

else

4: z := y

5: z := y * z

6: }

1. Give two concrete traces t1 and t2 of the program.

2. Apply the interval abstraction function αi (similarly to slide 15) on
the set {t1, t2}.

3. Compute the least fixpoint lfpF i of the program using the interval
domain abstraction. For this exercise, you can consider that the en-
try/initialization transformer sets all the variables (function arguments
and local variables) to Top.

4. Give a concrete trace t ∈ γi(lfpF i) that is not a valid trace. Here γi is
the concretization function.

Exercise 3

Give two programs that are output equivalent (i.e. for the same initial state
they result in the same final state) under the concrete domain, and they are
not output equivalent under the interval domain.

2


