
Assignment 2 (Solution)

Exercise 1
1. Q: Why are method equals and method hashcode probably pure?

Under which circumstances are they not pure?
A: They are probably pure because we don’t know the implementation
Image.hashcode which might violate the purity specification. The
same would be true for String.equals and String.hashcode if we
didn’t know their implementations, but String is a builtin Java class
whose equals and hashcode methods actually happen to be pure, and
the String class is final, meaning that the standard implementations
cannot be overridden.
Q: Is is possible to change the class design such that they are pure
under all circumstances?
A: One possibility would be to provide a pure implementation of
method Image.hashcode. Note that if we extract it into a separate
method we then need to make it final (otherwise subclasses might
override it with a non-pure version).

2. One could instrument the following program operations:

• object allocations to keep track of newly allocated objects that
can be modified inside pure methods

• field writes to check whether the method is allowed to modify
given field

• method entry/exit to update global instrumentation state de-
pending on whether the method is pure or not.

The following shows a sketch of non-thread safe instrumentation:

class PurityChecks
{

// Contains objects that pure method is allowed to modify
static IdentityHashSet<object> fresh = new IdentityHashSet<object>();

1

// Denotes whether we are restricting method
// to modify only freshly created objects.
// Set to true for all methods annotated as @Pure
// and all methods called transitively from @Pure methods
static boolean checking = false;

}
class ImageFile
{

String file;
Image image;

public Image getImage() {
if (this.image == null) {

Image tmp = new Image();
// whenever an object is created we add
// it to the set of object that can be modified
+ PurityChecks.fresh.insert(tmp);
... load image

// whenever we modify an object
// we check if this is allowed
+ assert !PurityChecks.checking || PurityChecks.fresh.contains(this);
this.image = tmp;

}

return image;
}

@Pure
boolean equals(Object o) {

// Since this method has @Pure annotation we:
// 1. Save the state of the caller
+ boolean checking = PurityChecks.checking;
+ IdentityHashSet<object> fresh = PurityChecks.fresh;
// 2. Initialize the PurityChecks
// fresh set is initially empty as we are allowed to
// modify only newly created objects
+ PurityChecks.checking = true;
+ PurityChecks.fresh = new IdentityHashSet<object>();

if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

// add newly allocated objects to the global set to allow
// their modification after we return from this method
+ fresh.addAll(PurityCheck.fresh);
// Restore the state of caller,
// should be executed before each return statement
+ PurityChecks.checking = checking;

2

+ PurityChecks.fresh = fresh;
}

@Pure
int hashcode() {

+ var checking = PurityChecks.checking;
+ var fresh = PurityChecks.fresh;
+ PurityChecks.checking = true;
+ PurityChecks.fresh = new IdentityHashSet<object>();

if (image == null) {
return file.hashcode();

} else {
return image.hashcode() + file.hashcode();

}

+ fresh.addAll(PurityCheck.fresh);
+ PurityChecks.checking = checking;
+ PurityChecks.fresh = fresh;

}
}

3. Methods which lazily initialize fields, or which write computed data to
a cache, could not be marked as pure; otherwise, the instrumentation
would report errors, since the methods modify the state of an object,
even though the effects can’t be observed by a client. We could weaken
the definition of purity to allow such designs.

3

Exercise 2
Main insight: elems.Length must be strictly greater than 0 so that Add
works, therefore we get the preconditions initialElements.length > 0
and howMany > 0 in the constructors.

public class Bag {
private int[] elems;
private int count;

[ContractInvariantMethod]
private void ObjectInvariant() {

Contract.Invariant(elems != null);
Contract.Invariant(0 < elems.Length);
Contract.Invariant(0 <= count && count <= elems.Length);

}
public Bag(int[] initialElements) {

Contract.Requires(initialElements != null);
Contract.Requires(0 < initialElements.Length);
...

}
public Bag(int[] initialElements, int start, int howMany) {

Contract.Requires(0 <= start);
Contract.Requires(0 < howMany);
Contract.Requires(initialElements != null);
Contract.Requires(start + howMany <= initialElements.Length);
....

}
[Pure]
public int Count() {

....
}
public int RemoveMin() {

Contract.Requires(0 < Count());
Contract.Ensures(count == Contract.OldValue(Count()) - 1);
Contract.Ensures(Contract.Result<int>() ==

Contract.OldValue(elems.Take(Count()).Min()));
....

}
public void Add(int x) {

Contract.Ensures(Count() == Contract.OldValue(Count()) + 1);
Contract.Ensures(elems[Contract.OldValue(Count())] == x)
Contract.Ensures(!Contract.OldValue(Count() == elems.Length) ||

elems.Length == 2*Contract.OldValue(elems.Length))
Contract.Ensures(Contract.ForAll(0, Count() - 1, i =>

elems[i] == Contract.OldValue(elems[i])))
....

}
}

4

Exercise 3
1. Student Class diagram

1

1

Student

2. (a) Classmates have the same major
(b) A student is legal iff he/she is registered

5

