Assignment 8

Exercise 1

In the lecture you have seen two abstract domains: Sign and Interval. For
this exercise we use another domain called Parity:

/\

FEven

\/

where Fven represents all even numbers, including zero, and Odd represents
all other numbers.
An (abstract) parity state is a mapping PC +— Vars — {L, T, odd, even}.
You are given the following program P:

function (int x, int y) {

0: X =y % 2

1: while (x >= 0)

2: ifx=1

3: x :=x + 1
else

4: y :=x -1

5: x =y -1

6: end

7: %}

The initial parity state of P is:

]
S

Y| x| W N~ O
S
| s

EN|

Iterate over P’s states, starting from the initial parity state, until you
reach a fixed-point. An intuitive overview of the iterations is given in slide
set 6 of the lecture. What is the fixed-point state?

Exercise 2
Are the domains Sign, Parity, and Interval pair-wise comparable?

1. For those that are comparable, which one is more precise?

2. For those that are incomparable, give an example program that can
be verified only with each domain.

Exercise 3

Can you find a program and a property where with the Sign domain it
takes strictly more iterations (same as the examples from the lecture) to
terminate than with the Interval domain (and where we succeed in proving
the property) ?

Exercise 4

Can you find a program and a property where with the Sign domain it takes
strictly less iterations to terminate than with the Interval domain (and where
we succeed in proving the property) ?

e For the Interval, assume the widening in the lecture and that it is
applied immediately.

e For the iterations, assume that you follow the program structure, just
as we did in the lecture.

Exercise 5

The Interval domain in lectures uses widening. Can you modify the structure
of the Interval domain (not the elements themselves, they are still a pair
[a,b]), making your new domain finite and bounded, so that you do not need
widening any more and can prove the property for the following program?

foo (int 1) {

int x = 5;
int y = 7;
while (i >= 0) {
y =y + 1;
i=1i-1;

}
}

assert (x + y >= 12);

