
Martin VechevMartin Vechev

Software Architecture and

Engineering: Part II

ETH Zurich, Spring 2017

Prof. Martin Vechev
http://www.srl.inf.ethz.ch/

http://www.srl.inf.ethz.ch/

Martin VechevMartin Vechev

SAE: Part II

Static
Analysis

Second
Project

Alias
Analysis

Relational
Analysis

Interval
Analysis

Semantics
&

Theory

Assertions

Framework

SMT
solver

Symbolic
Reasoning

Program
Repair

Concolic
Execution

Symbolic
Execution

Web &
Mobile

Apps

Race
Detection

Context
Bounded Dynamic

Analysis

2

Today

Martin VechevMartin Vechev

Pointer & Alias Analysis

Pointer and Alias Analysis is fundamental to reasoning about
heap manipulating programs (pretty much all programs today).
Virtually all practical static analysis tools (bug finding,
verification, etc...) contain some form of pointer analysis.

Due to its importance, the topic has received much attention
from the research and developer communities. In our lecture
today, we will study the core concepts of such pointer analyses
and illustrate them on examples. This will enable us to use (like
in the course project) or to build/extend such analyzers.

3

Martin VechevMartin Vechev

Let us define the concrete store

• Objs : set of all possible objects

• PtrVal = Objs { null }

• PrimEnv : Var Z

• r PtrEnv : PtrVar PtrVal

• h Heap : Objs (Field {PtrVal Z})

A store is now: = , r, h Store = PrimEnv PtrEnv Heap

(before the store was only)

4

Martin VechevMartin Vechev

Some Common Terms

• Aliases

– Two pointers p and q are aliases if they point to the
same object

• Points-to pair

– (p, A) means p holds the address of object A

• Points-to pairs and aliases

– if (p, A) and (r, A) then p and r are aliases

5

Martin VechevMartin Vechev

(May) Points-to Analysis

What to do with allocation of new objects? A program
can create an unbounded number of objects.

We need to again use abstraction. That is, we need some
static naming scheme for dynamically allocated objects

6

Martin VechevMartin Vechev

Abstraction: Allocation Sites

• Divide heap into a fixed partition based on
allocation site (the statement label)

• All objects allocated at the same program point
(label) get represented by a single “abstract object”

7

Martin VechevMartin Vechev

Abstraction: Allocation Sites

8

• Divide heap into a fixed partition based on
allocation site (the statement label)

• All objects allocated at the same program point
(label) get represented by a single “abstract object”

Martin VechevMartin Vechev

Abstraction: Allocation Sites

9

AS2

AS2

AS3

AS3

AS3

AS1

AS2

AS1

• Divide heap into a fixed partition based on
allocation site (the statement label)

• All objects allocated at the same program point
(label) get represented by a single “abstract object”

Martin VechevMartin Vechev

Abstract Objects

The (static) abstract objects can be just the allocation sites (labels of
statements in our simple language) of the program. If this is too imprecise,
we can also use the calling context. This is for instance common in library
frameworks where the allocation site inside the library is not useful as we
need to know where the library was called from. Naturally, bigger calling
context will lead to more abstract objects.

If we use allocation sites (labels), we can now define the abstract objects as

AbsObj = { | statement is p := alloc}

That is, this is just those labels/program counters in the program where
allocation of an object occurs. Here alloc is just the name of the
allocation instruction (there can be other names, e.g., newobject, etc).

10

Martin VechevMartin Vechev

Pointer Analysis: two kinds

• Flow sensitive: respects the program control flow

– a separate set of points-to pairs for every program point

– the set at a program point represents possible may-aliases on
some path from entry to the program point

• Flow insensitive: assume all execution orders are possible,
abstracts away order between statements

– good for concurrency (if not too imprecise)

11

Let us first take a look at the flow sensitive analysis

Martin VechevMartin Vechev 12

1. select/define an abstract domain
• selected based on the type of properties you want to prove

2. define abstract semantics for the language w.r.t. to the domain
• prove sound w.r.t concrete semantics
• involves defining abstract transformers

• that is, effect of statement / expression on the abstract domain

3. iterate abstract transformers over the abstract domain
• until we reach a fixed point

Abstract Interpretation: step-by-step

The fixed point is the over-approximation of the program

Martin Vechev

The abstract domain is a complete lattice:

Labs ((PtrVar (AbsObj))
(AbsObj Field (AbsObj)))

That is, the abstract domain keeps two maps at every program label.
The first map contains a mapping from a pointer variable to a set of
abstract objects. The second map contains a mapping from the fields of
abstract objects to the set of abstract objects they point to.

Note that this lattice is of finite height. We have a finite number of
abstract objects (i.e. AbsObj), finite number of field names (i.e.
Field), and a finite number of pointer variables (i.e. PtrVar), and
labels (i.e. Lab). Therefore, we will not need widening here.

Step 1: Define Domain

13

Martin Vechev

The abstract domain is a complete lattice:

Labs ((PtrVar (AbsObj))
(AbsObj Field (AbsObj)))

Example of an element in the domain:

1 (p {a5 , a10} , a5.f {a6 , a9})

…

43 …

Step 1: Define Domain

14

We read this as follows: at program label 1, pointer p points to 2 abstract
objects a5 and a10 . Field f of abstract object a5 points to two abstract objects
a6 and a9. In this element, we have other program labels (43 of them), where
there are many such pointer maps, but we did not write them explicitly here.

Martin Vechev

The abstract domain is a complete lattice:

Labs ((PtrVar (AbsObj))
(AbsObj Field (AbsObj)))

Step 1: Define Domain

15

What are , , , , T ?

Example: 1 (p {a5 , a10} , a5.f {a6 , a9})

1 (p {a5 , a10 , a15} , a5.f {a6 , a9 , a52})

Essentially, everything is based on , , , lifted appropriately.
It is a good exercise to define them formally.

Martin Vechev

: () (Labs ((PtrVar (AbsObj))
(AbsObj Field (AbsObj))))

: (Labs ((PtrVar (AbsObj))
(AbsObj Field (AbsObj))))) ()

Using ,we abstract a set of states into the two kinds of maps.
Similarly, using ,we concretize the pointer maps to a set of states.

The formal definition of and is left as an exercise.

Let us consider an example to give an intuition.

Step 2: Define Abstraction

16

Martin Vechev

Example of Abstraction

 (

{ 5, _ , {po1,qo2} , {o1.ko3, o2.vo6} ,
 5, _ , {po2,qo3} , {o1.ko3, o2.vo3}

})

Here, by _ we mean that the program has no integer variables.

Suppose that: object o1 is allocated at site a3 (program label 3)
object o2 is allocated at site a4 (program label 4)
object o3 is allocated at site a9 (program label 9)
object o6 is allocated at site a31 (program label 31)

What is the result ?

17

Martin Vechev

Example of Abstraction

 (

{ 5, _ , {po1,qo2} , {o1.ko3, o2.vo6} ,
 5, _ , {po2,qo3} , {o1.ko3, o2.vo3}

})

Here, by _ we mean that the program has no integer variables.

Suppose that: object o1 is allocated at site a3 (program label 3)
object o2 is allocated at site a4 (program label 4)
object o3 is allocated at site a9 (program label 9)
object o6 is allocated at site a31 (program label 31)

5 ({p {a3,a4}, q {a4,a9}}, {a3.k{a9}, a4.v{a31,a9}})

18

Martin Vechev 19

Step 3: Define Abstract Transformers

We now need to define the effect of program statements manipulating
pointers on the abstract domain. That is, creation of objects, pointer
assignment and conditionals. It can be summarized as:

p = q compare two pointers

p := alloc create new object

p := q assign pointers

p.f := q pointer heap store

p := q.f pointer heap load

Lets us take a look at the most tricky one (pointer heap store). The rest are
just direct assignments. The formal definitions are left as an exercise.

Martin Vechev 20

What about p.f := q ?

Say p {A}, where A.f {B}, and q {C}. Can we have A.f {C} as a result?

A

C

q

z

p

B
f

A

C

q

z

p

B

f

p.f := q

Is this result correct ?Abstract Element AE1

Abstract Element AE2

Martin Vechev 21

What about p.f := q ?

To see why this is not correct, we need to think what the left side means in
the concrete and what the right side means in the concrete.

A

C

q

z

p

B
f

A

C

q

z

p

B

f

p.f := q

Abstract Element AE1 Abstract Element AE2

Martin Vechev 22

A Counter-Example in the Concrete

O1

z

p
f

p.f := q

O2 O3

O4q

O1

z

p
f

O2 O3

O4q

O4

Concrete objects O1 and O2 allocated at site A
Concrete objects O3 and O5 allocated at site B
Concrete object O4 allocated at site C

f f

Possible Concrete Structure CE of AE1
Possible Concrete Structure not
captured by Abstract Element AE2

The reason this structure is not captured by
AE2 is because in AE2 we can never reach
an object allocated at site B via pointer z,
while here, this is possible

O5

Martin Vechev 23

What about p.f := q ?

A

C

q

z

p

B
f

A

C

q

z

p

B
f

p.f := q

f

A correct solution is to apply union on the contents of A.f and q, thereby

obtaining that A.f {B, C}. This is called weak updates. There are techniques

to perform strong updates, but we will not study them in this course.

Martin Vechev 24

A program which produces structure CE

// initially x = z = p = q = null

for (i = 0; i < 2; i++) {

// allocate O1, O2
A: x := alloc;

if (i == 0)

p := x;

else

z := x;

}

// allocate O3
B: x := alloc;

z.f := x;

// allocate O4
C: q := alloc;

x := null;

There could be many programs which produce the structure CE

Martin Vechev 25

Lets apply pointer analysis to the program

// initially x = z = p = q = null

for (i = 0; i < 2; i++) {

// allocate O1, O2
A: x := alloc;

if (i == 0)

p := x;

else

z := x;

}

// allocate O3
B: x := alloc;

z.f := x;

// allocate O4
C: q := alloc;

x := null;

p , q , x , z

p {A}, q , x {A}, z {A}

p {A}, q , x {A}, z {A}

p {A}, q , x {A}, z {A}

p {A}, q , x {B}, z {A}

p {A}, q , x {B}, z {A},
A.f {B}

p {A}, q {C}, x {}, z {A},
A.f {B}

The result of pointer analysis
at the fixed point:

Martin Vechev 26

Notes on the pointer analysis
The pointer analysis simply applies the transformers of the pointer manipulating
statements from slide 19 on the control-flow graph. The function is the same shape
as Interval domain, except applied to the pointer relevant statements:

Here, Lab A denotes the pointer analysis domain from slide 14.

(’,action,)

 action(m(’))

T

Fpointer(m) =

if is initial label

otherwise

Fpointer: (Lab A)(Lab A)

Martin VechevMartin Vechev

Example

27

p :=alloc1 ; // A1
q :=alloc2; // A2
if p=q 3 then

z:=p 4

else
z:=q 5

Allocation-site based naming (using Alab instead of just “lab” for clarity)

Martin VechevMartin Vechev 28

Allocation-site based naming (using Alab instead of just “lab” for clarity)

p :=alloc1 ; // A1
q :=alloc2; // A2
if p=q 3 then

z:=p 4

else
z:=q 5

Result of Pointer Analysis

p , q , z

p {A1}, q , z

p {A1}, q {A2}, z

p , q , z

p , q , z

p {A1}, q {A2}, z

p {A1}, q {A2}, z {A2}

Martin VechevMartin Vechev

Flow-Sensitive: Output

29

A2

A1

p

3 points-to pairs

z and p do not alias
z and q alias

z

q

Showing results at the end of the program:

Martin VechevMartin Vechev

Pointer Analysis: two kinds

• Lets now take a look at the flow insensitive
analysis.

– Scalable points-to analysis is typically flow-insensitive

• Soot implements a few flow-insensitive analyses

30

Martin Vechev

(PtrVar (AbsObj))
(AbsObj Field (AbsObj))

This abstract domain does not keep information per label, essentially
ignoring the control flow of the program.

Flow Insensitive Abstract Domain

31

Martin VechevMartin Vechev

Flow-Insensitive Analysis

32

Allocation-site based naming (using Alab instead of just “lab” for clarity)

p :=alloc1; // A1
q :=alloc2; // A2
if p=q 3 then

z:=p 4

else
z:=q 5

Martin VechevMartin Vechev

Flow-Insensitive Analysis

33

Allocation-site based naming (using Alab instead of just “lab” for clarity)

p :=alloc1; // A1
q :=alloc2; // A2

z:=p 4

z:=q 5

Martin VechevMartin Vechev

Flow-Insensitive Analysis

34

Allocation-site based naming (using Alab instead of just “lab” for clarity)

Output of Analysis:

p :=alloc1; // A1
q :=alloc2; // A2

z:=p 4

z:=q 5

p {A1}, q {A2}, z {A1, A2}

Martin VechevMartin Vechev

Flow-Insensitive Output

35

A2

A1

p

4 points-to pairs

z and q alias
z and p alias

z

q

At any program point we have:

Martin VechevMartin Vechev

Alias Analysis
(this is a particular client of the pointer analysis)

• Once we have performed the pointer analysis, it is trivial
to compute alias analysis
– but not vice versa

• A function points-to (p) returns the set of all abstract
objects that a pointer p can point to
– Practically, frameworks like Soot contain similar call to points-to,

where one can obtain the abstract objects a pointer points to.

• Two pointers p and q may alias if:
– points-to (a) points-to(b) ∅

36

Martin VechevMartin Vechev

Static Analysis

In our study of static analysis, we have studied and seen how
to work with both numerical domains as well as heap domains
(like pointer analysis). Both of these are popular when
designing real world analyzers.

This concludes our study of static analysis and over-
approximation.

37

