
Software Architecture
and Engineering

Modeling and Specifications

Peter Müller
Chair of Programming Methodology

Spring Semester 2017

2

Mastering Complexity

§ The technique of mastering complexity has been
known since ancient times: Divide et impera
(Divide and Rule). [Dijkstra, 1965]

§ Benefits of decomposition
- Partition the overall development effort
- Support independent testing and analysis
- Decouple parts of a system so that changes to one part

do not affect other parts
- Permit system to be understood as a composition of

mind-sized chunks with one issue at a time
- Enable reuse of components

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications

3

Main Activities of Software Development

Peter Müller – Software Architecture and Engineering

Validation

Requirements
Elicitation

Implementation

Design

3. Modeling and Specifications

System Design

Detailed Design

4

System Design

§ System design determines
the software architecture as a
composition of sub-systems

§ Components: Computational
units with specified interface
- Filters, databases, layers

§ Connectors: Interactions
between components
- Method calls, pipes, events

Peter Müller – Software Architecture and Engineering

Validation

Requirements
Elicitation

Implementation

3. Modeling and Specifications

System Design

Detailed Design

5

Detailed Design

§ Detailed design chooses
among different ways to
implement the system design
and provides the basis for the
implementation

§ Data structures
§ Algorithms
§ Subclass hierarchies

Peter Müller – Software Architecture and Engineering

Validation

Requirements
Elicitation

Implementation

3. Modeling and Specifications

System Design

Detailed Design

6

Detailed Design: Map Example

§ Is null permitted as a
value in the hash map?

§ Is it possible to iterate
over the map?
- Is the order of elements

stable?

§ Is the implementation
thread-safe?

Peter Müller – Software Architecture and Engineering

package java.util;
class HashMap<K,V> … {
V get(Object key) { … }
V put(K key, V value) { … }
…

}

HashMap<String, String> m =
new HashMap<String, String>();

m.put("key", null);
String r1 = m.get("key“);
String r2 = m.get("no key“);

3. Modeling and Specifications

7

Map Example: Some Design Alternatives

§ Permit null-values
If key is not present, get
- returns null (Java)
- throws an exception (.NET)
- indicates this via a

second result value
(for instance, an out-
parameter in C#)

§ Do not permit null-values:
If null-value is passed, put
- throws an exception
- does nothing

Peter Müller – Software Architecture and Engineering

HashMap<String, String> m =
new HashMap<String, String>();

m.put("key", null);
String r1 = m.get("key“);
String r2 = m.get("no key“);

3. Modeling and Specifications

8

Detailed Design: Initialization Example

§ Initialize the
fields of an
object when
the object is
created or
when the fields
are accessed
for the first
time?

Peter Müller – Software Architecture and Engineering

class ImageFile {
String file;
Image image;
ImageFile(String f) {
file = f;

}
Image getImage() {
if(image == null) {
// load the image

}
return image;

}
}

class ImageFile {
String file;
Image image;
ImageFile(String f) {
file = f;
// load the image

}
Image getImage() {
return image;

}
}

3. Modeling and Specifications

9

Detailed Design: List Example

§ Do mutating operations modify the data structure?

Peter Müller – Software Architecture and Engineering

void demo(List<String> l) {
l.set(0, "Hello");
foo(l.take());
String s = l.get(0).trim();

}May foo
modify l?

May foo
execute

concurrently?

What is the
run-time and

memory
overhead?

3. Modeling and Specifications

10

class List<E> {
E[] elems;
int len;
List(E[] e, int l) {
elems = e; len = l;

}
void set(int index, E e)
{ elems[index] = e; }
List<E> take() {
return new List<E>(elems, r.len – 1);

}
}

List Example: Destructive Updates

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications

11

Destructive Updates in Action

Peter Müller – Software Architecture and Engineering

void demo(List<String> l) {
l.set(0, "Hello");
foo(l.take());
String s = l.get(0).trim();

}

void foo(List<String> p) {
p.set(0, null);

}

Side effects
become visible

Concurrency may
lead to data races

take requires
constant time

and space

elems:
2len:

rest

elems:
3len:

l

array
null

3. Modeling and Specifications

12

class List<E> {
E[] elems;
int len;
List(E[] e, int l) {
elems = e; len = l;

}
void set(int index, E e) {
elems = elems.clone();
elems[index] = e;

}
List<E> take() {
return new List<E>(elems, r.len – 1);

}
}

List Example: Copy-on-Write

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications

13

Copy-on-Write in Action

Peter Müller – Software Architecture and Engineering

void demo(List<String> l) {
l.set(0, "Hello");
foo(l.take());
String s = l.get(0).trim();

}

void foo(List<String> p) {
p.set(0, null);

}

No side effects
on l

Concurrency
is safe

Significant run-
time and space

overhead

elems:
2len:

rest

elems:
3len:

l

array

3. Modeling and Specifications

array
null

14

class List<E> {
E[] elems; int len;
boolean shared;
List(E[] e, int l) {
elems = e; len = l; shared = true;

}
void set(int index, E e) {
if(shared)
{ elems = elems.clone(); shared = false; }
elems[index] = e;

}
List<E> take() {
shared = true;
return new List<E>(elems, r.len – 1);

}
}

List Example: Reference Counting

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications

15

elems:
2len:

rest

Tshared:

elems:
3len:

l

Fshared:

Reference Counting in Action

Peter Müller – Software Architecture and Engineering

void demo(List<String> l) {
l.set(0, "Hello");
foo(l.take());
String s = l.get(0).trim();

}

void foo(List<String> p) {
p.set(0, null);

}

No side effects
on l

Concurrency
is in general

unsafe

Less run-time
and space
overhead

array

3. Modeling and Specifications

elems:
3len:

l

Tshared:

elems:
2len:

rest

Fshared:
array

null

16

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models
3.3 Formal Models

3. Modeling and Specifications – Code Documentation

17

Design Documentation

§ Design decisions determine how code should be
written
- During the initial development
- When extending code through inheritance
- When writing client code
- During code maintenance

§ Design decisions must be communicated among
many different developers
- Does source code convey design decisions

appropriately?

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation

18

V get(Object key) {
if(key == null)
return getForNullKey();

int hash = hash(key.hashCode());
for(Entry<K,V> e = table[indexFor(hash, table.length)];

e != null; e = e.next) {
Object k;
if(e.hash == hash &&

((k = e.key) == key || key.equals(k)))
return e.value;

}
return null;

}

Example: Using HashMap

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo();
String s = m.get(“key”);
// can s be null?

Iterate over all
entries for this key’s

hash code
key was
not found

3. Modeling and Specifications – Code Documentation

19

V get(Object key) {
if(key == null)
return getForNullKey();

int hash = hash(key.hashCode());
for(Entry<K,V> e = table[indexFor(hash, table.length)];

e != null; e = e.next) {
Object k;
if(e.hash == hash &&

((k = e.key) == key || key.equals(k)))
return e.value;

}
return null;

}

Example: Using HashMap (cont’d)

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo();
if(m.containsKey(“key”)) {
String s = m.get(“key”);
// can s be null?
…

}

Is [hash, null] a valid entry?
Need to find and check all ways of

entering information into table

3. Modeling and Specifications – Code Documentation

20

Example: Maintaining ImageFile

Peter Müller – Software Architecture and Engineering

class ImageFile {
String file;
Image image;
…
boolean equals(Object o) {
if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

}
int hashcode() {
if(image == null)
return file.hashcode();

else
return image.hashcode() + file.hashcode();

}
}

Is this a suitable
implementation
of hashcode?

3. Modeling and Specifications – Code Documentation

21

class ImageFile {
String file;
Image image;
…
boolean equals(Object o) {
if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

}
int hashcode() {
if(image == null)
return file.hashcode();

else
return image.hashcode() + file.hashcode();

}
}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

void demo(
HashMap<ImageFile,String> m,
ImageFile f) {

m.put(f, “Hello”);
Image i = f.getImage();
int l = m.get(f).length();
…

}

Need to determine
whether image

may be modified

With lazy initialization,
getter may change

hash code

Need to determine
whether file may

be null

3. Modeling and Specifications – Code Documentation

22

class ImageFile {
String file;
Image image;
…
boolean equals(Object o) {
if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

}
int hashcode() {
return getImage().hashcode() +

file.hashcode();
}

}

Example: Maintaining ImageFile (cont’d)

Peter Müller – Software Architecture and Engineering

void demo(
HashMap<ImageFile,String> m,
ImageFile f) {

m.put(f, “Hello”);
Image i = f.getImage();
int l = m.get(f).length();
…

}

Need to determine
whether the result
of getImage may

be modified

Hash code is not
affected by lazy

initialization

Need to determine
whether file may

be null

3. Modeling and Specifications – Code Documentation

23

Example: Extending List

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink() {
// reduce array size if the array
// is not fully used

}
}

Is this an
optimization or
does it change
the behavior?

3. Modeling and Specifications – Code Documentation

24

Extending List: Destructive Updates

Peter Müller – Software Architecture and Engineering

class SmallList extends List {
void shrink() {
int l = elems.length / 2;
if(len <= l) {
E[] tmp = new E[l];
System.arraycopy(elems, 0, tmp, 0, len);
elems = tmp;

}
}

}

elems:
2len:

list1

elems:
1len:

list2

array

array

Is this an
optimization or
does it change
the behavior?

Need to determine
whether the elems

array may be shared

3. Modeling and Specifications – Code Documentation

List list2 = list1.take();
list1.shrink();
list1.set(0, "Demo");
list2.get(0);

25

Source Code is Insufficient

§ Developers require information that is difficult to
extract from source code
- Possible result values of a method, and when they occur
- Possible side effects of methods
- Consistency conditions of data structures
- How data structures evolve over time
- Whether objects are shared among data structures

§ Details in the source code may be overwhelming

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation

26

Source Code is Insufficient (cont’d)

§ Source code does not express which properties are
stable during software evolution
- Which details are essential and which are incidental?

Peter Müller – Software Architecture and Engineering

int find(int[] array, int v) {
for(int i = 0; i < array.length; i++)
if(array[i] == v) return i;

return -1;
}

int find(int[] array, int v) {
if(256 <= array.length) {
// perform parallel search and
// return first hit

} else {
// sequential search like before

}
}Can we rely on the

result r being the
smallest index such
that array[r] == v?

3. Modeling and Specifications – Code Documentation

27

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.1.1 What to Document
3.1.2 How to Document

3.2 Informal Models
3.3 Formal Models

3. Modeling and Specifications – Code Documentation

28

Documentation

§ Essential properties must be documented explicitly

§ Documentation should focus on what the essential
properties are, not how they are achieved
- “Whenever a List object’s shared-field is false, its array is

used as representation of at most one List object”
Rather than
- “When creating a new List object with an existing array,

the shared-field is set to true”

Peter Müller – Software Architecture and Engineering

For clients:
How to use the code?

Document the interface

For implementors:
How does the code work?

Document the implementation

3. Modeling and Specifications – Code Documentation

29

Interface Documentation

§ The client interface of a class consists of
- Constructors
- Methods
- Public fields
- Supertypes

§ We focus on methods here
- Constructors are analogous
- Fields can be viewed as getter and setter methods

Peter Müller – Software Architecture and Engineering

For clients:
How to use the code?

Document the interface

3. Modeling and Specifications – Code Documentation

30

Method Documentation: Call

§ Clients need to know how to call a method correctly

Peter Müller – Software Architecture and Engineering

class InputStreamReader {
int read(char cbuf[], int offset, int len) throws IOException
…

}

§ Parameter values
- cbuf is non-null
- offset is non-negative
- len is non-negative
- offset + len is at most

cbuf.length

§ Input state
- The receiver is open

3. Modeling and Specifications – Code Documentation

31

Method Documentation: Results

§ Clients need to know how what a method returns

Peter Müller – Software Architecture and Engineering

class InputStreamReader {
int read(char cbuf[], int offset, int len) throws IOException
…

}

§ Result values
- The method returns -1 if the end of the stream has been

reached before any characters are read
- Otherwise, the result is between 0 and len, and

indicates how many characters have been read from
the stream

3. Modeling and Specifications – Code Documentation

32

Method Documentation: Effects

§ Clients need to know how a method affects the state

Peter Müller – Software Architecture and Engineering

§ Heap effects
- “result” characters have

been consumed from
the stream and stored in
cbuf, from offset
onwards

- If the result is -1, no
characters are
consumed and cbuf is
unchanged

§ Other effects
- The method throws an

IOException if the
stream is closed or an
I/O error occurs

- It does not block

3. Modeling and Specifications – Code Documentation

33

Method Documentation: Another Example

§ The method returns a shallow copy of its receiver
- The list is copied, but not its contents

§ The result is a fresh object
§ The method requires constant time and space

Peter Müller – Software Architecture and Engineering

class List<E> {
…
List<E> clone() {
return new List<E>(elems.clone(), len);

}
}

3. Modeling and Specifications – Code Documentation

34

Interface Documentation: Global Properties

§ Some implementations have properties that affect
all methods
- Properties of the data structure, that is, guarantees that

are maintained by all methods together
- Requirements made by all methods

Peter Müller – Software Architecture and Engineering

§ Consistency: properties of states
- Example: a list is sorted
- Gives guarantees for various methods
- Client-visible invariants

int a = list.first();
int b = list.get(1);
int c = list.last();
// a <= b <= c

3. Modeling and Specifications – Code Documentation

35

Interface Document.: Global Properties (cont’d)

§ Evolution: properties of sequences
of states
- Example: a list is immutable
- Gives guarantees for various methods
- Invariants on sequences of states

§ Abbreviations: requirements or
guarantees for all methods
- Example: a list is not thread-safe

Clients must ensure they have exclusive access to the
list, for instance, because the execution is sequential, the
list is thread-local, or they have acquired a lock

Peter Müller – Software Architecture and Engineering

int a = list.first();
// arbitrary operations
int b = list.first();
// a == b

3. Modeling and Specifications – Code Documentation

36

For implementors:
How does the code work?

Document the implementation

Implementation Documentation

§ Method documentation is similar to interfaces
- Often more details, for instance, effects on fields
- Includes hidden methods

§ Data structure documentation is more prominent
- Properties of fields, internal sharing, etc.
- Implementation invariants

§ Documentation of the algorithms inside the code
- For instance, justification of assumptions

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation

37

Implementation Documentation: Example

1. elems is non-null
2. When the shared-field is true then the

elems-array is immutable
3. When the shared-field is false, the

elems-array is used as representation
of at most one List object

4. elems is pointed to only by List objects
5. 0 <= len <= elems.length

Peter Müller – Software Architecture and Engineering

class List<E> {
E[] elems;
int len;
boolean shared;
…

}

3. Modeling and Specifications – Code Documentation

38

Impl. Documentation: Example (cont’d)

Peter Müller – Software Architecture and Engineering

/* This method reduces the memory footprint of the list if it uses at most
* 50% of its capacity, and does nothing otherwise. It optimizes the
* memory consumption if the underlying array is not shared or if it is
* shared but will be copied several times after shrinking. The list content
* remains unchanged. */
void shrink() {
// perform array copy only if array size can be reduced by 50%
int l = elems.length / 2;
if(len <= l) {
E[] tmp = new E[l];
System.arraycopy(elems, 0, tmp, 0, len);
elems = tmp;
shared = false;

}
}

3. Modeling and Specifications – Code Documentation

39

Impl. Documentation: Example (cont’d)

1. elems is non-null
2. When the shared-field is true

then the elems-array is
immutable

3. When the shared-field is false,
the elems-array is used as
representation of at most one
List object

4. elems is pointed to only by List
objects

5. 0 <= len <= elems.length

Peter Müller – Software Architecture and Engineering

void shrink() {
int l = elems.length / 2;
if(len <= l) {
E[] tmp = new E[l];
System.arraycopy(…);
elems = tmp;
shared = false;

}
}

3. Modeling and Specifications – Code Documentation

40

Documentation: Key Properties

§ Methods and constructors
- Arguments and input state
- Results and output state
- Effects

§ Data structures
- Value and structural invariants
- One-state and temporal invariants

§ Algorithms
- Behavior of code snippets (analogous to methods)
- Explanation of control flow
- Justification of assumptions

Peter Müller – Software Architecture and Engineering

For clients:
How to use the code?

Document the interface

For implementors:
How does the code work?

Document the implementation

3. Modeling and Specifications – Code Documentation

41

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.1.1 What to Document
3.1.2 How to Document

3.2 Informal Models
3.3 Formal Models

3. Modeling and Specifications – Code Documentation

42

Comments

§ Simple, flexible way of
documenting interfaces
and implementations

§ Tool support is limited
- HTML generation
- Not present in

executable code
- Relies on conventions

§ Javadoc
- Textual descriptions
- Tags

Peter Müller – Software Architecture and Engineering

/**
* Returns the value to which the
* specified key is mapped, or
* {@code null} if this map contains no
* mapping for the key.
*
* @param key the key whose associated
* value is to be returned
* @return the value to which the
* specified key is mapped, or
* {@code null} if this map contains
* no mapping for the key
* @throws NullPointerException if the
* specified key is null and this map
* does not permit null keys
*/

V get(Object key);

3. Modeling and Specifications – Code Documentation

43

Types and Modifiers

§ Types document typically
syntactic aspects of inputs,
results, and invariants

§ Modifiers can express some
specific semantic properties

§ Tool support
- Static checking
- Run-time checking
- Auto-completion

Peter Müller – Software Architecture and Engineering

HashMap<String,String> m;
m = SomeLibrary.foo();
String s = m.get(“key”);

from SomeLibrary import foo
m = foo()
s = m['key'] Python

class HashMap<K,V> … {
final float loadFactor;
…

}

3. Modeling and Specifications – Code Documentation

44

Effect Systems

§ Effect systems are extensions of type systems that
describe computational effects
- Read and write effects
- Allocation and de-allocation
- Locking
- Exceptions

§ Tool support
- Static checking

§ Trade-off between overhead and benefit
Peter Müller – Software Architecture and Engineering

class InputStreamReader {
int read() throws IOException
…

}

try {
int i = isr.read();

} catch(IOException e) {
…

}

3. Modeling and Specifications – Code Documentation

45

Metadata

§ Annotations allow one to
attach additional syntactic
and semantic information
to declarations

§ Tool support
- Type checking of

annotations
- Static processing through

compiler plug-ins
- Dynamic processing

Peter Müller – Software Architecture and Engineering

@interface NonNull{ }

@NonNull Image getImage() {
if(image == null) {
// load the image

}
return image;

}

@interface UnderConstruction {
String owner();

}

@UnderConstruction(
owner = “Busy Guy”)

class ResourceManager { … }

3. Modeling and Specifications – Code Documentation

46

Assertions

§ Assertions specify
semantic properties of
implementations
- Boolean conditions that

need to hold

§ Tool support
- Run-time checking
- Static checking
- Test case generation

Peter Müller – Software Architecture and Engineering

void set(int index, E e) {
if(shared) {
elems = elems.clone();
shared = false;

}
assert !shared;
elems[index] = e;

}

3. Modeling and Specifications – Code Documentation

47

Contracts
§ Contracts are stylized

assertions for the
documentation of
interfaces and
implementations
- Method pre and

postconditions
- Invariants

§ Tool support
- Run-time checking
- Static checking
- Test case generation

Peter Müller – Software Architecture and Engineering

class ImageFile {
String file;
invariant file != null;
Image image;
invariant old(image) != null ==>

old(image) == image;
ImageFile(String f)
requires f != null;

{ file = f; }
Image getImage()
ensures result != null;

{
if(image == null) { // load the image }
return image;

}
}

3. Modeling and Specifications – Code Documentation

48

Documentation: Techniques

§ Trade-off between overhead, expressiveness,
precision, and benefit
- Formal techniques require more overhead, but enable

better tool support
- In practice, a mix of the different techniques is useful

§ It is better to simplify than to describe complexity!
- If you have a procedure with ten parameters, you

probably missed some. [Alan J. Perlis]

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Code Documentation

49

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3. Modeling and Specifications – Informal Models

50

Underspecification

§ Software is typically
designed iteratively

§ Each iteration adds
details and reflects
design decisions that
have been left open in
the previous iteration
- Choice of data structures
- Choice of algorithms
- Details of control and

data flow

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Map<Student, Program> enrollment;
…

}

class University {
Set<Student> students;
…

}

class Student {
…

}

3. Modeling and Specifications – Informal Models

51

Underspecification (cont’d)

§ Dispatch an event to all
observers

§ Open bank account if
all conditions are met

Peter Müller – Software Architecture and Engineering

class Subject {
Set<Observer> observers;

/* This method calls update
* on each registered observer
* in an unspecified order.
*/
void notify() {
for(Observer o : observers)
o.update();

}
}

abstract class Account {
boolean open;
abstract boolean

allConditions(…);
void open(…) {
if(allConditions(…))
open = true;

else
throw …;

}
}

3. Modeling and Specifications – Informal Models

52

Views

§ Many software engineering tasks require specific
views on the design

§ Examples
- Software architecture: Is it possible for an app to be

terminated without prior notification?
- Test data generation: What are all the possible object

configurations for a data structure?
- Security review: What is the communication protocol

between a client and the server?
- Deployment: Which software component runs on which

hardware?

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Informal Models

53

Design Specifications

§ Source code provides very limited support for
leaving design choices unspecified
- Often because code is executable
- In some cases, subclassing can be used

§ Some relevant design information is not
represented in the program or difficult to extract
- Source code and documentation are too verbose
- Tools can extract some information like control or data

flow graphs
§ Design specifications are models of the software

system that provide suitable abstractions

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Informal Models

54

Peter Müller – Software Architecture and Engineering

What is Modeling?

§ Building an abstraction of reality
- Abstractions from things, people, and processes
- Relationships between these abstractions

§ Abstractions are simplifications
- They ignore irrelevant details
- What is relevant or irrelevant depends on the purpose of

the model
§ Draw complicated conclusions in the reality with

simple steps in the model
§ Modeling is a means for dealing with complexity

3. Modeling and Specifications – Informal Models

55

Peter Müller – Software Architecture and Engineering

Example 1: Street Map
3. Modeling and Specifications – Informal Models

56

Peter Müller – Software Architecture and Engineering

Example 2: Atom Models in Physics

§ Bohr model
- Nucleus surrounded by

electrons in orbit
- Explains, e.g., spectra

§ Quantum physics
- Position of electrons described

by probability distribution
- Takes into account

Heisenberg’s uncertainty
principle

3. Modeling and Specifications – Informal Models

57

Peter Müller – Software Architecture and Engineering

The Unified Modeling Language UML

§ UML is a modeling language
- Using text and graphical notation
- For documenting specification,

analysis, design, and implementation

§ Importance
- Recommended OMG (Object Management Group)

standard notation
- De facto standard in industrial software development

3. Modeling and Specifications – Informal Models

58

Peter Müller – Software Architecture and Engineering

UML Notations

§ Use case diagrams – requirements of a system
§ Class diagrams – structure of a system
§ Interaction diagrams – message passing

- Sequence diagrams
- Collaboration diagrams

§ State and activity diagrams – actions of an object
§ Implementation diagrams

- Component model – dependencies between code
- Deployment model – structure of the runtime system

§ Object constraint language (OCL)

3. Modeling and Specifications – Informal Models

59

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models

3. Modeling and Specifications – Informal Models

60

Peter Müller – Software Architecture and Engineering

Classes

§ A class includes state (attributes) and behavior
(operations)
- Each attribute has a type
- Each operation has a signature

§ The class name is the only mandatory information

TarifSchedule
zone2price: Table
getZones(): Enumeration
getPrice(z: Zone): Price

Name
Type

Signature Operations

Attributes

3. Modeling and Specifications – Informal Models

61

Peter Müller – Software Architecture and Engineering

More on Classes

§ Valid UML class diagrams

§ Corresponding BON diagram
- No distinction between attributes

and operations
(uniform access principle)

TarifSchedule
zone2price
getZones()
getPrice()

TarifSchedule

TarifSchedule
getZones
getPrice

NONE
zone2price

3. Modeling and Specifications – Informal Models

62

Peter Müller – Software Architecture and Engineering

Instances (Objects)

nightTarif:TarifSchedule
zone2price = {
(‘1’, 1.60),
(‘2’, 2.40),
(‘3’, 3.20)

}

Name of an
instance is
underlined

Attributes are
represented

with their
values

Name of an
instance can
contain the
class of the

instance

:TarifSchedule
zone2price = {
(‘1’, 1.60),
(‘2’, 2.40),
(‘3’, 3.20)

}

Name of an
instance is

optional

3. Modeling and Specifications – Informal Models

63

Peter Müller – Software Architecture and Engineering

Associations

§ A link represents a connection between two objects
- Ability of an object to send a message to another object
- Object A has an attribute whose value is B
- Object A creates object B
- Object A receives a message with object B as argument

§ Associations denote relationships between classes

Person Company
works for

Optional label

employee employer

Optional rolesOptional roles

3. Modeling and Specifications – Informal Models

64

Peter Müller – Software Architecture and Engineering

Multiplicity of Associations

§ The multiplicity of an association end denotes how
many objects the source object can reference
- Exact number: 1, 2, etc. (1 is the default)
- Arbitrary number: * (zero or more)
- Range: 1..3, 1..*

§ 1-to-(at most) 1 association

§ 1-to-many association

City Country

Polygon Point

1 0..1

3..*

is capital of

3. Modeling and Specifications – Informal Models

65

Peter Müller – Software Architecture and Engineering

Navigability

§ Associations can be directed

Person Company*

Person Company*

Person Company*

Person knows
about Company

Company knows
about Person

Person and Company
know about each other

3. Modeling and Specifications – Informal Models

66

Peter Müller – Software Architecture and Engineering

Composition

§ Composition expresses an
exclusive part-of (“has-a”)
relationship
- Special form of association
- No sharing

§ Composition can be
decorated like other
associations
- Multiplicity, label, roles

3. Modeling and Specifications – Informal Models

Point

Polygon

3..*

Circle

1center

Aggregate

Aggregate

Component

0..1

0..1

67

Peter Müller – Software Architecture and Engineering

Generalization and Specialization

§ Generalization expresses a
kind-of (“is-a”) relationship

§ Generalization is
implemented by inheritance
- The child classes inherit the

attributes and operations of
the parent class

§ Generalization simplifies the
model by eliminating
redundancy

Polygon

Rectangle

Superclass

Subclass

3. Modeling and Specifications – Informal Models

68

Example: Underspecification

§ The class diagram
leaves the choice of
data structure
unspecified

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Map<Student, Program> enrollment;
…

}

class University {
Set<Student> students;
…

}

class Student {
…

}

University

Student

Program

*

*

3. Modeling and Specifications – Informal Models

69

Example: Views

§ The class diagram
represents only
the structure of the
system, not the
dynamic behavior

§ Some relevant
invariants are
represented

Peter Müller – Software Architecture and Engineering

: List
shared = true

: Array

3. Modeling and Specifications – Informal Models

: List
shared = false

: Array

*0..1

70

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models

3. Modeling and Specifications – Informal Models

71

Peter Müller – Software Architecture and Engineering

Dynamic Models

§ Static models describe the structure of a system

§ Dynamic models describe its behavior

Sequence diagrams
describe collaboration

between objects

State diagrams
describe the lifetime of a

single object

3. Modeling and Specifications – Informal Models

72

Peter Müller – Software Architecture and Engineering

UML Sequence Diagrams

:Client :Terminal

insertCard()

insertPIN()

Actors and
objects:
columns

Lifelines:
dashed lines

Activations:
narrow

rectangles

Messages: arrows
Time

3. Modeling and Specifications – Informal Models

73

Peter Müller – Software Architecture and Engineering

Nested Messages

§ The source of an arrow indicates the activation
which sent the message

§ An activation is as long as all nested activations

:Client :Terminal

insertCard()

:ClientData

check(data)

ok / nok

:Display

displayMessage(text)

Data flow

3. Modeling and Specifications – Informal Models

74

Peter Müller – Software Architecture and Engineering

Creation and Destruction

§ Creation is denoted by a message arrow pointing to
the object

§ In garbage collection environments, destruction can
be used to denote the end of the useful life of an
object

:Terminal

:Session
start()

Destruction
log()

close()

Creation

3. Modeling and Specifications – Informal Models

75

Peter Müller – Software Architecture and Engineering

Example: Underspecification and Views
s : Subject o1: Observer o2: Observer

setState(…)

notify()

update()

getState()

update()

getState()

par

3. Modeling and Specifications – Informal Models

76

Peter Müller – Software Architecture and Engineering

State

§ An abstraction of the attribute values of an object

§ A state is an equivalence class of all those attribute
values and links that do not need to be
distinguished for the control structure of the class

§ Example: State of an account
- An account is open, closed, or pending
- Omissions: account number, owner, etc.
- All open accounts are in the same equivalence class,

independent of their number, owner, etc.

3. Modeling and Specifications – Informal Models

77

UML State Diagrams

§ Objects with extended lifespan often have state-
dependent behavior

§ Modeled as state diagram (also called state chart)

Peter Müller – Software Architecture and Engineering

State 1

do / activity
entry / action
exit / action

State 2

do / activity
entry / action
exit / action

Event(par) [condition] / action

States:
rounded

rectangles
Transitions:

arrows
Start

marker
End

marker

3. Modeling and Specifications – Informal Models

78

Peter Müller – Software Architecture and Engineering

Events, Actions, and Activities

§ Event: Something that happens at a point in time
- Examples: Receipt of a message, change event for a

condition, time event

§ Action: Operation in response to an event
- Example: Object performs a computation upon receipt of

a message

§ Activity: Operation performed as long as object is in
some state
- Example: Object performs a computation without external

trigger

3. Modeling and Specifications – Informal Models

79

abstract class Account {
boolean open;
abstract boolean allConditions(…);
void open(…) {
if(allConditions(…)) open = true;
else throw …;

}
}

Example: Underspecification

Peter Müller – Software Architecture and Engineering

Closed

Open

open()

3. Modeling and Specifications – Informal Models

Pending
entry / review()

[all conditions met]
open()

[condition violated]

80

Peter Müller – Software Architecture and Engineering

Example: Views

Not Running Foregroundlaunch()

BackgroundSuspended

other app
is launched /
free memory

Notified[low memory]

3. Modeling and Specifications – Informal Models

after 10s

notify()

resume()

event()

resume()

81

Peter Müller – Software Architecture and Engineering

Practical Tips for Dynamic Modeling

§ Construct dynamic models only for classes with
significant dynamic behavior

§ Consider only relevant attributes
- Use abstraction

§ Look at the granularity of the application when
deciding on actions and activities

3. Modeling and Specifications – Informal Models

82

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models

3. Modeling and Specifications – Informal Models

83

Peter Müller – Software Architecture and Engineering

Diagrams are not Enough

§ Carol is married to Alice, Alice is married to Bob,
and Bob is not married at all

§ A valid instantiation of the class diagram!
§ Associations describe relations between classes

Person

marry()

spouse

0..1
Carol: Person

Alice: PersonBob: Person

spouse

spouse“is married to”

3. Modeling and Specifications – Informal Models

84

Peter Müller – Software Architecture and Engineering

Diagrams are not Enough (cont’d)

§ Carol is married to Alice, who is only eleven
§ A valid instantiation of the class diagram!
§ Class diagrams do not restrict values of attributes

Person

age

spouse

0..1

Married persons are at
least 16 years old Alice: Person

spouse

spouse

age = 11

Carol: Person

age = 18

3. Modeling and Specifications – Informal Models

85

Peter Müller – Software Architecture and Engineering

Object Constraint Language – OCL

§ The contract language for UML

§ Used to specify
- Invariants of objects
- Pre- and postconditions of operations
- Conditions (for instance, in state diagrams)

§ Special support for
- Navigation through UML class diagram
- Associations with multiplicities

3. Modeling and Specifications – Informal Models

86

Peter Müller – Software Architecture and Engineering

Form of OCL Invariants

§ Constraints can mention
- self: the contextual

instance
- Attributes and role names
- Side-effect free methods

(stereotype <<query>>)
- Logical connectives
- Operations on integers,

reals, strings, sets, bags,
sequences

- Etc.

context Person inv:
self.age >= 0

The context is
an instance of
a class in the
UML diagram

Declares an
invariant

A boolean
constraint

3. Modeling and Specifications – Informal Models

87

Peter Müller – Software Architecture and Engineering

OCL Invariants

§ A savings account has
a non-negative balance

§ Checking accounts are
owned by adults

context SavingsAccount inv:
self.balance >= 0

Account
balance

CheckingAccountSavingsAccount

Customer
age

* owner

context CheckingAccount inv:
self.owner.age >= 18

Role name

3. Modeling and Specifications – Informal Models

88

OCL Pre- and Postconditions

Peter Müller – Software Architecture and Engineering

context Account::Withdraw(a: int)
pre: a >= 0
post: GetBalance() = GetBalance@pre() - a

Context specifies
method signature

Suffix @pre is
used to refer to
prestate values

3. Modeling and Specifications – Informal Models

89

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Code Documentation
3.2 Informal Models

3.2.1 Static Models
3.2.2 Dynamic Models
3.2.3 Contracts
3.2.4 Mapping Models to Code

3.3 Formal Models

3. Modeling and Specifications – Informal Models

90

Peter Müller – Software Architecture and Engineering

Implementation of UML Models in Java

Person
age: int

class Person {
private int age;

public void setAge(int a)
{ age = a; }

public int getAge()
{ return age; }

}
Programmer

writeCode()
class Programmer extends Person {
public void writeCode()
{ … }

}

3. Modeling and Specifications – Informal Models

91

Peter Müller – Software Architecture and Engineering

Model-Driven Development: Idea

§ Work on the level of design models
§ Generate code automatically

§ Advantages
- Supports many implementation platforms
- Frees programmers from recurring activities
- Leads to uniform code
- Useful to enforce coding conventions

(e.g., getters and setters)
- Models are not mere documentation

3. Modeling and Specifications – Informal Models

92

Peter Müller – Software Architecture and Engineering

Problem: Abstraction Mismatch

§ UML models may use
different abstractions than
the programming
language

§ Model should not depend
on implementation
language

§ Models cannot always be
mapped directly to code

Person
age: int

Programmer

writeCode()

Subject

notify()

How to map
multiple inheritance?

3. Modeling and Specifications – Informal Models

93

Peter Müller – Software Architecture and Engineering

Problem: Specifications are Incomplete

class App {
private State state;
public App()
{ state = NOT_RUNNING; }

public void launch()
requires state == NOT_RUNNING;
{ state = FOREGROUND; }

public void event()
requires state == FOREGROUND;
{ }

}

Where is the
interesting
behavior?

Not Running Foregroundlaunch()

event()

3. Modeling and Specifications – Informal Models

94

Peter Müller – Software Architecture and Engineering

Problem: Specifications may be Informal

public void open()
requires state == CLOSED;
requires “all conditions met” || “condition violated”;

{
if (“all conditions met”) state = OPEN;
else { state = PENDING; review(); }

}
How to map

informal
specifications?

Closed

Open

open()

Pending
entry / review()

[all conditions met]
open()

[condition violated]

3. Modeling and Specifications – Informal Models

95

Peter Müller – Software Architecture and Engineering

Problem: Switching between Models and Code

§ Code has to be changed manually
- Add interesting behavior
- Clarify informal specifications
- Implement incomplete specifications

§ Modification of code requires complicated
synchronization between code and models

3. Modeling and Specifications – Informal Models

96

Peter Müller – Software Architecture and Engineering

Model-Driven Development: Reality

§ Works in specific domains
(e.g., business process modeling)

§ Code generation works for basic properties
§ Interesting code is still implemented manually
§ Problems

- Maintaining code that has no models (reverse-
engineering)

- Once code has been modified manually, going back to
the model is difficult (or impossible)

3. Modeling and Specifications – Informal Models

97

Peter Müller – Software Architecture and Engineering

Mapping Classes and Inheritance

§ Classes may be split into interfaces and
implementation classes

§ Attributes should be non-public
- Generate getters and setters with appropriate visibility

§ Methods are straightforward
§ Inheritance can be mapped to inheritance or

subtyping plus aggregation and delegation
Person

Programmer

Subject Person

Programmer

ISubject

Subject

3. Modeling and Specifications – Informal Models

98

Mapping Associations

§ Associations are
typically mapped to
fields

or separate objects
(collections)

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
… }

class University {
Map<Student, Program> enrollment;
… }

class University {
Set<Student> students;
… }

class Student {
… }

University Student Program**

3. Modeling and Specifications – Informal Models

99

Peter Müller – Software Architecture and Engineering

Mapping Sequence Diagrams

:Client :Terminal

insertCard()

:ClientData

check(data)

ok / nok

:Display

displayMessage(text)

public void insertCard() {
boolean res = clientData.check(data);
display.displayMessage(text);

}

Synchronous
messages are

implemented by
method calls

3. Modeling and Specifications – Informal Models

100

Peter Müller – Software Architecture and Engineering

Mapping State Diagrams

Closed

Open

open()

Pending
entry / review()

[all conditions met]
open()

[condition violated]

open()

3. Modeling and Specifications – Informal Models

101

Peter Müller – Software Architecture and Engineering

Mapping State Diagrams (cont’d)

public void open() throws … {
switch(state) {
case CLOSED:
if (“all conditions met”)
state = OPEN;

else {
state = PENDING;
review();

}
break;

case PENDING:
break;

default:
throw new UnexpectedStateException();

}
}

Introduce state
variable for

current state

Transition

Check
condition of
transition

Perform
action

Illegal state
or message

3. Modeling and Specifications – Informal Models

102

Informal Modeling: Summary

Strengths
§ Describe particular

views on the overall
system

§ Omit some information
or specify it informally

§ Graphical notation
facilitates
communication

Weaknesses
§ Precise meaning of

models is often unclear

§ Incomplete and
informal models
hamper tool support

§ Many details are hard
to depict visually

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Informal Models

103

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3. Modeling and Specifications – Formal Models

104

Formal Modeling

§ Notations and tools are based on mathematics,
hence precise

§ Typically used to describe some aspect of a system

Peter Müller – Software Architecture and Engineering

Carol: Person

Alice: PersonBob: Person

spouse

spouse

context SavingsAccount inv:
self.amount >= 0

§ Formal models enable
automatic analysis
- Finding ill-formed

examples

- Checking properties

3. Modeling and Specifications – Formal Models

105

§ Chord is a distributed hash table developed at MIT

§ None of the seven properties claimed invariant of
the original version is actually an invariant

§ Problems detected through formal modeling

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models

106

Alloy

§ Alloy is a formal modeling language based on set
theory

§ An Alloy model specifies a collection of constraints
that describe a set of structures

§ The Alloy Analyzer is a solver that takes the
constraints of a model and finds structures that
satisfy them
- Generate sample structures
- Generate counterexamples for invalid properties
- Visualize structures

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models

107

Alloy Documentation and Download

§ Documentation
- Useful tutorials available at

alloy.mit.edu
- Book by Daniel Jackson

§ Download
- Get latest version at

alloy.mit.edu/alloy/download.html
- Requires JRE 6

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models

108

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3.3.1 Static Models
3.3.2 Dynamic Models
3.3.3 Analyzing Models

3. Modeling and Specifications – Formal Models

109

Signatures

§ A signature declares a set of
atoms
- Think of signatures as classes
- Think of atoms as immutable

objects
- Different signatures declare

disjoint sets

§ Extends-clauses declare
subsets relations
- File and Dir are disjoint

subsets of FSObject

Peter Müller – Software Architecture and Engineering

sig FSObject { }

sig File extends FSObject { }
sig Dir extends FSObject { }

3. Modeling and Specifications – Formal Models

110

Operations on Sets

§ Standard set operators
- + (union)
- & (intersection)
- - (difference)
- in (subset)
- = (equality)
- # (cardinality)
- none (empty set)
- univ (universal set)

§ Comprehensions

Peter Müller – Software Architecture and Engineering

sig File extends FSObject { }
sig Dir extends FSObject { }

#{ f: FSObject | f in File + Dir }
>= #Dir

#(File + Dir) >= #Dir

3. Modeling and Specifications – Formal Models

111

More on Signatures

§ Signature can be abstract
- Like abstract classes
- Closed world assumption: the

declared set contains exactly
the elements of the declared
subsets

§ Signatures may constrain
the cardinalities of the
declared sets
- one: singleton set
- lone: singleton or empty set
- some: non-empty set

Peter Müller – Software Architecture and Engineering

abstract sig FSObject { }
sig File extends FSObject { }
sig Dir extends FSObject { }

one sig Root
extends Dir { }

FSObject = File + Dir

3. Modeling and Specifications – Formal Models

112

Fields

§ A field declares a relation
on atoms
- f is a binary relation with

domain A and range given by
expression e

- Think of fields as associations
§ Range expressions may

denote multiplicities
- one: singleton set (default)
- lone: singleton or empty set
- some: non-empty set
- set: any set

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig A {
f: e

}

sig Dir extends FSObject {
contents: set FSObject

}

3. Modeling and Specifications – Formal Models

113

Operations on Relations

§ Standard operators
- -> (cross product)
- . (relational join)
- ~ (transposition)
- ^ (transitive closure)
- * (reflexive, transitive closure)
- <: (domain restriction)
- >: (range restriction)
- ++ (override)
- iden (identity relation)
- [] (box join: e1[e2] = e2.e1)

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject {
contents: set FSObject

}

one sig Root extends Dir { }

FSObject in Root.*contents

All file system objects
are contained in the

root directory

3. Modeling and Specifications – Formal Models

114

Relational Join: Example

§ Consider a structure
with four FSObject
atoms
- r: Root, d1, d2: Dir,

f: File
and contents relation

§ The reflexive, transitive
closure *contents is

§ The relational join
Root.*contents is

Peter Müller – Software Architecture and Engineering

(r)(r,d1) (d1,d2) (d2,f)

(r,d1) (d1,d2) (d2,f)
(d1,f) (r,d2) (r,f)

(r,r) (d1,d1) (d2,d2) (f,f)

(r,d1)
(d1,d2)
(d2,f)
(d1,f)
(r,d2)
(r,f)
(r,r)

(d1,d1)
(d2,d2)

(f,f)

(d1)
(d2)
(f)
(r)

. =

*contents

Root

FSObject in Root.*contents

3. Modeling and Specifications – Formal Models

115

More on Fields

§ Fields may range over relations
§ Relation declarations may include multiplicities on

both sides
- one, lone, some, set (default)

§ Range expressions may depend on other fields

Peter Müller – Software Architecture and Engineering

sig University {
enrollment: Student set -> one Program

}

sig University {
students: set Student,
enrollment: students set -> one Program

}

3. Modeling and Specifications – Formal Models

116

Constraints

§ Boolean operators
- ! or not (negation)
- && or and (conjunction)
- || or or (disjunction)
- => or implies (implication)
- else (alternative)
- <=> or iff (equivalence)

§ Four equivalent constraints

§ Quantified expressions
- some e

e has at least one tuple
- no e

e has no tuples
- lone e

e has at most one tuple
- one e

e has exactly one tuple

Peter Müller – Software Architecture and Engineering

F => G else H
F implies G else H

(F && G) || ((!F) && H)
(F and G) or ((not F) and H)

no Root.parent

3. Modeling and Specifications – Formal Models

117

§ Alloy supports five different
quantifiers
- all x: e | F

F holds for every x in e
- some x: e | F

F holds for at least one x in e
- no x: e | F

F holds for no x in e
- lone x: e | F

F holds for at most one x in e
- one x: e | F

F holds for exactly one x in e

Quantification

§ Quantifiers may
have the following
forms
- all x: e | F
- all x: e1, y: e2 | F
- all x, y: e | F
- all disj x, y: e | F

§ contents-relation is
acyclic

Peter Müller – Software Architecture and Engineering

no d: Dir | d in d.^contents

3. Modeling and Specifications – Formal Models

118

Predicates and Functions

§ Predicates are named, parameterized formulas

§ Functions are named, parameterized expressions

Peter Müller – Software Architecture and Engineering

fun f[x1: e1, …, xn: en]: e { E }

pred p[x1: e1, ..., xn: en] { F }

pred isLeave[f: FSObject] {
f in File || no f.contents

}

fun leaves[f: FSObject]: set FSObject {
{ x: f.*contents | isLeave[x] }

}

3. Modeling and Specifications – Formal Models

119

Exploring the Model

§ The Alloy Analyzer can search for structures that
satisfy the constraints M in a model

Peter Müller – Software Architecture and Engineering

fun f[x1: e1, …, xn: en]: e { E }

pred p[x1: e1, ..., xn: en] { F }

run p

run f

§ Find instance of a predicate
- A solution to

M &&
some x1: e1, …, xn: en | F

§ Find instance of a function
- A solution to

M &&
some x1: e1, …, xn: en,
res: e | res = E

3. Modeling and Specifications – Formal Models

120

Exploring the Model: Scopes

§ The existence of a structure that satisfies the
constraints in a model is in general undecidable

§ The Alloy Analyzer searches exhaustively for
structures up to a given size
- The problem becomes finite and, thus, decidable

Peter Müller – Software Architecture and Engineering

run isLeave
run isLeave for 5

run isLeave for 5 Dir, 2 File
run isLeave for exactly 5 Dir
run isLeave for 5 but 3 Dir

run isLeave for 5 but exactly 3 Dir

3. Modeling and Specifications – Formal Models

121

Exploring the Model: Example

Peter Müller – Software Architecture and Engineering

abstract sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject {
contents: set FSObject

}

one sig Root extends Dir { }
Root should not
have a parent

A directory
should not

contain itself

contents and
parent should be
inverse relations

3. Modeling and Specifications – Formal Models

122

Adding Constraints

§ Facts add constraints that always hold
- run searches for solutions that satisfy all constraints

§ Facts express value and structural invariants of the
model

Peter Müller – Software Architecture and Engineering

fact { F }
fact f { F }

sig S { … } { F }

3. Modeling and Specifications – Formal Models

123

Adding Constraints: Example

Peter Müller – Software Architecture and Engineering

Root should not
have a parent

A directory
should not

contain itself

contents and
parent should be
inverse relations

fact { no Root.parent }

fact { no d: Dir | d in d.^contents }

fact { all d: Dir, o: d.contents | o.parent = d }

3. Modeling and Specifications – Formal Models

124

Checking the Model

§ Exploring models by manually inspecting instances
is cumbersome for non-trivial models

§ The Alloy Analyzer can search for structures that
violate a given property
- Counterexample to an assertion
- The search is complete for the given scope

Peter Müller – Software Architecture and Engineering

assert a { F }

check a scope

§ For a model with
constraints M, find a
solution to M && !F

3. Modeling and Specifications – Formal Models

125

§ Finding a counterexample

§ Proving a property

Checking the Model: Example

Peter Müller – Software Architecture and Engineering

pred isLeave[f: FSObject] {
f in File || no f.contents

}

assert nonEmptyRoot { !isLeave[Root] }
check nonEmptyRoot for 3

assert acyclic { no d: Dir | d in d.^contents }
check acyclic for 5

Validity is checked
only within the
given scope

3. Modeling and Specifications – Formal Models

126

Under and Over-Constrained Models

§ Missing or weak facts under-constrain the model
- They permit undesired structures
- Under-constrained models are typically easy to detect

during model exploration (using run) and assertion
checking (using check)

§ Unnecessary facts over-constrain the model
- They exclude desired structures

§ Inconsistencies are an extreme
case of over-constraining
- They preclude the existence

of any structure
- All assertion checks will succeed!

Peter Müller – Software Architecture and Engineering

assert nonSense { 0 = 1 }
check nonSense

fact acyclic {
no d: Dir | d in d.*contents

}

ü

3. Modeling and Specifications – Formal Models

127

Guidelines to Avoid Over-Constraining

§ Simulate model to check consistency
- Use run to ensure that structures exist
- Create predicates with desired configurations and use

run to ensure they exist

§ Prefer assertions over facts
- When in doubt, check whether current model already

ensures a desired property before adding it as a fact

Peter Müller – Software Architecture and Engineering

pred show { }
run show

fact acyclic { no d: Dir | d in d.*contents }

3. Modeling and Specifications – Formal Models

128

Implementation Documentation: Example

1. elems is non-null
2. When the shared-field is true then the

elems-array is immutable
3. When the shared-field is false, the

elems-array is used as representation
of at most one List object

4. elems is pointed to only by List objects
5. 0 <= len <= elems.length

Peter Müller – Software Architecture and Engineering

class List<E> {
E[] elems;
int len;
boolean shared;
…

}

3. Modeling and Specifications – Code Documentation

129

Reference Counting List: Alloy Model (1)

Peter Müller – Software Architecture and Engineering

open util/boolean

sig E { }

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }

Use library model
for booleans

Encode
generic type
parameter

Introduce array
signature to model
potential sharing

Array elements
may be null

A fact
guaranteed
by the Java
semantics

3. Modeling and Specifications – Formal Models

130

Reference Counting List: Alloy Model (2)

Peter Müller – Software Architecture and Engineering

sig List {
elems: Array,
len: Int,
shared: Bool

}
{
0 <= len && len <= elems.length

}

fact inv3 {
all disj l1, l2: List | l1.elems = l2.elems => isTrue[l1.shared]
}

shared conservatively
tracks sharing (inv3)

len is between zero
and array size (inv5)

3. Modeling and Specifications – Formal Models

elems is non-null
(inv1)

131

Invariants Revisited
1. elems is non-null
2. When the shared-field is true then the

elems-array is immutable
3. When the shared-field is false, the

elems-array is used as
representation of at most one List
object

4. elems is pointed to only by List
objects

5. 0 <= len <= elems.length

Peter Müller – Software Architecture and Engineering

So far, our model
does not contain
dynamic behavior

Alloy does not allow
the model to

constrain fields not
declared in the model

3. Modeling and Specifications – Formal Models

132

Example: Underspecification

Peter Müller – Software Architecture and Engineering

class Student {
Program major;
…

}

class University {
Map<Student, Program> enrollment;
…

}

class University {
Set<Student> students;
…

}

class Student {
…

}

sig Student { }
sig Program { }
sig University { }
sig State {
enrollment: University -> Student -> one Program

}

§ The Alloy
model leaves
the choice of
data structure
unspecified

3. Modeling and Specifications – Formal Models

133

sig E { }
sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}
{ 0 <= length }
sig List {
elems: Array,
len: Int,
shared: Bool

}
{ 0 <= len && len <= elems.length }

Example: Views

§ The Alloy model
represents only
the structure of
the system, not
the dynamic
behavior

§ Some relevant
invariants are
represented

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models

134

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3.3.1 Static Models
3.3.2 Dynamic Models
3.3.3 Analyzing Models

3. Modeling and Specifications – Formal Models

135

Dynamic Behavior

§ Alloy has no built-in model of execution
- No notion of time or mutable state

§ State or time have to be modeled explicitly

Peter Müller – Software Architecture and Engineering

sig Array {
length: Int,
data: { i: Int | 0 <= i && i < length } -> lone E

}

pred update[a, a’: Array, i: Int, e: E] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}

3. Modeling and Specifications – Formal Models

136

Describing Mutation via Different Atoms

§ Alloy models describe operations declaratively
- Relating the atoms before and after the operation

§ Modeling mutations via different atoms is
cumbersome if atoms occur in several relations

Peter Müller – Software Architecture and Engineering

pred update[a, a’: Array, i: Int, e: E] {
a’.length = a.length &&
a’.data = a.data ++ i -> e

}

pred removeAll[d, d': Dir] {
d’.parent = d.parent &&
d’.contents = none

}

d’ is not
automatically in

d.parent.contents

Equality, not
assignment

A regular
identifier

3. Modeling and Specifications – Formal Models

137

Abstract Machine Idiom

§ Move all relations and operations to a global state

§ Operations modify the global state

Peter Müller – Software Architecture and Engineering

sig State { … }
pred op1[s, s’: State, …] { … }
pred opn[s, s’: State, …] { … }

3. Modeling and Specifications – Formal Models

138

Abstract Machine: Example

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

abstract sig FSObject { }
sig File, Dir extends FSObject { }

FileSystem is
the global state root is a

directory in this
file system

Every object
except root has

exactly one parent

3. Modeling and Specifications – Formal Models

139

Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

pred removeAll[s, s': FileSystem, o: FSObject] {
o in s.live - s.root &&
s'.live = s.live - o.*(s.contents) &&
s'.parent = s'.live <: s.parent

}

Precondition:
o is a live object
other than root

Remove o and
everything it
(transitively)

contains Restrict
domain of

parent relation

3. Modeling and Specifications – Formal Models

140

Abstract Machine: Example (cont’d)

Peter Müller – Software Architecture and Engineering

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}
{
contents = ~parent
live in root.*contents

}

pred removeAll[s, s’: FileSystem, o: FSObject] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

What about
s’.root and

s’.contents?

Constraints ensure that
s.root = s’.root

and that
s’.contents = ~(s’.parent)

In general, we also
have to specify what
remains unchanged

3. Modeling and Specifications – Formal Models

141

Declarative Specifications

§ Alloy specifications are purely declarative
- The describe what is done, not how it is done
- Specifications abstract over irrelevant details

Peter Müller – Software Architecture and Engineering

int find(int[] array, int v) {
for(int i = 0; i < array.length; i++)
if(array[i] == v) return i;

return -1;
}

int find(int[] array, int v) {
if(256 <= array.length) {
// perform parallel search

} else {
// sequential search like before

}
}

pred find[a: Array, v: Int, res: Int] {
a.data[res] = v ||
res = -1 && (no i: Int | a.data[i] = v)

}

3. Modeling and Specifications – Formal Models

142

Abstract Machine Idiom (cont’d)

§ In static models, invariants are expressed as facts

§ In dynamic models, invariants can be asserted as
properties maintained by the operations

Peter Müller – Software Architecture and Engineering

sig State { … }
pred op1[s, s’: State, …] { … }
pred opn[s, s’: State, …] { … }
pred init[s’: State, …] { … }
pred inv[s: State] { … }

assert initEstablishes {
all s’: State, … | init[s’, …] => inv[s’]

}
check initEstablishes
assert opiPreserves {
all s, s’: State, … |
inv[s] && opi[s, s’, …] => inv[s’]

}
check opiPreserves

3. Modeling and Specifications – Formal Models

143

Abstract Machine Example: Initialization

Peter Müller – Software Architecture and Engineering

pred inv[s: FileSystem] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred init[s’: FileSystem] {
#s’.live = 1

}

assert initEstablishes {
all s’: FileSystem |
init[s’] => inv[s’]

}
check initEstablishes

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}

3. Modeling and Specifications – Formal Models

144

Abstract Machine Example: Initialization (c’d)

Peter Müller – Software Architecture and Engineering

pred init[s’: FileSystem] {
#s’.live = 1 &&
s’.contents[s’.root] = none

}

assert initEstablishes {
all s’: FileSystem |
init[s’] => inv[s’]

}
check initEstablishes

sig FileSystem {
live: set FSObject,
root: Dir & live,
parent: (live - root) -> one (Dir & live),
contents: (Dir & live) -> live

}

ü

pred inv[s: FileSystem] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

3. Modeling and Specifications – Formal Models

145

Abstract Machine Example: Preservation

Peter Müller – Software Architecture and Engineering

pred inv[s: FileSystem] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred removeAll[s, s’: FileSystem, o: FSObject] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent

}

assert removeAllPreserves {
all s, s’: FileSystem, o: FSObject |
inv[s] && removeAll[s, s’, o] => inv[s’]

}
check removeAllPreserves

Constraints no longer
ensure that

s’.contents = ~(s’.parent)

3. Modeling and Specifications – Formal Models

146

Abstract Machine Example: Preservation (c’t)

Peter Müller – Software Architecture and Engineering

pred inv[s: FileSystem] {
s.contents = ~(s.parent)
s.live in s.root.*(s.contents)

}

pred removeAll[s, s’: FileSystem, o: FSObject] {
o in s.live - s.root &&
s’.live = s.live - o.*(s.contents) &&
s’.parent = s’.live <: s.parent &&
s’.contents = s.contents :> s’.live

}

assert removeAllPreserves {
all s, s’: FileSystem, o: FSObject |
inv[s] && removeAll[s, s’, o] => inv[s’]

}
check removeAllPreserves ü

3. Modeling and Specifications – Formal Models

147

Temporal Invariants

§ The invariants specified and modeled so far were
one-state invariants

§ Often, one needs to explore or check properties of
sequences of states such as temporal invariants

§ Model sequences of execution steps of an abstract
machine (execution traces)

Peter Müller – Software Architecture and Engineering

2. When the shared-field is true then
the elems-array is immutable

3. Modeling and Specifications – Formal Models

148

Traces of an Abstract Machine

§ Define a linear order on all states
- First state is the initial state
- Subsequent states are created by performing operations

of the abstract machine

Peter Müller – Software Architecture and Engineering

open util/ordering[State]
…
fact traces {
init[first] &&
all s: State - last |
(some … | op1[s, s.next, …]) or
…
(some … | opn[s, s.next, …])

}

Parametric
library defines

linear order
Initial state is
the first in the

order

Subsequent states
are created by one
of the operations

Existential quantifier abstracts
over the arguments to the

operations

3. Modeling and Specifications – Formal Models

149

Properties of Traces

§ One-state invariants can be asserted more
conveniently
- No separate initialization and preservation checks

§ Temporal invariants can be expressed
- Use s.next, lt[s, s’], or lte[s, s’] to relate states

Peter Müller – Software Architecture and Engineering

assert invHolds {
all s: State | inv[s]

}

assert invtemp {
all s, s’: FileSystem | s.root = s’.root

}

3. Modeling and Specifications – Formal Models

150

Peter Müller – Software Architecture and Engineering

3. Modeling and Specification

3.1 Source Code
3.2 Informal Models
3.3 Formal Models

3.3.1 Static Models
3.3.2 Dynamic Models
3.3.3 Analyzing Models

3. Modeling and Specifications – Formal Models

151

Consistency and Validity

§ An Alloy model specifies a collection of
constraints C that describe a set of structures

§ Consistency:
A formula F is consistent (satisfiable) if it evaluates
to true in at least one of these structures

§ Validity:
A formula F is valid if it evaluates to true in all of
these structures

Peter Müller – Software Architecture and Engineering

 $s • C(s) Ù F(s)

 "s • C(s) Þ F(s)

3. Modeling and Specifications – Formal Models

152

Analyzing Models within a Scope

§ Validity and consistency checking for Alloy is
undecidable

§ The Alloy analyzer sidesteps this problem by
checking validity and consistency within a given
scope
- A scope gives a finite bound on the sizes of the sets in

the model (which makes everything else in the model
also finite)

- Naïve algorithm: enumerate all structures of a model
within the bounds and check formula for each of them

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models

153

Consistency Checking

Peter Müller – Software Architecture and Engineering

Translate constraints and
formula into formula over

boolean variables

Check whether this
formula has a satisfying

assignment

Formula is consistent:
Translate satisfying

assignment back to model

Formula is inconsistent
within the given scope

Yes

No

3. Modeling and Specifications – Formal Models

154

Translation into Formula over Boolean Vars

§ Internally, Alloy represents all data types as
relations
- A relation is a set of tuples

§ Constraints and formulas in the model are
represented as formulas over relations

Peter Müller – Software Architecture and Engineering

sig Node {
next: lone Node

}

next is a binary
relation in

Node × Node

fact {
all n: Node | n != n.next

}
"n • (n,n) Ï next

3. Modeling and Specifications – Formal Models

155

Translation into Boolean Formula (cont’d)

§ A relation is translated into boolean variables
- Introduce one boolean variable for each tuple that is

potentially contained in the relation

§ Constraints and formulas are translated into
boolean formulas over these variables

sig Node {
next: lone Node

}
pred show { }
run show for 3

n00, n01, n02,
n10, n11, n12,
n20, n21, n22

next is a binary
relation in

Node × Node

For the given
scope, the next

relation may
contain nine

different tuples

Peter Müller – Software Architecture and Engineering

fact {
all n: Node | n != n.next

}

¬(n00 Ù n01) Ù ¬(n00 Ù n02) Ù ¬(n01 Ù n02) Ù
¬(n10 Ù n11) Ù ¬(n10 Ù n12) Ù ¬(n11 Ù n12) Ù
¬(n20 Ù n21) Ù ¬(n20 Ù n22) Ù ¬(n21 Ù n22) Ù

¬n00 Ù ¬n11 Ù ¬n22

3. Modeling and Specifications – Formal Models

156

Check for Satisfying Assignments

§ Satisfiability of formulas over boolean variables is a
well understood problem
- Find a satisfying assignment if one exists and return

UNSAT otherwise
- The problem is NP-complete

§ In practice, SAT solvers are extremely efficient

Peter Müller – Software Architecture and Engineering

n 0 1 2
0 F F F
1 F F T
2 F T F

¬(n00 Ù n01) Ù ¬(n00 Ù n02) Ù ¬(n01 Ù n02) Ù
¬(n10 Ù n11) Ù ¬(n10 Ù n12) Ù ¬(n11 Ù n12) Ù
¬(n20 Ù n21) Ù ¬(n20 Ù n22) Ù ¬(n21 Ù n22) Ù

¬n00 Ù ¬n11 Ù ¬n22

3. Modeling and Specifications – Formal Models

157

Translation Back to Model

§ A satisfying assignment can be translated back to
relations

and then visualized

Peter Müller – Software Architecture and Engineering

n 0 1 2
0 F F F
1 F F T
2 F T F

next = { (1,2), (2,1) }

3. Modeling and Specifications – Formal Models

158

Interpretation of UNSAT

§ If a boolean formula has no satisfying assignment,
the SAT solver returns UNSAT

§ The boolean formula encodes an Alloy model
within a given scope
- There are no structures within this scope,

but larger structures may exist
- The model may be, but is not necessarily inconsistent

Peter Müller – Software Architecture and Engineering

sig Node { next: lone Node }
fact { #Node = 4 }
pred show { }
run show for 3

3. Modeling and Specifications – Formal Models

159

Validity and Invalidity Checking

§ A formula F is valid if it evaluates to true in all
structures that satisfy the constraints C of the model

§ Enumerating all structures within a given scope is
possible, but would be too slow

§ Instead of checking validity, the Alloy Analyzer
checks for invalidity, that is, looks for
counterexamples

Peter Müller – Software Architecture and Engineering

 "s • C(s) Þ F(s)

 ¬("s • C(s) Þ F(s)) º ($s • C(s) Ù ¬F(s))

This is a
consistency

check

3. Modeling and Specifications – Formal Models

160

Validity Checking

Peter Müller – Software Architecture and Engineering

Translate constraints and
negated formula into

formula over boolean vars

Check whether this
formula has a satisfying

assignment

Formula is invalid:
Translate satisfying

assignment back to model

Formula is valid
within the given scope

Yes

No

3. Modeling and Specifications – Formal Models

161

Interpretation of UNSAT

§ Validity checking searches for a counterexample
within a given scope
- UNSAT means there are no structures within this scope,

but larger structures may exist
- The model may be, but is not necessarily valid

Peter Müller – Software Architecture and Engineering

sig Node { next: Node }
assert demo { all n: Node | some m: Node | m.next = n }

check demo for 2

check demo for 1

3. Modeling and Specifications – Formal Models

162

Analyzing Models: Summary

§ Consistency checking
- Performed by run command within a scope
- Positive answers are definite (structures)

§ Validity checking
- Performed by check command within a scope
- Negative answers are definite (counterexamples)

§ Small model hypothesis:
Most interesting errors are found by looking at
small instances

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications – Formal Models

