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Pointer & Alias Analysis

Pointer and Alias Analysis is fundamental to reasoning about
heap manipulating programs (pretty much all programs today).
Virtually all practical static analysis tools (bug finding,
verification, etc...) contain some form of pointer analysis.

Due to its importance, the topic has received much attention
from the research and developer communities. In our lecture
today, we will study the core concepts of such pointer analyses
and illustrate them on examples. This will enable us to use (like
in the course project) or to build/extend such analyzers.
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Let us define the concrete store

• Objs : set of all possible objects

• PtrVal = Objs  { null }

•   PrimEnv : Var  Z

• r   PtrEnv : PtrVar  PtrVal

• h  Heap : Objs  ( Field {PtrVal  Z} )

A store is now:        = , r, h  Store  =  PrimEnv  PtrEnv  Heap

(before the store was only )

4



Martin VechevMartin Vechev

Some Common Terms

• Aliases

– Two pointers p and q are aliases if they point to the 
same object

• Points-to pair

– (p, A) means p holds the address of object A

• Points-to pairs and aliases

– if (p, A) and (r, A) then p and r are aliases
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(May) Points-to Analysis

What to do with allocation of new objects? A program
can create an unbounded number of objects.

We need to again use abstraction. That is, we need some
static naming scheme for dynamically allocated objects
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Abstraction: Allocation Sites

• Divide heap into a fixed partition based on 
allocation site (the statement label)

• All objects allocated at the same program point 
(label) get represented by a single “abstract object”
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Abstraction: Allocation Sites
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• Divide heap into a fixed partition based on 
allocation site (the statement label)

• All objects allocated at the same program point 
(label) get represented by a single “abstract object”
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Abstraction: Allocation Sites
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allocation site (the statement label)
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Abstract Objects

The (static) abstract objects can be just the allocation sites (labels of
statements in our simple language) of the program. If this is too imprecise,
we can also use the calling context. This is for instance common in library
frameworks where the allocation site inside the library is not useful as we
need to know where the library was called from. Naturally, bigger calling
context will lead to more abstract objects.

If we use allocation sites (labels), we can now define the abstract objects as

AbsObj = { | statement is p := alloc}

That is, this is just those labels/program counters in the program where
allocation of an object occurs. Here alloc is just the name of the
allocation instruction (there can be other names, e.g., newobject, etc).
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Pointer Analysis: two kinds

• Flow sensitive: respects the program control flow

– a separate set of points-to pairs for every program point

– the set at a program point represents possible may-aliases on 
some path from entry to the program  point

• Flow insensitive: assume all execution orders are possible, 
abstracts away order between statements

– good for concurrency (if not too imprecise)

11

Let us first take a look at the flow sensitive analysis
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1.   select/define an abstract domain
• selected based on the type of properties you want to prove 

2. define abstract semantics for the language w.r.t. to the domain
• prove sound w.r.t concrete semantics
• involves defining abstract transformers 

• that is, effect of statement / expression on the abstract domain

3.   iterate abstract  transformers over the abstract  domain
• until we reach a fixed point

Abstract Interpretation: step-by-step

The fixed point is the over-approximation of the program
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The abstract domain is a complete lattice:

Labs  ( (PtrVar  (AbsObj)) 
(AbsObj  Field  (AbsObj)) )

That is, the abstract domain keeps two maps at every program label. 
The first map contains a mapping from a pointer variable to a set of 
abstract objects. The second map contains a mapping from the fields of 
abstract objects to the set of abstract objects they point to.

Note that this lattice is of finite height. We have a finite number of 
abstract objects (i.e. AbsObj), finite number of field names (i.e. 
Field), and a finite number of pointer variables (i.e. PtrVar), and 
labels (i.e. Lab). Therefore, we will not need widening here. 

Step 1: Define Domain
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The abstract domain is a complete lattice:

Labs  ( (PtrVar  (AbsObj)) 
(AbsObj  Field  (AbsObj)) )

Example of an element in the domain:

1  ( p {a5 , a10} , a5.f {a6 , a9})

…

43  …

Step 1: Define Domain
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We read this as follows: at program label 1, pointer p points to 2 abstract 
objects a5 and a10 . Field f of abstract object a5 points to two abstract objects 
a6 and a9. In this element, we have other program labels (43 of them), where 
there are many such pointer maps, but we did not write them explicitly here. 



Martin Vechev

The abstract domain is a complete lattice:

Labs  ( (PtrVar  (AbsObj)) 
(AbsObj  Field  (AbsObj)) )

Step 1: Define Domain
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What are    , ,  , , T  ?

Example: 1  ( p {a5 , a10} , a5.f {a6 , a9})


1  ( p {a5 , a10 , a15} , a5.f {a6 , a9 , a52})

Essentially, everything is based on , , , lifted appropriately. 
It is a good exercise to define them formally. 
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: ()  (Labs  ( (PtrVar  (AbsObj)) 
(AbsObj  Field  (AbsObj)) ))

: (Labs  ( (PtrVar  (AbsObj)) 
(AbsObj  Field  (AbsObj)) )))  ()

Using ,we abstract a set of states into the two kinds of maps. 
Similarly, using  ,we concretize the pointer maps to a set of states.

The formal definition of    and  is left as an exercise.

Let us consider an example to give an intuition.

Step 2: Define Abstraction
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Example of Abstraction

 (

{  5, _ , {po1,qo2} , {o1.ko3, o2.vo6} ,
 5, _ , {po2,qo3} , {o1.ko3, o2.vo3} 

} ) 

Here, by _ we mean that the program has no integer variables.

Suppose that: object  o1 is allocated at site a3  (program label 3)
object  o2 is allocated at site a4  (program label 4)
object  o3 is allocated at site a9  (program label 9)
object  o6 is allocated at site a31 (program label 31)

What is the result ?           
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Example of Abstraction

 (

{  5, _ , {po1,qo2} , {o1.ko3, o2.vo6} ,
 5, _ , {po2,qo3} , {o1.ko3, o2.vo3} 

} ) 

Here, by _ we mean that the program has no integer variables.

Suppose that: object  o1 is allocated at site a3  (program label 3)
object  o2 is allocated at site a4  (program label 4)
object  o3 is allocated at site a9  (program label 9)
object  o6 is allocated at site a31 (program label 31)

5  ({p  {a3,a4}, q  {a4,a9}}, {a3.k{a9}, a4.v{a31,a9}})
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Step 3: Define Abstract Transformers

We now need to define the effect of program statements manipulating 
pointers on the abstract domain.  That is, creation of objects, pointer 
assignment and conditionals. It can be summarized as:

p = q compare two pointers

p := alloc create new object

p := q assign pointers

p.f := q pointer heap store

p := q.f pointer heap load

Lets us take a look at the most tricky one (pointer heap store).  The rest are 
just direct assignments. The formal definitions are left as an exercise.
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What about      p.f := q ?

Say p  {A}, where A.f  {B}, and q  {C}. Can we have A.f  {C}  as a result?

A

C

q

z

p

B
f

A

C

q

z

p

B

f

p.f := q

Is this result correct ?Abstract Element AE1

Abstract Element AE2
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What about      p.f := q ?

To see why this is not correct, we need to think what the left side means in 
the concrete and what the right side means in the concrete.

A

C

q

z

p

B
f

A

C

q

z

p

B

f

p.f := q

Abstract Element AE1 Abstract Element AE2
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A Counter-Example in the Concrete

O1

z

p
f

p.f := q

O2 O3

O4q

O1

z

p
f

O2 O3

O4q

O4

Concrete objects O1 and O2 allocated at site  A
Concrete objects O3 and O5 allocated at site  B
Concrete object O4 allocated at site  C

f f

Possible Concrete Structure CE of AE1
Possible Concrete Structure not 
captured by Abstract Element AE2

The reason this structure is not captured by 
AE2 is because in AE2 we can never reach 
an object allocated at site B via pointer z, 
while here, this is possible

O5
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What about      p.f := q ?

A

C

q

z

p

B
f

A

C

q

z

p

B
f

p.f := q

f

A correct solution is to apply union on the contents of A.f and q, thereby 

obtaining that A.f  {B, C}. This is called weak updates. There are techniques 

to perform strong updates,  but we will not study them in this course. 
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A program which produces structure CE

// initially x = z = p = q = null

for (i = 0; i < 2; i++) {

// allocate O1, O2
A:  x := alloc; 

if (i == 0)

p := x;

else

z := x;

}

// allocate O3
B:  x := alloc; 

z.f := x; 

// allocate O4
C:  q := alloc; 

x := null;

There could be many programs which produce the structure CE



Martin Vechev 25

Lets apply pointer analysis to the program

// initially x = z = p = q = null

for (i = 0; i < 2; i++) {

// allocate O1, O2
A:  x := alloc; 

if (i == 0)

p := x;

else

z := x;

}

// allocate O3
B:  x := alloc;

z.f := x; 

// allocate O4
C:  q := alloc; 

x := null;

p  , q  , x  , z  

p  {A}, q  , x  {A}, z  {A}

p  {A}, q  , x  {A}, z  {A}

p  {A}, q  , x  {A}, z  {A}

p  {A}, q  , x  {B}, z  {A}

p  {A}, q  , x  {B}, z  {A},
A.f  {B}

p  {A}, q  {C}, x  {}, z  {A},
A.f  {B}

The result of pointer analysis
at the fixed point:
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Notes on the pointer analysis
The pointer analysis simply applies the transformers of the pointer manipulating 
statements from slide 19 on the control-flow graph. The function is the same shape 
as Interval domain, except applied to the pointer relevant statements:

Here, Lab  A denotes the pointer analysis domain from slide 14.

(’,action, )

 action(m( ’))             

T

Fpointer(m) =

if  is initial label

otherwise

Fpointer: (Lab  A)(Lab  A)
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Example
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p :=alloc1 ;  // A1
q :=alloc2;  // A2
if p=q 3 then

z:=p 4

else
z:=q 5

Allocation-site based naming (using Alab instead of just “lab” for clarity)
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Allocation-site based naming (using Alab instead of just “lab” for clarity)

p :=alloc1 ;  // A1
q :=alloc2;  // A2
if p=q 3 then

z:=p 4

else
z:=q 5

Result of Pointer Analysis

p  , q  , z  

p  {A1}, q  , z  

p  {A1}, q  {A2}, z  

p  , q  , z  

p  , q  , z  

p  {A1}, q  {A2}, z  

p  {A1}, q  {A2}, z  {A2}
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Flow-Sensitive: Output
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A2

A1

p

3 points-to pairs

z and p do not alias
z and q alias

z

q

Showing results at the end of the program:
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Pointer Analysis: two kinds

• Lets now take a look at the flow insensitive 
analysis. 

– Scalable points-to analysis is typically flow-insensitive

• Soot implements a few flow-insensitive analyses
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(PtrVar  (AbsObj)) 
(AbsObj  Field  (AbsObj))

This abstract domain does not  keep information per label, essentially 
ignoring the control flow of the program.

Flow Insensitive Abstract Domain
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Flow-Insensitive Analysis

32

Allocation-site based naming (using Alab instead of just “lab” for clarity)

p :=alloc1;  // A1
q :=alloc2;  // A2
if p=q 3 then

z:=p 4

else
z:=q 5
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Flow-Insensitive Analysis
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Allocation-site based naming (using Alab instead of just “lab” for clarity)

p :=alloc1;  // A1
q :=alloc2;  // A2

z:=p 4

z:=q 5
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Flow-Insensitive Analysis
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Allocation-site based naming (using Alab instead of just “lab” for clarity)

Output of Analysis:

p :=alloc1;  // A1
q :=alloc2;  // A2

z:=p 4

z:=q 5

p  {A1}, q  {A2}, z  {A1, A2}
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Flow-Insensitive Output
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A2

A1

p

4 points-to pairs

z and q alias
z and p alias

z

q

At any program point we have:
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Alias Analysis
(this is a particular client of the pointer analysis)

• Once we have performed the pointer analysis, it is trivial 
to compute alias analysis
– but not vice versa

• A function points-to (p) returns the set of all abstract 
objects that a pointer p can point to
– Practically, frameworks like Soot contain similar call to points-to, 

where one can obtain the abstract objects a pointer points to.

• Two pointers p and q may alias if:
– points-to (a)   points-to(b)  ∅
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Static Analysis

In our study of static analysis, we have studied and seen how
to work with both numerical domains as well as heap domains
(like pointer analysis). Both of these are popular when
designing real world analyzers.

This concludes our study of static analysis and over-
approximation.
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