
Martin VechevMartin Vechev

Software Architecture and

Engineering: Part II

ETH Zurich, Spring 2017

Prof. Martin Vechev
http://www.srl.inf.ethz.ch/

http://www.srl.inf.ethz.ch/

Martin Vechev

SAE: Part II

Static
Analysis

Second
Project

Alias
Analysis

Relational
Analysis

Interval
Analysis

Semantics
&

Theory

Assertions

Framework

SMT
solver

Symbolic
Reasoning

Program
Repair

Concolic
Execution

Symbolic
Execution

Web &
Mobile

Apps

Race
Detection

Context
Bounded Dynamic

Analysis

2

Today

Martin Vechev

Soundiness…

3

Martin Vechev

Question

Can you build an automatic analyzer which takes as input an
arbitrary program and an arbitrary property such that if the
analyzer answers:

• “Yes” , then it is certain that the property holds

• “No” , then it is certain that the property does not hold

4

Martin Vechev

Question

Can you build an automatic analyzer which takes as input an
arbitrary program and an arbitrary property such that if the
analyzer answers:

• “Yes” , then it is certain that the property holds

• “No” , then it is certain that the property does not hold

Answer:

No. The problem is undecidable

Alan Turing

5

Martin Vechev

All behaviors in
the universe

program behaviors
over-approximation
(e.g. static analysis)

under-approximation
(e.g. dynamic analysis)

Approaches to Program Analysis

over and under
approximation
(e.g. symbolic
execution)

6

Martin Vechev

Today: Symbolic Execution

7

Martin Vechev

Symbolic Execution

Symbolic execution is a technique which sits in
between testing and static analysis.

It is completely automatic, and aims to explore as
many program executions as possible, with the
expense that it has false negatives: it may miss
program executions, that is, may miss errors.

Hence, symbolic execution is a particular instance
of an under-approximation (some versions are
actually both under- and over- approximations)

8

Martin Vechev

Symbolic Execution: Applications

Symbolic execution is widely used in practice. Tools based
on symbolic execution have found serious errors and
security vulnerabilities in various systems:

• Network servers

• File systems

• Device drivers

• Unix utilities

• Computer vision code

• …

9

Martin Vechev

Symbolic Execution: The Idea

In classic symbolic execution, we associate with each variable
a symbolic value instead of a concrete value. We then run the
program with the symbolic values obtaining a big constraint
formula as we run the program. Hence, the name symbolic
execution.

At any program point we can invoke a constraint (SMT) solver
to find satisfying assignments to the formula. These satisfying
assignments can be used to indicate real concrete inputs for
which the program reaches a program point or to steer the
analysis to another part of the program.

10

Martin Vechev

Constraints: Examples

Linear constraint: 5*x + 6 < 100

Non-linear constraint: x * y + 12 < 29

Uninterpreted functions: f(x) < 30

A constraint solver, typically an SMT solver, finds
satisfying assignments to constraints. An example
of SMT solvers are Z3 and Yices.

11

Martin Vechev

Logical Fragments of Constraints

What is decidable ?

12

Martin Vechev

Theory of Equality: Example

a = b  b = c  g(f(a), b) = g(f(c), a)

Is this a valid formula?

Martin Vechev

Theory of Integers

x,y.z. x > z  y  0  x + y > z

x,y. x > 0  (x = 2y  x = 2y + 1)  x - y > 0

Martin Vechev

Symbolic Execution: Technically

15

At any point during program execution, symbolic
execution keeps two formulas:

symbolic store and a path constraint

Therefore, at any point in time the symbolic state is
described as the conjunction of these two formulas.

Martin Vechev

Symbolic Store

16

• The values of variables at any moment in time are
given by a function s  SymStore = Var  Sym

– Var is the set of variables as before

– Sym is a set of symbolic values

– s is called a symbolic store

• Example: s : x  x0, y  y0

Martin Vechev

Semantics

17

• Arithmetic expression evaluation simply manipulates the
symbolic values

• Let s : x  x0, y  y0

• Then, z = x + y will produce the symbolic store:

x  x0, y  y0, z  x0+y0

That is, we literally keep the symbolic expression x0+y0

Martin Vechev

Path Constraint

18

• The analysis keeps a path constraint (pct) which records the
history of all branches taken so far. The path constraint is
simply a formula.

• The formula is typically in a decidable logical fragment
without quantifiers

• At the start of the analysis, the path constraint is true

• Evaluation of conditionals affects the path constraint , but
not the symbolic store.

Martin Vechev

Path Constraint: Example

19

Let s : x  x0, y  y0

Let pct = x0 > 10

Lets evaluate: if (x > y + 1) {5: … }

At label 5, we will get the symbolic store s . It does not
change. But we will get an updated path constraint:

pct = x0 > 10  x0 > y0 + 1

Martin Vechev

Symbolic Execution: Example

20

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

What inputs cause the program to
reach the error?

Here, we use ERROR for
illustration purposes, but in
practice, ERROR can be an array
out of bounds, assertion violation
or some other problem

Martin Vechev

Symbolic Execution: Example

21

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Lets execute this example
with classic symbolic execution

In practice, we don’t know where
the errors is, so we need to search
and explore all paths (or as many
symbolic paths as we can)

Martin Vechev

Symbolic Execution: Example

22

s : x  x0,

y  y0

pct : true

The read() functions read a value from
the input and because we don’t know
what those read values are, we set the
values of x and y to fresh symbolic
values called x0 and y0

pct is true because so far we have not
executed any conditionals

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Symbolic Execution: Example

23

s : x  x0,

y  y0

z  2*y0

pct : true

Here, we simply executed the function
twice() and added the new symbolic
value for z.

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Symbolic Execution: Example

24

s : x  x0,

y  y0

z  2*y0

pct : x0 = 2*y0

This is the result if x = z:

s : x  x0,

y  y0

z  2*y0

pct : x0  2*y0

This is the result if x != z:

We forked the analysis into 2 paths: the true
and the false path. So we duplicate the state of
the analysis.

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Symbolic Execution: Example

25

We can avoid further exploring a path if we
know the constraint pct is unsatisfiable. In this
example, both pct’s are satisfiable so we need
to keep exploring both paths.

s : x  x0,

y  y0

z  2*y0

pct : x0 = 2*y0

This is the result if x = z:

s : x  x0,

y  y0

z  2*y0

pct : x0  2*y0

This is the result if x != z:

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Symbolic Execution: Example

26

s : x  x0,

y  y0

z  2*y0

pct : x0 = 2*y0


x0 > y0+10

This is the result if x > y + 10:

Lets explore the path when x == z is true.
Once again we get 2 more paths.

s : x  x0,

y  y0

z  2*y0

pct : x0 = 2*y0


x0  y0+10

This is the result if x  y + 10:

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Symbolic Execution: Example

27

s : x  x0,

y  y0

z  2*y0

pct : x0 = 2*y0


x0 > y0+10

This is the result if x > y + 10:

So the following path reaches “ERROR”.

We can now ask the SMT solver for a satisfying
assignment to the pct formula.

For instance, x0 = 40, y0 = 20 is a
satisfying assignment. That is, running the
program with these inputs triggers the error.

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Handling Loops: a limitation

28

A serious limitation of symbolic execution is handling unbounded loops.
Symbolic execution runs the program for a finite number of paths. But what
if we do not know the bound on a loop ? The symbolic execution will keep
running forever !

int F(unsigned int k) {

int sum = 0;

int i = 0;

for (; i < k; i++)

sum += i;

return sum;

}

Martin Vechev 29

A common solution in practice is to provide some loop bound. In this
example, we can bound k, to say 2. This is an example of an under-
approximation. Practical symbolic analyzers usually under-approximate as
most programs have unknown loop bounds.

int F(unsigned int k) {

int sum = 0;

int i = 0;

for (; i < 2; i++)

sum += i;

return sum;

}

Handling Loops: bound loops

Martin Vechev

Constraint Solving: challenges

30

Constraint solving is fundamental to symbolic execution as a constraint
solver is continuously invoked during analysis. Often, the main roadblock
to performance of symbolic execution engines is the time spent in
constraint solving. Therefore, it is important that:

1. The SMT solver supports as many decidable logical fragments as
possible. Some tools use more than one SMT solver.

2. The SMT solver can solve large formulas quickly.

3. The symbolic execution engines tries to reduce the burden in calling
the SMT solver by exploring domain specific insights.

Martin Vechev

Key Optimization: Caching

31

The basic insight here is that often, the analysis will invoke
the SMT solver with similar formulas. Therefore, the
symbolic execution system can keep a map (cache) of
formulas to a satisfying assignment for the formula.

Then, when the engine builds a new formula and would
like to find a satisfying assignment for that formula, it can
first access the cache, before calling the SMT solver.

Martin Vechev

Suppose the cache contains the mapping:

Formula: Solution:

(x + y < 10)  (x > 5)  {x = 6, y = 3}

If we get a weaker formula as a query, say (x + y < 10) , then we can
immediately reuse the solution already found in the cache, without
calling the SMT solver.

If we get a stronger formula as a query, say (x + y < 10)  (x > 5)  (y  0)
, then we can quickly try the solution in the cache and see if it works,
without calling the solver (in this example, it works).

32

Key Optimization: Caching

Martin Vechev

Despite best efforts, the program may be using
constraints in a logical fragment which the SMT
solver does not handle well.

For instance, suppose the SMT solver does not
handle non-linear constraints well.

Let us consider a modification of our running
example.

33

When Constraint Solving Fails

Martin Vechev

Modified Example

34

Here, we changed the twice()
function to contain a non-linear
result.

Let us see what happens when we
symbolically execute the program
now…

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Modified Example

35

s : x  x0,

y  y0

z  y0*y0

pct : x0 = y0*y0

This is the result if x = z:

Now, if we are to invoke the SMT solver with the
pct formula, it may be unable to compute
satisfying assignments, precluding us from
knowing whether the path is feasible or not.

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Solution: Concolic Execution

Concolic Execution: combines both symbolic execution
and concrete (normal) execution.

The basic idea is to have the concrete execution drive
the symbolic execution.

Here, the program runs as usual (it needs to be given
some input), but in addition it also maintains the usual
symbolic information.

36

Martin Vechev

Concolic Execution: Example

37

s : x  x0,

y  y0

pct : true

The read() functions read a value from
the input. Suppose we read x = 22 and y = 7.

We will keep both the concrete store and the
symbolic store and path constraint.

 : x  22,

y  7

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

38

s : x  x0,

y  y0

z  2*y0

pct : true

 : x  22,

y  7,

z  14

The concrete execution will now take
the ‘else’ branch of z == x.

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

39

s : x  x0,

y  y0

z  2*y0

pct : x0  2*y0

Hence, we get:

 : x  22,

y  7,

z  14

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

40

At this point, concolic execution decides that it
would like to explore the “true” branch of
x == z and hence it needs to generate concrete
inputs in order to explore it. Towards such
inputs, it negates the pct constraint, obtaining:

It then calls the SMT solver to find a satisfying
assignment of that constraint. Let us suppose
the SMT solver returns:

x0  2, y0  1

The concolic execution then runs the program
with this input.

pct : x0 = 2*y0

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

41

s : x  x0,

y  y0

z  2*y0

pct : x0 = 2*y0

With the input x  2, y  1 we reach
this program point with the following
information:

 : x  2,

y  1,

z  2

Continuing further we get:

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

42

s : x  x0,

y  y0

z  2*y0

We reach the “else” branch of x > y + 10

 : x  2,

y  1,

z  2

pct : x0 = 2*y0


x0  y0+10

Again, concolic execution may want to explore
the ‘true’ branch of x > y + 10.

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

43

s : x  x0,

y  y0

z  2*y0

We reach the “else” branch of x > y + 10

 : x  2,

y  1,

z  2

pct : x0 = 2*y0


x0  y0+10

Concolic execution now negates the conjunct
x0  y0+10 obtaining:

x0 = 2*y0  x0 > y0+10

A satisfying assignment is: x0  30, y0  15

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

44

If we run the program with the input:

x0  30, y0  15

we will now reach the ERROR state.

As we can see from this example, by
keeping the symbolic information, the
concrete execution can use that
information in order to obtain new inputs.

int twice(int v) {

return 2 * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Let us return to the problem of non-linear constraints

We remark that non-linear constraints are just a
representative of a feature which is difficult for SMT
solvers to deal with and hence they need to under-
approximate (via concolic execution)

45

Non-linear constraints

Martin Vechev

Non-linear constraints

46

Let us again consider our example and see
what concolic execution would do with
non-linear constraints.

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

47

s : x  x0,

y  y0

pct : true

The read() functions read a value from
the input. Suppose we read x = 22 and y =7.

 : x  22,

y  7

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

48

s : x  x0,

y  y0

z  y0*y0

pct : true

 : x  22,

y  7,

z  49

The concrete execution will now take
the ‘else’ branch of x == z.

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

49

s : x  x0,

y  y0

z  y0*y0

pct : x0  y0*y0

Hence, we get:

 : x  22,

y  7,

z  49

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

50

However, here we have a non-linear constraint
x0  y0*y0 . If we would like to explore
the true branch we negate the constraint,
obtaining x0 = y0*y0 but again we have a
non-linear constraint !

In this case, concolic execution simplifies the
constraint by plugging in the concrete values for
y0 in this case, 7, obtaining the simplified
constraint:

x0 = 49

Hence, it now runs the program with the input

x  49, y  7

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: Example

51

Running with the input

x  49, y  7

will reach the error state.

However, notice that with these inputs, if we try
to simplify non-linear constraints by plugging in
concrete values (as concolic execution does),
then concolic execution we will never reach the
else branch of the if (x > y + 10)
statement.

int twice(int v) {

return v * v;

}

void test(int x, int y) {

z = twice(y);

if (x == z) {

if (x > y + 10)

ERROR;

}

}

int main() {

x = read();

y = read();

test(x,y);

}

Martin Vechev

Concolic Execution: External World

52

Often, we are not interested in symbolically executing OS code or
native libraries. By keeping both the concrete and the symbolic
values, we can always invoke system calls or library API with the
concrete values and simply continue concrete execution as usual.

int F(char *f) {

FILE *fp;

fp = fopen(f, “r”);

…

}

Martin Vechev

Symbolic Execution: Tools

53

• Stanford’s KLEE: http://klee.llvm.org/

• NASA’s Java PathFinder: http://javapathfinder.sourceforge.net/

• Microsoft Research’s SAGE

• UC Berkeley’s CUTE

• EPFL’s S2E: http://dslab.epfl.ch/proj/s2e

http://klee.llvm.org/
http://javapathfinder.sourceforge.net/
http://dslab.epfl.ch/proj/s2e

Martin Vechev

Summary

• Symbolic Execution is a popular technique for
analyzing large programs
– completely automated, relies on SMT solvers

• To terminate, may need to bound loops
– leads to under-approximation

• To handle non-linear constraints and external
environment, mixes concrete and symbolic
execution (called concolic execution)
– also leads to under-approximation

54

