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Mathematical Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions
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Structures: Motivation

Structures are important as they define 

the concrete and abstract domains
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Partially Ordered Sets (posets)

A partial order is a binary relation   L  L on a set L with 
these properties:

– Reflexive:  p  L: p  p
– Transitive: p,q,r  L: (p  q  q  r)  p  r
– Anti-symmetric: p,q  L: (p  q  q  p)  p = q

A poset (L, ) is a set L equipped with a partial ordering 
– For example: ((L), )  is a poset, where denotes powerset

Intuition: captures implication between facts
– p  q intuitively means that p q
– Later, we will say that if p  q , then p is “more precise” than 

q (that is, p represents fewer concrete states than q)
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Posets shown as Hasse Diagrams
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b

T

a

c

given the set { a,b,c, T,     } 

the Hasse diagram shows  the order:

{ (    ,a), (    ,c), (a, b), (b, T), (c, T),
(a, a), (b, b), (c, c), (T, T), (    ,   ),
(    ,b), (    , T), (a, T) }
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Least / Greatest in Posets

Given a poset (L, ) , an element       L is called 
the least element if it is smaller than all other 
elements of the poset: p  L:      p. The greatest 
element is an element T if p  L:  p  T.

The least and greatest elements may not exist, but 
if they do they are unique.
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Least / Greatest: example
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b

a

c

b

T

a

c

No greatest element No least element

Example where both do not exist ?
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Bounds in Posets
Given a poset (L, ) and  Y  L:

u  L is an upper bound of  Y if p  Y: p  u
l  L is a lower bound of Y if  p  Y: p  l

note that the bounds for Y may not exist

• Y  L is a least upper bound of Y if Y is an upper bound of  
Y and Y  u whenever u is another upper bound of  Y.  

• Y  L is greatest lower bound of Y if Y is a lower bound of  
Y and Y  l whenever l is another lower bound of  Y

– Note that Y and  Y need not be in Y.
– We often write p  q for {p, q} and  p  q for { p, q}
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Bounds: example
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b

a

c {b, c} has no upper bound

{b, c} has 2 lower bounds: a and 

where  {b, c} = a

No T element
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Bounds: example
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is there a  for ‘a’ and ‘b’ ? 

is there a  for ‘c’ and ‘d’ ? 

a b

c d
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Bounds: example
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is there a  for ‘a’ and ‘b’ ? 

a b

c d

e
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Complete Lattices

A complete lattice (L, , ) is a poset where Y and 

Y exist for any Y  L. 

For example, for a set L, ((L), , , )  is a complete 
lattice.
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Is this a complete lattice ?

14

a b

c d

e

f



Martin Vechev

Complete Lattices: Examples
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Complete Lattices: Examples
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[0,0][-1,-1][-2,-2]

[-2,-1]

[-2,0]

[1,1] [2,2]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

……

[2,]

[1,]

[0,]

[-1,]

[-2,]

[- ,]

…

[- ,-2]

[-,-1]

[- ,0]

[-,1]

[- ,2]
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Later we will see that the set of traces 

P also belongs to a complete lattice
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Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

18



Martin Vechev

Functions

A function f: A  B between two posets (A, ) and (B, ) is 
increasing  (monotone):    a,b  A: a  b  f(a)  f(b)

Often, we use the special case where the function is 
between elements in the same poset. That is,  f: A  A. 
Then a monotone function is: a,b  A: a  b  f(a)  f(b)
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Fixed Points

For a poset (L, ) , function f: L  L, and element x  L:

– x is a fixed point iff f(x) = x

– x is a post-fixedpoint iff f(x)  x

Fix(f) denotes the set of all fixed points

Red(f) = set of all post-fixedpoints
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Least Fixed Points

For a poset (L,) and a function f: L  L, we say that 

lfp f  L is a least fixed point of f if:

– lfp f is a fixed point

– It is the least fixed point: a  L: a = f(a)  lfp f  a

Note that the least fixed point may not exist.
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Fixed Points: Examples
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• monotone function
• with no fixed point

• not monotone function
• with 2 fixed points
• no least fixed point

• monotone function 
• with one fixed point
• has a least fixed point

• monotone function
• with 2 fixed points
• no least fixed point

• monotone function
• 4 fixed points
• least fixed point

there exists a  post-fixedpoint
that is less than some fixed point
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Tarski’s fixed point theorem (part of it)

If (L,,,,,) is a complete lattice and f: L  L is
a monotone function, then

lfp f exists, and 

lfp f = Red(f)  Fix(f)

23

Note: the complete lattice can be of infinite height
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Tarski’s theorem tells us that a fixed point exists, 
but does not actually suggest an algorithm for 
computing it.

Next: we look at ways to compute a fixed point
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Function Iterates

For a poset (L, ) , a function f: L  L , an element a  L, 
the iterates of the function from a are:

f0(a), f1(a),f2(a)…

where fn+1(a) = f(fn(a))

Note that f0(a) = a

In program analysis, we usually take a to be 
25
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A useful fixed point theorem

Given a poset of finite height, a least element , a monotone f.

Then the iterates  f0(), f1(), f2()… form an increasing 

sequence which eventually stabilizes from some n  N, that is: 
fn() = fn+1() and:

lfp f = fn ()

This leads to a simple algorithm for computing lfp f
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Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions
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Representing P

Let P be the set of reachable state of a program P.

Let function F be (where I is an initial set of states 
and  is the transition relation between states): 

F(S) =  I    { c’  |  c  S   c  c’ } 

Then, P is a fixed point of F: F(P) = P

(in fact, P is the least fixed point of F)

28
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The Art of Approximation:
Static Program Analysis

– Define a function F such that F approximates F. This is 
typically done manually and can be tricky but is done once 
and for a programming language.

– Then, use existing theorems which state that the least 
fixed point of F , e.g. some V, approximates the least fixed 
point of F, e.g. P

– Finally, automatically compute a fixed point of F, that is a 
V where F (V) = V

29
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Approximating a Function

given functions:

F: C C

F : C  C

what does it mean for F to approximate F ?

x  C : F(x) c F(x)
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Approximating a Function

What about when: 

F: C C

F : A A

We need to connect the concrete C and the abstract A

We will connect them via two functions   and  

 : C A   is called the abstraction function

 : A C   is called the concretization function
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Connecting Concrete with Abstract

32

(C, c) (A, A)
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Approximating a Function: Definition 1

So we have the 2 functions:

F: C C

F : A A

If we know that  and  form a Galois Connection, then 

we can use the following definition of approximation:

z  A : (F((z))) A F
(z)
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For the course, it is not important to know what 
Galois Connections are. 

The only point to keep in mind that is that they 
place some restrictions on what  and   can be.

For instance, among other things, they require 
to be monotone.
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z

Visualizing Definition 1
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(C, c) (A, A)

F(z)



x

F(x)

F

F
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Approximating a Function
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what this equation:

z  A : (F((z)))A F(z)

says is that if we have some function in the abstract that we
think should approximate the concrete function, then to
check that this is indeed true, we need to prove that for any
abstract element, concretizing it, applying the concrete
function and abstracting back again is less than applying the
function in the abstract directly.
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Least precise approximation

37

To approximate F, we can always define F(z) = T

This solution is always sound as: z  A : (F((z))) A T

However, it is not practically useful as it is too imprecise
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Most precise approximation
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What if F(z) = (F((z))) ? This is the best abstract
function.

The problem is that we often cannot implement such a F(z)

algorithmically.

However, we can come up with a F(z) that has the same

behavior as (F((z))) but a different implementation.

Any such F(z) is referred to as the best transformer.
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Key Theorem I: Least Fixed Point Approximation
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1. monotone functions    F: C C and F : A A

2.  : C A and  : A C forming a Galois Connection

3. z  A : (F((z))) A F
(z)   (that is, F approximates F)

 (lfp(F)) A lfp (F)

This is important as it goes from local function approximation to 
global approximation. This is a key theorem in program analysis.

If we have:

then:
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Least Fixed Point Approximation
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The 3 premises to the theorem are usually proved 
manually.

Once proved, we can now automatically compute a 
least fixed point in the abstract and be sure that our 
result is sound !
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Approximating a Function: Definition 2

So we have the 2 functions:

F: C C

F : A A

But what if   and  do not form a Galois Connection ? For 
instance,  is not monotone.  Then, we can use the 
following definition of approximation:

z  A : F((z)) c   (F
(z))
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z

Visualizing Definition 2 
(concretization-based)
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(C, c) (A,A)

F(z)

x

F(x)

F

F
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1. monotone functions    F: C C and F : A A

2.  : A C is monotone

3. z  A : F((z))   c   (F
(z)) (that is, F approximates F)

lfp(F)  c  (lfp (F))

This is important as it goes from local function approximation to 
global approximation. Another key theorem in program analysis.

If we have:

then:

Key Theorem II: Least Fixed Point Approximation
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So what is F then ?

F is to be defined for the particular abstract
domain A that we work with. The domain A can be
Sign, Parity, Interval, Octagon, Polyhedra, and so on.

In our setting and commonly, we simply keep a map 
from every label (program counter) in the program 
to an abstract element in A

Then  F simply updates the mapping from labels to 
abstract elements.

44
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(’,action, )

 action(m( ’))             

T

F(m) =

if  is initial label

otherwise

F

F: (Lab  A)(Lab  A)

action : A A

action is the key ingredient here. It captures the effect of a language 
statement on the abstract domain A. Once we define it, we have F

action is often referred to as the abstract transformer.
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what is  (’,action, ) ? 

foo (int i) { 

1: int x := 5;

2: int y := 7;

3: if (0 ≤ i) {

4:   y := y + 1;

5:   i := i - 1;

6:   goto 3;

}

7:}

Actions:

(1, x := 5, 2)

(2, y := 7, 3) 

(3, 0 ≤ i, 4)    

(3, 0 > i, 7)

(4, y = y + 1, 5) 

(5, i := i – 1, 6) 

(6, goto 3, 3)

Multiple (two) actions reach label 3
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An action can be:

• b   BExp boolean expression in a conditional
• x:= a   here,  a   AExp

• skip

In performing an action, the assignment and the boolean expression 
of a conditional is fully evaluated

{x2, y0}  {x4, y0}
x:=y+x

{x2, y0} 
if (x > 5) …

what is  action ?
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Defining action

As we said, action captures the abstract
semantics of the language for a particular abstract
domain.

In later lectures we will see precise definitions for
some actions in the Interval domain. Defining
action for complex domains such as say Octagon
(see later) can be quite tricky.

Lets just have a brief example now to what it entails
even for Intervals…
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Example: what is  x  y for Intervals ?

Suppose we have the program:

// Here, x is [0,4] and y is [3,5]     

if (x  y){

1: …

}

What does x  y produce at label 1 ?

That is, what are  x and y at label 1 ?
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Relational Abstractions

The Interval domain is an example of a non-relational
domain. It does not explicitly keep the relationship
between variables.

In some cases however, it may be necessary to keep this
relationship in order to be more precise. Next, we show
two examples of abstractions (Octagon and Polyhedra)
where the relationship is kept. These domains are called
relational domains.

In the project, you will use the Polyhedra domain,
already implemented as part of the Apron library.
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Octagon Domain

x

y

2 y  2

8
y  8

7

x  7

1

x  1

15

x+y  15

5

x+y  5

3

x-y  3
x-y  -20

constraints  are of
the following form: 

+
-

+
-x y  c

an abstract state is a map 
from labels to conjunction 
of constraints

x - y  3   
y  8       
y  2       
x + y  15  
x + y  5   
x  1       
x – y  -20 
x  7

The slope is fixed
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Polyhedra Domain

x

y

5

x+y  5

2

x-3y  2

x-y  -20
constraints  are of the following form: 

c1x1 + c2x2 … + cnxn  c

an abstract state is again a map 
from labels to conjunction of 
constraints:

x - y  -20 
x - 3  y  2 
x + y  5

the slope can vary 


