
Software Architecture and

Engineering: Part II

ETH Zurich, Spring 2017

Prof. Martin Vechev
http://www.srl.inf.ethz.ch/

http://www.srl.inf.ethz.ch/

Martin Vechev

SAE: Part II

Static
Analysis

Second
Project

Alias
Analysis

Relational
Analysis

Interval
Analysis

Semantics
&

Theory

Assertions

Framework

SMT
solver

Symbolic
Reasoning

Program
Repair

Concolic
Execution

Symbolic
Execution

Web &
Mobile

Apps

Race
Detection

Context
Bounded Dynamic

Analysis

2

Today

Martin Vechev

Mathematical Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

3

Martin Vechev

Structures: Motivation

Structures are important as they define

the concrete and abstract domains

4

Martin Vechev

Partially Ordered Sets (posets)

A partial order is a binary relation L L on a set L with
these properties:

– Reflexive: p L: p p
– Transitive: p,q,r L: (p q q r) p r
– Anti-symmetric: p,q L: (p q q p) p = q

A poset (L,) is a set L equipped with a partial ordering
– For example: ((L),) is a poset, where denotes powerset

Intuition: captures implication between facts
– p q intuitively means that p q
– Later, we will say that if p q , then p is “more precise” than

q (that is, p represents fewer concrete states than q)

5

Martin Vechev

Posets shown as Hasse Diagrams

6

b

T

a

c

given the set { a,b,c, T, }

the Hasse diagram shows the order:

{ (,a), (,c), (a, b), (b, T), (c, T),
(a, a), (b, b), (c, c), (T, T), (,),
(,b), (, T), (a, T) }

Martin Vechev

Least / Greatest in Posets

Given a poset (L,) , an element L is called
the least element if it is smaller than all other
elements of the poset: p L: p. The greatest
element is an element T if p L: p T.

The least and greatest elements may not exist, but
if they do they are unique.

7

Martin Vechev

Least / Greatest: example

8

b

a

c

b

T

a

c

No greatest element No least element

Example where both do not exist ?

Martin Vechev

Bounds in Posets
Given a poset (L,) and Y L:

u L is an upper bound of Y if p Y: p u
l L is a lower bound of Y if p Y: p l

note that the bounds for Y may not exist

• Y L is a least upper bound of Y if Y is an upper bound of
Y and Y u whenever u is another upper bound of Y.

• Y L is greatest lower bound of Y if Y is a lower bound of
Y and Y l whenever l is another lower bound of Y

– Note that Y and Y need not be in Y.
– We often write p q for {p, q} and p q for { p, q}

9

Martin Vechev

Bounds: example

10

b

a

c {b, c} has no upper bound

{b, c} has 2 lower bounds: a and

where {b, c} = a

No T element

Martin Vechev

Bounds: example

11

is there a for ‘a’ and ‘b’ ?

is there a for ‘c’ and ‘d’ ?

a b

c d

Martin Vechev

Bounds: example

12

is there a for ‘a’ and ‘b’ ?

a b

c d

e

Martin Vechev

Complete Lattices

A complete lattice (L, ,) is a poset where Y and

Y exist for any Y L.

For example, for a set L, ((L), , ,) is a complete
lattice.

13

Martin Vechev

Is this a complete lattice ?

14

a b

c d

e

f

Martin Vechev

Complete Lattices: Examples

15

{1}
{2}

{3}

{1,2}
{1,3}

{2,3}

{1,2,3}

- +

0

Martin Vechev

Complete Lattices: Examples

16

[0,0][-1,-1][-2,-2]

[-2,-1]

[-2,0]

[1,1] [2,2]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

……

[2,]

[1,]

[0,]

[-1,]

[-2,]

[- ,]

…

[- ,-2]

[-,-1]

[- ,0]

[-,1]

[- ,2]

Martin Vechev

Later we will see that the set of traces

P also belongs to a complete lattice

17

Martin Vechev

Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

18

Martin Vechev

Functions

A function f: A B between two posets (A,) and (B,) is
increasing (monotone): a,b A: a b f(a) f(b)

Often, we use the special case where the function is
between elements in the same poset. That is, f: A A.
Then a monotone function is: a,b A: a b f(a) f(b)

19

Martin Vechev

Fixed Points

For a poset (L,) , function f: L L, and element x L:

– x is a fixed point iff f(x) = x

– x is a post-fixedpoint iff f(x) x

Fix(f) denotes the set of all fixed points

Red(f) = set of all post-fixedpoints

20

Martin Vechev

Least Fixed Points

For a poset (L,) and a function f: L L, we say that

lfp f L is a least fixed point of f if:

– lfp f is a fixed point

– It is the least fixed point: a L: a = f(a) lfp f a

Note that the least fixed point may not exist.

21

Martin Vechev

Fixed Points: Examples

22

• monotone function
• with no fixed point

• not monotone function
• with 2 fixed points
• no least fixed point

• monotone function
• with one fixed point
• has a least fixed point

• monotone function
• with 2 fixed points
• no least fixed point

• monotone function
• 4 fixed points
• least fixed point

there exists a post-fixedpoint
that is less than some fixed point

Martin Vechev

Tarski’s fixed point theorem (part of it)

If (L,,,,,) is a complete lattice and f: L L is
a monotone function, then

lfp f exists, and

lfp f = Red(f) Fix(f)

23

Note: the complete lattice can be of infinite height

Martin Vechev

Tarski’s theorem tells us that a fixed point exists,
but does not actually suggest an algorithm for
computing it.

Next: we look at ways to compute a fixed point

24

Martin Vechev

Function Iterates

For a poset (L,) , a function f: L L , an element a L,
the iterates of the function from a are:

f0(a), f1(a),f2(a)…

where fn+1(a) = f(fn(a))

Note that f0(a) = a

In program analysis, we usually take a to be
25

Martin Vechev

A useful fixed point theorem

Given a poset of finite height, a least element , a monotone f.

Then the iterates f0(), f1(), f2()… form an increasing

sequence which eventually stabilizes from some n N, that is:
fn() = fn+1() and:

lfp f = fn ()

This leads to a simple algorithm for computing lfp f

26

Martin Vechev

Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

27

Martin Vechev

Representing P

Let P be the set of reachable state of a program P.

Let function F be (where I is an initial set of states
and is the transition relation between states):

F(S) = I { c’ | c S c c’ }

Then, P is a fixed point of F: F(P) = P

(in fact, P is the least fixed point of F)

28

Martin Vechev

The Art of Approximation:
Static Program Analysis

– Define a function F such that F approximates F. This is
typically done manually and can be tricky but is done once
and for a programming language.

– Then, use existing theorems which state that the least
fixed point of F , e.g. some V, approximates the least fixed
point of F, e.g. P

– Finally, automatically compute a fixed point of F, that is a
V where F (V) = V

29

Martin Vechev

Approximating a Function

given functions:

F: C C

F : C C

what does it mean for F to approximate F ?

x C : F(x) c F(x)

30

Martin Vechev 31

Approximating a Function

What about when:

F: C C

F : A A

We need to connect the concrete C and the abstract A

We will connect them via two functions and

 : C A is called the abstraction function

 : A C is called the concretization function

Martin Vechev

Connecting Concrete with Abstract

32

(C, c) (A, A)

Martin Vechev 33

Approximating a Function: Definition 1

So we have the 2 functions:

F: C C

F : A A

If we know that and form a Galois Connection, then

we can use the following definition of approximation:

z A : (F((z))) A F
(z)

Martin Vechev

For the course, it is not important to know what
Galois Connections are.

The only point to keep in mind that is that they
place some restrictions on what and can be.

For instance, among other things, they require
to be monotone.

34

Martin Vechev

z

Visualizing Definition 1

35

(C, c) (A, A)

F(z)

x

F(x)

F

F

Martin Vechev

Approximating a Function

36

what this equation:

z A : (F((z)))A F(z)

says is that if we have some function in the abstract that we
think should approximate the concrete function, then to
check that this is indeed true, we need to prove that for any
abstract element, concretizing it, applying the concrete
function and abstracting back again is less than applying the
function in the abstract directly.

Martin Vechev

Least precise approximation

37

To approximate F, we can always define F(z) = T

This solution is always sound as: z A : (F((z))) A T

However, it is not practically useful as it is too imprecise

Martin Vechev

Most precise approximation

38

What if F(z) = (F((z))) ? This is the best abstract
function.

The problem is that we often cannot implement such a F(z)

algorithmically.

However, we can come up with a F(z) that has the same

behavior as (F((z))) but a different implementation.

Any such F(z) is referred to as the best transformer.

Martin Vechev

Key Theorem I: Least Fixed Point Approximation

39

1. monotone functions F: C C and F : A A

2. : C A and : A C forming a Galois Connection

3. z A : (F((z))) A F
(z) (that is, F approximates F)

 (lfp(F)) A lfp (F)

This is important as it goes from local function approximation to
global approximation. This is a key theorem in program analysis.

If we have:

then:

Martin Vechev

Least Fixed Point Approximation

40

The 3 premises to the theorem are usually proved
manually.

Once proved, we can now automatically compute a
least fixed point in the abstract and be sure that our
result is sound !

Martin Vechev 41

Approximating a Function: Definition 2

So we have the 2 functions:

F: C C

F : A A

But what if and do not form a Galois Connection ? For
instance, is not monotone. Then, we can use the
following definition of approximation:

z A : F((z)) c (F
(z))

Martin Vechev

z

Visualizing Definition 2
(concretization-based)

42

(C, c) (A,A)

F(z)

x

F(x)

F

F

Martin Vechev 43

1. monotone functions F: C C and F : A A

2. : A C is monotone

3. z A : F((z)) c (F
(z)) (that is, F approximates F)

lfp(F) c (lfp (F))

This is important as it goes from local function approximation to
global approximation. Another key theorem in program analysis.

If we have:

then:

Key Theorem II: Least Fixed Point Approximation

Martin Vechev

So what is F then ?

F is to be defined for the particular abstract
domain A that we work with. The domain A can be
Sign, Parity, Interval, Octagon, Polyhedra, and so on.

In our setting and commonly, we simply keep a map
from every label (program counter) in the program
to an abstract element in A

Then F simply updates the mapping from labels to
abstract elements.

44

Martin Vechev 45

(’,action,)

 action(m(’))

T

F(m) =

if is initial label

otherwise

F

F: (Lab A)(Lab A)

action : A A

action is the key ingredient here. It captures the effect of a language
statement on the abstract domain A. Once we define it, we have F

action is often referred to as the abstract transformer.

Martin Vechev 46

what is (’,action,) ?

foo (int i) {

1: int x := 5;

2: int y := 7;

3: if (0 ≤ i) {

4: y := y + 1;

5: i := i - 1;

6: goto 3;

}

7:}

Actions:

(1, x := 5, 2)

(2, y := 7, 3)

(3, 0 ≤ i, 4)

(3, 0 > i, 7)

(4, y = y + 1, 5)

(5, i := i – 1, 6)

(6, goto 3, 3)

Multiple (two) actions reach label 3

Martin Vechev 47

An action can be:

• b BExp boolean expression in a conditional
• x:= a here, a AExp

• skip

In performing an action, the assignment and the boolean expression
of a conditional is fully evaluated

{x2, y0} {x4, y0}
x:=y+x

{x2, y0}
if (x > 5) …

what is action ?

Martin Vechev

Defining action

As we said, action captures the abstract
semantics of the language for a particular abstract
domain.

In later lectures we will see precise definitions for
some actions in the Interval domain. Defining
action for complex domains such as say Octagon
(see later) can be quite tricky.

Lets just have a brief example now to what it entails
even for Intervals…

48

Martin Vechev 49

Example: what is x y for Intervals ?

Suppose we have the program:

// Here, x is [0,4] and y is [3,5]

if (x y){

1: …

}

What does x y produce at label 1 ?

That is, what are x and y at label 1 ?

Martin Vechev 50

Relational Abstractions

The Interval domain is an example of a non-relational
domain. It does not explicitly keep the relationship
between variables.

In some cases however, it may be necessary to keep this
relationship in order to be more precise. Next, we show
two examples of abstractions (Octagon and Polyhedra)
where the relationship is kept. These domains are called
relational domains.

In the project, you will use the Polyhedra domain,
already implemented as part of the Apron library.

51

Octagon Domain

x

y

2 y 2

8
y 8

7

x 7

1

x 1

15

x+y 15

5

x+y 5

3

x-y 3
x-y -20

constraints are of
the following form:

+
-

+
-x y c

an abstract state is a map
from labels to conjunction
of constraints

x - y 3
y 8
y 2
x + y 15
x + y 5
x 1
x – y -20
x 7

The slope is fixed

52

Polyhedra Domain

x

y

5

x+y 5

2

x-3y 2

x-y -20
constraints are of the following form:

c1x1 + c2x2 … + cnxn c

an abstract state is again a map
from labels to conjunction of
constraints:

x - y -20
x - 3 y 2
x + y 5

the slope can vary

