7. Refined Verification Condition Generation

Program Verification

ETH Zurich, Spring Semester 2018 Alexander J. Summers

Weakest Preconditions So Far

- Weakest preconditions provide a means of reducing the question: *does a program have any failing traces (under a specified precondition)?* to an SMT problem: *is* pre∧¬wlp(s,post) *unsatisfiable?*
 - A sat (or unknown) result means that an error trace (possibly) exists
- Some problems with our definition of weakest preconditions:
 - It can generate *(exponentially) large formulas* (in the size of the program)
 - It doesn't tell us *which assertion(s)* in the program potentially fail
 - Similarly, we don't know how many assertion violations are possible
- We will examine some of these issues, and some possible solutions
 - Formula size and error localisation are *also relevant for the second project*

Formula and Expression Duplication

- $\ensuremath{\cdot}$ The definition of wlp causes duplication of formulas and expressions
 - The two main culprits are: *assignment statements* and branching statements
- Recall the rule for assignments: wlp(x := e, A) = A[e/x]
- This has two negative effects:
 - It introduces copies of the expression ${\rm e}$
 - It produces a *new formula*, with new sub-formulas etc.
- Now consider e.g. non-deterministic choice (if, while are similar):
 - $wlp(s_1[]s_2,A) = wlp(s_1,A) \land wlp(s_2,A)$
- $\ensuremath{\,^\circ}$ This results in two copies of the formula A
 - One might consider rewriting to avoid this duplication (cf. Tseitin CNF)
 - But identical copies of A *might not persist,* due to assignments in s_1 or s_2

Eliminating Assignments

- The above problems could be solved if we could *remove assignments*
- A naïve idea: how about rewriting an assignment as follows?
 - Replace statements x := e with assume x=e
- This transformation doesn't account for the *different values* \mathbf{x} takes
 - e.g. x := x+1 would become assume x=x+1: introduces inconsistency
- *But,* this would work if each variable were assigned to *at most once*
 - Idea: first convert the program into e.g. *static single assignment (SSA) form*
 - Then the above naïve transformation would actually be valid
 - This allows duplicate formulas from $wlp\,$ to survive/be "factored out"
 - e.g. define $wlp(s_1[]s_2, A) = (p \Leftrightarrow A) \Rightarrow wlp(s_1, p) \land wlp(s_2, p)$ (fresh atom p)
- In fact, *Dynamic Single Assignment (DSA)* is sufficient for us...

Converting to Dynamic Single Assignment I

- A program is in dynamic single assignment (DSA) form, if:
 - in *each trace* of the program, each variable is assigned at most once
 - this isn't typically possible for loops with assignments; instead we *desugar loops* first (as was explained in slide 152)
- For example, (x:=0)[](x:=1) is in DSA form (but not in SSA form)
- Conversion to DSA can be done by introducing *versions of variables*
 - For example, replace original variable x with versions $x_0,\,x_1,\,x_2,\,...$
- For straight-line code, the conversion is simple:
 - e.g. x:=0; x:=x+1; x:=x-4 could become $x_0:=0$; $x_1:=x_0+1$; $x_2:=x_1-4$
- Idea: track the latest version of each variable; use this in expressions
 - For assignments, increment version; use the new version for left-hand-side
 - Replace \underline{havoc} statements with \underline{skip} but increment the version of the variable

Converting to Dynamic Single Assignment II

- For branching statements (if, non-deterministic choice) we need more
 - Idea: process each branch independently, introducing new versions
 - *Per variable*, if *different* final versions are used in the two branches: introduce a version unused in both branches; assign latest value to this in each branch
- For example, (x:=0; x:=x+1)[](x:=1) could become $(x_0:=0; x_1:=x_1+1; x_2:=x_1)[](x_0:=1; x_2:=x_0)$ (x₂ is new version of x)
- In this way, we get a new program as follows:
 - *Eliminate all loops* (via their invariants), as shown in slide 152
 - Apply the DSA transformation to the resulting program
 - *Eliminate all variable assignments* x := e by replacing with assume x = e
- Optionally, we can rewrite further (reducing the statement cases):
 - skip \rightarrow assume true and if(b){s₁}else{s₂} \rightarrow (assume b; s₁)[](assume \neg b; s₂)
 - $wlp(s_1[]s_2,A)$ can be redefined as on slide 160, to avoid formula duplication

Efficient Weakest Preconditions

- By slides 159-162 we can *reduce any program* to a new program in DSA form consisting of only the following constructs:
 - $s_1; s_2$
 - assert A
 - assume A
 - $s_1[]s_2$
- Furthermore, we can reduce checking $\models \{A_1\} \ s \ \{A_2\}$ to checking the program assume A_1 ; s; assert A_2 has *no failing traces*
 - i.e., checking that $A_1 \wedge \neg wlp(s; \ A_2)$ is unsatisfiable
- For this class of programs, our wlp operator (refined as on slide 160) generates formulas which are *linear in the size of the program*
 - DSA conversion adds *extra variables*; typically *tightly correlated* with others
- Suppose that $A_1 \wedge \neg wlp(s; A_2)$ is found to be satisfiable
 - This indicates a potential error how do we decide *where* the error is?

Multiple Errors

- How many errors should we report, for the following program?
- if(x>0) { assert x=2 } else { assert x<0; assert x $\neq 0$
- How many different counter-examples *could* the SMT solver produce?
 - Counter-examples for the program being correct are models for which it fails
 - infinitely many values of ${\bf x}$ cause first assert to fail report this as one error
- The third assertion is only false when the second one is
 - We shouldn't report an error for the last one; it can't be reached by any trace
- We will consider two different approaches for *localising errors*

Sets of Verification Conditions

- One way to specify error locations is to *split* verification conditions
- Recall the rule for assert statements: $wlp(assert A_1, A) = A_1 \land A$
- This reflects two different ways in which the program could *fail*:
 - The ${\rm assert}$ statement could cause a failure (if ${\rm A}_1$ could be false)
 - The remainder of the program could encounter a failure (if A could be false)
- We reflect that at most one can happen, using assert A_1 ; assume A_1
 - Now we get $wlp(assert A_1; assume A_1, A) = A_1 \land (A_1 \Rightarrow A)$
 - We replace all original assert A_1 statements with assert A_1 ; assume A_1
- Idea: suppose we track multiple verification conditions separately
 - we generalise our wlp operator to wlp^* working on multisets of assertions Δ
 - For example, we define $\operatorname{wlp}^*(\operatorname{assert}\,A_1\,,\,\Delta) = \Delta \mathsf{U}\{A_1\}$
 - Each element of our multiset comes from a *distinct program point* (assert)

Wlp* (Sets of Verification Conditions)

- For annotated programs, our wlp* definition is as follows:
 $$\begin{split} wlp^*(s_1;s_2,\Delta) &= wlp^*(s_1,wlp^*(s_2,\Delta)) \\ wlp^*(assert \ A_1,\Delta) &= \Delta U\{A_1\} \\ wlp^*(assume \ A_1,\Delta) &= \{A_1 {\Rightarrow} A \mid A {\in} \Delta\} \\ wlp^*(s_1[]s_2,\Delta) &= wlp^*(s_1,\Delta) Uwlp^*(s_2,\Delta) \end{split}$$
 - recall: all other statements can be desugared to these
- To verify a Hoare triple $\{A_1\} \in \{A_2\}$ we check a *set of entailments:*
 - check the entailment $A_1 \vDash A$ for each $A {\in} wlp^*(s, \{A_2\})$
- If we also record the *program point* at which each element of our multisets originated, we can now easily *report error locations*
 - Each failing entailment means the originating $\ensuremath{\mathrm{assert}}$ statement could fail

Wlp* Advantages and Disadvantages

- The wlp^* idea outlined here is a simple way to localise errors
 - Since it is simple, you might want to use it in your second project
- For *purely propositional* (i.e. boolean) programs:
 - It amounts to splitting the search for a model into several smaller searches
 - Each one repeats structure from "earlier in the program"; some redundancy
 - This *might be faster (or slower)* than performing a single search using wlp
- For large general programs (SMT, rather than SAT) it can be slow
 - Theory-specific work may be repeated for each entailment checked
 - Similarly, *quantifier instantiations might be repeated* for each entailment
- We'll examine one alternative approach to error localisation
 - requires some mild cooperation from the SMT solver, but e.g. Z3 supports it

Adding Labels to Assertions I

This slide was not covered in the lecture; the material here is not examinable

- Consider the following transformation on assert statements:
 - For each assert A_1 statement, pick a fresh propositional atom l, and replace the statement with assert $A_1 \lor l$
 - We call I the *label for the assert statement*
- The original program has a failing trace iff the new one does
 - If we could violate e.g. \boldsymbol{A}_1 above, then take a similar model in which l is false
 - As assert statement can *only* lead to a failing trace *if its label is made false*
- Recall, a (potential) failure is detected when we get sat or unknown
 - in both cases, we can ask the SMT solver for a model (of $pre \land \neg wlp(s,post)$)
 - for unknown, we still get a *candidate model* (might not satisfy quantifiers)
 - Idea: in either case, check this model for any *false labels* (literals \neg])
 - Are these guaranteed to identify the failing assertions?...

Adding Labels to Assertions II

This slide was not covered in the lecture; the material here is not examinable

- Are false labels a good way to identify the failing assert statements?
 - Not yet: there are several technical problems...
- **Problem 1**: labels will be **pure literals** in the SMT input
 - there will be a single negative (*why?*) occurrence in the SMT query generated
 - recall: pure literals can be eliminated (cf. SAT algorithms)
 - even if not eliminated, the solver might *eagerly choose these to be false*
 - we could get *no negative labels*, or *too many*
- Solution: Z3 (and Simplify) have explicit syntax for *specifying labels*
 - Solver won't eliminate these, and will *postpone deciding on them*
 - Effectively, given assert $A_1 \lor l$ the solver will only make l false once it's already managed to make A_1 false, at which point making l false *gives a failing trace*

Adding Labels to Assertions III

This slide was not covered in the lecture; the material here is not examinable

- Problem 2: we will only identify one failing assertion this way
 - the negative label \neg l returned will identify a failing assertion
- Solution: we can ask for a *different potential error* as follows:
 - Add the extra assumption that l is $\ensuremath{\textit{true}}$ to our original SMT query
 - This has the effect of "switching off" the assert statement $assert \ A_1 \lor l$
 - If we get a *new potential failure* (and negative label), we can iterate
- Z3 (as well as other SMT solvers) supports *interactive mode:*
 - After a query, the solver *retains its internal state*
 - Extra assumptions can be added, and extra check-sat commands made
 - Results of clause learning, theories, quantifier instantiation etc. are retained
- Using interactive mode, we can *efficiently generate the set of errors*

Advanced Verification Condition Generation - Summary

- We have seen improvements to the weakest precondition approach
 - Two main problems addressed: *size of formulas* and *error localisation*
- Converting to DSA (or SSA) form allows *eliminating assignments*
 - We can *then prevent formula duplication*, similarly to Tseitin CNF conversion
- One way to localise errors: generating *multiple verification conditions*
 - This approach is simple, but can result in *repeated work* for the SMT solver
- The *labels* mechanism provides an alternative approach
 - To be effective, it requires *native support from the SMT solver*
- With these tricks, *efficient verification conditions* can be generated
 - The DSA and labels ideas are used in industrial-strength tools, such as Boogie
- We will look next at the *Boogie intermediate verification language*
 - The Boogie verifier uses (extensions of) the techniques we have learned here

Refined Verification Condition Generation – References

• Weakest Preconditions:

- *Guarded commands, nondeterminacy and formal derivation of programs.* Edsger W. Dijkstra (1975)
- Avoiding exponential explosion: generating compact verification conditions. Cormac Flanagan, James B. Saxe (2001)
- Weakest-precondition of unstructured programs. Mike Barnett, K. Rustan M. Leino (2005)
- Labels for Error Localisation:
 - *Generating error traces from verification-condition counterexamples.* K. Rustan M. Leino, Todd Millstein, James B. Saxe (2005)
- Other teaching material:
 - Synthesis, Analysis, and Verification. Viktor Kuncak (EPFL)