
7. Refined Verification
Condition Generation

Program Verification

ETH Zurich, Spring Semester 2018

Alexander J. Summers
158

Weakest Preconditions So Far

• Weakest preconditions provide a means of reducing the question:
does a program have any failing traces (under a specified precondition)?

to an SMT problem: is unsatisfiable?

• A sat (or unknown) result means that an error trace (possibly) exists

• Some problems with our definition of weakest preconditions:
• It can generate (exponentially) large formulas (in the size of the program)

• It doesn’t tell us which assertion(s) in the program potentially fail

• Similarly, we don’t know how many assertion violations are possible

• We will examine some of these issues, and some possible solutions
• Formula size and error localisation are also relevant for the second project

159

Formula and Expression Duplication
• The definition of causes duplication of formulas and expressions

• The two main culprits are: assignment statements and branching statements

• Recall the rule for assignments:

• This has two negative effects:
• It introduces copies of the expression

• It produces a new formula, with new sub-formulas etc.

• Now consider e.g. non-deterministic choice (if, while are similar):
•

• This results in two copies of the formula
• One might consider rewriting to avoid this duplication (cf. Tseitin CNF)

• But identical copies of might not persist, due to assignments in or

160

Eliminating Assignments

• The above problems could be solved if we could remove assignments

• A naïve idea: how about rewriting an assignment as follows?
• Replace statements with

• This transformation doesn’t account for the different values takes
• e.g. would become : introduces inconsistency

• But, this would work if each variable were assigned to at most once

• Idea: first convert the program into e.g. static single assignment (SSA) form

• Then the above naïve transformation would actually be valid
• This allows duplicate formulas from to survive/be “factored out”

• e.g. define (fresh atom)

• In fact, Dynamic Single Assignment (DSA) is sufficient for us…

161

Converting to Dynamic Single Assignment I

• A program is in dynamic single assignment (DSA) form, if:
• in each trace of the program, each variable is assigned at most once

• this isn’t typically possible for loops with assignments; instead we desugar
loops first (as was explained in slide 152)

• For example, is in DSA form (but not in SSA form)

• Conversion to DSA can be done by introducing versions of variables
• For example, replace original variable with versions , , , …

• For straight-line code, the conversion is simple:
• e.g. could become

• Idea: track the latest version of each variable; use this in expressions
• For assignments, increment version; use the new version for left-hand-side
• Replace statements with but increment the version of the variable

162

Converting to Dynamic Single Assignment II

• For branching statements (if, non-deterministic choice) we need more
• Idea: process each branch independently, introducing new versions

• Per variable, if different final versions are used in the two branches: introduce
a version unused in both branches; assign latest value to this in each branch

• For example, could become
(is new version of)

• In this way, we get a new program as follows:
• Eliminate all loops (via their invariants), as shown in slide 152

• Apply the DSA transformation to the resulting program
• Eliminate all variable assignments by replacing with

• Optionally, we can rewrite further (reducing the statement cases):
• and

• can be redefined as on slide 160, to avoid formula duplication
163

Efficient Weakest Preconditions
• By slides 159-162 we can reduce any program to a new program in

DSA form consisting of only the following constructs:
•

•
•
•

• Furthermore, we can reduce checking to checking the
program has no failing traces
• i.e., checking that is unsatisfiable

• For this class of programs, our operator (refined as on slide 160)
generates formulas which are linear in the size of the program
• DSA conversion adds extra variables; typically tightly correlated with others

• Suppose that is found to be satisfiable
• This indicates a potential error – how do we decide where the error is?

164

Multiple Errors

• How many errors should we report, for the following program?

• How many different counter-examples could the SMT solver produce?
• Counter-examples for the program being correct are models for which it fails
• infinitely many values of cause first to fail – report this as one error

• The third assertion is only false when the second one is
• We shouldn’t report an error for the last one; it can’t be reached by any trace

• We will consider two different approaches for localising errors 165

Sets of Verification Conditions

• One way to specify error locations is to split verification conditions

• Recall the rule for assert statements:

• This reflects two different ways in which the program could fail:
• The statement could cause a failure (if could be false)

• The remainder of the program could encounter a failure (if could be false)

• We reflect that at most one can happen, using
• Now we get

• We replace all original statements with

• Idea: suppose we track multiple verification conditions separately
• we generalise our operator to working on multisets of assertions

• For example, we define ⋃

• Each element of our multiset comes from a distinct program point ()

166

Wlp* (Sets of Verification Conditions)
• For annotated programs, our definition is as follows:

⋃

⋃

• recall: all other statements can be desugared to these

• To verify a Hoare triple we check a set of entailments:
• check the entailment for each

• If we also record the program point at which each element of our
multisets originated, we can now easily report error locations
• Each failing entailment means the originating statement could fail

167

Wlp* Advantages and Disadvantages
• The idea outlined here is a simple way to localise errors

• Since it is simple, you might want to use it in your second project

• For purely propositional (i.e. boolean) programs:
• It amounts to splitting the search for a model into several smaller searches

• Each one repeats structure from “earlier in the program”; some redundancy
• This might be faster (or slower) than performing a single search using

• For large general programs (SMT, rather than SAT) it can be slow
• Theory-specific work may be repeated for each entailment checked

• Similarly, quantifier instantiations might be repeated for each entailment

• We’ll examine one alternative approach to error localisation
• requires some mild cooperation from the SMT solver, but e.g. Z3 supports it

168

Adding Labels to Assertions I
• Consider the following transformation on statements:

• For each statement, pick a fresh propositional atom , and replace
the statement with

• We call the label for the assert statement

• The original program has a failing trace iff the new one does
• If we could violate e.g. above, then take a similar model in which is false

• As statement can only lead to a failing trace if its label is made false

• Recall, a (potential) failure is detected when we get sat or unknown
• in both cases, we can ask the SMT solver for a model (of)

• for unknown, we still get a candidate model (might not satisfy quantifiers)
• Idea: in either case, check this model for any false labels (literals)

• Are these guaranteed to identify the failing assertions?...

169

This slide was not covered
in the lecture; the material

here is not examinable

Adding Labels to Assertions II

• Are false labels a good way to identify the failing assert statements?

• Not yet: there are several technical problems…

• Problem 1: labels will be pure literals in the SMT input
• there will be a single negative (why?) occurrence in the SMT query generated

• recall: pure literals can be eliminated (cf. SAT algorithms)

• even if not eliminated, the solver might eagerly choose these to be false

• we could get no negative labels, or too many

• Solution: Z3 (and Simplify) have explicit syntax for specifying labels
• Solver won’t eliminate these, and will postpone deciding on them
• Effectively, given the solver will only make false once it’s already

managed to make false, at which point making false gives a failing trace

170

This slide was not covered
in the lecture; the material

here is not examinable

Adding Labels to Assertions III

• Problem 2: we will only identify one failing assertion this way
• the negative label returned will identify a failing assertion

• Solution: we can ask for a different potential error as follows:
• Add the extra assumption that is true to our original SMT query

• This has the effect of “switching off” the assert statement

• If we get a new potential failure (and negative label), we can iterate

• Z3 (as well as other SMT solvers) supports interactive mode:
• After a query, the solver retains its internal state

• Extra assumptions can be added, and extra check-sat commands made

• Results of clause learning, theories, quantifier instantiation etc. are retained

• Using interactive mode, we can efficiently generate the set of errors

171

This slide was not covered
in the lecture; the material

here is not examinable

Advanced Verification Condition Generation - Summary

• We have seen improvements to the weakest precondition approach
• Two main problems addressed: size of formulas and error localisation

• Converting to DSA (or SSA) form allows eliminating assignments
• We can then prevent formula duplication, similarly to Tseitin CNF conversion

• One way to localise errors: generating multiple verification conditions
• This approach is simple, but can result in repeated work for the SMT solver

• The labels mechanism provides an alternative approach
• To be effective, it requires native support from the SMT solver

• With these tricks, efficient verification conditions can be generated
• The DSA and labels ideas are used in industrial-strength tools, such as Boogie

• We will look next at the Boogie intermediate verification language
• The Boogie verifier uses (extensions of) the techniques we have learned here

172

Refined Verification Condition Generation – References
• Weakest Preconditions:

• Guarded commands, nondeterminacy and formal derivation of programs. Edsger W. Dijkstra (1975)

• Avoiding exponential explosion: generating compact verification conditions. Cormac Flanagan, James B.
Saxe (2001)

• Weakest-precondition of unstructured programs. Mike Barnett, K. Rustan M. Leino (2005)

• Labels for Error Localisation:
• Generating error traces from verification-condition counterexamples. K. Rustan M. Leino, Todd Millstein,

James B. Saxe (2005)

• Other teaching material:
• Synthesis, Analysis, and Verification. Viktor Kuncak (EPFL)

173

