mzuri(:h Alexander J. Summers

Program Verification

Exercise Solutions 12:

Permissions and Concurrent Programs

Assignment 1 (Encoding Non-Determinism)

1.

To avoid unjustified assumptions about several havoc statements yielding the same value,
we would need one extra parameter per havoc statement potentially executed in the method

body.

Methods containing havoc statements inside (unbounded) loops would need an statically-
unbounded number of extra parameters.

We could use an additional Ref value, and a field location of this Ref per type, to generate
fresh values of that type. We could use an extra parameter for this Ref; alternatively, we
could add a function extraRef() : Ref) to the program. Then, to simulate e.g. havoc
x statements for integer-typed variables x, we add a field intField : Int to the program
(of course, we should avoid clashes with any existing fields in the program, or else reuse
one of those fields).

We now encode a havoc x statement by temporarily adding permission to the extra field
location, reading its (arbitrary, unconstrained) value, and then removing the permission;
i.e. we would generate the following code to simulate a havoc x statement:

inhale acc(extraRef().intField)
x := extraRef().intField // read some value
exhale acc(extraRef().intField)

. This approach can use the above code for each havoc statement; there is no restriction on

the number of such statements, since each time this code is executed, a newly-unconstrained
value will be generated (we keep no permission to the field(s) in between).

. A non-deterministic choice s1[]s2 can be encoded as an if-condition on a havoc-ed boolean

value. Assuming we introduce an extra field boolField : Bool to the program, then
such a non-deterministic choice could be handled via:



var b: Bool // should be a fresh variable name for the program
inhale acc(extraRef () .boolField)
b := extraRef () .boolField
exhale acc(extraRef () .boolField)
if(b) {
sl
} else {
s2

Assignment 2 (Graph Marking)

The complete example can be found on the Viper examples page at http://viper.ethz.ch/
examples/graph-marking.html.

1. The method trav_rec takes full permission to all fields of each node. As a result, the
caller has to havoc all its knowledge about what values these fields have. Therefore, if
the method trav_rec did not explicitly ensure that the nodes are not modified, the caller
would not know if the marked graph is the same one as the original one.

An alternative way of ensuring that the graph is not changed would be to pass only read
permissions to fields 1eft and right. This can be done by introducing a ghost parameter
p of type Perm that is required to be strictly between zero and full permission. This ghost
parameter then could be used as a permission amount for fields 1eft and right. Please
note that in the recursive call, a strictly smaller value than p must be passed (for example,
p/2), otherwise the caller will still have to havoc its knowledge about the graph.

2. Each call of the method trav_rec marks exactly one node that is not marked from the
set nodes. In other words, the number of not marked nodes strictly decreases with each
call. Since the number of nodes is non-negative, the method is guaranteed to terminate if
the set nodes is not infinite. In Viper there is a cardinality function that maps from sets to
integers, therefore, Viper sets can only be finite. As a result, there is no need to explicitly
require that the set nodes is finite.



