
Alexander J. Summers

Program Verification

Exercise Solutions 9: Heap Reasoning and Permissions

Assignment 1 (Pure Assertions)

1. By (structural) induction on A.

(Case A is e for some expression e:) Then we have:

H,P,σ ⊧ A ⇔ ⌈e⌋ = true
⇔ H,∅, σ ⊧ A

(Case A is A1 ∗A2 for some A1 and A2:) Then we have:

H,P,σ ⊧ A ⇔ ∃P1, P2. P = P1 ⊎ P2 and H,P1, σ ⊧ A1 and H,P2, σ ⊧ A2

⇒ H,∅, σ ⊧ A1 and H,∅, σ ⊧ A2 (by induction hypothesis, twice)
⇒ H,∅, σ ⊧ A1 ∗A2

All other cases follow analogously, by a straightforward induction argument.

2. To prove equivalence, we need to show, for all such A′ and A that: ∀H,P,σ.(H,P,σ ⊧
A ∗ A′ ⇔ H,P,σ ⊧ A ∧ A′). We show the ⇒ and ⇐ directions of this property, for
arbitrary such A′ and (pure) A, as follows:

(⇒:) To show this direction of the result, we need an additional lemma, effectively stating
that increasing the permissions held in a state will never make assertions false (this
result was discussed in the lecture). If we use P1 ⊑ P2 to mean that P2 has at least
as much permission as P1 for all locations, then lemma can be stated as follows:

∀A,H,P1, P2, σ.(if H,P1, σ ⊧ A and P1 ⊑ P2 then H,P2, σ ⊧ A)

This lemma can be proved by straightforward induction on A. Using the lemma, we
can now show the intended result:
Let H,P ,σ be arbitrary, and assume H,P,σ ⊧ A ∗ A′. Then, by definition, there
are some P1 and P2 such that: P = P1 ⊎ P2 and H,P1, σ ⊧ A and H,P2, σ ⊧ A′.
Note that, P1 ⊑ P and P2 ⊑ P . Therefore, by the lemma above, we have H,P,σ ⊧
A and H,P,σ ⊧ A′, and thus, H,P,σ ⊧ A ∧A′, as required.

(⇐:) Let H,P ,σ be arbitrary, and assume H,P,σ ⊧ A ∧ A′. By definition, H,P,σ ⊧ A
and H,P,σ ⊧ A′. By part (1), we have H,∅, σ ⊧ A. Therefore, since ∅ ⊎ P = P , we
have H,P,σ ⊧ A ∗A′, as required.

1



Assignment 2 (Permissions Required by an Assertion)

1. Imagine we have an assertion b⇒ acc(x.f,1) where b is a boolean variable. Now if σ maps
b to true, then it is clear that the permission mask must map (x, f) to 1. However, if σ
maps b to false, the permission mask must map (x, f) to 0 because the function Perms is
required to return a minimal mask. For the same reason, the function Perms should also
depend on H.

2. The separating conjunction A∗B expresses that the permissions required by A are disjoint
from the permissions required by B. This means that Perms(A ∗ B)(H,σ) must return
enough permission so that it can be split to satisfy the requirements of A and B separately.
However, A∧B requires only to have enough permission to satisfy both of them together. As
a result, while acc(x.f,1/2) ∗ acc(x.f,1/2) requires full permission to x.f , acc(x.f,1/2)∧
acc(x.f,1/2) can be satisfied with a permission mask that provides only 1/2 to x.f .

3. Perms(A)(H,σ) defined by cases of A would be:

Perms(e)(H,σ) = ∅ Here ∅ is a permission mask that maps all (object, field-name) pairs
to 0.

Perms(A ∧B)(H,σ) =max(Perms(A)(H,σ),Perms(A)(H,σ))
Here max(M1,M2) returns a pointwise maximum of both maps.

Perms(A ∗B)(H,σ) = Perms(A)(H,σ) ⊎ Perms(A)(H,σ)
Here ⊎ denotes a pointwise map addition.

Perms(e⇒ A)(H,σ) = Perms(A)(H,σ) if ⌜e⌟(H,σ) = true
Here ⌜e⌟(H,σ) represents the expression evaluation.

Perms(e⇒ A)(H,σ) = ∅ if ⌜e⌟(H,σ) = false
Perms(acc(e.f, p))(H,σ) =Map((⌜e⌟(H,σ), f) ⇒ p)

2


