
Exercise 12

Exercise 1

1 // compute input [0]+...+ input [9];
2 int sum(int ∗ input , bool may_overwrite){
3 // allocation site of input: A
4 int n=10;
5
6 // prepare output
7 int ∗output ;
8 if (may_overwrite){
9 output=input ;

10 }else{
11 output=new int [n] ; // allocation site: B
12 }
13
14 // fill up output
15 output [0]= input [0] ;
16 int ha l f=n/2 ;
17 fork{
18 output [0]= input [0] ;
19 for (int i =1; i<ha l f ; i++){
20 int va l=output [i −1]+input [i] ;
21 output [i]= va l ;
22 }
23 }
24 fork{
25 output [h a l f]= input [h a l f] ;
26 for (int j=ha l f +1; j<n ; j++){
27 int va l=output [j −1]+input [j] ;
28 output [j]= va l ;
29 }
30 }
31 join ;
32
33 return output [ha l f −1]+output [n−1] ;
34 }

Listing 1: Parallel code summing up entries of an array

Consider the function sum in Listing 1. It sums up the first n elements of
input, where n=10. In this task, we want to verify that sum does not induce
non-determinism due to the use of multiple threads.
1. Run the flow-insensitive pointer-analysis (see previous lectures) to determine
the content of the pointers input and output. Assume that input was allocated
at allocation site A, and that line 11 corresponds to allocation site B.

2. Determine the possible values of n, half, i and j using abstract interpreta-
tion (use the interval domain).

You may summarize lines that contain the same abstract state.

1

3. Check that the multiple threads do not induce non-determinism using the
abstract conflict-free checker from the lecture. It suffices to only consider the
abstract states on the lines 18, 20, 21, 25, 27 and 28, as they are the only
lines that interact with variables shared across threads and that may occur in
parallel.

Exercise 2

1 void vot ing (){
2 // BLOCK: A
3 int yes =0;
4 int no=0;
5
6 int n_people=2;
7
8 for (int i =0; i<n_people ; i++){
9 fork{

10 // BLOCK: B-i-init
11 int de c i s i o n = rand () % 2 ; // decision is 0 or 1
12 if (d e c i s i o n==0){
13 int tmp=no+1; // BLOCK: B-i-readno
14 no=tmp ; // BLOCK: B-i-writeno
15 }else{
16 int tmp=yes +1; // BLOCK: B-i-readyes
17 yes=tmp ; // BLOCK: B-i-writeyes
18 }
19 }
20 }
21 join ;
22 // BLOCK C
23 // print results
24 cout << "Result: " << (float) yes /(no+yes) <<
25 "% voted yes ..." << endl ;
26 }

Listing 2: Parallel voting program

Consider the function voting in Listing 2. It encodes a parallel voting
system where 2 people decide how to vote and then update the yes or no
counts accordingly. In this task, we want to detect that voting behaves non-
deterministically.
1. What memory locations (i.e. variables) are the target of multiple write
operations? Only these may exhibit a race. In the following, we will call these
variables Vcritical.

2. Assume the program generates a trace where both people disagree, i.e., per-
son 0 votes "yes" while person 1 votes "no". Define the Happens-Before (HB)
Model for this case. Treat lines 2-6 as a single block, lines 10-12 as 2 blocks
(one per thread) and lines 13,14,15,16 as individual blocks. Finally, treat lines
22-25 as a single block. Do not list any other blocks.

3. Extend your HB Model by vector clocks, as discussed in the lecture.

4. For each node in you HB Model, add the set of variables from Vcritical that
this node accesses, and mention if the access is a read or a write.

2

5. Does the HB Model allow for a race, according to the dynamic race detection
algorithm from the lecture?

6. Repeat the steps 2-5, assuming that both people agree, i.e., both vote "yes".

7. Demonstrate how reordering the nodes in the HB Model of step 6 can lead
to a different result. Concretely, provide two orderings (that are valid according
to the HB) for which the line 24 prints a different value.

8. Now assume that the threads are executed atomically (i.e., once a tread
starts, it cannot be interrupted by another thread). You can achieve this by
considering only a single block B-0 for person 0 and a single block B-1 for person
1. May the dynamic race detection algorithm still report a conflict?

3

