mzuri(:h Alexander J. Summers

Program Verification

Exercise Solutions 9: Heap Reasoning and Permissions

Assignment 1 (Pure Assertions)

1. By (structural) induction on A.
(Case A is ¢ for some expression ¢:) Then we have:

H Po=A < [e|=true
< HgooeA

(Case A is A; » A, for some A; and As:) Then we have:

H,P,O":A =4 EIPl,PQ.P=P1LtJPgandH,P1,UI:A1andH,Pg,abAQ
= H,@,0= Ay and H,@,0 = Ay (by induction hypothesis, twice)
= H g0 A *A;

All other cases follow analogously, by a straightforward induction argument.

2. To prove equivalence, we need to show, for all such A’ and A that: YH, P,0.(H,P,o =
A+ A" < H Poke AnA"). We show the = and <« directions of this property, for
arbitrary such A’ and (pure) A, as follows:

(=:) To show this direction of the result, we need an additional lemma, effectively stating
that increasing the permissions held in a state will never make assertions false (this
result was discussed in the lecture). If we use P; © P, to mean that P, has at least
as much permission as P; for all locations, then lemma can be stated as follows:

VA,H,Pl,Pg,O'.(ifH,Pl,O'le and P, € P, then H,PQ,O"ZA)

This lemma can be proved by straightforward induction on A. Using the lemma, we
can now show the intended result:

Let H,P,0 be arbitrary, and assume H,P,c £ A x A’. Then, by definition, there
are some P, and P, such that: P = PLw P and H,P,,0 = A and H,P,,0 = A'.
Note that, P, £ P and P, © P. Therefore, by the lemma above, we have H, P,o =
Aand H,P,o = A’, and thus, H, P,oc = An A’, as required.

(«<:) Let H,P,0 be arbitrary, and assume H, P,0 = A A A’. By definition, H, P,oc = A
and H,P,o = A’. By part (1), we have H, 3,0 = A. Therefore, since gw P = P, we
have H, P,oc £ A* A’, as required.



Assignment 2 (Permissions Required by an Assertion)

1. Imagine we have an assertion b = acc(x.f, 1) where b is a boolean variable. Now if o maps
b to true, then it is clear that the permission mask must map (x, f) to 1. However, if o
maps b to false, the permission mask must map (z, f) to 0 because the function Perms is
required to return a minimal mask. For the same reason, the function Perms should also
depend on H.

2. The separating conjunction A * B expresses that the permissions required by A are disjoint
from the permissions required by B. This means that Perms(A * B) ) must return
enough permission so that it can be split to satisfy the requirements of A and B separately.
However, AAB requires only to have enough permission to satisfy both of them together. As
a result, while acc(x.f,1/2) * acc(x.f,1/2) requires full permission to x.f, acc(x.f,1/2) A
acc(x.f,1/2) can be satisfied with a permission mask that provides only 1/2 to z.f.

3. Perms(A)u o) defined by cases of A would be:

Perms(e)(u,») =@ Here @ is a permission mask that maps all (object, field-name) pairs
to 0.
Perms(A A B) 1,y = max(Perms(A) u,»), Perms(A) (u,0))
Here max (M, M) returns a pointwise maximum of both maps.
Perms(A + B)(p,0) = Perms(A) p,0) & Perms(A) p,0)
Here w denotes a pointwise map addition.
Perms(e = A) (1, = Perms(A) (u») if "e,(u,0) = true
Here "e,(u,,) represents the expression evaluation.
Perms(e = A) (o) =@ if "e,(u,») = false
Perms(acc(e.f,p))(u,.o) = Map(("e,(u.0), f) = p)



