
Alexander J. Summers

Program Verification

Exercise Solutions 5: Encoding to SMT

Assignment 1 (Extensionality)

Extensionality can be expressed by the following axiom; the triggers chosen use the isSequence

function discussed in the question:

1 axiom extensionality {

2 forall s1:Sequence, s2:Sequence :: {isSequence(s1),isSequence(s2)}

3 length(s1) == length(s2) && (forall i:Int :: {lookup(s1,i),lookup(s2,i)}

4 lookup(s1,i) == lookup(s2,i)) ==> s1==s2

5 }

This axiom will be instantiated for every pair of sequences in the problem (for which the
isSequence assumption is added), i.e. there will be quadratically-many instantiations per ground
sequence term. However, unlike in the previous exercise sheet, there isn’t an obvious way to avoid
this; there is no way to e.g. write an “inverse” function from the (unboundedly-many) sequence
values to the sequence itself, which would be a way of characterising that a sequence is uniquely-
determined by its values.

Assignment 2 (Axiomatising Maps)

The axiomatisation of maps was covered in the lectures, but is included here for the simple
case described in the question. Adding the bulk-update operation requires a generalisation of
the axioms for defining map-lookup over map-update (select-store axioms). The main technical
difficulty is how to represent the condition for the bulk-update (defining which keys are to be
updated). To represent a general condition seems to require passing a function as an argument
to another function, which is not supported. Instead, we could represent these “filters” for the
bulk-updates using maps from integers (keys) to booleans. We take the slightly simpler approach
of defunctionalisation, here: we represent each desired filter function as an element of a new type
Filter, which we equip with a filter function that models applying the filter to a particular
key. We can then define, e.g. the Filter that is true exactly for even-number keys, by taking
an unknown value of type Filter and defining its behaviour via a quantifier. We can then pass
this Filter to our bulk-update operation:

1



1 domain Map {

2 function select(m: Map, key: Int) : Int

3 function store(m:Map, key: Int, value: Int) : Map

4 function update_range(m: Map, from: Int, to: Int, value: Int) : Map

5 function update_all(m:Map, f:Filter, v:Int) : Map

6

7 axiom select_store_same {

8 forall m: Map, k: Int, v: Int :: {select(store(m,k,v),k)}

9 select(store(m,k,v),k) == v

10 }

11

12 axiom select_store_diff {

13 forall m: Map, k1: Int, k2: Int, v : Int ::

14 {select(store(m,k1,v),k2)} {select(m,k2),store(m,k1,v)}

15 k1 != k2 ==> select(store(m,k1,v),k2) == select(m,k2)

16 }

17

18 axiom select_range_update {

19 forall m: Map, from: Int, to: Int, v: Int, k: Int ::

20 {select(update_range(m, from, to, v), k)}

21 {select(m, k), update_range(m, from, to, v)}

22 select(update_range(m, from, to, v), k) ==

23 (from <= k && k < to ? v : select(m, k))

24 }

25

26 axiom select_bulk_update {

27 forall m:Map, f:Filter, v:Int, k:Int ::

28 {select(update_all(m,f,v),k)} {select(m,k), update_all(m,f,v)}

29 select(update_all(m,f,v),k) ==

30 (filter(f,k) ? v : select(m,k))

31 }

32 }

33

34 domain Filter {

35 function filter(f:Filter, i:Int) : Bool

36 }

37

38 method test(m : Map, f:Filter) {

39 assume select(m,3) == 2;

40 assume select(m,1) == 4;

41 assume forall i:Int :: {filter(f,i)} filter(f,i) <==> i % 2 == 0

42 assert select(update_range(m,2,4,1),3) == 1

43 assert select(update_range(m,2,4,1),1) == 4

44 assert select(update_all(m,f,5),3) == 2

45 assert select(update_all(m,f,5),4) == 5

46 }

2



Assignment 3 (Sequence Take and Drop)

Here is a possible axiomatisation in Viper:

1 domain Sequence {

2 function lookup(s:Sequence, i:Int) : Int

3 function length(s:Sequence) : Int

4 function take(s:Sequence, n: Int) : Sequence

5 function drop(s:Sequence, n: Int) : Sequence

6

7 axiom length_take {

8 forall s:Sequence, n:Int ::

9 {length(take(s,n))} {length(s),take(s,n)}

10 length(take(s,n))==

11 (n <= 0 ? 0 :

12 (n >=length(s) ? length(s) : n))

13 }

14 axiom length_drop {

15 forall s:Sequence, n:Int ::

16 {length(drop(s,n))} {length(s),drop(s,n)}

17 length(drop(s,n))==

18 (n <= 0 ? length(s) :

19 (n >=length(s) ? 0: length(s)-n))

20 }

21 axiom lookup_take {

22 forall s:Sequence, n:Int, i:Int ::

23 {lookup(take(s,n),i)} {lookup(s,i), take(s,n)}

24 n > 0 && i < n && i < length(s) ==>

25 lookup(take(s,n),i) == lookup(s,i)

26 }

27 axiom lookup_drop {

28 forall s:Sequence, n:Int, i:Int :: {lookup(drop(s,n),i)}

29 n < length(s) && i >= 0 && i < length(s)-n ==>

30 lookup(drop(s,n),i) == lookup(s,i+n)

31 }

32 axiom lookup_drop_two { // as above for i == j-n

33 forall s:Sequence, n:Int, j:Int :: {lookup(s,j), drop(s,n)}

34 n < length(s) && j >= n && j < length(s) ==>

35 lookup(drop(s,n),j-n) == lookup(s,j)

36 }

37

38 axiom length_pos {

39 forall s: Sequence :: length(s) >= 0

40 }

41 }

42

3



43 method test(s1: Sequence, s2:Sequence) {

44 assume length(s1) >= 5

45 assert lookup(take(s1,3),2) == lookup(drop(s1,2),0)

46

47 assume take(s1,1) == take(s2,1)

48 assert lookup(s1,0) == lookup(s2,0) // needs 2nd triggers on lookup_take

49

50 assume drop(s1,1) == drop(s2,1)

51 assert lookup(s1,1) == lookup(s2,1) // needs lookup_drop_two

52 }

With respect to potential incompletenesses, there is the usual extensionality issue; we might
have two observationally-equivalent sequences that we cannot prove to be equal. Leaving aside
sequence equality, the need for the second sets of triggers on the first three axioms lookup take

axiom, and for the lookup drop two axiom might not be immediately obvious. These allow
the axiom to be instantiated in situations in which a lookup was performed on the original
sequence, not the sequence after the take or drop operation; they are the “inverse” cases to
those described by the first set of triggers. The test method illustrates an example in which
the second triggers on lookup take are necessary to prove the assertion. Similarly, the second
axiom lookup drop two covers the analogous situation for drop. The reason this can’t be
directly achieved with an extra set of triggers on lookup drop is that the analogous triggers to
choose would be the terms {lookup(s,i+n),drop(s,n)}, but the first term cannot be used in
a trigger because of the integer + operator. Instead, the axiom lookup drop two expresses this
“inverse” case of triggering by adjusting the range of the quantified variable to range over the
index into s directly. This trick of rewriting axioms via arithmetic “shifts” to avoid problematic
arithmetic operators in triggers is quite commonly-useful.

4


