
Alexander J. Summers

Program Verification

Exercise Sheet 11: Unbounded Heap Data Structures

Assignment 1 (List Segments)

Consider the lseg predicate from slide 239.

1. Write an assertion using this predicate to describe a cyclic list.

2. The lseg predicate does not allow for “empty” segments; permission to the start
reference’s fields is always contained inside. Write a definition for an alternative mylseg
predicate, which allows for possibly-empty list segments.

3. Can you use mylseg to describe cyclic lists?

4. Consider the addAtEnd and prependLseg methods (slide 247), which were needed in
order to verify the iterative version of list append, in the lectures. These methods were not
implemented in the lecture; in the code listed below the method declarations are included,
but no bodies. Implement these methods, such that your resulting code verifies.

method addAtEnd(l1: Ref, l2: Ref)
requires lseg(l1, l2)
requires acc(l2.val) && acc(l2.next) && list(l2.next)
ensures lseg(l1, old(l2.next))
ensures lsegelems(l1, old(l2.next))

== old(lsegelems(l1, l2)) ++ Seq(old(l2.val))
ensures list(old(l2.next))
ensures elems(old(l2.next)) == old(elems(l2.next))

method prependLseg(l1: Ref, l2: Ref)
requires lseg(l1, l2) && list(l2)
ensures list(l1)
ensures elems(l1) == old(lsegelems(l1, l2) ++ elems(l2))

1

Assignment 2 (Heap-based Matrices)

On slide 253, a Viper encoding of arrays is shown, using a custom domain and quantified permission
assertions. Suppose that we want to implement a similar encoding for heap-based square matrices:
a special case of two-dimensional arrays.

1. Write a corresponding Matrix domain definition (you might want to borrow ideas from
the Array domain).

2. What assertion would you use to describe full permission to all elements of a particular
matrix? (Hint: it should involve two quantifiers.)

3. The current version of Carbon (one of the Viper verification back-ends) does not support
quantified permissions under multiple (nested) quantifiers; only single quantifiers are sup-
ported. Describe an alternative representation of matrices which requires only a single
quantifier, using the original Array domain. Can you think of any practical disadvantages
of this encoding using single quantifiers, compared to the more-direct two-dimensional
quantification? (Hint: there may be more than one problem.)

Assignment 3 (Encoding Non-Determinism)

We’ve already seen one way to encode a havoc x statement in Viper: by calling an abstract
method which returns the appropriate type (slide 277). It might be tempting to simulate a havoc
x statement by adding additional parameters to the enclosing method (without any constraints in
the precondition, these parameters will have unknown values, which could then be assigned to
e.g. the x at the point of the intended havoc). This has the obvious disadvantage that a caller
of the current method will have to provide values for these parameters. Ignoring this problem,
the approach is also insufficient for reflecting the correct behaviour of havoc x statements, in
general.

1. How many extra parameters would be needed, to eliminate the havoc statements from a
given method body?

2. Why does this mean that some method bodies could not be handled by this approach?

3. Give a different approach for encoding a havoc x statement, using inhale and exhale
operations.

4. Does your approach suffer from the same problems?

5. Show how to encode a non-deterministic choice statement s1[]s2, using your ideas.

Assignment 4 (Graph Marking)

You can find below the encoding of a recursive graph marking algorithm. The encoding is
incomplete: all quantifiers in the encoding are missing triggers. Please complete the example by
specifying the missing triggers and answer the following questions:

2

1. Why do we need to explicitly ensure that the nodes are not modified? Can you think of a
different way of ensuring this property, other than the one used in the example?

2. Under which conditions is the method trav_rec guaranteed to terminate? How would
you informally justify that? Does the method precondition already require the necessary
conditions, or would you need to explicitly write them?

field left: Ref
field right: Ref
field is_marked: Bool

define INV(nodes)
!(null in nodes)
&& (forall n: Ref :: n in nodes ==> acc(n.left))
&& (forall n: Ref :: n in nodes ==> acc(n.right))
&& (forall n: Ref :: n in nodes ==> acc(n.is_marked))
&& (forall n: Ref ::

n in nodes && n.left != null ==> n.left in nodes)
&& (forall n: Ref ::

n in nodes && n.right != null ==> n.right in nodes)

method trav_rec(nodes: Set[Ref], node: Ref)
requires node in nodes && INV(nodes)
requires !node.is_marked

ensures node in nodes && INV(nodes)

// We do not unmark nodes. This allows us to prove that the
// current node will be marked.
ensures forall n: Ref :: n in nodes

==> (old(n.is_marked) ==> n.is_marked)
ensures node.is_marked

/* The nodes are not being modified. */
ensures forall n: Ref :: n in nodes

==> (n.left == old(n.left))
ensures forall n: Ref :: n in nodes

==> (n.right == old(n.right))

/* Propagation of the marker. */
ensures forall n: Ref ::

n in nodes ==> (
old(!n.is_marked)
&& n.is_marked ==> (

n.left == null || n.left.is_marked
)

)
ensures forall n: Ref ::

n in nodes ==> (

3

old(!n.is_marked)
&& n.is_marked ==> (

n.right == null || n.right.is_marked
)

)
{

node.is_marked := true

if (node.left != null && !node.left.is_marked) {
trav_rec(nodes, node.left)

}
if (node.right != null && !node.right.is_marked) {

trav_rec(nodes, node.right)
}

}

method client_success() {
var a: Ref; a := new(*); a.is_marked := false
var b: Ref; b := new(*); b.is_marked := false

a.left := b; a.right := null
b.left := null; b.right := a

var nodes: Set[Ref] := Set(a, b)
assert forall n: Ref :: n in nodes ==> !n.is_marked

trav_rec(nodes, a)
assert forall n: Ref :: n in nodes ==> n.is_marked

}

method client_failure() {
var a: Ref; a := new(*); a.is_marked := false
var b: Ref; b := new(*); b.is_marked := false

a.left := a; a.right := a;
b.left := a; b.right := a;

var nodes: Set[Ref] := Set(a, b)
assert forall n: Ref :: n in nodes ==> !n.is_marked

trav_rec(nodes, a)

// The assertion is expected to fail because b is in nodes,
// but b is not reachable from a
assert forall n: Ref :: n in nodes ==> n.is_marked

}

4

