mzuri(:h Alexander J. Summers

Program Verification

Exercise Solutions 8: The Boogie Intermediate
Verification Language

Assignment 1 (Modularity)

The following program satisfies all of the requirements:

var x : int; // global variable

procedure p()
ensures x > 0; // implicitly: requires true;
modifies x;

procedure test()
modifies x;
{
x := 0;
call pQO);
assert x == 1; // for the second part of the question

by

In particular, running this program through Boogie will yield two verification errors: one for the
postcondition of p and one for the assert statement.

Assignment 2 (Verification)

const length : int;

var m: [int]int;
var n:[int]int;

procedure n_reverse_m()
modifies n;
ensures (forall i:int :: {n[il} // good choice of trigger
0<=i && i<length ==>
n[i] == m[length - i - 1]);
{
var i : int;
i :=0;
while(i < length)
invariant (forall j:int :: {n[j]l} 0 <= j && j < i ==>
n[j] == m[length - j - 11);
{
n[i] := m[length - i - 1];
i:=1+1;

3

Assignment 3 (Well-Definedness Conditions)
1. def(ele’]) = def(e) && def(e’) && 0 <= e’ && e’ < length(e)
2. def(e; == e5) = def(ey) && def(e,)

3. def(le) = def(e)

4. def(e; || ey) = def(er) && (le; ==> def(es))
Note: this definition accounts for a short-circuiting semantics of disjunctions.

Assignment 4 (Boogie Maps and Java Arrays)

Encoding in Boogie based on the arrays encoding from slide 195:
type IntArray;
function addr(a:IntArray) : int;
function length(a:IntArray) : int;

var Heap: [int]int; // entire memory

procedure test(a: IntArray)
modifies Heap;
{

var b: IntArray;

b := a;
Heap[addr(b) + 3] = 4;
assert Heap[addr(a) + 3] = 4;
h
The Boogie maps are immutable values. Therefore, the assignment b := a in Boogie would
assign a copy of the map a to b. Similarly, b[3] := 4 isjust a syntactic sugar forb := b[3:=4]
where b[3 := 4] is a new map that is identical to the original map b except that 3 is mapped
to 4. As a result, after executing the following Boogie statements:
b := a;
b[3] = 4;
we will not be able to assert that a[3] == 4. Instead, we will be able to assert that a[3] has

still the same value it had before executing these two statements.

On the other hand, the assignment b = a in Java makes b to point to the same memory block
to which a points. Because of this aliasing, changes via variable b can be observed via variable
a.

