
Alexander J. Summers

Program Verification

Exercise Sheet 9: Heap Reasoning and Permissions

Assignment 1 (Pure Assertions)

An IDF assertion is called pure if it doesn’t contain any accessibility predicates. For example,
x.f = 4 is a pure assertion. In practice, pure assertions are typically expressions, but can technically
also include the separating conjunction ∗.

1. Prove that, for all states H,P,σ and pure assertions A, if H,P,σ ⊧ A then H,∅, σ ⊧ A
(where ∅ represents the empty permissions mask, which maps all field locations to 0).

2. Prove that, for any assertion A′ and any pure assertion A the assertions A∗A′ and A∧A′
are logically equivalent (i.e. they are true in the same states)1.

Assignment 2 (Permissions Required by an Assertion)

Recall that permission masks P (as defined in the lecture) are maps from an (object, field-
name) pair to a rational number in the range [0,1]. Let Perms(A)(H,σ) be a function that maps
an assertion A to the (pointwise) minimal permission mask PA such that: when applying the
definition of H,PA, σ ⊧ A (from slide 213), the second case of the definition (that for accessibility
predicates) never evaluates to false. In other words, Perms(A)(H,σ) must contain the minimal
possible permissions necessarily required due to accessibility predicates occurring in A (in the
given H and σ).

1. Why does the result of this operation need to depend on H and σ? Hint: think how would
you handle an implication e⇒ A.

2. How will the case for Perms(A1 ∧A2)(H,σ) differ from the case for Perms(A1 ∗A2)(H,σ)?
3. Write down a definition for Perms(A)(H,σ) for each case in a similar style to the ⊧ definition

on slide 213.

1Note that, as a simple consequence of this latter result, any pure assertion can be equivalently represented as
a (boolean-typed) expression.

1


