
Alexander J. Summers

Program Verification

Exercise Solutions 6: Weakest Preconditions

Assignment 1 (Strongest Postconditions)

• sp(A,x ∶= e) = ∃y.x = e[y/x] ∧A[y/x]. Here y is fresh.

• sp(A, s1; s2) = sp(sp(A, s1), s2).

• sp(A, if (b){s1} else {s2}) = sp(b ∧A, s1) ∨ sp(¬b ∧A, s2).

• sp(A, assumeA1) = A ∧A1.

• sp(A, assertA1) = A ∧A1. Side condition: A⇒ A1.

For a verifier based on strongest postconditions, it is not enough to check only that sp(A, s)
implies the program’s postcondition while it is enough for a verifier based on weakest libre pre-
conditions to check that the wlp is implied by the program’s precondition. The reason is that
the strongest postcondition expresses what assertion would hold after the program if we reached
that point, while the weakest precondition also includes the conditions needed to reach end of the
program (or run forever in the case of weakest liberal preconditions). Therefore, a sound verifier
based on strongest postconditions would also need to check the side conditions generated by the
assert statements.

Assignment 2 (Desugaring If-Conditions)

For arbitrary b, s1, s2, A, we have:

wlp(if(b){s1}else{s2},A) = (b⇒ wlp(s1,A)) ∧ (¬b⇒ wlp(s2,A))
= wlp(assume b,wlp(s1,A)) ∧wlp(assume ¬b,wlp(s2,A))
= wlp(assume b; s1, A) ∧wlp(assume ¬b; s2, A)
= wlp((assume b; s1)[](assume ¬b; s2),A)

1



Assignment 3 (Dynamic Single Assignment)

A possible optimisation of the treatment of branching constructs is to avoid introducing an
additional version of a variable at the end of two branches, if the most-recent version in each
branch was the same. Better yet, if we assume we have some scheme of indexing variable versions
by an integer, and we number the versions of variables used consecutively (say, original program
variable x has versions x(0), x(1), x(2), . . .), then we can add an additional assignment only to the
branch which had a lower version number. For example, the following program (a slight variant
of that in the question):

x := 3 ;
i f ( y > 4) {

x := x − 1 ;
} e l se {

x := x + 1 ;
x := x + 1 ;

}
assert x > 1 ;

could be converted to

x0 := 3 ;
i f ( y0 > 4) {

x1 := x0 − 1 ;
x2 := x1 ;

} e l se {
x1 := x0 + 1 ;
x2 := x1 + 1 ;

}
assert x2 > 1 ;

Combining this with the other requirements from the question, we define our operator toDSA() in
terms of the input/output statements, and a (mathematical) map V from (the original) program
variables to integers. We write V[x] for map lookup, V[x↦ i] for map update (defined as usual;
this defines a new map in terms of the old map V , but doesn’t change the definition of V itself),
and (useful in our definition below) we define a maximum operator of maps: max(V1,V2) is a
map defined pointwise by:

max(V1,V2)[i] = { V1[i] if V1[i] ≥ V2[i]
V2[i] otherwise

We pass pairs of a statement and map V as input and result from our toDSA operation; the map
keeps track of the latest version of the program variable; i.e., for an original program variable x,
the latest version of x will be represented by x(V[x])

We also need to be able to represent the version of a particular assertion A or expression
e, after all variables have been replaced with their current versions. We write AV for this (i.e.,

AV = A
ÐÐÐÐÐÐÐ⇀
[x↦ x(V[x])] where x⃗ = FV(A), and similarly for eV). Note that xV = x(V[x]) by definition.

As in the lectures, we write FV(s) to denote the set of (free; i.e. program variables rather than
quantified variables in loop invariants) variables occurring in the statement s. Similarly, we

2



write mods(s) for the set of program variables occurring as the left-hand-side of an assignment
statement in s. We use notation Ð⇀s to indicate repetition of a particular statement (the variable
ranged over in the repetition is left implicit).

Our definition for toDSA is then as follows:

toDSA(skip,V) = (assume true,V)
toDSA(havoc x,V) = (assume true,V[x↦ V[x] + 1])

toDSA(x∶=e,V) = (assume x(V ′[x]) = eV ,V ′) where V ′ = V[x↦ V[x] + 1]
toDSA(assume A,V) = (assume AV ,V)
toDSA(assert A,V) = (assert AV ,V)

toDSA(s1; s2,V) = (s′1; s′2,V2) where
(s′1,V1) = toDSA(s1,V)
(s′2,V2) = toDSA(s2,V1)

toDSA(s1 [] s2,V) = ((s′1
ÐÐÐÐÐÐÐÐÐÐ⇀; y(V2[y])∶=y(V1[y])) [] (s′2

ÐÐÐÐÐÐÐÐÐÐ⇀; z(V1[z])∶=z(V2[z])),
max(V1,V2)) where
(s′1,V1) = toDSA(s1,V)
(s′2,V2) = toDSA(s2,V)
{Ð⇀y } = {y ∈ FV(s1) ∣ V2[y] > V1[y]}
{Ð⇀z } = {z ∈ FV(s2) ∣ V1[z] > V2[z]}

toDSA(if (b){s1} else {s2},V) = toDSA((assume b; s1) [] (assume ¬b; s2),V)
toDSA(while (b) invariant A {s},V) = (assert AV ; (s′ [] assume (A ∧ ¬b)V ′),V ′)
where
{Ð⇀x } = mods(s)
V ′ = V

ÐÐÐÐÐÐÐÐÐ⇀
[x↦ V[x] + 1]

(s′, ) = toDSA(assume A ∧ b; s; assert A; assume false,V ′)

In the s1 [] s2 case, the sequence of extra assignment statements per block is used to “catch
up” the versions of any variables which are smaller than the last version used in the other block.
For while loops we avoid this step; since the first branch of the introduced non-deterministic
choice is guaranteed to end in an assume false statement, there is no need to worry about the
values of these variables when considering the code after the branches.

Note that at the beginning of each non-deterministic branch, we use the map V ′ rather than
V ; this “bakes in” the havoc of written variables from the definition in the lectures: we give each
of these variables a new version before hitting the non-deterministic branches which reflect the
checking of the loop body and the state after the loop. The reason we don’t simply desugar
the loop directly according to the definition from the lectures is that we want to avoid using the
standard case for toDSA of a non-deterministic choice, given the optimisation explained in the
previous paragraph.

3


