
Alexander J. Summers

Program Verification

Exercise Sheet 10: Heap Reasoning and Permissions

Assignment 1 (Framing and Monotonicity)

An assertion A is self-framing (as introduced on slide 216) if A being true in a state guarantees
that the state has enough permissions to frame A. More formally, an assertion is self-framing iff:

∀H,P,σ (H,P,σ ⊧ A Ô⇒ H,P,σ ⊧frm A)

For example, acc(x.f) && x.f == 42 is self-framing and acc(x.f) is self-framing, but
x.f == 42 alone is not.

Let’s consider a valid Hoare triple ⊧ {A}s{B} where A and B are implicit dynamic frames
assertions. Recall that the validity of this triple means that the program s started in a state
satisfying A will not reach an error state and if it terminates the end state will satisfy B.

Now consider that we start the program s in a state satisfying A ∗C, where C is a self-framing
assertion (recall that ∗ is a separating conjunction). Can we say anything about the end state? In
other words, what can we write instead of ??? so that ⊧ {A ∗C}s{???} is guaranteed to be a
valid Hoare triple (for any statement s)?

How does your answer change if C is not self-framing?
Now imagine that we extend implicit dynamic frames with an expression perm(r.f) that can

be used to inspect the currently held permission amount to the field f of the reference r. For
example, by using this expression one could assert (as part of s) that we currently hold exactly
1/2 permission to x.f :

assert perm(x.f) == 1/2

Does your conclusion about what you can write instead of ??? in ⊧ {A ∗C}s{???} still hold in
this extended logic?

1

Assignment 2 (Pure Variables and Heap)

Let’s consider the following competitive programming task1:

A staircase has n steps. John is going upstairs and can either make a single step or jump
over two steps. Question: in how many different ways John can climb up the stairs?

A possible solution to this problem written in C++ would be the following.

int solve1(int n) {
int a = 1;
int b = 1;
int i = 1;
while (i < n) {

int temp = a;
a = b;
b = a + temp;
i = i + 1;

}
return b;

}
int main() {

int n = 1;
assert(solve1(n) == 1);
return 0;

}

Encode this implementation in Viper and show that the returned value is equivalent to (n+1)-th
Fibonacci number as modelled by this Viper function:

function fib(n: Int): Int {
n <= 2 ? 1 : fib(n-1) + fib(n-2)

}

Now imagine that the programmer decided to pass n not by value, but by reference:

int solve2(int* nref) { // Modified line.
int a = 1;
int b = 1;
int i = 1;
while (i < *nref) { // Modified line.

int temp = a;
a = b;
b = a + temp;
i = i + 1;

}
return b;

}

1We would like to thank Artūras Lapinskas for sharing this task.

2

int main() {
int n = 1;
assert(solve2(&n) == 1);
return 0;

}

We cannot model n in Viper as a local variable of type Int because we would have no way to
model &n. One way to circumvent this problem would be to model n as a local variable of type
Ref with a field of type Int. For example, the code snippet:

int x = 1;
int* y = &x;

could be encoded as:

field int_val: Int
field ref_val: Ref
// ...
var xaddr: Ref;
xaddr := new(int_val); // Allocating a local variable

// on the stack.
xaddr.int_val := 1;
var yaddr: Ref
yaddr := new(ref_val); // Allocating a local variable

// on the stack.
yaddr.ref_val := xaddr;

Here the local variable xaddr corresponds to the address of the variable x and xaddr.int_val
corresponds to the value stored at that location. Similarly, yaddr and yaddr.ref_val
corresponds to the address of the variable y and its value respectively.

Encode the solve2 procedure in Viper by using this approach. What happens if you use the
full permission amount in all specifications? Why? What are possible ways to fix the issue?

3

