
Alexander J. Summers

Program Verification

Exercise Solutions 1: SAT Solving Algorithms

Assignment 1 (Tseitin CNF Conversion)

1. The conversion of A⇔ B to (¬A∨B)∧ (A∨¬B) increases the size, as does distributing
disjunctions over conjunctions.

2. A formula (p11 ∧ p12) ∨ (p21 ∧ p22) ∨ . . . ∨ (pn1 ∧ pn2) results in the formula (including 2n

clauses):
∧

i1,...,in∈{1,2}(p1i1 ∨ p2i2 ∨ . . . ∨ pnin)

3. The clauses (which are themselves the translation of (y ⇒ p ∨ q) ∧ (p ∨ q ⇒ y) are:
(¬y ∨ p ∨ q) ∧ (¬p ∨ y) ∧ (¬q ∨ y)

4. Processing the original formula should be performed until the rewritten version is in CNF
(it could be continued further, but there is no need). In particular, if the original formula
is already in CNF, we don’t need to introduce any variables or make any changes.

5. We obtain (q1 ∨ q2 ∨ . . . ∨ qn) ∧
∧

i∈{1,...,n}(¬qi ∨ pi1 ∨ pi2) ∧ (¬pi1 ∨ qi) ∧ (¬pi2 ∨ qi) (in

which q1, . . . , qn are fresh propositional variables).

6. The newly-introduced variables are tightly correlated with the original ones in the resulting
formula; via unit propagation, choosing the truth values of one (or in the worst case, two)
of pi1, pi2, qi in a candidate model will force us to choose values for the others.

Assignment 2 (Applying SAT algorithms)

1. You can probably find a less verbose way of representing your solution; here we really show
the individual steps explicitly. Note that after the first time (shown as separate steps for
illustration), whenever we add a decision literal (the last DPLL rule) we will immediately
apply unit propagation using the added unit clause.

Here is one possible “run” of the algorithm (to save space, we just write a comma-separated
set of clauses to represent the overall conjunction of clauses). We use overlining to indicate

1



clauses/literals which were added in the previous step, and underlining to indicate those
removed in the next step.

{(n ∨ p), (¬n ∨ p ∨ q), (¬n ∨ p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),
(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

Add n as a decision literal; current model is: {n}

{(n ∨ p), (¬n ∨ p ∨ q), (¬n ∨ p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u), (n)}

(n) is a unit clause: apply unit propagation; current model is: {n}

{(p ∨ q), (p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

Add p as a decision literal and apply unit propagation; current model is: {n, p}

{(r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

(r) is a unit clause: apply unit propagation; current model is: {n, p, r}

{(¬u ∨ t), (¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

Add ¬s as a decision literal and apply unit propagation; current model is: {n, p, r,¬s}

{(¬u ∨ t), (q), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

(q) is a pure literal: apply pure literal rule; current model is: {n, p, r,¬s, q}

{(¬u ∨ t), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

Add t as a decision literal and apply unit propagation; current model is: {n, p, r,¬s, q, t}

{(¬u), (u)}

(¬u) is a unit clause: apply unit propagation; current model is: {n, p, r,¬s, q, t,¬u}

{(⊥)} (*)

We have an empty clause: backtrack decision literal t; model is: {n, p, r,¬s, q}
. . .

2



. . .
{(¬u ∨ t), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

Add ¬t as a decision literal and apply unit propagation; current model is: {n, p, r,¬s, q,¬t}

{(¬u), (u)}

(¬u) is a unit clause: apply unit propagation; current model is: {n, p, r,¬s, q,¬t,¬u}

{(⊥)}

We have an empty clause: backtrack decision literal ¬s; model is: {n, p, r}

{(¬u ∨ t), (¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

Add s as a decision literal and apply unit propagation; current model is: {n, p, r, s}

{(¬u ∨ t), (t), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

(t) is a unit clause: apply unit propagation; current model is: {n, p, r, s, t}

{(¬u), (u)}

(¬u) is a unit clause: apply unit propagation; current model is: {n, p, r, s, t,¬u}

{(⊥)}

We have an empty clause: backtrack decision literal p; model is: {n}

{(p ∨ q), (p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

Add ¬p as a decision literal and apply unit propagation; current model is: {n,¬p}

{(q), (¬q), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s), (¬r ∨ ¬t ∨ u)}

(q) is a unit clause: apply unit propagation; current model is: {n,¬p, q}

{(⊥), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (¬r ∨ ¬t ∨ u)}

We have an empty clause: backtrack decision literal n; model is: {}
. . .

3



. . .
{(n ∨ p), (¬n ∨ p ∨ q), (¬n ∨ p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

Add ¬n as a decision literal and apply unit propagation; current model is: {¬n}

{(p), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

(p) is a unit clause: apply unit propagation; current model is: {¬n, p}

{(r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬r ∨ ¬t ∨ u)}

(r) is a unit clause: apply unit propagation; current model is: {¬n, p, r}

{(¬u ∨ t), (¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

Add t as a decision literal and apply unit propagation; current model is: {¬n, p, r, t}

{(q ∨ s), (¬u), (u)}

(¬u) is a unit clause: apply unit propagation; current model is: {¬n, p, r, t,¬u}

{(q ∨ s), (⊥)}

We have an empty clause: backtrack decision literal t; model is: {¬n, p, r}

{(¬u ∨ t), (¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u)}

Add ¬t as a decision literal and apply unit propagation; current model is: {¬n, p, r,¬t}

{(¬u), (¬s), (q ∨ s), (u)}

(¬u) is a unit clause: apply unit propagation; current model is: {¬n, p, r,¬t,¬u}

{(¬s), (q ∨ s), (⊥)}

We have an empty clause and have exhausted all backtracking options: return unsat

2. Initially, the CDCL algorithm will perform identical steps to the DPLL algorithm (essentially
duplicating the first page of solution to the previous part, up to the first conflict, marked
(*) above). We don’t show these steps again. The implication graph built by these steps
is shown in Figure 1.

From this point (*) onwards, the behaviour of the algorithm is different. Based on analysing
the conflict, we backtrack both decision literals t (relevant) and the prior decision ¬s

4



⊥n p

r

¬s

¬u

q

t

Figure 1: The implication graph at the point (*).

(irrelevant for the conflict). We can also learn the clause (¬p∨¬t) as a result of the conflict
(which depended on the decision literals p and t). Note that this learned clause should be
kept also when subsequent back-jumps are made, as if it had been in the input problem
originally. We will then proceed by first flipping the value of the relevant backtracked literal
t:

. . . current model is: {n, p, r}

{(¬u ∨ t), (¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬t ∨ u), (¬p ∨ ¬t)}

Add ¬t as a decision literal and apply unit propagation; current model is: {n, p, r,¬t}

{(¬u), (¬s), (q ∨ s), (u)}

(¬u) is a unit clause: apply unit propagation; current model is: {n, p, r,¬t,¬u}

{(¬s), (q ∨ s), (⊥)}

We have an empty clause: the relevant decision literals are p,¬t
In this case, the learned clause is: ¬p ∨ t
We backtrack decision literal p; model is: {n}

{(p ∨ q), (p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u), (¬p ∨ ¬t), (¬p ∨ t)}

5



Add ¬p as a decision literal and apply unit propagation; current model is: {n,¬p}

{(q), (¬q), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s), (¬r ∨ ¬t ∨ u)}

(q) is a unit clause: apply unit propagation; current model is: {n,¬p, q}

{(⊥), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (¬r ∨ ¬t ∨ u)}

We have an empty clause: the relevant decision literals are n,¬p
In this case, the learned clause is: ¬n ∨ p
We backtrack decision literal n; model is: {}
{(n ∨ p), (¬n ∨ p ∨ q), (¬n ∨ p ∨ ¬q), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u), (¬p ∨ ¬t), (¬p ∨ t), (¬n ∨ p)}

Add ¬n as a decision literal and apply unit propagation; current model is: {¬n}

{(p), (¬p ∨ r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s),

(¬p ∨ t ∨ u), (¬p ∨ ¬t ∨ ¬u), (¬r ∨ ¬t ∨ u), (¬p ∨ ¬t), (¬p ∨ t)}

(p) is a unit clause: apply unit propagation; current model is: {¬n, p}
. . .

. . .
{(r), (¬u ∨ t), (¬r ∨ ¬s ∨ t), (q ∨ s), (t ∨ u), (¬t ∨ ¬u), (¬r ∨ ¬t ∨ u), (¬t), (t)}

(t) is a unit clause: apply unit propagation; current model is: {¬n, p,¬t}

{(r), (q ∨ s), (¬u), (¬r ∨ u), (⊥)}

We have an empty clause and have exhausted all backtracking options: return unsat

Note that the CDCL search is shorter: once we begin to learn clauses, the depth of path that
needs to be explored during search attempts tends to get shorter. If useful clauses are learned,
this effect can become more significant for larger examples.

Assignment 3 (Correctness of DPLL)

1. Every recursive step of the algorithm either terminates the algorithm or reduces the number
of propositional variables in the formula to be processed; no steps of the algorithm add
new such variables. Since each step also recurses at most twice (when backtracking), the
algorithm terminates: the number of variables in the formula is a termination measure.

2. We prove the following, stronger property: for a given input formula A and model M , if
the algorithm returns sat and a model M ′, we have M ⊆M ′ and M ′ |= A.

6



We prove this by induction on the definition of the algorithm; since it terminates, this proof
method is valid (we could also use induction on the number of variables in the current
formula, given the answer to the previous part).

That is, we show that the desired property holds for any input A,M , assuming that it holds
for all recursive calls made by the algorithm (our induction hypothesis).

We consider all five cases of the algorithm:

• The model we return is guaranteed to satisfy >.

• Since we do not return sat, this case is trivial.

• (Pure Literal Rule) Assume we have a variable p which only occurs positively (the
negative case is analogous). Let A′ be the formula A after deleting all clauses con-
taining p. Suppose that running the algorithm on A′ and M ∪ {p} results in sat

and a model M ′ (otherwise, we will not return sat anyway). Then, by our induction
hypothesis, we have M ∪{p} ⊆M ′, and M ′ |= A′. Then we must have p ∈M ′, and
so M ′ |= A since it models any clause containing p.

• (Unit Propagation Rule) Assume that l is the (only) literal in the unit clause in A
used in the rule. Let A′ be the formula A processed according to the rule (all clauses
with l as a literal are removed, and all clauses of the form l̃ ∨ C are updated to just
C). Suppose further that the recursive call using A′ and M ∪ {l} returns (sat,M ′).
By our induction hypothesis, M ∪{l} ⊆M ′ and M ′ |= A′. Therefore l ∈M ′, and so
M ′ satisfies all clauses which were removed from A to obtain A′. Furthermore, since
M ′ must make all clauses in A′ true, for any such clause B it will also make l ∨ B
true. Therefore, M ′ |= A.

• (Decision Literal Rule) If the first recursive call returns (sat,M ′), then by our induc-
tion hypothesis, M ′ |= A∧p, and so M ′ |= A as required. Similarly, if the second
recursive call returns sat. Otherwise, we will not return sat overall anyway, and have
nothing to prove.

7


