
Alexander J. Summers

Program Verification

Exercise Sheet 4: Quantifiers

Assignment 1 (Rewriting and Skolemization)

Transform the following formula into (an equisatisfiable formula in) extended CNF (all vari-
ables/constants are of some uninterpreted sort T ; c, g and s are uninterpreted):

∃z.¬((∀n.g(n, z) ∧ ∃m.(¬n = z ⇒ s(m) = n)) ⇒ c = z) ∧ ∀w.¬s(s(s(w))) = s(s(c))

When transforming the formula, try to simplify it as much as you can (this will help in the
assignment 2).

Hint: push all negations as far inside the formula as possible, including quantifiers, then apply
skolemization.

Assignment 2 (E-graphs and E-matching)

Take your answer from Assignment 1, and construct an E-graph to represent the ground facts
that will be added to the E-graph during initial DPLL search (without quantifier instantiations).
What would be appropriate triggers to add to the (two) ∀-quantifiers? Show how, once equipped
with these triggers, E-matching can show that the original formula is unsatisfiable.

Assignment 3 (Axiomatising Duplicate-Freeness)

Suppose we model infinite integer arrays (as a uninterpreted sort), using a function lookup(a, i)
to represent the value of looking-up (integer) index i of array a. Suppose further that we want
to express that an array a contains no duplicate values.

One way to do this, would be via a quantifier:

∀i : Int, j : Int.¬ i=j ⇒ ¬ lookup(a, i)=lookup(a, j)

Suppose now that we want to use e-matching with this quantifier, for example to deduce that
conjoining lookup(a, 0) = lookup(a, 1) gives us unsat. What triggers would we choose? How
many quantifier instantiations will potentially be made, in terms of the number of ground lookup
function applications in the input problem?

1



Can you think of an alternative way to express having no duplicate values, which would reduce
the potential number of quantifier instantiations?

2


