
Alexander J. Summers

Program Verification

Exercise Solutions 2: Encoding Problems to SAT

Assignment 1 (Eliminating Equality)

The variation of Ackermannization shown in the lectures to eliminate equality potentially gen-
erates many variables and extra conjuncts to express instances of the reflexivity, symmetry and
transitivity properties of equality.

1. We generate n2 new boolean variables; one for each pair of original term variables.

2. The number of possible instances is n instances of reflexivity, n2 of symmetry and n3 of
transitivity.

3. Here are a few ideas; if you have others, I’d be interested to hear them.

• We don’t need boolean variables to represent reflexive cases (equating a term with
itself); we could just translate such equalities to >. In this way, we also avoid the
need for adding instances of the reflexivity property entirely.

• For transitivity, we can avoid instances which only differ by symmetry with one of the
three axioms already chosen (however, this idea is subsumed by the next one).

• We can “build in” symmetry properties as part of our Ackermannization process in
the following way: choose any total ordering < on the original term variables in the
problem. Now, only introduce boolean variables eqx,y for pairs of variables x and y
such that x < y. When translating the original formula, translate equalities between
x and y to this, regardless of the order of the terms in the equality (i.e. y = x also
gets translated to eqx,y). Note that the case of reflexive equalities is already dealt
with above. In this way, we avoid the need for symmetry axioms entirely.

• For transitivity, we need to consider triples of term variables x,y and z. But there is
no need to consider choices in which any of these three variables are the same (the
property is then logically trivial). Similarly (by symmetry), once we instantiate the
property for x,y and z, there is no need to instantiate it also for z,y and x. We
could implement this by only instantiating for x < z combinations (according to the
ordering above).

1



• We can further optimize transitivity with the following idea: let ≡eq be the smallest
equivalence relation on the original term variables, such that x ≡eq y if x and y
form the two sides of some equality in the original formula. We only need generate
transitivity instances for triples of variables all in the same ≡eq-equivalence class. The
intuition behind this idea is that some variables might never (even via transitivity) get
compared with one another in constructing models for the original formula.

Assignment 2 (Eliminating Uninterpreted Functions)

We work on the inner terms first. Starting from:

f(g(x)) = x ∧ f(y) = x ∧ ¬(y = g(x))

we generate a new term variable gx to replace g(x), and a new term variable fy to replace f(y).
Since, so far there are no pairs of newly-introduced terms regarding the same top-level function
(just one for f and one for g), we don’t need to add any congruence constraints. The resulting
formula is:

f(gx) = x ∧ fy = x ∧ ¬(y = gx)

Now, we generate a new term variable fgx to replace the function application f(gx). Since we
have already introduced the term variable fy (for the same function f), we have to add the
congruence constraint: y = gx ⇒ fy = fgx , conjoining this to the new formula. We obtain:

fgx = x ∧ fy = x ∧ ¬(y = gx) ∧ (y = gx ⇒ fy = fgx)

This formula is satisfiable (in fact, we can almost “read off” a model from the conjunction of
equalities and inequalities): in any model M for which M(fgx) = M(x) = M(fy) and where
M(y) and M(gx) are interpreted as two different values. Note that the congruence conjunct is
satisfied, since the left-hand-side of the implication is false in such a model.
This also tells us how to build models for the original formula: take any model in which M(g)

is a mathematical function which does not map M(x) to M(y); i.e. M(g)(M(x)) should be
some value v in the model different from M(y). Furthermore, the interpretation of f in the
model (i.e. M(f)) must be a function which maps v to the same value as M(x), and which also
maps M(y) to this same value.

Assignment 3 (Encoding the Eight Queens Puzzle)

One way to represent a problem state would be to specify for each place if it is occupied by a
rook or not. We can do this by having a variable for each place or,c (0 ≤ r < 8 and 0 ≤ c < 8),
where a variable or,c = > iff the place at the row r and the column c is occupied by a rook.
Now we need to encode two constraints: there are 8 rooks on the chessboard and no two rooks
threaten each other. One could make the observation that the second constraint already implies
that there are at most 8 rooks on the board, because if there were more, at least two of them
would threaten each other. Therefore, to ensure the first constraint we only need to make sure
that there are at least 8 rooks on the board, which means that in each row and each column
there is at least one rook. We can encode this by requiring that at least one variable in each row

2



and each column is true. For example, the disjunct that expresses that in a row i there is at least
one rook would be:

or,0 ∧ or,1 ∧ or,2 ∧ or,3 ∧ or,4 ∧ or,5 ∧ or,6 ∧ or,7

Similarly, the disjunct that expresses that in a column j there is at least one rook, would be:

o0,j ∧ o1,j ∧ o2,j ∧ o3,j ∧ o4,j ∧ o5,j ∧ o6,j ∧ o7,j

Two rooks threaten each other iff they are on the same row or the same column. We can
express that no two rooks are on the same row (column) by requiring that each pair of places in
that row (column) contains at most one rook. This can be encoded as follows for a specific row
i: ∧

0≤j<8, 0≤k<j

¬(oi,j ∧ oi,k)

This is equivalent to: ∧
0≤j<8, 0≤k<j

¬oi,j ∨ ¬oi,k

Similarly, the constraint for the column j would be:∧
0≤i<8, 0≤k<i

¬oi,j ∨ ¬ok,j

These finitely bounded quantifiers can be expanded to give the actual set of clauses used.

1. The presented encoding uses 8× 8 = 64 variables.

2. We need 2 × 8 clauses of size 8 to express that there is at least 1 rook in each row and
each column. To express that there is at most one rook on a specific row (column) we need
8 × 7/2 = 28 clauses of size two, which means that for the second constraint we would
need in total 2× 8× 28 = 448 clauses of size two.

3. We would need to capture that there is at most one queen in each diagonal, which we can
do in the same way as we did for rows and columns. That would require an additional
2×

(
0 + 2×1

2
+ 3×2

2
+ · · ·+ 8×7

2
+ · · ·+ 3×2

2
+ 2×1

2
+ 0

)
= 240 clauses of size 2.

3


