
Alexander J. Summers

Program Verification

Exercise Sheet 8: The Boogie Intermediate Verification
Language

Assignment 1 (Modularity)

Give an example of a Boogie program, including a (non-recursive) procedure p such that:

1. The program includes at least one call to procedure p.

2. Each call to p in the program is made in a state in which the precondition of p is provably
true.

3. If each call to p were inlined, the states at the end of each inlined copy are each guaranteed
to satisfy the postcondition of p.

4. Procedure-modular verification of p will not succeed.

Write a variant of your program which includes an assert statement immediately after a call
to p, such that the assert statement will result in a verification error for procedure-modular
verification, but not if the definition of p is inlined for the call.

Assignment 2 (Verification)

Consider the n reverse m procedure declaration from slide 190. Provide an implementation of
this procedure. You should check that it verifies (e.g. you could test your implementation via the
web interface at http://rise4fun.com/boogie).

1

Assignment 3 (Well-Definedness Conditions)

Consider the operation def(e) discussed (and partially defined) on slide 192. Suppose that we are
modelling integer arrays using the definitions on slide 195, and want to enforce that array-index
expressions index the array with-in its bounds, as a well-definedness condition.

Write down appropriate cases of the def(e) construct for:

1. an array-index expression e[e′]

2. an equality expression e1 == e2

3. a negation expression !e

4. a disjunction expression e1 || e2

Assignment 4 (Boogie Maps and Java Arrays)

Consider the following fragment of Java code where a and b are arrays:

i n t [] b = a ;
b [3] = 4 ;
a s s e r t (a [3] == 4) ;

Try encoding this example by using the encoding of arrays discussed in the lecture on slide 195.
Suppose you encode an analogous program that uses Boogie maps instead of arrays. What
difference do you see and why?

2

