
Alexander J. Summers

Program Verification

Exercise Solutions 11: Unbounded Heap Data Structures

Assignment 1 (List Segments)

1. A cyclic list starting and ending at reference x can be represented by a predicate instance
lseg(x, x).

2. predicate mylseg(start: Ref, end: Ref) {
start != end ==>

acc(start.val) && acc(start.next) && mylseg(start.next,end)
}

3. An instance of this predicate cannot represent cyclic lists. The problem is that an assertion
mylseg(x,x) is guaranteed not to contain any permissions, regardless of the value of
e.g. x.next; the recursive definition terminates too early.

4. The following implementations work. Note the assert statements, the purpose of which
is to allow the verifier to learn the contents of the predicates. You can achieve the same
effect by unfolding the predicates and immediatelly folding them as was shown in the class.

method addAtEnd(l1: Ref, l2: Ref)
requires lseg(l1, l2)
requires acc(l2.val) && acc(l2.next) && list(l2.next)
ensures lseg(l1, old(l2.next))
ensures lsegelems(l1, old(l2.next))

== old(lsegelems(l1, l2)) ++ Seq(old(l2.val))
ensures list(old(l2.next))
ensures elems(old(l2.next)) == old(elems(l2.next))

{
unfold lseg(l1,l2)
var tmp : Ref := l2.next
if(l1.next == l2) {
assert unfolding list(l2.next) in l1.next != l2.next
fold lseg(l2, tmp)
fold lseg(l1, tmp)

} else {

1



assert unfolding lseg(l1.next, l2) in
unfolding list(l2.next) in l1.next != l2.next

addAtEnd(l1.next, l2)
fold lseg(l1, tmp)

}
}

method prependLseg(l1: Ref, l2: Ref)
requires lseg(l1, l2) && list(l2)
ensures list(l1)
ensures elems(l1) == old(lsegelems(l1, l2) ++ elems(l2))
{
unfold lseg(l1, l2)
if(l1.next != l2) {
prependLseg(l1.next, l2)
assert unfolding list(l1.next) in l1.next != null
fold list(l1)

} else {
assert unfolding list(l2) in l2 != null
fold list(l1)

}
}

Assignment 2 (Heap-based Matrices)

1. domain HeapMatrix {
function cell(m: HeapMatrix, i: Int, j:Int): Ref
function dim(m: HeapMatrix): Int
// for expressing injectivity:
function first(r: Ref): HeapMatrix
function second(r: Ref): Int
function third(r: Ref): Int

// injectivity:
axiom all_diff {
forall m: HeapMatrix, i: Int, j: Int :: {cell(m, i, j)}

first(cell(m, i, j)) == m && second(cell(m, i, j)) == i
&& third(cell(m, i, j)) == j

}

axiom dim_nonneg {
forall m: HeapMatrix :: {dim(m)} dim(m) >= 0

}
}
field val : Int

2. For a given matrix m, the assertion would be

2



forall i:Int, j:Int ::
0 <= i && i < dim(m) && 0 <= j && j < dim(m)
==> acc(cell(m,i,j).val)

3. We could represent square matrices of size N as arrays of size N*N, e.g. representing the
(i, j)-th cell with the location loc(a,i*N+j). In this representation, permission to the
whole matrix would be represented by the assertion

forall i:Int :: 0 <= i && i < size(a) ==> acc(loc(a,i).val)

which is supported by the current tools. However, assertions denoting permission to single
rows and columns of the matrix, or functional properties of these (e.g. loop invariants
describing an operation which has so-far been performed on only a part of the matrix) will
need to employ i*N+j expressions to describe the appropriate matrix regions. The terms in
which these expressions occur can then typically not be used in triggers for the corresponding
quantifiers, due to the usage of interpreted arithmetic operators. Furthermore, this encoding
employs non-linear arithmetic, and support for this (undecidable) theory in the SMT solver
is typically unreliable.

Assignment 3 (Encoding Non-Determinism)

1. To avoid unjustified assumptions about several havoc statements yielding the same value,
we would need one extra parameter per havoc statement potentially executed in the
method body.

2. Methods containing havoc statements inside (unbounded) loops would need an statically-
unbounded number of extra parameters.

3. We could use an additional Ref value, and a field location of this Ref per type, to generate
fresh values of that type. We could use an extra parameter for this Ref; alternatively,
we could add a function extraRef(): Ref to the program. Then, to simulate
e.g. havoc x statements for integer-typed variables x, we add a field intField: Int
to the program (of course, we should avoid clashes with any existing fields in the program,
or else reuse one of those fields).

We now encode a havoc x statement by temporarily adding permission to the extra field
location, reading its (arbitrary, unconstrained) value, and then removing the permission;
i.e. we would generate the following code to simulate a havoc x statement:

inhale acc(extraRef().intField)
x := extraRef().intField // read some value
exhale acc(extraRef().intField)

4. This approach can use the above code for each havoc statement; there is no restriction on
the number of such statements, since each time this code is executed, a newly-unconstrained
value will be generated (we keep no permission to the field(s) in between).

3



5. A non-deterministic choice s1[]s2 can be encoded as an if-condition on a havoc-ed boolean
value. Assuming we introduce an extra field boolField: Bool to the program, then
such a non-deterministic choice could be handled via:

var b: Bool // should be a fresh variable name for the program
inhale acc(extraRef().boolField)
b := extraRef().boolField
exhale acc(extraRef().boolField)
if (b) {

s1
} else {
s2

}

Assignment 4 (Graph Marking)

The complete example can be found on the Viper examples page at http://viper.ethz.
ch/examples/graph-marking.html.

1. The method trav_rec takes full permission to all fields of each node. As a result, the
caller has to havoc all its knowledge about what values these fields have. Therefore, if the
method trav_rec did not explicitly ensure that the nodes are not modified, the caller
would not know if the marked graph is the same one as the original one.

An alternative way of ensuring that the graph is not changed would be to pass only read
permissions to fields left and right. This can be done by introducing a ghost parameter
p of type Perm that is required to be strictly between zero and full permission. This ghost
parameter then could be used as a permission amount for fields left and right. Please
note that in the recursive call, a strictly smaller value than p must be passed (for example,
p/2), otherwise the caller will still have to havoc its knowledge about the graph.

2. Each call of the method trav_rec marks exactly one node that is not marked from the
set nodes. In other words, the number of not marked nodes strictly decreases with each
call. Since the number of nodes is non-negative, the method is guaranteed to terminate
if the set nodes is not infinite. In Viper there is a cardinality function that maps from
sets to integers, therefore, Viper sets can only be finite. As a result, there is no need to
explicitly require that the set nodes is finite.

4


