
Alexander J. Summers

Program Verification

Exercise Sheet 5: Encoding to SMT

Assignment 1 (Extensionality)

Extensional equality is the idea that if two mathematical objects are observationally equal, they
should be known to be equal objects. Another way of looking at this is that there is no redundancy
in the mathematical type in question.

Consider this property for mathematical sequences. The two key “properties” of sequences
are the length of a sequence and what element is stored in the sequence at i-th position. The
slide 127 shows two Viper functions that can be used to capture these properties. Write down
an axiom which expresses extensional equality for sequences (if you get stuck, one is shown on
the slide 131).

One complete (but expensive) way to instantiate the extensional equality axiom, is to do so
for every pair of sequences encountered in our particular problem. Is it in general sufficient to
compute these instantiations by simply taking the set of ground, sequence-typed terms in the
input problem, and adding these instantiations eagerly?

Suppose instead that we add a function isSequence(s:Sequence):Bool along with an axiom
defining this function to be true for all input values (write down this axiom). Now, for each atom
in the original input problem (i.e. a formula containing no propositional connectives), and for each
sequence-typed term t in the ground atom, conjoin the formula isSequence(t). For example,
the formula:

1 forall s1:Sequence, s2:Sequence ::

2 length(append(s1,s2)) == length(s1) + length(s2)

would become

1 forall s1:Sequence, s2:Sequence ::

2 length(append(s1,s2)) == length(s1) + length(s2) &&

3 isSequence(append(s1,s2)) && isSequence(s1) && isSequence(s2)

What triggers could you then choose for your extensionality axiom? How many instantiations of
this axiom would result?

1



Assignment 2 (Axiomatising Maps)

Write an axiomatisation for (total) mathematical maps from integers to integers. Your encoded
type should include a representation for two operations: map lookup (sometimes written M [i],
which looks up a particular integer key in the map M , returning the mapped-to integer), and
map update (sometimes written M [u 7→ v]), which is a map with the same lookup behaviour as
M , except for the key u which is mapped to v.

Can you extend your axiomatisation to support the “range update” operation whose result is
a map with the same lookup behaviour as original map, except for the keys from range [u1;u2)
which are mapped to v?

Can you extend your axiomatisation to support not only updating a specific range, but also
updating mappings for all keys that satisfy a given predicate? In other words, can you add
your axtiomatisation to support a “bulk update” on maps, such that all keys satisfying a certain
condition are updated to a certain value?

Assignment 3 (Sequence Take and Drop)

Extended the Sequence axiomatisation presented in the class with axioms for defining length

and lookup properties with respect to take(s,n) and drop(s,n) functions (representing the
standard operations which take the first n elements or drop the first n elements of a sequence,
respectively). For example, it should be possible to prove (sequence elements are indexed from
0):

1 assume length(s) >= 5;

2 lookup(take(s,3),2) == lookup(drop(s,2),0);

Note that you should choose appropriate triggers for your defined axioms.
Is there a potential for matching loops in the axioms you’ve defined? Can you think of test

cases in which they would be incomplete (i.e. it would be impossible to prove a property which
should be true)?

2


