
Alexander J. Summers

Program Verification

Exercise Sheet 6: Weakest Preconditions

Assignment 1 (Strongest Postconditions)

During the lecture weakest preconditions were presented, which have a dual concept called
strongest postconditions. Let sp(A, s) be a strongest postcondition function where A is the
intended precondition and s is the statement in question. We would like the function sp(A, s) to
satisfy the same requirements that are specified on the slide 143 for wlp(s,A):

• Soundness: for all s and A, it is guaranteed that ⊧ {A}s{sp(A, s)}.

• Maximality : for all s, A1, A2, if ⊧ {A1}s{A2} then sp(A1, s) ⊧ A2.

• Computability : for all s and A, sp(A, s) is computable.

By using the trace semantics shown on slides 139 and 140 define:

• sp(A,x ∶= e) =?

• sp(A, s1; s2) =?

• sp(A, if (b){s1} else {s2}) =?

• sp(A, assumeA1) =?

• sp(A, assertA1) =?

Hint: the strongest postcondition of the assignment statement is very different from its weakest
precondition. Do you see why?

Can your definitions of sp(A, s) be used to verify that ⊧ {A}s{A2} holds, checking for example
that sp(A, s) implies A2? If the strongest postcondition alone is not sufficient, what do you need
to check in addition to verify the program represented by that Hoare triple?

Assignment 2 (Desugaring If-Conditions)

Consider the following desugaring of an if-condition: we rewrite if(b){s1}else{s2} into the pro-
gram (assume b; s1)[](assume ¬b; s2). Show that, for any input postcondition A (and for any
b, s1, s2), applying the wlp operator to these two statements yields equivalent results.

1

Assignment 3 (Dynamic Single Assignment)

Recall that the weakest precondition definitions presented in the lecture can produce exponentially
large formulas in some cases, which can be alleviated by converting the program into dynamic
single assignment (DSA) form. A program is in DSA form if, in each execution (trace) of the
program, each variable gets assigned-to at most once. This is a little more permissive than, say,
static single assignment; the same variable is allowed to be assigned-to in two exclusive branches
of the program.

A program can be converted to DSA form as follows: each original program variable x is
replaced with a number of versions x0, x1, . . . of that variable. During conversion, we need to
keep track of the latest version for each original program variable. We introduce a new version of
variable x whenever in the original program the program variable x gets assigned to or havoced.
When dealing with branches (for if or non-deterministic choice) we can allow the versions of
variables to evolve separately inside both branches. After the two branches, we have to merge
the versions of the same variable into one (if any new versions of that variable were introduced
in the branch). This can be achieved by adding one more version of each variable, and adding
an assignment statement at the end of each branch to assign the latest version in the branch to
this new variable. For example, the program

x := 3 ;
i f (y > 4) {

x := x + 1 ;
} e l se {

x := x − 1 ;
}
assert x > 1 ;

would become

x0 := 3 ;
i f (y0 > 4) {

x1 := x0 + 1 ;
x2 := x1 ;

} e l se {
x1 := x0 − 1 ;
x2 := x1 ;

}
assert x2 > 1 ;

(In fact, this example illustrates a further possible optimisation when the last versions match
up in the two branches — what is it?)

The advantage of a program in DSA form is that assignment statements can be handled
differently; there is no need for the substitution employed in the wlp definition in the lectures1.
Instead, for a program in DSA form, we can rewrite all variable assignments as assume statements:

1Furthermore, once substitutions are no longer made during weakest-precondition calculations, any duplicated
formulas (e.g. in the rule for non-deterministic choice) can be factored out using additional propositional
variables, as in the Tseitin CNF transformation on Sheet 1.

2

we replace x∶=e with assume xn = e, where xn is the next version of the variable x. Similarly, we
can replace havoc x with just skip while again taking a new version of x to continue with.

Write a transformation function toDSA which takes an annotated program (of the syntax
described in the lectures) as input, and returns a new program which is a valid DSA transformation
of the original program. In the process, make your function eliminate variable assignments and
havoc statements as described here, and if statements, while loops, and skip statements as
described in the lecture slides.

3

