
Alexander J. Summers

Program Verification

Exercise Solutions 8: The Boogie Intermediate
Verification Language

Assignment 1 (Modularity)

The following program satisfies all of the requirements:

var x : int; // global variable

procedure p()

ensures x > 0; // implicitly: requires true;

modifies x;

{

x := x + 1;

}

procedure test()

modifies x;

{

x := 0;

call p();

assert x == 1; // for the second part of the question

}

In particular, running this program through Boogie will yield two verification errors: one for the
postcondition of p and one for the assert statement.

1

Assignment 2 (Verification)

const length : int;

var m:[int]int;

var n:[int]int;

procedure n_reverse_m()

modifies n;

ensures (forall i:int :: {n[i]} // good choice of trigger

0<=i && i<length ==>

n[i] == m[length - i - 1]);

{

var i : int;

i := 0;

while(i < length)

invariant (forall j:int :: {n[j]} 0 <= j && j < i ==>

n[j] == m[length - j - 1]);

{

n[i] := m[length - i - 1];

i := i + 1;

}

}

Assignment 3 (Well-Definedness Conditions)

1. def(e[e′]) = def(e) && def(e′) && 0 <= e′ && e′ < length(e)

2. def(e1 == e2) = def(e1) && def(e2)

3. def(!e) = def(e)

4. def(e1 || e2) = def(e1) && (!e1 ==> def(e2))
Note: this definition accounts for a short-circuiting semantics of disjunctions.

2

Assignment 4 (Boogie Maps and Java Arrays)

Encoding in Boogie based on the arrays encoding from slide 195:

t y p e I n t A r r a y ;
f u n c t i o n addr (a : I n t A r r a y) : i n t ;
f u n c t i o n l e n g t h (a : I n t A r r a y) : i n t ;

v a r Heap : [i n t] i n t ; // e n t i r e memory

p r o c e d u r e t e s t (a : I n t A r r a y)
m o d i f i e s Heap ;

{
v a r b : I n t A r r a y ;
b := a ;
Heap [addr (b) + 3] := 4 ;
a s s e r t Heap [addr (a) + 3] == 4 ;

}

The Boogie maps are immutable values. Therefore, the assignment b := a in Boogie would
assign a copy of the map a to b. Similarly, b[3] := 4 is just a syntactic sugar for b := b[3:=4]

where b[3 := 4] is a new map that is identical to the original map b except that 3 is mapped
to 4. As a result, after executing the following Boogie statements:

b := a ;
b [3] := 4 ;

we will not be able to assert that a[3] == 4. Instead, we will be able to assert that a[3] has
still the same value it had before executing these two statements.

On the other hand, the assignment b = a in Java makes b to point to the same memory block
to which a points. Because of this aliasing, changes via variable b can be observed via variable
a.

3

