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A naive first verifier

▪ Is PL1 sufficiently expressive?

- Is it easy to encode interesting programs?

- Is it possible to express interesting 

verification problems?

▪ How can we provide useful error 

messages?

Proof obligation

A  wp[S](B) 

PL1 triple

{ A } S { B }

SMT solver
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Building a first verifier

1. Two intermediate verification languages

2. Error reporting
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Roadmap

▪ PL1 allows us to compute 

proof obligations easily

▪ To be suitable as low-level 

IVL, it should also facilitate 

the encoding of more 

complex programming 

concepts

- Loops

- Procedures

- Data structures

- Concurrency

source code 

annotated with 

specifications

Automated verifier

Intermediate Verification 

Language

Generation of

proof obligations

Intermediate Verification 

Language

Front-end

SMT solver

feedback

We are here
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How expressive is PL1?

▪ Let’s encode some additional statements

- assert E

- assume E

PL1 statements

Expressions

Types
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New statement: assert E 

▪ Assertions make existing knowledge explicit in the program

- crash whenever it violates our knowledge

- otherwise, do nothing

What is the weakest precondition of assert E?

How can we encode assert E in PL1?

if (x > 0) { 
x := -x

} else {
skip

}
assert x >= 0

if (x < 0) { 
x := -x

} else {
skip

}
assert x >= 0

Operational semantics
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Encoding assert statements in PL1

Operational semantics

“is encoded as”
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Encoding assert statements in PL1: discussion

▪ E is an expression of PL1

- It is often useful to have a more expressive language to express assertions

- For instance, quantifiers are useful to express properties of arrays (e.g., sortedness)

▪ The problem cannot be solved (easily) by extending the expression syntax

- Expressions must be efficiently executable, which is not always the case for quantifiers

- Procedure calls in expressions cannot be encoded easily into an SMT formula
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New statement: assume E 

▪ Assumptions add unverified knowledge

- properties of the execution environment 

- (e.g., about results of system calls)

- properties that are justified elsewhere 

(e.g., a mathematical fact or properties guaranteed by 

a type system)

Operational semantics

▪ If E holds, assume E is equivalent to skip

▪ Otherwise, magic happens

// Fermat’s last theorem
assume 0 < x && 0 < y && 0 < z ==>

x*x*x + y*y*y != z*z*z

What is the weakest precondition of assume E?

How can we encode assume E in PL1?
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Encoding assume statements in PL1

Operational semantics

“magic”
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Encoding assume statements in PL1: discussion

▪ Like for assert statements, it would be useful to

have a richer language than PL1 expressions

▪ Encoding works only as long as we focus on

partial correctness

- Encoding behaves like assert E for total correctness

▪ Generally, assume statements have to be used 

with great care to avoid introducing invalid

assumptions

// Fermat’s last theorem
assume forall x, y, z ::

0<x && 0<y && 0<z ==>
x*x*x + y*y*y != z*z*z

x := 0; y := 0; z := 0
assume x*x*x + y*y*y != z*z*z
assert false
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Assertions

▪ To increase expressiveness without sacrificing efficient executability, we 

distinguish between (executable) expressions and (non-executable) assertions

▪ Expressions are used in all standard statements (assignments, if, while, etc.)

▪ Assertions are used as pre- and postconditions, and in assert and assume 

statements

- As a consequence, wp yields an assertion

Expressions

Assertions

Like before

FO logic over suitable theories
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Toward a better IVL

▪ Since assert and assume statements are very common 

in verification problems, we support them natively

- No encoding required

- Works for partial and total correctness

▪ This allows us to remove other statements that can now 

be encoded easily
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Exercise: encoding of if-statements

Show that the encoding of if-statements preserves the weakest precondition:
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PL2: a consolidated verification language

PL2 statements
Expressions (executable)

Types

Assertions (FO logic over suitable theories)

We assume that all variables, 

expressions, assertions, and 

programs are well-typed.
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Verification problem for PL2

▪ So far, we showed                     by proving 

▪ In PL2, we can encode pre- and postconditions into the program

▪ Consequently, we do not have to consider pre- and postconditions explicitly

Verification problem for PL2

Given a PL2 program   , is                        valid?
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Summary: weakest preconditions for PL2
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The Viper verification infrastructure

Verification 
condition 

generation

Intermediate
verification
language

SMT solver Z3Boogie

Symbolic
execution

Python Java OpenCLRust Go Prototypes
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The PL2 fragment of Viper

method main() { // name is irrelevant for now

var x: Int; var y: Int

assume x == 1; // semicolon is optional

if (x != y) {
x := x + y
y := x – y
x := x – y 

} else {
// else-block is optional

}

assert y == 1
}

Viper statements need to be placed in methods

Preamble for variables in the precondition

Precondition { x == 1 }

Statements, expressions, and assertions include 

PL2 up to minor syntax changes, in particular, if-

statements instead of non-deterministic choice

Postcondition { y == 1 }
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Macros

Viper supports simple parameterized macros

▪ syntactically inlined if invoked

▪ not type-checked before inlining

▪ untyped parameters

▪ recursion is not allowed

// Macro for expressions / assertions
define inc(a) (a + 1)

method main() {
assert inc(16) == 17

} 

// Macros for program statements
define isPositive(i) {
assert i > 0

}

method main() {
var x: Int
if (x > 17) {
isPositive(x)

}
}
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method main() {
var x: Int
var y: Int
var res: Int

assume true

res := x*x + 2*x*y + y*y

assert res == (x+y) * (x+y)
}

Viper examples

define diverge() {
assume false

}

define skip() {
assert true

}

define abort() {
assert false

}

method main() {
skip()
diverge()
abort()

}
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Exercise: first Viper example

Use Viper to expose the overflow issue in the code 

below for 16-bit integers in two’s complement.

Recall: INT_MAX = +32767, INT_MIN = -32768

if (i < 0) {
res := -i

} else {
res := i

}
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var x: Int;
var b: Bool
// -----------

if (b) {
x := 42

} else {
x := x + 17

}

Global variable declarations

▪ So far, we assumed implicitly that all programs and 

specifications are correctly typed

▪ In an implementation of a verifier, we need to make the 

types explicit, especially because SMT solvers require 

variables to be declared with a sort

▪ We tacitly assume a preamble of variable declarations

▪ The initial value of all variables is unknown

- We check the validity of                               for all interpretations 

that is, for all initial variable values

x = Int(‘x’)

Global declarations All variables in a Hoare triple 

must be declared in the preamble
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Local variable declarations

▪ Local variables improve the structure and readability of code

▪ var x: T declares a local variable

▪ Rules (checked by type checker)

- All variables must be declared before they are used (local or global)

- Local variables cannot be used outside the scope that declares them

- Every variable is declared at most once for every trace

▪ No implicit initialization: locals start out with arbitrary value of 

their type

var x: Int
var y: Int
// ----

if (x > 0) {
var t: Int
t := x
x := y
y := t

} else {
skip

}

Peter Müller, Marco Eilers – Program Verification
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Reasoning about local variable declarations

... “x has an arbitrary value right after declaration”

“we know nothing about x before declaration”

Operational semantics

Weakest precondition

Peter Müller, Marco Eilers – Program Verification
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PL3: Supporting global and local variables

PL3 statements

Expressions (executable)

Types

Assertions (FO logic over suitable theories)

We assume that all variables, 

expressions, assertions, and 

programs are well-typed.

Global declarations
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Exercise: encoding non-deterministic choice

We have seen earlier that we can encode if-statements into 

non-deterministic choice (using assume statements). 

Show that it is also possible to encode non-deterministic 

choice into PL3.

Apply the encoding to the following program and check the 

verification results.

var x: Int

if (*) {
x := 42

} else {
x := 23

}

assert x == 42 || x == 23  // succeeds
assert x == 42 // fails
assert x == 23 // fails

Peter Müller, Marco Eilers – Program Verification
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The tool stack so far

Proof obligation

wp[S](true) 

PL2 program

SMT solver

PL3 triple

{ A } S { B }

Encode

▪ Pre- and postcondition

▪ Local variables

▪ If-statements

Peter Müller, Marco Eilers – Program Verification
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Building a first verifier

1. Two intermediate verification languages

2. Error reporting

Peter Müller, Marco Eilers – Program Verification
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source code 

annotated with 

specifications

Automated verifier

Intermediate Verification 

Language

Generation of

proof obligations

Intermediate Verification 

Language

Front-end

SMT solver

feedback

Roadmap

We are here
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Verification debugging

Verification failures may be caused by:

▪ Errors in the implementation

▪ Errors in the specification

▪ Insufficient annotations

(e.g., missing loop invariants, as we will see later)

▪ Incompleteness of the verifier

(spurious errors, false positives)

Verifiers should help users to localize and fix verification failures

{ 0  b*b – 4*c }
discriminant := b*b – 4*a*c;

x := (-b + discriminant) / 2
{ a*x2 + b*x + c = 0 }

// Fermat’s last theorem
assert 0<x && 0<y && 0<z ==>

x*x*x + y*y*y != z*z*z
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Counterexamples

▪ Recall

- Verifier checks validity of wp[S](true)

- SMT solver checks the satisfiability of the 

negation, that is, of wp[S](true)

- Verification fails if the SMT solver returns 

sat, together with a model

- If the verifier returns unknown, it typically 

provides at least a partial model

Proof obligation

wp[S](true) 

SMT solver

▪ Models contain a value for each variable, 

such that the proof obligation is not valid

▪ They are counterexamples to the 

correctness of the program

▪ Viper command line option

--counterexample variables

assert x*x > 0

Peter Müller, Marco Eilers – Program Verification
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Localizing errors

▪ Realistic programs contain a large number of proof obligations

- For user-provided specifications such as postconditions

- For all potential reasons for execution failures, e.g., division by zero, null-pointer 

dereferencing, out-of-bounds access

- For other undesirable behaviors, e.g., overflows, data races, deadlocks

▪ To debug a verification error, it is crucial to 

know which of these proof obligations failed

▪ The technique so far checks validity of a 

single proof obligation wp[S](true), but 

cannot report which part of this proof 

obligation is invalid

Peter Müller, Marco Eilers – Program Verification
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Verification failures

▪ To determine which assertion to blame, we split the program at assertions into

multiple verification problems

▪ Each verification error is 

caused by a failing assertion

▪ Since we check wp[S](true), 

assert statements are the 

only statements that lead to 

non-trivial proof obligations

Peter Müller, Marco Eilers – Program Verification
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Computing multiple proof obligations

▪ Verification succeeds if all proof 

obligations are valid

▪ For each failed proof obligation, report 

the corresponding assertion

Set of proof obligations

SMT solver

▪ mwp is a weakest 

precondition transformer 

that computes a set M of 

proof obligations

▪ To verify a statement S, 

compute mwp[S](  )
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Exercise: error localization

Compute mwp[S]() for the statement on the right.

Which of the proof obligations are valid?

For each invalid proof obligation, find an initial state 

such that the corresponding assertion fails

Verify the example on the right in Viper using the 

Carbon verifier. How many error messages do you get? 

Hint: CTRL+L allows you to choose the verifier.

if(*) {
assert x == 7

} else {
assert x == 2
assert x > 0

}

method foo(x: Int, b: Bool) {
if(b) {
assert x == 7

} else {
assert x == 2
assert x > 0

}
}

Peter Müller, Marco Eilers – Program Verification
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Avoiding masked verification errors

▪ Both wp and mwp ignore the order of assertions

▪ We would like to check the second assertion only for executions that may reach it, 

that is, in which the first assertion holds

▪ We achieve this by adding an assumption after each assertion

assert x == 2
assert x > 0

assert x > 0
assert x == 2

assert A
assume A

assert A

Peter Müller, Marco Eilers – Program Verification
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Error reporting in Viper

▪ Carbon

- Uses weakest preconditions, 

similarly to the technique taught in 

this course, but replaces mwp by a 

more efficient approach

- Counterexamples can be enabled 

via command line option

- Reports multiple verification 

failures

▪ Silicon

- Uses symbolic execution

- Counterexamples can be enabled 

via command line option

- Reports only one verification error 

per method (use command line 

option to enable multiple errors)

- Default verifier in the IDE

▪ Viper has two verification backends

Peter Müller, Marco Eilers – Program Verification
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