
PROGRAM VERIFICATION

Peter Müller and Marco Eilers
(slides developed in cooperation with Christoph Matheja)

Spring 2023

2

Outline

Foundations SMT solvers
Building a
first verifier

Loops and
procedures

Data types Heap objects Abstraction
Permission

models

Concurrency
Frontend
verifiers

Peter Müller, Marco Eilers – Program Verification

3

A naive first verifier

▪ Is PL1 sufficiently expressive?

- Is it easy to encode interesting programs?

- Is it possible to express interesting

verification problems?

▪ How can we provide useful error

messages?

Proof obligation

A wp[S](B)

PL1 triple

{ A } S { B }

SMT solver

Peter Müller, Marco Eilers – Program Verification

4

Building a first verifier

1. Two intermediate verification languages

2. Error reporting

Peter Müller, Marco Eilers – Program Verification

5

Roadmap

▪ PL1 allows us to compute

proof obligations easily

▪ To be suitable as low-level

IVL, it should also facilitate

the encoding of more

complex programming

concepts

- Loops

- Procedures

- Data structures

- Concurrency

source code

annotated with

specifications

Automated verifier

Intermediate Verification

Language

Generation of

proof obligations

Intermediate Verification

Language

Front-end

SMT solver

feedback

We are here

Peter Müller, Marco Eilers – Program Verification

6

How expressive is PL1?

▪ Let’s encode some additional statements

- assert E

- assume E

PL1 statements

Expressions

Types

Peter Müller, Marco Eilers – Program Verification

7

New statement: assert E

▪ Assertions make existing knowledge explicit in the program

- crash whenever it violates our knowledge

- otherwise, do nothing

What is the weakest precondition of assert E?

How can we encode assert E in PL1?

if (x > 0) {
x := -x

} else {
skip

}
assert x >= 0

if (x < 0) {
x := -x

} else {
skip

}
assert x >= 0

Operational semantics

Peter Müller, Marco Eilers – Program Verification

8

Encoding assert statements in PL1

Operational semantics

“is encoded as”

Peter Müller, Marco Eilers – Program Verification

9

Encoding assert statements in PL1: discussion

▪ E is an expression of PL1

- It is often useful to have a more expressive language to express assertions

- For instance, quantifiers are useful to express properties of arrays (e.g., sortedness)

▪ The problem cannot be solved (easily) by extending the expression syntax

- Expressions must be efficiently executable, which is not always the case for quantifiers

- Procedure calls in expressions cannot be encoded easily into an SMT formula

Peter Müller, Marco Eilers – Program Verification

10

New statement: assume E

▪ Assumptions add unverified knowledge

- properties of the execution environment

- (e.g., about results of system calls)

- properties that are justified elsewhere

(e.g., a mathematical fact or properties guaranteed by

a type system)

Operational semantics

▪ If E holds, assume E is equivalent to skip

▪ Otherwise, magic happens

// Fermat’s last theorem
assume 0 < x && 0 < y && 0 < z ==>

x*x*x + y*y*y != z*z*z

What is the weakest precondition of assume E?

How can we encode assume E in PL1?

Peter Müller, Marco Eilers – Program Verification

11

Encoding assume statements in PL1

Operational semantics

“magic”

Peter Müller, Marco Eilers – Program Verification

12

Encoding assume statements in PL1: discussion

▪ Like for assert statements, it would be useful to

have a richer language than PL1 expressions

▪ Encoding works only as long as we focus on

partial correctness

- Encoding behaves like assert E for total correctness

▪ Generally, assume statements have to be used

with great care to avoid introducing invalid

assumptions

// Fermat’s last theorem
assume forall x, y, z ::

0<x && 0<y && 0<z ==>
x*x*x + y*y*y != z*z*z

x := 0; y := 0; z := 0
assume x*x*x + y*y*y != z*z*z
assert false

Peter Müller, Marco Eilers – Program Verification

13

Assertions

▪ To increase expressiveness without sacrificing efficient executability, we

distinguish between (executable) expressions and (non-executable) assertions

▪ Expressions are used in all standard statements (assignments, if, while, etc.)

▪ Assertions are used as pre- and postconditions, and in assert and assume

statements

- As a consequence, wp yields an assertion

Expressions

Assertions

Like before

FO logic over suitable theories

Peter Müller, Marco Eilers – Program Verification

14

Toward a better IVL

▪ Since assert and assume statements are very common

in verification problems, we support them natively

- No encoding required

- Works for partial and total correctness

▪ This allows us to remove other statements that can now

be encoded easily

Peter Müller, Marco Eilers – Program Verification

15

Exercise: encoding of if-statements

Show that the encoding of if-statements preserves the weakest precondition:

Peter Müller, Marco Eilers – Program Verification

17

PL2: a consolidated verification language

PL2 statements
Expressions (executable)

Types

Assertions (FO logic over suitable theories)

We assume that all variables,

expressions, assertions, and

programs are well-typed.

Peter Müller, Marco Eilers – Program Verification

18

Verification problem for PL2

▪ So far, we showed by proving

▪ In PL2, we can encode pre- and postconditions into the program

▪ Consequently, we do not have to consider pre- and postconditions explicitly

Verification problem for PL2

Given a PL2 program , is valid?

Peter Müller, Marco Eilers – Program Verification

19

Summary: weakest preconditions for PL2

Peter Müller, Marco Eilers – Program Verification

20

The Viper verification infrastructure

Verification
condition

generation

Intermediate
verification
language

SMT solver Z3Boogie

Symbolic
execution

Python Java OpenCLRust Go Prototypes

Peter Müller, Marco Eilers – Program Verification

21

The PL2 fragment of Viper

method main() { // name is irrelevant for now

var x: Int; var y: Int

assume x == 1; // semicolon is optional

if (x != y) {
x := x + y
y := x – y
x := x – y

} else {
// else-block is optional

}

assert y == 1
}

Viper statements need to be placed in methods

Preamble for variables in the precondition

Precondition { x == 1 }

Statements, expressions, and assertions include

PL2 up to minor syntax changes, in particular, if-

statements instead of non-deterministic choice

Postcondition { y == 1 }

Peter Müller, Marco Eilers – Program Verification

22

Macros

Viper supports simple parameterized macros

▪ syntactically inlined if invoked

▪ not type-checked before inlining

▪ untyped parameters

▪ recursion is not allowed

// Macro for expressions / assertions
define inc(a) (a + 1)

method main() {
assert inc(16) == 17

}

// Macros for program statements
define isPositive(i) {
assert i > 0

}

method main() {
var x: Int
if (x > 17) {
isPositive(x)

}
}

Peter Müller, Marco Eilers – Program Verification

23

method main() {
var x: Int
var y: Int
var res: Int

assume true

res := x*x + 2*x*y + y*y

assert res == (x+y) * (x+y)
}

Viper examples

define diverge() {
assume false

}

define skip() {
assert true

}

define abort() {
assert false

}

method main() {
skip()
diverge()
abort()

}

Peter Müller, Marco Eilers – Program Verification

24

Exercise: first Viper example

Use Viper to expose the overflow issue in the code

below for 16-bit integers in two’s complement.

Recall: INT_MAX = +32767, INT_MIN = -32768

if (i < 0) {
res := -i

} else {
res := i

}

Peter Müller, Marco Eilers – Program Verification

26

var x: Int;
var b: Bool
// -----------

if (b) {
x := 42

} else {
x := x + 17

}

Global variable declarations

▪ So far, we assumed implicitly that all programs and

specifications are correctly typed

▪ In an implementation of a verifier, we need to make the

types explicit, especially because SMT solvers require

variables to be declared with a sort

▪ We tacitly assume a preamble of variable declarations

▪ The initial value of all variables is unknown

- We check the validity of for all interpretations

that is, for all initial variable values

x = Int(‘x’)

Global declarations All variables in a Hoare triple

must be declared in the preamble

Peter Müller, Marco Eilers – Program Verification

27

Local variable declarations

▪ Local variables improve the structure and readability of code

▪ var x: T declares a local variable

▪ Rules (checked by type checker)

- All variables must be declared before they are used (local or global)

- Local variables cannot be used outside the scope that declares them

- Every variable is declared at most once for every trace

▪ No implicit initialization: locals start out with arbitrary value of

their type

var x: Int
var y: Int
// ----

if (x > 0) {
var t: Int
t := x
x := y
y := t

} else {
skip

}

Peter Müller, Marco Eilers – Program Verification

28

Reasoning about local variable declarations

... “x has an arbitrary value right after declaration”

“we know nothing about x before declaration”

Operational semantics

Weakest precondition

Peter Müller, Marco Eilers – Program Verification

29

PL3: Supporting global and local variables

PL3 statements

Expressions (executable)

Types

Assertions (FO logic over suitable theories)

We assume that all variables,

expressions, assertions, and

programs are well-typed.

Global declarations

Peter Müller, Marco Eilers – Program Verification

30

Exercise: encoding non-deterministic choice

We have seen earlier that we can encode if-statements into

non-deterministic choice (using assume statements).

Show that it is also possible to encode non-deterministic

choice into PL3.

Apply the encoding to the following program and check the

verification results.

var x: Int

if (*) {
x := 42

} else {
x := 23

}

assert x == 42 || x == 23 // succeeds
assert x == 42 // fails
assert x == 23 // fails

Peter Müller, Marco Eilers – Program Verification

32

The tool stack so far

Proof obligation

wp[S](true)

PL2 program

SMT solver

PL3 triple

{ A } S { B }

Encode

▪ Pre- and postcondition

▪ Local variables

▪ If-statements

Peter Müller, Marco Eilers – Program Verification

33

Building a first verifier

1. Two intermediate verification languages

2. Error reporting

Peter Müller, Marco Eilers – Program Verification

34

source code

annotated with

specifications

Automated verifier

Intermediate Verification

Language

Generation of

proof obligations

Intermediate Verification

Language

Front-end

SMT solver

feedback

Roadmap

We are here

Peter Müller, Marco Eilers – Program Verification

35

Verification debugging

Verification failures may be caused by:

▪ Errors in the implementation

▪ Errors in the specification

▪ Insufficient annotations

(e.g., missing loop invariants, as we will see later)

▪ Incompleteness of the verifier

(spurious errors, false positives)

Verifiers should help users to localize and fix verification failures

{ 0 b*b – 4*c }
discriminant := b*b – 4*a*c;

x := (-b + discriminant) / 2
{ a*x2 + b*x + c = 0 }

// Fermat’s last theorem
assert 0<x && 0<y && 0<z ==>

x*x*x + y*y*y != z*z*z

Peter Müller, Marco Eilers – Program Verification

36

Counterexamples

▪ Recall

- Verifier checks validity of wp[S](true)

- SMT solver checks the satisfiability of the

negation, that is, of wp[S](true)

- Verification fails if the SMT solver returns

sat, together with a model

- If the verifier returns unknown, it typically

provides at least a partial model

Proof obligation

wp[S](true)

SMT solver

▪ Models contain a value for each variable,

such that the proof obligation is not valid

▪ They are counterexamples to the

correctness of the program

▪ Viper command line option

--counterexample variables

assert x*x > 0

Peter Müller, Marco Eilers – Program Verification

37

Localizing errors

▪ Realistic programs contain a large number of proof obligations

- For user-provided specifications such as postconditions

- For all potential reasons for execution failures, e.g., division by zero, null-pointer

dereferencing, out-of-bounds access

- For other undesirable behaviors, e.g., overflows, data races, deadlocks

▪ To debug a verification error, it is crucial to

know which of these proof obligations failed

▪ The technique so far checks validity of a

single proof obligation wp[S](true), but

cannot report which part of this proof

obligation is invalid

Peter Müller, Marco Eilers – Program Verification

38

Verification failures

▪ To determine which assertion to blame, we split the program at assertions into

multiple verification problems

▪ Each verification error is

caused by a failing assertion

▪ Since we check wp[S](true),

assert statements are the

only statements that lead to

non-trivial proof obligations

Peter Müller, Marco Eilers – Program Verification

39

Computing multiple proof obligations

▪ Verification succeeds if all proof

obligations are valid

▪ For each failed proof obligation, report

the corresponding assertion

Set of proof obligations

SMT solver

▪ mwp is a weakest

precondition transformer

that computes a set M of

proof obligations

▪ To verify a statement S,

compute mwp[S]()

Peter Müller, Marco Eilers – Program Verification

40

Exercise: error localization

Compute mwp[S]() for the statement on the right.

Which of the proof obligations are valid?

For each invalid proof obligation, find an initial state

such that the corresponding assertion fails

Verify the example on the right in Viper using the

Carbon verifier. How many error messages do you get?

Hint: CTRL+L allows you to choose the verifier.

if(*) {
assert x == 7

} else {
assert x == 2
assert x > 0

}

method foo(x: Int, b: Bool) {
if(b) {
assert x == 7

} else {
assert x == 2
assert x > 0

}
}

Peter Müller, Marco Eilers – Program Verification

42

Avoiding masked verification errors

▪ Both wp and mwp ignore the order of assertions

▪ We would like to check the second assertion only for executions that may reach it,

that is, in which the first assertion holds

▪ We achieve this by adding an assumption after each assertion

assert x == 2
assert x > 0

assert x > 0
assert x == 2

assert A
assume A

assert A

Peter Müller, Marco Eilers – Program Verification

43

Error reporting in Viper

▪ Carbon

- Uses weakest preconditions,

similarly to the technique taught in

this course, but replaces mwp by a

more efficient approach

- Counterexamples can be enabled

via command line option

- Reports multiple verification

failures

▪ Silicon

- Uses symbolic execution

- Counterexamples can be enabled

via command line option

- Reports only one verification error

per method (use command line

option to enable multiple errors)

- Default verifier in the IDE

▪ Viper has two verification backends

Peter Müller, Marco Eilers – Program Verification

44

References

▪ Weakest preconditions

- Edsger W. Dijkstra:

Guarded commands, nondeterminacy and formal derivation of programs. 1975

- Cormac Flanagan, James B. Saxe:

Avoiding exponential explosion: generating compact verification conditions. 2001

- Mike Barnett, K. Rustan M. Leino:

Weakest-precondition of unstructured programs. 2005

▪ Error localization (alternative approach)

- K. Rustan M. Leino, Todd Millstein, James B. Saxe:

Generating error traces from verification-condition counterexamples. 2005

Peter Müller, Marco Eilers – Program Verification

	3 Building a First Verifier
	Slide 1: Program Verification
	Slide 2: Outline
	Slide 3: A naive first verifier

	3.1 How expressive is PL1?
	Slide 4: Building a first verifier
	Slide 5: Roadmap
	Slide 6: How expressive is PL1?
	Slide 7: New statement: assert E
	Slide 8: Encoding assert statements in PL1
	Slide 9: Encoding assert statements in PL1: discussion
	Slide 10: New statement: assume E
	Slide 11: Encoding assume statements in PL1
	Slide 12: Encoding assume statements in PL1: discussion
	Slide 13: Assertions
	Slide 14: Toward a better IVL
	Slide 15: Exercise: encoding of if-statements
	Slide 17: PL2: a consolidated verification language
	Slide 18: Verification problem for PL2
	Slide 19: Summary: weakest preconditions for PL2
	Slide 20: The Viper verification infrastructure
	Slide 21: The PL2 fragment of Viper
	Slide 22: Macros
	Slide 23: Viper examples
	Slide 24: Exercise: first Viper example
	Slide 26: Global variable declarations
	Slide 27: Local variable declarations
	Slide 28: Reasoning about local variable declarations
	Slide 29: PL3: Supporting global and local variables
	Slide 30: Exercise: encoding non-deterministic choice
	Slide 32: The tool stack so far

	3.3 Error reporting
	Slide 33: Building a first verifier
	Slide 34: Roadmap
	Slide 35: Verification debugging
	Slide 36: Counterexamples
	Slide 37: Localizing errors
	Slide 38: Verification failures
	Slide 39: Computing multiple proof obligations
	Slide 40: Exercise: error localization
	Slide 42: Avoiding masked verification errors
	Slide 43: Error reporting in Viper
	Slide 44: References

