
Emil Sekerinski

McMaster University
Hamilton, Ontario, Canada
and
ETH Zürich, Switzerland

December 2003

A Model for Concurrent Object-Oriented Programming

Hamilton

2

Introduction

• Objects are a natural “unit” of concurrency:
– objects can evolve independently and thus concurrently
– method calls allow for communication and synchronization
– creating an object potentially initiates a concurrent activity

• We present a model for active (autonomous) objects:
– autonomous activity expressed by actions
– synchronization expressed by guards

• Compared to mainstream languages, it simplifies the design:
– no threads (or processors), therefore
– no distinction between thread structure and class structure

3

Fish Screen Saver

class Fish
attr x, y: integer
attr up, right: boolean
initialization

x, y, up, right := 0, 0, true, true
action moveUp

when y < H and up do y := y + 1
action moveDown

when y > 0 and ¬up do y := y – 1
…
action bounceUp

when y = H and up do up := false
action bounceDown

when y = 0 and ¬up do up := true
…

end

• Main program:

var f: Fish ;
for I := 1 to 10 do

f := new Fish

4

Bounded Buffer

 class BoundedBuffer
attr b: array of Object
attr in, out, n, max: integer
initialization (m: integer)

in, out, n, max, b := 0, 0, 0, m, new Object [m]
method put (x: Object)

when n < max do
in, b[in], n := (in + 1) mod max, x, n + 1

method get: Object
when n > 0 do

out, result, n := (out + 1) mod max, b[out], n – 1
end

• Filtering from buffer in into out:

x := in.get ; if f (x) then out.put (x)
execution may block at
calls to guarded methods

5

Semaphore

 class Semaphore
attr n: integer
initialization (m: integer)

n := m
method acquire

when n > 0 do n := n – 1
method release

n := n + 1
end

• A semaphore s that allows m concurrent users of a resource:

var s: Semaphore; s := new Semaphore (m)

• A user requiring semaphores s and t for a critical section:

s.acquire ; t.acquire ; … critical section … ; s.release ; t.release

6

Introducing Concurrency

class Doubler
attr x: integer
method store (u: integer)

x := 2 ¥ u
method retrieve: integer

result := x
end

• Typical pattern for file
operations, network
transmission, web browsers, …

• Objects of class DelayedDouber can be used wherever objects of class
Doubler are expected. DelayedDoubler refines Doubler:

 Doubler ◊ DelayedDoubler

class DelayedDoubler
attr x: integer
attr d: boolean
initialization d := true
method store (u: integer)

x, d := u, false
method retrieve: integer

when d do
result := x

action double
when ¬d do

x, d := 2 ¥ x, true
end

7

Introducing Concurrency in Subclasses

class Doubler
attr x: integer
method store (u: integer)

x := 2 ¥ u
method retrieve: integer

result := x
end

class DelayedDoubler
inherit Doubler

attr d : boolean
initialization d := true
method store (u: integer)

x, d := u, false
method retrieve: integer

when d do
result := x

action double
when ¬d do

x, d := 2 ¥ x, true
end

Doubler
x: integer

store (integer)
retrieve (): integer

DelayedDoubler
d: integer

store (integer)
retrieve (): integer

double

8

Concurrent Priority Queue …

q := new PQ

q.add(5)

q.add(3)

q.add(8)

q.add(4)

q

5q

3

q 5
3

53
8

5q

q 5
3 8

53
4

8

8
4 5
4

9

… Concurrent Priority Queue …

class PriorityQueue
attr m, p: integer
attr l: PriorityQueue
attr a: boolean
initialization l, a := nil, false
method empty: boolean

result := l = nil
method add (e: integer)

when ¬ a do
if l = nil then

begin m := e ; l := new PriorityQueue end
else

begin p := e ; a := true end
action doAdd

when a do
begin

if m < p then l.add (p)
else begin l.add (m) ; m := p end ;
a := false

end
end 10

… Concurrent Priority Queue

class PriorityQueueSpecification
attr s: set of integer
method empty: boolean

result := s ≠ {}
method add (e : integer)

s := s » {e}
method remove: integer

var h := min (s) ;
begin s := s – {h} ; result := h end

end

• Correctness:

 PriorityQueueSpecification ◊ PriorityQueue

11

Concurrent Leaf-oriented Trees

t := new Tree ;
t.add(3) ;
t.add(7) ;
t.add(2) ;
t.add(8) ;
t.add(1)

t
3

root

local invariant: (left = nil) = (right = nil)
global invariant: (left ≠ nil) fi (left.key £ key) Ÿ (right.key > key)

7

3 7

2

2

8

8

1

7 82 3

2 1

12

Dining Philosophers …

class Fork
attr available: boolean
initialization

available := true
method pickUp

when available do
available := false

method putDown
available := true

end

class Philosopher
attr state: (thinking, hungry, eating, full)
attr left, right: Fork
initialization (l, r : Fork)

state, left, right := thinking, l, r
action gettingHungry

when state=thinking do
begin state := hungry ;

left.pickup ; right.pickup ;
state := eating

end
action gettingFull

when state = eating do
begin state := full ;

left.putdown ; right. putdown ;
state := thinking

end
end

13

… Dining Philosophers

• Main program:

var fork := new Fork [5];
var philosopher := new Philosopher [5];

for i := 0 to 4 do

fork [i] := new Fork ;
for j := 0 to 4 do

philosopher [j] := new Philosopher (fork [j], fork [(j + 1) mod 5])

• Deadlock can be avoided:
– One philosopher picks up first right then left fork
– Butler ensures that at most 4 philosophers are seated
– Philosophers pick up both forks simultaneously.

• Fairness needed to avoid starvation.

14

Fairness through Strong Semaphore

 class WeakBinarySemaphore
attr a: boolean
initialization

a := true
method acquire

when a do
a := false

method release
a := true

end

• If continuously several users try to
acquire a weak semaphore, some
may be delayed indefinitely.

• The strong semaphore ensures a first-in first-out policy. Typical use:

s.acquire (this) ; … critical section … ; s.release

class StrongBinarySemaphore
attr a: boolean
attr q: seq of Object
initialization

a, q := true, ·Ò
method acquire (u: Object)

begin q := q ° ·uÒ ;
when a and u = head (q) do

a, q := false, tail (q)
method release

a := true
end

15

Concurrent Observers

 class Observer
attr sub: Subject
initialization (s: Subject)

begin sub := s ; s.attach (this) end
method update …

end

class Subject
attr a, n : set of Observer
initialization a, n := {}, {}
method attach (o: Observer)

a := a » {o} Call may block and and action
method notifyAll notifyOne can be initiated again

n := a (or one of the methods be called)
action notifyOne

when n ≠ {} do
var o: Observers ;
begin o :Œ n ; n := n – {o} ; o.update end

end
16

Summary of Methodology

• Language extensions:
– No construct for threads!
– Classes: attributes, methods, actions
– Guards for synchronization:

when b do S = await b ; S

• Implementation:
– Automatic creation & management of threads; cf garbage

collection!
– Requires guards only over local attributes.

• Theory:
– Formal model through action systems in higher order logic
– Class verification & refinement: data refinement, atomicity

refinement

• Goal: Bring the practice of concurrent object-oriented programming as
close as possible to a simple model with a sound theory.

17

Implementation

• active objects created in object pool
• thread obtains object from pool

and executes enabled action or
removes it from pool

• execution of method or action may
place object in pool again

• object locked as long as method or
action is executing

• fairness among actions and objects
• garbage collection unaffected!

thread pool

object pool

active
objects

inPool

¬inPool

inPool

‹ object pool management takes
constant time

‹ constant memory overhead per
active object

‹ evaluation of guards only once
when a thread is available due to local guards
(cf. exponential back-off protocol)

18

Classification

• Following [Briot et al 98]:
– serial (only one activity at any time) vs

quasi-concurrent (several activities, but only one can progress) vs
fully concurrent (several activities can progress simultaneously)

– autonomous vs reactive objects (Java)
– guards (Eiffel) vs body (Ada) for acceptance of calls
– synchronous method calls vs message queues (Actors)

19

Action Systems (Concurrent Modules)

• module K Í K = (init, proc, act)
 var p : P := p0

var q : Q := q0 init = (p0, q0)
procedure m = M proc = M
action a = A act = A È B
action b = B

 end

• Programs are composed of modules. Composing modules
– combines their variables
– combines their procedures
– takes the nondeterministic choice of their actions: interleaving

semantics.
Module composition models both inheritance and usage.

• Module Refinement K ◊R K’ with relation R.

20

Classes, Objects, Attribute Selection, Method Call

• class C Í module C
attr p: P var C: set of Object := {}
initialization I var p: Object Æ P
method l = L procedure new: Object
method m = M result :œ C » {nil} ; C := C » {result} ; I
action a = A procedure l (this: Object)

end {this Œ C} ; L
procedure m (this: Object)

{this Œ C} ; M
action a

var this :Œ C ; A
end

Assuming c: Object:

• c.p Í C.p (c) attribute selection
• c := new C Í c := C.new object creation
• c.m Í C.m (c) method call – without dynamic binding

21

Delayed Doubler Refinement

class D
attr x: integer
method store (u: integer)

x := 2 ¥ u
method retrieve: integer

result := x
end
class DD
inherits D

attr d: boolean
initialization d := true
method store (u: integer)

x, d := u, false
method retrieve: integer

when d do
result := x

action double
when ¬d do

x, d := 2 ¥ x, true
end

R (D, x) (DD, x’, d) =
(D = DD) Ÿ
(" o Œ D · (o.d Ÿ o.x’ = o.x) ⁄

(¬o.d Ÿ 2 ¥ o.x’ = o.x))
Conditions for D ◊R DD:
1. for module initialization:

R ({}, x) ({},x’, d)
2. for method store (new, retrieve similarly):

a) refinement:
D.store ◊R DD.store

b) enabledness:
grd D.store Ÿ R (D, x) (DD, y, d) fi

grd DD.store ⁄ grd double
3. for the action double:

a) refinement:
skip ◊R DD.double

b) termination:
 R (…) (…) fi trm (do double od)

22

Delayed Doubler Invariant

P = (" o Œ DD · o.d fi even(o.x))

Conditions for P being an invariant of DD:

1. for module initialization:
(DD = {}) fi P

2. for the procedures:
{P} DD.new {P}
{P} DD.store {P}
{P} DD.retrieve {P}

3. for the actions:
{P} DD.retrieve {P}

class D
attr x: integer
method store (u: integer)

x := 2 ¥ u
method retrieve: integer

result := x
end
class DD
inherits D

attr d: boolean
initialization d := true
method store (u: integer)

x, d := u, false
method retrieve: integer

when d do
result := x

action double
when ¬d do

x, d := 2 ¥ x, true
end

23

Summary and Outlook

• Prototypical implementation with code generation for JVM

• Theory:
– model based on the simple theory of types;

all proofs are done in higher order logic
– model simplified by being less restrictive than the compiler

• Related Theories:
– OO action systems [Bosangue et al 98, 99]: atomicity of actions
– Seuss [Misra 02]: atomicity of actions, pre-procedures
– pobl [Jones 92, 96]: methodology, examples, early return

• Ongoing work:
– extension of model with fairness
– inclusion of exception handling
– inclusion of specification constructs
– separation of subtyping from subclassing
– improved code generation for JVM

