
Verifying Go’s Standard Library

Practical Work Report

Adrian Jenny

Tuesday 31st January, 2023

Advisors: Prof. Dr. Peter Müller, João Pereira

Department of Computer Science, ETH Zürich

Abstract

Program verification aims to reliably prove the correctness of a program
according to the supplied specification. The Viper verification infras-
tructure offers various frontends for popular programming languages.
The frontend for the Go programming language is called Gobra. One
of the limitations of program verification is that the complete program,
including library functions, has to be specified and verified in order for
the result to be provably correct. Currently, Gobra only has specifica-
tions for a handful of the packages in the Go standard library, none of
which are completely verified.
In this project, we, therefore, work on specifying and verifying further
parts of Go’s standard library. We derive criteria to help us choose
which packages to work on. For parts of these packages, we provide
specifications and can prove memory safety using Gobra. Additionally,
we present an assessment of Gobra’s usability. Based on our analy-
ses, we report favourable verification performance across the chosen
packages. Moreover, comparing our specified versions of two represen-
tative packages compared to the source code reveals that the annotation
overhead for the specifications remained below a factor of 2.4.

i

Acknowledgements

I thank my project supervisor João Pereira. João showed great passion
and constantly provided me with valuable feedback and took the time
to expound upon more detailed background information on whatever
issues I was facing at the time. His flexibility, support and intricate
knowledge of the subject matter were of great assistance. His feedback
and comments helped me learn a lot and grow my competencies in
many areas besides program verification.

I further thank Prof. Dr. Peter Müller and the whole of the Programming
Methodology Group at ETH for allowing me to work on this project.

ii

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Go . 3

2.1.1 The Standard Library 3
2.2 Testing and Verification . 4

2.2.1 Testing . 4
2.2.2 Program Verification . 5

2.3 Gobra . 5

3 Methodology 7
3.1 Choice of subset . 7
3.2 Approach . 8

3.2.1 Bottom-up . 8
3.2.2 Clean abstraction . 9
3.2.3 Testing . 9

4 Implementation 11
4.1 List . 11

4.1.1 Types . 11
4.1.2 Invariants of a list . 12
4.1.3 Initialization . 13
4.1.4 Update primitives . 14
4.1.5 List membership check 16

4.2 Ring . 17
4.2.1 Type . 17
4.2.2 Invariants of a ring structure 18
4.2.3 Next - Prev . 19

iii

Contents

4.2.4 New . 19
4.2.5 Link . 20

4.3 Sort . 23
4.3.1 Interface specification 23
4.3.2 IntSlice . 25
4.3.3 Sorting function . 26

5 Evaluation 29
5.1 Annotation Overhead . 29
5.2 Timing . 32
5.3 Tests . 34

5.3.1 Test cases . 34
5.3.2 Known issue . 36

5.4 Functional Limitations . 38
5.5 Observations concerning Gobra 40

6 Conclusion 43
6.1 Future work . 43

Bibliography 45

iv

Chapter 1

Introduction

Increasingly many components of our modernized world are guided by
software-controlled systems. Consequently, having assurances on the func-
tional correctness of these systems becomes ever more desirable. Depending
on the application domain errors in implementations can be a threat to safety
and cause enormous monetary losses. A prime example of a small software
error and its disproportionate consequence is the crash of the Mars Climate
Orbiter in 1999 [1]. For gauging the correctness of their programs, software
developers typically use some sort of testing. This usually involves testing
the implementation on sample inputs. Testing often forms an integral part
or even the basis of many software development processes like test-driven
development (TDD). However, testing alone is not enough to prove the
absence of bugs. Sound software verification techniques and verification
engines are used to definitively prove the absence of bugs on the level of the
implementation. The Programming Methodology Group at ETH developed
such a modern verification infrastructure called Viper [12]. Viper employs
several different frontends in order to provide a verification toolchain to
multiple languages. Gobra [15] is the frontend for the Go programming
language and already supports many of Go’s most important features. Thus,
one can already provide specifications for Go programs and use Gobra to
check whether a program behaves according to its specification. However,
one key deficiency of verification is that it cannot check whether calls to
unspecified library functions are guaranteed to succeed. Even if library
functions are specified, if their implementations are not verified according to
the specifications, then these specifications are nothing more than unchecked
assumptions. This is especially problematic since this is also the case for
Go’s very own standard library [3] whose features are used in some way by
most Go programs. Moreover, as can be seen on GitHub’s issue tracker even
the standard library ships with bugs [4, 7]. Thus, blindly trusting the stan-
dard library implementation is misguided. This project’s goal is to provide

1

1. Introduction

specifications to a chosen subset of Go’s standard library and verify them
using Gobra. Typically, there is considerable effort involved when deriving
specifications and applying verification. However, barring any large-scale
design changes, this would be a one-time investment.

This project focuses on the following goals.

(1) Applying verification:
We derive criteria to select a suitable subset of the Go standard library
and provide specifications for this subset’s methods that can be verified
using Gobra.

(2) Providing a clean abstraction
We use predicates to abstract over data structures’ invariants end em-
ploy ghost pure functions to not reveal implementation details of public
methods.

(3) Issues and tests
We want to test whether our specified version of the standard library is
sufficient to catch known bugs. Furthermore, for available test cases,
we want to check whether our specification is sufficient to guarantee
whether a particular test will be successful.

(4) Evaluating Gobra’s usability
There are continuous efforts to extend Gobra to be able to reason
about all of Go’s features. We wish to assess when Gobra’s capabilities
are lacking when it comes to verifying the selected functions. More-
over, using any kind of verification tool often requires considerable
annotation overhead and workarounds in order to help the underlying
theorem prover. We wish to identify cases where this overhead becomes
impractical.

2

Chapter 2

Background

2.1 Go

Go [2] is a statically typed and compiled programming language that is
already very well established in the industry and still continually gaining
in popularity. It was designed at Google and as such is notable for its
strong built-in support for building scalable and concurrent applications.
Furthermore, Go employs a combination of nominal and structural typing.

2.1.1 The Standard Library

Go offers a large standard library [3] of functions and methods that are
used in varying contexts. Apart from the definitions of built-in types and
low-level platform-specific implementations the standard library contains
many packages with high-level features and abstractions. Only a very small
selection of which is listed here (in no particular order):

• math: This package offers optimized implementations of many com-
monly used mathematical functions.

• container/list, container/ring, container/heap: These packages de-
fine some fundamental and broadly used data structures. They achieve
this by providing type definitions and methods to insert and remove
elements from the data structure. Depending on the data structure,
the corresponding package also provides functionality to rearrange or
concatenate multiple instances of the data structure.

• net: The net package provides functionality to deal with network
connections . This includes name resolution, TCP and UDP network
sockets as well as network I/O.

• database/sql: This package defines the interfaces to be implemented
by the drivers of a given relational database.

3

2. Background

• crypto: The package crypto itself mainly defines some commonly used
cryptographic constants and interfaces. These interfaces are then imple-
mented in the packages defining more specific cryptographic primitives,
e.g. aes, ecdsa, or sha256.

• sort: The sort package provides multiple different efficient sorting algo-
rithms. It also defines interfaces that user-defined types can implement
to make them sortable.

• bytes: The bytes package provides a multitude of functions for ma-
nipulating slices of bytes. Furthermore, the package defines the type
Buffer whose methods in turn depend on the aforementioned bytes
functionalities.

• io: The io package contains many well-documented interface defini-
tions for Reader and Writer types.

Note: For convenience, we will shorten container/list and container/ring to
list and ring throughout the rest of this document.

This list encompasses only a small selection of the many different packages
provided by the standard library. Consequently, Go programmers make
heavy use of the functionality provided by the standard library and rely on
it being implemented correctly.

2.2 Testing and Verification

Apart from other design decisions, programmers mainly aim to produce code
that is both reliable and correct. Several methodologies have been developed
to help programmers achieve these goals. This section serves to highlight the
differences between Testing and Program Verification.

2.2.1 Testing

Generally, whenever programmers implement a new feature or functional
unit they also provide tests. These tests are often a sample set of prede-
termined inputs for the program along with a set of predetermined and
approved outputs. A correctly written program will always produce the
desired outputs on these given inputs. These test cases are usually chosen
in such a way as to cover as many of the code’s behaviours as reasonably
possible. Tests are an integral part of any large software project and their
inclusion in development pipelines helps to identify any breaking changes.
Despite all the uses of testing and its importance in software projects it also
has its limitations. Even for moderately simple and small projects testing
cannot be used to give guarantees on all possible inputs. Most software
projects are too complex to design test cases for all possible scenarios. Thus,
testing alone is not sufficient to truly prove the absence of errors.

4

2.3. Gobra

2.2.2 Program Verification

Program verification is an approach that is used to prove that a piece of
code (e.g. a function) behaves according to its specification. Through the
use of verification tools programmers can annotate their code with such a
specification. Typically, a specification is of the form of a pre- and postcondi-
tion for a given function. The precondition describes the constraints on the
inputs and the current state that need to be fulfilled to call that function. A
verification engine combines the constraints given by the precondition and,
together with the function implementation, tries to prove that the constraints
described in the postcondition are satisfied. A function can call other func-
tions and as long as it was possible to establish the precondition of the called
function, the verification engine gets to assume the called function’s post-
condition in conjunction with its constraints. Thus, program verification can
be done in a modular fashion. Correctly implemented verification engines
provide proven soundness guarantees, i.e. a program that is not guaranteed
to fulfill its specification will never be reported as fulfilling the specification.
This is a clear benefit over just using test cases in that it is now possible
to have guarantees as to the behaviour of a program. However, similar to
the quality requirements on test cases, program verification is only useful
if the specification expresses the desired or undesired properties. Deriving
sensible specifications and verifying a program can often induce a signifi-
cant overhead in developer effort. In fact, the overhead effort of providing
meaningful function specifications and verifying a whole system is still large
enough such that often only very critically important software projects get
formally verified. Researchers have shown how building a verified system
is a significant up-front investment in developer time [11]. In their example,
they show how the additional annotation overhead is a factor of 3.6 times
larger (measured in source lines of code) than the underlying implementation
itself. Another limitation is that developers still need to trust the correctness
of other parts of the system, including the compiler implementation, the
hardware and unverified libraries.

2.3 Gobra

Gobra [15] is a modular verifier for the Go programming language. It is
actively developed by the Programming Methodology Group at ETH. This
section serves to give a short overview of Gobra’s workings.

While Gobra still is a research project in development, it already supports a
wide array of Go’s more advanced features. These include support for inter-
faces and different methods of achieving concurrency. While the overarching
goal of verification may be to prove the functional correctness of a program,
this often relies on also proving memory safety and termination for all valid

5

2. Background

inputs. Gobra’s mechanism for proving memory safety is based on separa-
tion logic [14] and works by augmenting specifications with requirements
regarding access permissions to given heap locations. This helps to ensure
that functions only access valid memory locations and the permissions allow
proving the absence of race conditions. Furthermore, Gobra assertions can
also be parameterized and wrapped up in a predicate. These predicates can
then be used to abstract over the permissions and consistency properties of a
(possibly recursive) data structure.
For programs containing loops and recursive calls, termination can be en-
forced by providing variants. A variant is an expression whose value is
guaranteed to decrease with every loop iteration or recursive call.

Internally, Gobra encodes annotated Go programs into programs written in
the Viper verification language [12] and is verified by the Viper tooling based
on functionality provided by the Z3 theorem prover [16].

6

Chapter 3

Methodology

The overall goal of this work is to use Gobra to verify a suitable subset of
Go’s standard library. While we recognize that verification can be a costly
approach, the rationale behind this work is that having a properly verified
standard library is very important. Given the large user base of Go, bugs in
the standard library can have a far-reaching impact. Investing the effort to
verify the standard library will therefore provide value to virtually all users
of the language. Unless the used standard library functions are themselves
verified, Go programs that rely on the standard library cannot be guaranteed
to be correct.

3.1 Choice of subset

Because verification of the whole standard library would take a very long
time, the scope of this project is a small subset of the standard library. There
are multiple criteria to consider in the choice of this subset:

• Impact: Verification might either succeed or fail. In case of success, we
can provide guarantees that the function is indeed correct according
to its specification. In case of failure, we know that the function might
have a bug. For this project to be impactful, it makes sense to verify
functions and packages that are heavily used by other packages in the
standard library and by users of the standard library.

• Dependencies: Like other packages, packages in the Go standard library
may themselves also depend on the standard library. Starting with
verifying packages with few or no dependencies reduces the need to
re-adjust the specifications of packages with relatively more dependen-
cies. This is especially true in the likely case that the specifications of
the former need some fine-tuning. It, therefore, makes sense to be veri-
fying packages with few or no dependencies first and work bottom-up.

7

3. Methodology

However, when it comes to interfaces we might have to reverse our
approach where applicable. While interface definitions can be seen
as dependencies of their implementations, it still makes sense to first
consider some of these implementations to get a sense of the intended
shared behaviour.

• Platform independence: We will not work on any platform-specific pack-
ages. For one, we would quickly run into limitations of Gobra when
dealing with inlined C or assembly code. Furthermore, as per the first
criterion, our findings wouldn’t be as broadly applicable.

• Adequacy to program verification: A subset that encompasses algorithmi-
cally interesting functions and data structures provides a good target
for the application of verification techniques. Not only are the more
complex algorithms the most likely to contain bugs, but they also offer
the additional benefit of allowing us to test out the limits of Gobra’s
practicability in real-world use cases.

We chose parts of the following packages to verify and present our reasoning
for this choice based on the above criteria. The contents of these packages
are briefly described in the section on the standard library in 2.1.1.

• list: A list is a fundamental data structure. Since the list data structure
defined in this package is doubly linked and circular, it has to fulfill
several non-trivial invariants for all operations to work. Of particular
interest is that there are already known issues [4] with the implemen-
tation and it will be interesting to see whether our specification is
sufficient to catch these bugs.

• ring: The data structure defined in ring is very similar to the list
above in that it is also doubly linked and circular. However, a notable
difference is the lack of any clear “owner” object of the ring.

• sort: Sorting is an essential operation. Furthermore, the sort package
naturally offers a number of algorithmically interesting implementa-
tions.

3.2 Approach

3.2.1 Bottom-up

The general idea is to follow a bottom-up approach. This applies to the overall
structure concerning the dependencies between packages (as mentioned
in 3.1), as well as with regard to the dependencies between functions within
a particular package. Within a given package we first verify the functional
building blocks lowest in the respective dependency hierarchy. The public-
facing methods and functions that are built using these building blocks get

8

3.2. Approach

verified at a later stage. The advantage of this approach is that we can reduce
the assumptions on the specifications for lower-level functions. Furthermore,
we can gather all constraints on the pre- and postconditions from these
lower-level functions first and use them to build up and establish a clean
public-facing interface.

3.2.2 Clean abstraction

The specifications for public-facing functions should not reveal information
about the internal representation like the existence of private fields. For
a public method’s contract to be explainable purely in terms of publicly
available members, we plan to introduce additional ghost pure functions.
Any invariants of the underlying data structures should be abstracted under
a predicate whenever possible.

3.2.3 Testing

To check whether our specifications are applicable, we augment available test
cases with our annotation and assertions to see whether our specifications
suffice to cover the same behaviour as the test cases. That is, using our
specification on a correct test case should guarantee that the test is successful.
Furthermore, for the functions we can specify, we want to track down whether
there are any open issues in the Go issue tracker1 and see whether they would
have been caught if verification was applied. For example, there is a known
issue with a leaky abstraction in the list package [4].

1https://github.com/golang/go/issues

9

Chapter 4

Implementation

This chapter highlights some of the details and considerations that went
into deriving specifications for chosen parts of the packages. To distinguish
comments from the original developers from our newly added comments,
we generally included a # sign at the start of our comments. E.g.

1 // This is a comment left by the original developers .
2 //# This is a comment left by us pertinent to the specification .

Moreover, for better readability, we chose not to include the triggers in
quantified expressions in our code excerpts.

4.1 List

In this section, we will describe some of our efforts that went into specifying
and verifying parts of the list package as well as highlight some of the
challenges. The list package describes a circular doubly-linked list via
various defined types and methods. The two types that are used to implement
this structure are List and Element. A full list of the package’s methods that
operate on these types is shown in the package overview on Go’s website1.

4.1.1 Types

Listing 1 shows the definition of the Element type. Since we are dealing with
a doubly-linked list, every list element has a pointer prev and a pointer next

pointing to the previous and next list element respectively. Storing values in
the list works via the Value field of any type. The list field points to the list
l that currently owns the element e. The developers of this package rely on

1https://pkg.go.dev/container/list

11

4. Implementation

1 type Element struct {
2 // Next and previous pointers in the doubly -linked list of elements.
3 // To simplify the implementation , internally a list l is implemented
4 // as a ring , such that &l.root is both the next element of the last
5 // list element (l.Back ()) and the previous element of the first list
6 // element (l.Front ()).
7 next , prev *Element

8 // The list to which this element belongs.
9 list *List

10 // The value stored with this element.
11 Value any
12 }

Listing 1: Definition of the Element type from the standard library’s list package.

this field being up-to-date for all valid elements in scope. As such, they often
perform the comparison e.list == l to check whether element e is in list l.

1 type List struct {
2 root Element // sentinel list element , only &root , root.prev ,
3 // and root.next are used
4 lenT int // current list length excluding (this) sentinel element
5 }

Listing 2: Definition of the List type from the standard library’s list package.

The List type shown in listing 2 contains the root field of type Element. This
field only serves to anchor the circular list around a fixed element and its
Value field is never intended to be used. This root element also does not
count toward the length of the list. To be able to immediately report the
length of the list, the List type also features a length field called lenT of type
int.

4.1.2 Invariants of a list

We formalized the invariants of List in the predicate Mem shown in Listing 3.
This predicate abstracts over the permissions and consistency criteria of a list
l and its contained elements. The predicate has a list l as its receiver and
accepts arguments s and isInit of types set[*Element] and bool respectively.
The set s must contain all the elements of the list including the root whereas
the argument isInit indicates whether the list was already initialized with
the Init method. As shown in lines 2 - 6, holding this predicate includes
permissions to the underlying list l and the fields of all its elements. Line 7
enforces the relationship between the number of elements in the set s and
the lenT field of the list. An uninitialized list only contains the root element
which points to no other elements as shown in lines 9 - 13. If isInit is

Note: The length field was originally called len but due to an issue in Gobra [8] we had
to avoid field names that could be mistaken as Gobra keywords.

12

4.1. List

1 pred (l *List) Mem(ghost s set[* Element], ghost isInit bool) {
2 acc(&l.lenT) &&
3 &l.root in s &&
4 (forall i *Element :: i in s ==> (
5 acc(&i.next) && acc(&i.prev) &&
6 acc(&i.list) && acc(&i.Value))) &&
7 l.lenT == len(s)-1 &&
8 ((l.root.next == nil || l.root.prev == nil) ==> !isInit) &&
9 (! isInit ==> (

10 len(s) == 1 &&
11 s == set[* Element]{&l.root} &&
12 l.root.next == nil &&
13 l.root.prev == nil)) &&
14 (isInit ==> (
15 len(s) >= 1 &&
16 (forall i *Element :: i in s ==> (
17 i.next != nil && i.prev != nil &&
18 (i != &l.root ==> i.list == l))) &&
19 (forall i, j *Element :: (i in s && i.next == j) ==> (
20 j in s && j.prev == i && i.next.prev == i &&
21 j.prev.next == j)) &&
22 (forall i, j *Element :: (i in s && i.prev == j) ==> (
23 j in s && j.next == i && i.prev.next == i &&
24 j.next.prev == j))))
25 }

Listing 3: Definition of the memory predicate Mem for a list.

true then the predicate enforces stronger constraints on the structure of the
list. The quantified expressions on lines 14 - 24 enforce the doubly-linked
structure of an initialized list as well as the fact that every element’s list

pointer points to l. Note that the predicate is not equipped to enforce that all
elements form a single doubly-linked cycle. However, the elements’ relative
positions in the list are mentioned in the methods’ postconditions. In general,
every correctly implemented method operating on an initialized list in a
consistent state should return a consistent list. Thus, every public method
assumes the predicate Mem and must preserves it.

4.1.3 Initialization

Listing 4 shows the specified version of the Init method. Note that the
precondition requires the Mem predicate but passes the isInit parameter to
it that the Init method received as an argument. This is because the Init

method is not only used for the first initialization of a list but also to reset it
(i.e. remove pointers to any elements and set lenT to 0). It is noteworthy to
point out that this method does not go through and change every element’s
list pointer to nil. It is a known issue that since an element’s list pointer
is often used to check for membership, it could thus be that if a list is reset
and a client still holds a pointer to one of the list’s earlier elements, then that
element could get falsely reported as belonging to the list and lead to an
inconsistent state [4].

13

4. Implementation

1 // Init initializes or clears list l.
2 requires l.Mem(elems , isInit)
3 ensures res == l
4 ensures l.Mem(set[* Element]{&l.root}, true)
5 ensures isInit ==>
6 (forall i *Element :: (i in elems && i != &l.root) ==>
7 (acc(&i.next) && acc(&i.prev) && acc(&i.list) && acc(&i.Value)))
8 ensures l.Len(set[* Element]{&l.root}, true) == 0
9 decreases

10 func (l *List) Init(ghost elems set[* Element], ghost isInit bool)
11 (res *List) {
12 unfold l.Mem(elems , isInit)
13 l.root.next = &l.root
14 l.root.prev = &l.root
15 l.lenT = 0
16 fold l.Mem(set[* Element]{&l.root}, true)
17 return l
18 }

Listing 4: Specified Init method

4.1.4 Update primitives

The methods insert, move and remove whose specified versions are shown
in listings 5, 7 and 6 are used internally in the package to update the list’s
elements and their position. Notably, in insert’s postcondition we manage
to verify the inserted element’s position relative to its neighbors via the ghost

pure method comesBefore.

1 // insert inserts e after at , increments l.lenT , and returns e.
2 requires l.Mem(elems , true)
3 requires acc(e)
4 requires at in elems
5 requires !(e in elems)
6 ensures l.Mem(elems union set[* Element]{e}, true)
7 ensures l.Len(elems union set[* Element]{e}, true) ==
8 1 + old(l.Len(elems , true))
9 ensures at.comesBefore(e, elems union set[* Element]{e}, l)

10 ensures e.comesBefore(old(at.nextPure(elems , l)),
11 elems union set[* Element]{e}, l)
12 ensures res == e && res != nil && res != &l.root
13 decreases
14 func (l *List) insert(e, at *Element , ghost elems set[* Element])
15 (res *Element) {
16 unfold l.Mem(elems , true)
17 e.prev = at
18 e.next = at.next
19 e.prev.next = e
20 e.next.prev = e
21 e.list = l
22 l.lenT++
23 fold l.Mem(elems union set[* Element]{e}, true)
24 return e
25 }

Listing 5: Specified insert method

Contrary to this, in remove’s postcondition we do not explicitly enforce that
the earlier neighbors of the removed element e are now neighboring each

14

4.1. List

1 requires l.Mem(elems , true)
2 requires e in elems
3 requires e != &l.root
4 ensures l.Mem((elems setminus (set[* Element]{e})), true)
5 ensures l.Len((elems setminus (set[* Element]{e})), true) ==
6 old(l.Len(elems , true)) - 1
7 ensures acc(e) && e.list == nil
8 decreases
9 func (l *List) remove(e *Element , ghost elems set[* Element]) {

10 unfold l.Mem(elems , true)
11 e.prev.next = e.next
12 e.next.prev = e.prev
13 e.next = nil // avoid memory leaks
14 e.prev = nil // avoid memory leaks
15 e.list = nil
16 l.lenT --
17 fold l.Mem((elems setminus (set[* Element]{e})), true)
18 }

Listing 6: Specified remove method

other. This is primarily because the invariants do not strictly enforce all
elements to form a single cycle. Thus Gobra cannot rule out that e may only
have been in a cycle with itself. Consequently, in move’s postcondition we
also only reason about the neighborhood relation at the moved element’s
new position. A possible fix for this issue could be to enforce reachability
between all elements. The problem is discussed in more detail in 5.4.

1 // move moves e to next to at.
2 requires l.Mem(elems , true)
3 requires e in elems
4 requires at in elems
5 ensures l.Mem(elems , true)
6 ensures (e != at ==> (unfolding l.Mem(elems , true) in
7 (at.next == e && e.prev == at)))
8 ensures (e != at && old(at.nextPure(elems , l) != e)) ==>
9 at.comesBefore(e, elems , l)

10 ensures (e != at && old(at.nextPure(elems , l) != e)) ==>
11 e.comesBefore(old(at.nextPure(elems , l)), elems , l)
12 decreases
13 func (l *List) move(e, at *Element , ghost elems set[* Element]) {
14 if e == at {
15 return
16 }
17 unfold l.Mem(elems , true)
18 //# remove e
19 e.prev.next = e.next
20 e.next.prev = e.prev
21 //# insert e after at
22 e.prev = at
23 e.next = at.next
24 e.prev.next = e
25 e.next.prev = e
26 fold l.Mem(elems , true)
27 }

Listing 7: Specified move method

15

4. Implementation

4.1.5 List membership check

Instead of a linear traversals of the list to check for membership, the develop-
ers of this package prefer to use the condition e.list == l to check whether
the element e is in list l as is shown in line 18 in listing 8. As already

1 // Remove removes e from l if e is an element of list l.
2 // It returns the element value e.Value.
3 // The element must not be nil.
4 requires e != nil
5 requires l.Mem(elems , true)
6 requires e != &l.root
7 //# The next two lines aim to establish: (e.list == l) IFF (e in elems)
8 requires !(e in elems) ==> (acc(e) && e.list != l)
9 requires unfolding l.Mem(elems , true) in (e.list == l) == (e in elems)

10 ensures !(e in elems) ==> l.Mem(elems , true)
11 ensures e in elems ==> l.Mem((elems setminus (set[* Element]{e})), true)
12 ensures acc(e) && e.Value === res && (e in elems ==> e.list == nil)
13 decreases
14 func (l *List) Remove(e *Element , ghost elems set[* Element]) (res any) {
15 ghost if e in elems {
16 unfold l.Mem(elems , true)
17 }
18 if e.list == l {
19 // if e.list == l, l must have been initialized
20 // when e was inserted in l or l == nil
21 // (e is a zero Element) and l.remove will crash
22 fold l.Mem(elems , true)
23 l.remove(e , elems)
24 }
25 return e.Value
26 }

Listing 8: Specified Remove method

pointed out in 4.1.3, this membership check is buggy when a pointer to an
element is leaked before the list was reset without clearing the element’s list

field. We thus wish to have an equivalence between an element’s list field
pointing to a list l and the fact that the element is contained in that list’s set
of elements in the Mem predicate. Concretely, given an element e, a list l and
the corresponding predicate l.Mem(elems, true), we need to establish

e in elems ⇐⇒ e.list == l (4.1)

With this restriction, we will never be able to observe the bug in verified
code since calls to e.g. Remove are disallowed if the equivalence does not
hold. This is further useful when gathering up constraints in branches in the
code’s control flow. In the above example of the Remove method, we enter
the method not knowing whether the element e belongs to the list. The
code does this check this via the if-statement e.list == l. The branch that
then effectively removes the element from the list should only be entered
if the element is in the list. Otherwise, the branch is not entered and it is

Note: We also require the list to be initialized, implying l != nil. This disallows the
crash described by the developers in lines 19 - 21.

16

4.2. Ring

presumed the element was not part of the list. The predicate l.Mem(elems,

true) already provides the fact that the list fields of the elements in the
elems set all point to l. The equivalence 4.1 ensures that Gobra can infer
that e in elems if the execution enters the branch where the element is to
be removed. Establishing this equivalence happens in lines 8 and 9 in the
above example and required a workaround that might seem counter-intuitive
at first glance. While the equivalence itself is stated on line 9, the overall
problem lies in the fact that it is unclear where the permissions to e’s list

field should come from. While we use an unfolding of the predicate in
line 9, this only yields us the permissions to this field if indeed e in elems.
Therefore, if e were not in the elems set, the unfolding of the predicate
would not give us the required permissions for the field access. In line 8 we,
therefore, request permissions to e’s fields via acc(e) but only in the case
where e is not in the elems set. In that case, the unfolding of the predicate in
line 9 is without effect. This kind of membership check is used in various
other methods throughout this package. We thus repeat this pattern in the
preconditions of the methods where it is necessary. Specifically, this pattern
had to be applied for the methods InsertBefore, InsertAfter, MoveToFront,
MoveToBack, MoveBefore and MoveAfter. While this precondition constitutes
an abstraction leak, i.e. it reveals how a membership check is done, it is
nonetheless necessary in order to avoid running into a bug.

4.2 Ring

In this section, we describe our derived specifications for the ring package.
The data structure of a ring is conceptually very similar to the doubly-linked
circular list described in the list package with the main difference being that
there is no clear “owner” element. A full list of the package’s methods that
operate on these types is shown in the package overview on Go’s website2.

4.2.1 Type

1 type Ring struct {
2 next , prev *Ring
3 Value any // for use by client; untouched by this library
4 }

Listing 9: Definition of the Ring type from the standard library’s ring package.

In this package, only the Ring type gets defined as shown in listing 9. The
package developers use the word “ring” interchangeably in their comments.
They use “ring” to refer to both a single object instance of the Ring type

2https://pkg.go.dev/container/ring

17

4. Implementation

as well as the whole data structure. We will differentiate these two cases
and use “ring element” and “ring structure” respectively. A ring structure
is composed of doubly-linked and cyclically connected ring elements via
the Ring type’s prev and next fields. Contrary to a list, we have no clear
beginning or end to the ring structure, nor do we have an obvious “owner”
element of the structure.

4.2.2 Invariants of a ring structure

The invariants of a ring structure are formalized in the Mem predicate shown
in listing 10. This predicate is similar in many ways to the Mem predicate
of a list. It abstracts over the permissions of all ring elements in the ring
structure and additionally provides some consistency guarantees about the
structure if it can be considered initialized. The parameters s and isInit

1 pred (r *Ring) Mem(ghost s set[*Ring], ghost isInit bool) {
2 r != nil &&
3 r in s &&
4 (forall i *Ring :: i in s ==> (
5 acc(&i.next) && acc(&i.prev) && acc(&i.Value))) &&
6 ((r.next == nil || r.prev == nil) ==> !isInit) &&
7 (! isInit ==> (
8 s == set[*Ring]{r} &&
9 r.next == nil &&

10 r.prev == nil)) &&
11 (isInit ==> (
12 (forall i *Ring :: i in s ==> (
13 i.next != nil && i.prev != nil)) &&
14 (forall i, j *Ring :: ((i in s && i.next == j) ==> (
15 j in s && j.prev == i && i.next.prev == i &&
16 j.prev.next == j))) &&
17 (forall i, j *Ring :: ((i in s && i.prev == j) ==> (
18 j in s && j.next == i && i.prev.next == i &&
19 j.next.prev == j)))))
20 }

Listing 10: Definition of the memory predicate Mem of a ring structure

are of types set[*Ring] and bool respectively. Similar to before, s is the set
of all ring elements in the ring structure whereas isInit serves to indicate
whether the ring structure pointed to via the ring element r was initialized
by the init method. The quantified expressions in lines 12 - 19 establish
that every ring element has to be connected to another ring element and
that these connections are doubly-linked. Apart from this, the predicate by
itself does not enforce that the elements in s form one single ring structure.
Similar to list, this could be enforced by requiring reachability between all
ring elements as described in more detail in 5.4.

18

4.2. Ring

4.2.3 Next - Prev

The package contains the two similar Next and Prev methods of which the
former is shown in listing 11. We use this example to illustrate a few key

1 // Next returns the next ring element. r must not be empty.
2 //# We use 'owner ' here to make calls from different receivers
3 //# in the same ring structure work (see e.g. Link)
4 requires r != nil
5 requires owner != r ==> r in elems
6 requires !isInit ==> owner.Mem(elems , false)
7 requires isInit ==> acc(owner.Mem(elems , true), ReadPerm)
8 ensures !isInit ==> (owner.Mem(set[*Ring]{r}, true) && res == r)
9 ensures isInit ==> (acc(owner.Mem(elems , true), ReadPerm) && res in elems)

10 ensures isInit ==> unfolding acc(owner.Mem(elems , true), ReadPerm) in
11 res == r.next
12 decreases
13 func (r *Ring) Next(ghost elems set[*Ring], ghost owner *Ring ,
14 ghost isInit bool) (res *Ring) {
15 ghost if isInit {
16 unfold acc(owner.Mem(elems , true), ReadPerm)
17 } else {
18 unfold owner.Mem(elems , false)
19 }
20 if r.next == nil {
21 assert !isInit //# here we know !isInit
22 fold owner.Mem(elems , false)
23 return r.init(elems , false)
24 }
25 res = r.next
26 fold acc(owner.Mem(elems , true), ReadPerm)
27 }

Listing 11: Specified Next method

observations. Firstly, the developers’ comment points out that the receiver r

must not be empty. As described in further documentation, this means simply
that r must not be nil. Given the above, this method then uses the check
r.next == nil to establish whether the ring structure is initialized. Secondly,
Next as well as Prev call init if it was determined that the ring structure was
not yet initialized. This prevents us from declaring these methods as pure.
However, both these methods are called on initialized ring structures from
various other points in the code. To clearly indicate that the heap-locations
hidden in the Mem predicate were not changed we, therefore, differentiate the
level of permissions based on whether the ring structure is already initialized,
i.e., we only need write permissions to the heap locations if isInit is false.

4.2.4 New

Listing 12 shows a specified and adapted version of the original New method
present in the ring package. The purpose of New is to create a new ring
structure with n elements. Given n > 0, the original version started with
the first ring element r, then iterated n - 1 times through a loop where it
attached a newly created ring element. After the loop, the endpoints of this

19

4. Implementation

1 // New creates a ring of n elements.
2 ensures n <= 0 ==> res == nil
3 ensures n > 0 ==> (len(elems) == n && res.Mem(elems , true))
4 func New(n int) (res *Ring , ghost elems set[*Ring]) {
5 if n <= 0 {
6 res = nil
7 elems = set[*Ring]{}
8 return
9 }

10 r := new(Ring)
11 p := r
12 //# Changed the implementation to already form a cycle here so that
13 //# we can use the memory predicate in the invariant and have an
14 //# easier time establishing it in the end.
15 r.next = r
16 r.prev = r
17 elems = set[*Ring]{r}
18 fold r.Mem(elems , true)

19 invariant r.Mem(elems , true)
20 invariant len(elems) == i
21 invariant p in elems
22 invariant 1 <= i && i <= n
23 decreases n - i
24 for i := 1; i < n; i++ {
25 unfold r.Mem(elems , true)
26 q := &Ring{}
27 q.prev = p
28 q.next = p.next
29 q.prev.next = q
30 q.next.prev = q
31 p = q
32 elems = elems union set[*Ring]{p}
33 fold r.Mem(elems , true)
34 }
35 res = r
36 }

Listing 12: Specified and adapted New method

chain would be connected. This original version ultimately made it difficult
to derive suitable loop invariants such that the invariants of an initialized list
could be proved in the end. This adapted version takes a different approach.
A consistent ring structure always gets established between iterations of the
loop. This way, we can use the Mem predicate for initialized ring structures
as our loop invariant and do not have to fold it at the very end only from
the gathered constraints. However, this adapted version of the method still
passed all the tests in the ring test.go file.

4.2.5 Link

The Link method accepts ring element r as its receiver and ring element s as
its argument. Depending on whether these ring elements are in the same
ring structure and how they relate to each other in their relative positions,
the execution yields one or two ring structures. A subset of the possible
behaviours of the Link method is illustrated in figure 4.1. A partly specified
version of Link is shown in listing 13.

20

4.2. Ring

r

n p

s

Link p

n

s

r

(a) Case 1

r

n
s

p

Link

r

sp

n

(b) Case 2

r

np
[r=s]

Link p

n r
[r=s]

(c) Case 3

r n

Link[r=s=n=p]

(d) Case 4

Figure 4.1: Subset of cases of Link’s behaviour

Note that in figure 4.1, n is equal to r.next and p is equal to p.prev in the state
before the method execution. The receiver of the method is circled in blue, the method
argument (if not the same as the receiver) in green, and the returned pointer in red.

We introduced the sets elemsR and elemsS as additional parameters. These
sets contain the elements of the ring structures containing r and s respectively.
Since we restrict the specification at the moment to only accept initialized
ring structures, the return value will always be the original value of r.next.

• Case 1: The case depicted in figure 4.1a represents the case that is
intuitively associated with the method name. The ring elements r and
s belong to different ring structures. These ring structures get split up
and recombined into a new ring structure now containing all elements
of both elemsR and elemsS. Note that while the figure suggests there has
to be more than one element in the initial ring structures, the above is
still true even if any of the two or both of the structures only contained
one element. We manage to successfully prove the Mem predicate for the
resulting ring structure in line 33.

• Case 2: In this case, illustrated in figure 4.1b, the ring elements r and
s belong to the same ring structure but are not equal. The idea here
is that all elements between r and s in the next direction get ejected
from the original ring structure. The two resulting chains are then
closed to form two new ring structures. The method returns a reference
to one of these ring structures via the returned ring element n. No
specification was derived for this case since it was difficult to derive the
subset of elemsR that contains all ring elements between r and s. There
is a special sub-case when r and s were neighboring in the original
ring structure. In that case, the structure remains unchanged and the
method simply returns n.

21

4. Implementation

1 requires r != nil
2 requires r.Mem(elemsR , true)
3 requires (s != nil && !(s in elemsR)) ==> s.Mem(elemsS , true)
4 requires (s != nil && !(s in elemsR)) ==> (
5 elemsR intersection elemsS) == set[*Ring]{}
6 requires (s != nil && s in elemsR) ==> elemsR == elemsS
7 ensures res == old(unfolding r.Mem(elemsR , true) in r.next)
8 ensures (s != nil && !(s in elemsR)) ==>
9 res.Mem((elemsR union elemsS), true)

10 ensures (s != nil && s in elemsR && r == s && len(elemsR) == 1) ==>
11 res.Mem((elemsR), true)
12 decreases
13 func (r *Ring) Link(s *Ring , ghost elemsR set[*Ring],
14 ghost elemsS set[*Ring]) (res *Ring) {
15 n := r.Next(elemsR , r, true)
16 if s != nil {
17 ghost elemsX := (s in elemsR)?(elemsR):(elemsS)
18 ghost owner := (s in elemsR)?(r):(s)
19 p := s.Prev(elemsX , owner , true)
20 unfold r.Mem(elemsR , true)
21 ghost if !(s in elemsR) {
22 unfold s.Mem(elemsS , true)
23 }
24 r.next = s
25 s.prev = r
26 n.prev = p
27 p.next = n
28 ghost if !(s in elemsR){
29 assert n != p
30 assert s != r
31 assume forall i *Ring :: i in (elemsR union elemsS) ==>
32 (i.next != i && i.prev != i)
33 fold n.Mem((elemsR union elemsS), true)
34 } else {
35 ghost if r == s {
36 ghost if len(elemsR) == 1 {
37 fold n.Mem(elemsR , true)
38 }
39 ghost if len(elemsR) > 1 {
40 //# UNIMPLEMENTED Case 3
41 }
42 } else {
43 //# UNIMPLEMENTED Case 2
44 }
45 }
46 }
47 return n
48 }

Listing 13: Specified Link method

• Case 3: In the case shown in figure 4.1c, r and s are equal in a ring of
multiple elements. Link simply removes r from the structure. We would
like to prove n.Mem((elemsR setminus (set[*Ring]r)), true). How-
ever, our abstraction is unsuitable for this purpose. Since the Mem

predicate does not explicitly enforce that all ring elements form a single
cycle, it could be that r was in a cycle with itself. Thus, we could have
that r == n even though we know that len(elemsR) > 1

• Case 4: Figure 4.1d shows a scenario where r == s are the only ring
element in a ring structure. No changes are made to the structure. We
can prove n.Mem(elemsR, true) in line 37 and return n.

22

4.3. Sort

4.3 Sort

In this section, we describe the specifications we derived for parts of the
sort package. Sort describes an interface called Interface. Types seeking to
implement Interface must provide the methods Len(), Less(i, j int) and
Swap(i, j int). The package also offers some default implementations of
Interface based on int and float64 slices called IntSlice and Float64Slice

respectively. Moreover, the package offers a sorting function called pdqsort.
According to the developers, the implementation of pdqsort is based on
pattern-defeating quicksort [13]. This function uses many subroutines such
as insertionSort, heapSort, partition and breakPatterns.

4.3.1 Interface specification

We require implementations to abstract the underlying data structure into
a ghost sequence. To be able to work with objects of varying types, we
declare the type of the sequence as seq[any] and use it as a parameter in a
predicate. An implementation of the predicate needs to map the values from
the underlying data structure onto this sequence.

1 // Len is the number of elements in the collection .
2 preserves acc(Mem(elems), ReadPerm)
3 ensures res == len(elems)
4 decreases
5 Len(ghost elems seq[any]) (res int)

Listing 14: Specification of Len in sort.Interface

The specification for Len shown in listing 14 simply describes that the result
will be equal to the length of the sequence.

For the specification of Less, shown in listing 15, we additionally introduced
the pure function less spec as well as the auxiliary lemma LemmaLessIsTransitive.
The pure function less spec was introduced for us to be able to use it in
specifications. Any already available implementations of Less might not
follow Gobra’s restrictions on the form of pure functions. Therefore, any
implementations would need to duplicate Less’s behaviour in less spec

while following the restrictions. Furthermore, it is required for Less to
form a transitive relation on the elements it compares. Therefore, transi-
tivity has to be proven by the implementations of the interface that have
to satisfy LemmaLessIsTransitive’s postcondition. The way the developers
implemented the IsSorted method makes it clear that Less must be “strictly
less” which is why we explicitly enforce that comparisons between the same
element yield false in line 18.

23

4. Implementation

1 // Less reports whether the element with index i
2 // must sort before the element with index j.
3 ghost
4 preserves acc(Mem(elems), ReadPerm)
5 ensures forall a, b, c int :: (0 <= a && a < len(elems) &&
6 0 <= b && b < len(elems) && 0 <= c && c < len(elems) &&
7 less_spec(a, b, elems) && less_spec(b, c, elems)) ==> (
8 less_spec(a, c, elems))
9 ensures forall a, b, c int :: (0 <= a && a < len(elems) &&

10 0 <= b && b < len(elems) && 0 <= c && c < len(elems) &&
11 !less_spec(a, b, elems) && !less_spec(b, c, elems)) ==> (
12 !less_spec(a, c, elems))
13 decreases
14 LemmaLessIsTransitive(ghost elems seq[any])

15 requires acc(Mem(elems), ReadPerm)
16 requires 0 <= i && i < len(elems)
17 requires 0 <= j && j < len(elems)
18 ensures i == j ==> !res
19 decreases
20 pure less_spec(i, j int , ghost elems seq[any]) (res bool)

21 preserves acc(Mem(elems), ReadPerm)
22 requires 0 <= i && i < len(elems)
23 requires 0 <= j && j < len(elems)
24 ensures res == less_spec(i, j, elems)
25 decreases
26 Less(i, j int , ghost elems seq[any]) (res bool)

Listing 15: Specification of Less in sort.Interface

1 // Swap swaps the elements with indexes i and j.
2 requires Mem(elems)
3 requires 0 <= i && i < len(elems)
4 requires 0 <= j && j < len(elems)
5 ensures Mem(swapped_elems)
6 ensures haveSameElements(elems , swapped_elems)
7 ensures 0 <= i && i < len(elems)
8 ensures 0 <= j && j < len(elems)
9 ensures elems[i] === swapped_elems[j]

10 ensures elems[j] === swapped_elems[i]
11 ensures forall x int :: (0 <= x && x < len(elems) &&
12 x != i && x != j) ==> (
13 elems[x] === swapped_elems[x])
14 ensures old(less_spec(i, j, elems)) ==> !less_spec(i, j, swapped_elems)
15 ensures old(less_spec(j, i, elems)) ==> !less_spec(j, i, swapped_elems)
16 decreases
17 Swap(i, j int , ghost elems seq[any]) (ghost swapped_elems seq[any])

Listing 16: Specification of Swap in sort.Interface

Swap depicted in listing 16 is the only operation described in the interface that
should change the underlying data structure. It accepts the sequence elems

as an argument and returns the sequence swapped elems as a result. Since
sorting functions may call Swap many times we introduced the ghost pure

helper function haveSameElements and use it in Swap’s postcondition in line 6.
When used in the specification of a sorting function, this gives us a concise
way to express that the underlying data structure’s elements remain the same.
The ghost pure function haveSameElements maps elems and swapped elems to
multisets and compares these. In lines 9 - 13, the postcondition expresses how

24

4.3. Sort

the elements at indices i and j were swapped and that the elements at all
other indices remained the same. Since sorting functions use the swapping
of elements to change the ordering, we state the effect of swapping on the
Less relation in lines 14 - 15.

4.3.2 IntSlice

In addition to the interface Interface, we specified and verified the interface’s
implementation IntSlice. Since the methods’ functionality is straightforward
and the specifications are only marginally changed, we refrain from repeating
the same information here. Instead, we focus on how we defined the Mem

predicate in this implementation example. Listing 17 shows the Mem predicate

1 ghost
2 requires forall j int :: 0 <= j && j < len(x) ==> acc(&x[j], _)
3 ensures len(s) == len(x)
4 ensures forall j int :: 0 <= j && j < len(x) ==> (
5 s[j] == res[j])
6 decreases len(x)
7 pure func toSeq(x []int) (s seq[any]) {
8 return (len(x) == 0 ? seq[any]{} :
9 toSeq(x[:len(x) - 1]) ++ seq[any]{x[len(x) - 1]})

10 }

11 pred (x IntSlice) Mem(ghost s seq[any]){
12 len(x) == len(s) &&
13 forall j int :: 0 <= j && j < len(x) ==> acc(&x[j]) &&
14 s == toSeq(x)
15 }

Listing 17: IntSlice.Mem predicate

for IntSlice and the ghost pure helper function toSeq. The toSeq function
maps the slice of ints to a sequence of type seq[any]. The Mem predicate itself
describes permissions to all elements of the IntSlice x. Additionally, the
predicate accepts the sequence s as a parameter and enforces that s needs to
be the same as toSeq(x).

A notable point about the implementation of Swap for IntSlice is that we
were not able to prove haveSameElements. Moreover, we had to introduce
two assertions in lines 24 - 27 to help along the SMT-solver when proving
the other postconditions. The main difficulty lay in the fact that we had to
remind Gobra about how the IntSlice x relates to the sequences of elements
elems and swapped elems at any point in time. However, the first of these
assertions cannot be proven by using the most recent version of Gobra as of
January 23rd 2023. However, verification works fine when using the stable
version of GobraIDE. Likely, an update to Gobra introduced incompleteness.

25

4. Implementation

1 assert forall idx int :: (0 <= idx && idx < len(elems)) ==> (
2 elems[idx] == old(unfolding x.Mem(elems) in x[idx]))
3 assert forall idx int :: (0 <= idx && idx < len(swapped_elems)) ==> (
4 swapped_elems[idx] == unfolding x.Mem(swapped_elems) in x[idx])

Listing 18: IntSlice.Swap assertions

4.3.3 Sorting function

One of the subroutines used by pdqsort is insertionSort. Our specified
version of insertionSort is shown in listing 4.2. Since insertionSort is only
used as a subroutine, it accepts arguments a and b which are indices into
the underlying data structure. The insertionSort function is used to sort
the elements between a (inclusive) and b (exclusive). Our specified version
of insertionSort additionally accepts the sequence elems and returns the
sequence sorted elems. The postcondition in line 7 shows that these two
sequences contain the same elements.

Note that we had to adapt the inner loop condition in line 27 and move the
second conjunct into the loop via an introduced if-statement. Gobra does
currently not support short-circuiting [9]. Without this change, Gobra would
not have recognized that calling Less with the argument j - 1 is allowed.

a b

(a) initial state

a bj i

(b) sort in progress

Figure 4.2: Illustration insertionSort

The figures depicted in 4.2 serve as a simple illustration and reminder of
how insertion sort works. As in the context of the insertionSort function,
the data shown in these figures goes from indices a to b. Initially, we start
with our data in an unsorted state as shown in subfigure 4.2a. The outer loop
in the insertionSort function then advances the pointer i from a towards
b. In every such step, if the element at index i is not yet sorted, the inner
loop will advance pointer j from i towards a and perform swaps between

26

4.3. Sort

1 // insertionSort sorts data[a:b] using insertion sort.
2 requires data.Mem(elems)
3 requires data != nil
4 requires 0 <= a && a < len(elems)
5 requires a <= b && b <= len(elems)
6 ensures data.Mem(sorted_elems)
7 ensures haveSameElements(elems , sorted_elems)
8 decreases
9 func insertionSort(data Interface , a, b int , ghost elems seq[any])

10 (ghost sorted_elems seq[any]) {
11 sorted_elems = elems
12 assert data.Mem(sorted_elems)

13 invariant haveSameElements(elems , sorted_elems)
14 invariant a < i
15 invariant a < b ==> i <= b
16 invariant data.Mem(sorted_elems)
17 //# invariant prefix [a:i] is always sorted
18 decreases b-i
19 for i := a + 1; i < b; i++ {
20 invariant haveSameElements(elems , sorted_elems)
21 invariant i < b
22 invariant a <= j && j <= i
23 invariant a < j ==> 0 <= j - 1
24 invariant data.Mem(sorted_elems)
25 //# invariant [a:j] and [j:i] is always sorted
26 decreases j-a
27 for j := i; j > a /*&& data.Less(j, j - 1, elems)*/; j-- {
28 assert 0 <= j - 1
29 assert i < b
30 assert i < len(sorted_elems)
31 if data.Less(j, j - 1, sorted_elems) {
32 sorted_elems = data.Swap(j, j - 1, sorted_elems)
33 assert !data.less_spec(j, j - 1, sorted_elems)
34 } else {
35 assert !data.less_spec(j, j - 1, sorted_elems)
36 break
37 }
38 }
39 }
40 }

Listing 19: Specified version of insertionSort

neighbors until the prefix from a to i is sorted. This behaviour is depicted
in subfigure 4.2b. In lines 31 - 33, we see how a swap changes the ordering
between two neighbors that were previously not ordered correctly. Ideally,
we want to prove that insertionSort sorts the elements in the underlying
data structure in increasing order according to Less. A natural choice for a
loop invariant for the outer loop would be that the prefix [a:i] is always
sorted. Since i eventually reaches b, loop termination would imply that
elements in [a:b] are sorted correctly which is the goal. Since the inner loop
sorts in the element pointed to by index j into this prefix, possible invariants
would be that the elements in [a:j] and [j:i] have to be sorted.
However, we were not able to prove this using Gobra and our attempted
specifications. For any definition of sortedness Gobra complains the inner
loop invariant could not be preserved. One possible reason for this is that the
inner loop’s loop condition is a conjunction between j > a and data.Less(j,

j - 1, sorted elems) whereas the termination measure is only concerned

27

4. Implementation

with the first of these conjuncts. The inner loop terminates as soon as the
element is correctly sorted into the prefix. If the element was the smallest
element according to Less then the loop terminates as soon as the termination
measure reaches zero. Otherwise, the loop terminates earlier, i.e. as soon as
!Less(j, j-1) holds.

1 forall i int :: (a <= i && i < b) ==> !less_spec(i, i - 1)
2 forall i, j int :: (a <= i && i <= j && j < b) ==> !less_spec(j, i)

Listing 20: Definitions of sortedness

Listing 20 shows two simplified versions of the ways we tried to define
sortedness. The definition in line 1 enforces for all pairs of neighbors, that the
one with the higher index is not Less than the one with the lower index. I.e.
the one with the lower index is less than or equal to the one with the higher
index according to Less. The transitivity of !less spec then implies that all
elements are sorted. We can successfully prove this definition of sortedness
in the postcondition of the sort package’s IsSorted function. In contrast, the
definition in line 2 does not rely on the transitivity of !less spec. Here, it is
explicitly enforced that, for any given element, any element with a higher or
equal index is not Less.
Another, or additional, reason why we cannot prove sortedness might be
because Gobra “forgets” the ordering between pairs of elements across calls
to the Swap method. However, explicitly extending Swap’s postcondition to
mention the ordering of all pairs with less spec based on the old(..) context
and Swap’s actions did not solve the issue.

28

Chapter 5

Evaluation

In this chapter, we present and evaluate a few key characteristics of our
specifications. Furthermore, we will outline some of the limitations of our
specifications as well as describe the encountered issues when working with
Gobra.

5.1 Annotation Overhead

Deriving specifications for a program comes with a significant overhead as
already established in section 2.2.2. In this section, we measure and compare
the amount of lines of annotation and amount of lines of original source code.
We regard the following as constituting annotation:

• Any clause in the specification of a method

• Loop variants and invariants

• Any ghost statement

• Any inlined ghost code, i.e. unfoldings as well as method calls or
function definitions with ghost parameters

• ghost functions

• Predicate definitions

• Implementation proofs

We only list methods for which the specification is working as of the end of
this project.

List

Table 5.1 shows a complete overview comparing the overhead of lines of
annotation for every specified method. We note that for every method

29

5. Evaluation

Method
name

#lines
of code

#lines
of
annota-
tion

Next 6 9
Prev 6 9
Init 6 9
New 3 5
Len 3 7
Front 6 7
Back 6 7
lazyInit 5 12
insert 9 13
insertValue 3 11
remove 8 10

Method
name

#lines
of code

#lines
of
annota-
tion

move 11 11
Remove 6 15
PushFront 4 11
PushBack 4 10
InsertBefore 6 16
InsertAfter 6 16
MoveToFront 6 15
MoveToBack 6 15
MoveBefore 6 18
MoveAfter 6 18

Table 5.1: Annotation overhead in list package

we required at least as many lines of annotation as there were lines of
source code. The method insertValue required 3.7 times as many lines of
annotation as there were lines of source code. This is mostly explained by
the fact that the method itself is short with only 3 lines of code and that we
wished to carry forward insert’s postcondition which describes the inserted
element’s position. Further contributing to lengthy annotations are methods
that require a distinction between receiving initialized vs. uninitialized
lists. This is shown by the large relative annotation overhead of up to 2.8
in Len, lazyInit, PushFront and PushBack. The overall largest contributor
was the requirement that we establish the equivalence described in 4.1. The
methods MoveBefore and MoveAfter accept two Element parameters and this
equivalence had to be established for both of these elements. Therefore, with
only 6 lines of source code, we had to provide 18 lines of annotation for both
of these methods. We also required a total of 45 lines for helper functions
and the definition of the Mem predicate. In total, we required 2.4 times as
many lines of annotation as there were original lines of code.

Ring

A complete overview comparing the overhead of lines of annotation for every
specified method is shown in table 5.2. Note that for New we compare our
adapted implementation instead of using the original version. Despite this
adapted implementation having more lines of code, New is the only method
where we required fewer lines of annotation than lines of actual source code.
This shows the benefit of being able to use the Mem predicate in the loop
invariant. Next and Prev on the other hand require 3 times as many lines

30

5.1. Annotation Overhead

Method name #lines of code #lines of annotation
init 5 7
Next 6 18
Prev 6 18
Move 16 23
New 19 13
Link 11 31

Table 5.2: Annotation overhead in ring package

of annotation compared to lines of source code. This is the result of us
distinguishing the permission amount to the Mem predicate based on whether
the ring structure is already initialized. The highest annotation overhead
in absolute terms is seen in Link where we had to distinguish between
different cases. Since we did not treat all possible cases in our specification,
the overhead of a complete version would likely be higher. There were 11
additional lines of annotation spent on the definition of the Mem predicate.
Summing up the specified methods and any additional annotation, we have
1.9 times as many lines of annotation compared to lines of source code.

Sort

Method name #lines of code #lines of annotation
Interface.Len 1 4
Interface.Less 1 6
Interface.Swap 1 14
IntSlice.Len 1 4
IntSlice.Len 1 7
IntSlice.Swap 1 20
IsSorted 9 17
insertionSort 7 31

Table 5.3: Annotation overhead in sort package

The relative overhead of annotation in the sort package, shown in the table
5.3 is overblown for two reasons. Firstly, we only managed to specify a
small amount of the package, which causes the relative overhead incurred by
helper functions to increase. Secondly, the interface Interface naturally only
has one line of code per defined method. Since the implementation IntSlice

is relatively simple, its methods were originally also written on just one line.
The more typical function IsSorted has 17 lines of annotation for 9 lines of
source code. However, insertionSort has 31 lines of annotation compared
to 7 lines of source code which is an overhead factor of 4.4. This overhead
is likely to increase when the specification gets updated to prove functional

31

5. Evaluation

correctness. Summing up all specified parts of the sort package, including
any predicates and helper functions, we have 160 lines of annotation for only
22 lines of source code.

5.2 Timing

Poorly designed specifications can have a significant impact on verification
time. Consequently, whenever reasonably possible we tried to reduce the
number of required unfoldings and replaced them with calls to pure functions.
Also, the triggers for the quantified expressions were chosen in such a way as
to minimize unnecessary instantiations of the quantifiers. In this section, we
report the verification times of individual methods as well as whole packages.
We report the verification times in seconds as displayed by Gobra as “Total
time”. All tests are conducted without the use of the --cacheFile flag. For
measuring the time to verify a single method we use the file.go@linenumber

notation. We recognize that by using this methodology many of the reported
verification times for single small methods are dominated by the overhead of
setting up the verification pipeline. This is shown by the fact that it takes a
similar amount of time to verify the “fastest” methods regardless of whether
they are annotated as trusted. However, these results are still valuable since
they give an upper-bound on the time it takes to verify any given method.

• Windows 10 laptop

• Intel i7-3630QM CPU with 4 physical (8 logical) cores at 2.4 GHz

• 2 × 8GB SODIMMs at 1600MHz

• Java version 8 update 341

• z3 for Windows version 4.11.2 - 64 bit

• Gobra, Viper and Silicon fully updated as of January 17th 2023

Other user-facing programs were closed, malware scans halted and intensive
background processes stopped. All test runs were conducted five times. In
our results, we report the runtimes in seconds and the average with the
longest and shortest runtimes excluded and rounded to one decimal.

List

As shown in table 5.4, verification times for most methods hovered around
25 seconds. In insert and remove, where we change the structure of the
list, we measure up to 55.3 seconds on average. MoveBefore and MoveAfter

yield verification times of 47.3 and 38.3 seconds respectively on average.
Interestingly, the average verification time for move is 329 seconds and by far
the longest. We think this is because of the implication in the postcondition

32

5.2. Timing

Method
name

(shortest) (longest) avg

Next 24 25 25 26 26 25.3
Prev 23 24 26 26 26 25.3
Init 26 27 27 27 27 27
New 22 22 22 22 23 22
Len 30 30 34 35 38 33
Front 25 25 25 25 25 25
Back 25 25 25 25 25 25
lazyInit 23 23 23 23 24 23
insert 52 53 56 57 61 55.3
insertValue 24 24 24 24 24 24
remove 36 38 39 39 43 38.7
move 287 296 337 354 468 329
Remove 26 26 26 26 27 26
PushFront 23 23 23 23 25 23
PushBack 23 23 23 23 23 23
InsertBefore 28 28 29 29 29 28.7
InsertAfter 27 27 27 27 29 27
MoveToFront 27 27 28 28 30 27.7
MoveToBack 31 31 31 32 33 31.3
MoveBefore 42 45 47 50 50 47.3
MoveAfter 38 38 38 39 41 38.3

Table 5.4: Verification time measurements in list package

where we describe the moved element’s new position. If we leave out these
postconditions move verifies in under 60 seconds. Also, move’s verification
time shows the highest variability with the shortest run only taking 287
seconds and the longest run taking 468 seconds. While it makes sense that
we experience higher variability if the overhead is not the dominating factor,
this large difference is still surprising. A reason for this behaviour could be
that we likely chose our triggers sub-optimally. Verifying the list.go file as
a whole, the average verification time is 490.7 seconds and shows a similar
variability as in move.

Ring

Table 5.5 shows the verification times for the specified methods in the ring

package. The verification times for init, Next, Prev and Move are very con-
sistent. Of these, Move has the highest average at still only 22 seconds. Our
adapted version of New verifies after 73.6 seconds on average. Link has by
far the longest verification time of 215.3 seconds on average. This is likely
due to the case-split and the correspondingly convoluted postconditions and

33

5. Evaluation

Method
name

(shortest) (longest) avg

init 19 19 19 19 20 19
Next 20 20 20 20 21 20
Prev 20 20 20 21 21 20.3
Move 22 22 22 22 23 22
New 52 55 75 91 93 73.6
Link 175 197 205 211 230 215.3

Table 5.5: Verification time measurements in list package

conditional folds of the Mem predicate.

Sort

Only a small fraction of the total number of functions and methods in the
sort package could be specified and verified. On average, verification of all
these together only takes 48 seconds. Therefore, a detailed listing of separate
runtimes for single methods is omitted.

5.3 Tests

Successful verification of a program guarantees that the program fulfils
the provided specification. However, the guarantees one gets from such
a successful verification are only as valuable as what is explicitly stated
in the program’s specifications. To gauge the comprehensiveness of our
specifications, we check whether we can use them to annotate the unit tests
in the list test.go file and prove the tested properties statically. Additionally,
we will show how we can use the specified version of our code to detect a
known bug. The tests in this section are only performed on our specified
version of the list package. In this package, we managed to specify and
verify the majority of methods which gives us enough to perform a few tests.

5.3.1 Test cases

The file list test.go contains a variety of test cases for the implementation
of the list package. The tests themselves are a collection of functions
performing operations on a list by calling its methods. Originally, after some
calls to these methods, either a call to checkListPointers or a manual check
via an if-statement follows. The checkListPointers function accepts three
arguments. One key argument is a slice of Element pointers. The function
then checks whether the elements in that slice are contained in the list and if
they are in the required order with all pointers correctly set. In this section,

34

5.3. Tests

we will present a small and adapted subset of these test cases along with
some additional annotation.

1 func TestZeroList () {
2 var l1 = new(List)
3 fold l1.Mem(set[* Element]{&l1.root}, false)
4 e := l1.PushFront(1, set[* Element]{&l1.root}, false)
5 assert l1.Mem(set[* Element]{&l1.root , e}, true)
6 //# ...
7 }

Listing 21: Push to uninitialized list

The example in listing 21 shows a push to an uninitialized list. Since the
list did not get instantiated via the list package’s New function, we get an
uninitialized list in line 2 and can consequently only fold the Mem predicate
with isInit == false. Since both PushBack and PushFront call lazyInit, we
can call PushFront on the uninitialized list in line 4. As a result, we obtain the
Mem predicate for a now initialized list and the new element e included in the
set of elements. It is noteworthy that InsertBefore and InsertAfter do not
call lazyInit. Both these methods should only change the state if their mark

argument is part of the list. The developers’ implicit assumption was likely
that if an element whose list field pointed to the receiver list was passed
as an argument then the list is guaranteed to have already been initialized.
However, as we have shown in the previous section, this assumption is wrong.
A pointer to a list could have been leaked before. Furthermore, it is possible
to reset a list l to an uninitialized state via l = list.List [5]. With this, l
would keep its address and mark.list == l would still hold true. To avoid
this issue altogether, we forbid this implicit assumption and require the list
to always be initialized when a call to InsertBefore or InsertAfter is made.

1 func TestInsertBeforeUnknownMark () {
2 var l = new(List)
3 fold l.Mem(set[* Element]{&l.root}, false)
4 e1 := l.PushBack(1, set[* Element]{&l.root}, false)
5 e2 := l.PushBack(2, set[* Element]{&l.root , e1}, true)
6 e3 := l.PushBack(3, set[* Element]{&l.root , e1, e2}, true)
7 assert l.Mem(set[* Element]{&l.root , e1 , e2, e3}, true)
8 mark := new(Element)
9 assert unfolding l.Mem(set[* Element]{&l.root , e1, e2, e3}, true)

10 in mark != &l.root
11 l.InsertBefore (1, mark , set[* Element]{&l.root , e1, e2 , e3})
12 assert l.Mem(set[* Element]{&l.root , e1 , e2, e3}, true)
13 }

Listing 22: InsertBefore not contained element

In listing 22 we see how InsertBefore is called in line 11. The mark argument
for this call is not contained in the list (and properly mark.list != l). In this
scenario, the call to InsertBefore should leave the list contents unchanged.

35

5. Evaluation

This is indeed the case as can be asserted in the following line. However, even
though the mark element gets newly created in line 8, Gobra cannot derive
itself that it is guaranteed to be different from the already existing &l.root

and would thus fail to fulfil InsertBefore’s precondition. We can trigger this
knowledge by unfolding the Mem predicate and manually asserting the fact.

1 func TestList () {
2 l := New()
3 //# ...
4 e2 := l.PushFront("2", set[* Element]{&l.root}, true)
5 assert l.root.comesBefore(e2, set[* Element]{&l.root , e2}, l)

6 e1 := l.PushFront(1, set[* Element]{&l.root , e2}, true)
7 assert l.root.comesBefore(e1, set[* Element]{&l.root , e1 , e2}, l)

8 e3 := l.PushBack(3, set[* Element]{&l.root , e1, e2}, true)
9 assert e3.comesBefore (&l.root , set[* Element]

10 {&l.root , e1, e2, e3}, l)

11 e4 := l.PushBack("banana", set[* Element]{&l.root , e1 , e2 , e3}, true)
12 assert e4.comesBefore (&l.root , set[* Element]
13 {&l.root , e1, e2, e3, e4}, l)

14 l.Remove(e2, set[* Element]{&l.root , e1 , e2, e3, e4})
15 assert l.Mem(set[* Element]{&l.root , e1 , e3, e4}, true)
16 }

Listing 23: Insertion and Removal

The TestList function in listing 23 shows the creation of a list followed by
some push operations and finally the removal of an element. We see how the
set of elements in the Mem predicate gets extended with every push operation
and how the correct element gets removed in the call to Remove. Moreover,
after every push operation, we can observe the correct neighborhood relation
between the list’s root element and the newly created and inserted element.
However, there are some strict limitations to checking these neighborhood
relations. The details of these limitations will be expounded on in section 5.4.

5.3.2 Known issue

As already outlined in section 3.1, there is a known issue when it comes
to the validity of using e.list == l to check whether Element e is in List

l [4]. The underlying issue stems from a desire to have a constant time reset
of a list via Init and a constant time membership check. A working, yet
inefficient, solution would be to use a linear time lookup in all methods
that have to check whether an element e is contained in list l. Contrary to
this, and assuming that list resets happen less often than inserts or moves,
it would seem more efficient to only incur this linear time penalty at times
when the list is reset. In this case, one could simply clear the list field for
every element in the list and users could also choose to simply allocate a
new list instead of performing a reset via Init. As described in section 4.1.5,

36

5.3. Tests

we enforce the equivalence e.list == l ⇐⇒ e in elems under the predicate
l.Mem(elems, true) in various methods’ preconditions. The example shown

1 func github_issue_50152 () {
2 l := New()
3 assert l.Mem(set[* Element]{&l.root}, true)

4 el := l.PushBack (42, set[* Element]{&l.root}, true)
5 assert l.Mem(set[* Element]{&l.root , el}, true)

6 l = l.Init(set[* Element]{&l.root , el}, true) // Reset the list.
7 assert l.Mem(set[* Element]{&l.root}, true)

8 l.Remove(el, set[* Element]{&l.root})
9 //# Call fails since precondition (el in elems) == (el.list == l)

10 //# does not hold.
11 }

Listing 24: GitHub Issue 50152

in listing 24 is an adapted version of an open issue on GitHub [6]. If executed
normally, the call to Pushback in line 4 leaks the pointer to the newly created
and inserted element el. After the list is reset in line 6, one could still
call Remove and pass el as an argument. This is because el.list was still
pointing to the list l. The list would then report a length of −1. With our
verified version of the list package, we disallow this behaviour. For one
thing, Remove could not preserve the list invariants if l.lenT were below zero.
However, since we enforce the equivalence shown in 4.1 and we have !(el in

set[*Element]&l.root) but el.list == l, the precondition of Remove is not
fulfilled and the call is disallowed in the first place.

1 func github_issue53351 () {
2 l0 := New()
3 assert l0.Mem(set[* Element]{&l0.root}, true)

4 e0 := l0.PushBack(nil , set[* Element]{&l0.root}, true)
5 assert l0.Mem(set[* Element]{&l0.root , e0}, true)

6 l1 := l0.Init(set[* Element]{&l0.root , e0}, true)
7 assert l0 == l1
8 assert l0.Mem(set[* Element]{&l1.root}, true)

9 e1 := l1.PushBack(nil , set[* Element]{&l1.root}, true)
10 assert l0.Mem(set[* Element]{&l1.root , e1}, true)

11 l0.MoveAfter(e0, e1 , set[* Element]{&l1.root , e1})
12 //# Call fails since precondition (e0 in elems) == (e0.list == l0)
13 //# does not hold.
14 }

Listing 25: GitHub Issue 53351

The example in listing 25 is adapted from another GitHub issue [4] and is
based on the same underlying problem. In line 4 it leaks the pointer to the

37

5. Evaluation

newly created and inserted element e0. The element is subsequently removed
from the list via a reset in line 6. Normally, one could still call MoveAfter with
the element e0 as a parameter and it would try to perform the move operation
since it believes e0 to be in the list. If continued further, this would ultimately
result in a runtime panic. The precondition of MoveAfter also enforces the
equivalence shown in 4.1 for all the elements passed as arguments. This
effectively prevents us from calling MoveAfter with these arguments.

5.4 Functional Limitations

For all the methods discussed so far, we could successfully prove memory
safety. However, there are still issues in our specification attempt. This section
discusses some of the limitations of our specifications. We also explore the
implications of these limitations as well as explore possible remedies in some
cases.

Unsuitable abstractions

As pointed out multiple times, the invariants for packages list and ring

do not enforce that all the elements form a single cycle. This posed a prob-
lem in the list package where we were unable to specify and verify the
PushBackList and PushFrontList methods. This was because their loop in-
variants would have relied on the fact that iterating over the list by calling
Next (or Prev respectively) repeatedly should take exactly len(elems) many
iterations until we’d have seen every element exactly once. In ring’s case,
most methods rely on the fact that all ring elements form a single cycle,
namely Move, Link, Unlink, Len and Do. A first naive approach to enforcing
this structure was based on reachability between elements and using the pure
functions moveNext(n int) and movePrev(n int) where e.g. e.moveNext(2)

would produce e.next.next. However, when trying to incorporate this ap-
proach, verification would not terminate in over 24 hours at which point we
stopped Gobra. Having a proper solution to this would give us a notion of
the ordering of the elements. As described in the next section, this could
make framing easier.

Lack of proper framing

Our specifications are mostly a positive description of a method’s behaviour.
For example, our specification of the method insert in the list package
depicted in listing 5 only talks about the fact that the to-be-inserted element e
gets included in the set of elements elems and that it is neighboring element
at and the element previously at at.next. However, the specification gives
no further detail about the values at any of the other heap locations except
that the invariants imposed by the Mem predicate could still be asserted.

38

5.4. Functional Limitations

In principle, solely going by the specification, insert could have changed
the values of any elements in the list and arbitrarily shuffled any other
neighborhood relations as long as it is still compliant with the list invariants.
An example of this is the test case depicted in listing 23 at the end of the
previous section. After the call to PushBack in line 11, we wished to be
able to show the order of the elements isroot -> e1 -> e2 -> e3 -> e4 ->

root. However, we can only prove what we’ve been explicitly guaranteed
by PushBack’s postcondition at that point. Any previous guarantees on the
order of the elements have been lost since PushBack could have changed it.
Instead of introducing additional postconditions, a likely better and more
performant way to deal with this issue would be to adapt proper framing
when dealing with permissions. With this, we would only demand write
permissions to the heap locations a given method tries to update. However,
since we are dealing with cyclical and doubly linked data structures in the
cases of list and ring, this has a tendency to become convoluted in the
current design. This is because it would require numerous implications and
case distinctions to determine what heap locations require write permissions
based on the length and order of the list. Due to time constraints, we were
not able to implement a better solution to this issue. Updated versions of
the Mem predicate where the abstraction provides a notion of the ordering of
elements could make framing significantly easier.

Verification unstable

In section 5.3.1 we illustrated how we can leverage the verified list package
when going over the test cases in the file list test.go. While we could verify
the package by itself, some test cases exhibited the behaviour that Gobra
non-deterministically reported a postcondition of a called library method
would not hold. This happened even though we could successfully assert the
called method’s precondition. In the example in listing 26, we create a new

1 func testingIssue () {
2 l := New()
3 e1 := l.PushFront(1, set[* Element]{&l.root}, true)
4 e2 := l.PushFront(2, set[* Element]{&l.root , e1}, true)
5 l.Remove(e1, set[* Element]{&l.root , e1 , e2})
6 assert l.Mem(set[* Element]{&l.root , e2}, true)
7 l.MoveToFront(e2, set[* Element]{&l.root , e2})
8 }

Listing 26: Testing issue

list and insert two elements in lines 2 - 4. After the removal of element e1 in
line 5, we can successfully assert the Mem predicate in line 6. Even though we
fulfil MoveToFront’s postcondition, Gobra reports the permissions to the Mem

predicate might not suffice. One commonality of all these issues is that we

39

5. Evaluation

only get this error if we make a call to a ghost pure function in the old(..)

context in the failing method’s postcondition. One suspicion is that poorly
chosen triggers in the library specifications’ quantifiers might contribute to
this unstable behaviour.

Lack of information-hiding

We did not achieve our goal of properly following information-hiding princi-
ples in the packages list and ring. There are many public methods whose
specifications still reveal implementation details like private fields or how
internal checks are made. For example, many of the specifications in the
list package explicitly mention the list’s root field. A better abstraction
that provides a notion of the ordering of elements could also help hide any
information about the next and prev pointers.

Lack of functional correctness proof for ring.Move

The pure functions moveNext and movePrev were initially introduced to be
used in the loop invariants and postcondition of ring’s Move method. Testing
these pure functions via the postcondition of dummy methods that would
simply return e.g. e.next.next worked fine. However, when trying to use
them in Move’s invariants, we encountered the same problem with seeming
non-termination. Therefore, the current specification for Move only guarantees
memory safety. Since Unlink relies on the return value of Move and a specific
case of Link, we were also unable to specify Unlink.

Lack of functional correctness proof for insertionSort

As described in detail in section 4.3.3, we could not prove that insertionSort
sorts the underlying data in the desired order. While it is good that we could
prove memory safety, functional correctness of a sorting function is essential
and required if we aim to ultimately prove functional correctness of pdqsort.

5.5 Observations concerning Gobra

This project was my first ever practical experience with program verification.
While I already had some theoretical knowledge of code contracts and
specifications, the whole concept of the permission model and predicates was
completely new to me. This provided me with the valuable vantage point
to evaluate Gobra as an outsider. This section will primarily deal with my
observations. I will outline issues I discovered, most of which were already
known as well as describe possible future features.

40

5.5. Observations concerning Gobra

Lack of a let construct

Suppose we had a ghost pure helper function called getElement returning
the pointer to an element. In this case, a let construct could look like let

e == getElement() && e.field1 == 1 && e.field2 == 2. It would effectively
introduce a new variable, i.e. e in this case, for use in the specification. A let

construct could make the specification more compact many use cases since it
allows us to give shorter names for long expressions that are used multiple
times.

Gobra tutorial

The Gobra tutorial [10] has been an invaluable resource when first starting
with Gobra. It gives a good overview of basic principles and even more
advanced features such as concurrency and mutual exclusion. However,
some parts of the tutorial are outdated and there are minor inconveniences.
Examples include the following:

• Several of the internal links are not set correctly (this applies to the
Viper tutorial as well). E.g. in the introduction chapter, there is a
subheading “Predicates” with a link that should lead to the section on
predicates. However, it leads back to the original subheading.

• It is no longer necessary to use a semicolon when a line ends with the
!<..!> delimiter.

• |set| is not the correct way to obtain set cardinality.

• In the section on interfaces typeOf(y) == int does not work. Instead
one should use typeOf(y) == type[int].

41

Chapter 6

Conclusion

In this project, we derived criteria to choose a subset of Go’s standard
library to verify using Gobra. Based on these criteria, we attempted to verify
parts of the packages list, ring and sort. In the list package, we could
prove memory safety for all but two methods. This allowed us to use our
specifications to disallow a known bug in the package. In the sort package,
we specified and verified the interface Interface with its implementation
IntSlice, as well as the functions IsSorted and insertionSort. We reported
favourable verification performance and provided a detailed assessment of
the required annotation overhead. Furthermore, we provided an overview
of the current specifications’ limitations and showed how they are not yet
sufficient to provide meaningful guarantees for functional correctness.

6.1 Future work

As pointed out in the section about the specifcations’ limitations in 5.4,
there are still multiple avenues to explore in order to increase our results’
usefulness and impact.

• The invariants of the list and ring packages, encapsulated in their
respective Mem predicates, should be updated such that a single cycle of
all the elements is enforced. This is more important for ring since its
methods often explicitly rely on this property. Having accomplished
this, specifying the remaining few methods should require less effort.

• With an updated abstraction that also enforces an ordering of the ele-
ments, our handling of permissions and enforcements of neighborhood
relations could be vastly simplified. Given this, it should also be eas-
ier to prove functional correctness and data structure integrity across
multiple method calls.

43

6. Conclusion

• Wherever our specifications reveal implementation details, it could
make sense to introduce suitable ghost pure functions instead. More-
over, an updated abstraction would further help to hide implementation
details. It is also worth considering that even though the Element type
is publicly accessible, the fact that a list consists of elements is also
an implementation detail. A possible alternative would be to use a
sequence of values as the abstraction for a list.

• With the interface Interface and the implementation IntSlice in the
sort package already being specified, one could continue to spec-
ify some of the other provided implementations of Interface, e.g.
FloatSlice.

• The sort package consists of many more building block functions that
are ultimately used in the pdqsort function in the zsortinterface.go

file. Some of these building blocks are heapSort, partialInsertionSort,
partition, choosePivot and breakPatterns. To ultimately verify the
publicly exposed Sort function, it makes sense to first specify and
verify these building blocks and also prove insertionSort’s functional
correctness.

44

Bibliography

[1] Nasa Safety Center. Lost in translation. In S. Lilley, editor, System Failure
Case Studies, volume 3, 2009.

[2] Go programming language. https://go.dev/ref/spec.

[3] Go standard library. https://pkg.go.dev/std.

[4] Go stdlib bug list package. https://github.com/golang/go/issues/

53351.

[5] Go stdlib bug list package, manual reset. https://github.com/golang/

go/issues/39014.

[6] Go stdlib bug list package, uninitialized. https://github.com/golang/

go/issues/50152.

[7] Go stdlib bug net/url package. https://github.com/golang/go/issues/
53763.

[8] Gobra keyword issue. https://github.com/viperproject/gobra/issues/
118.

[9] Gobra short circuiting issue. https://github.com/viperproject/gobra/

issues/511.

[10] Gobra tutorial. https://github.com/viperproject/gobra/blob/master/

docs/tutorial.md.

[11] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jay Lorch, Bryan Parno,
Justine Stephenson, Srinath Setty, and Brian Zill. Ironfleet: Proving prac-
tical distributed systems correct. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP). ACM - Association for Computing
Machinery, October 2015.

45

https://go.dev/ref/spec
https://pkg.go.dev/std
https://github.com/golang/go/issues/53351
https://github.com/golang/go/issues/53351
https://github.com/golang/go/issues/39014
https://github.com/golang/go/issues/39014
https://github.com/golang/go/issues/50152
https://github.com/golang/go/issues/50152
https://github.com/golang/go/issues/53763
https://github.com/golang/go/issues/53763
https://github.com/viperproject/gobra/issues/118
https://github.com/viperproject/gobra/issues/118
https://github.com/viperproject/gobra/issues/511
https://github.com/viperproject/gobra/issues/511
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md

Bibliography

[12] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[13] Orson R. L. Peters. Pattern-defeating quicksort. CoRR, abs/2106.05123,
2021.

[14] J.C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, 2002.

[15] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C. Pereira, and
P. Müller. Gobra: Modular specification and verification of go pro-
grams. In Alexandra Silva and K. Rustan M. Leino, editors, Computer
Aided Verification (CAV), volume 12759 of LNCS, pages 367–379. Springer
International Publishing, 2021.

[16] Z3 theorem prover. https://github.com/Z3Prover/z3.

46

https://github.com/Z3Prover/z3

	Contents
	Introduction
	Background
	Go
	The Standard Library

	Testing and Verification
	Testing
	Program Verification

	Gobra

	Methodology
	Choice of subset
	Approach
	Bottom-up
	Clean abstraction
	Testing

	Implementation
	List
	Types
	Invariants of a list
	Initialization
	Update primitives
	List membership check

	Ring
	Type
	Invariants of a ring structure
	Next - Prev
	New
	Link

	Sort
	Interface specification
	IntSlice
	Sorting function

	Evaluation
	Annotation Overhead
	Timing
	Tests
	Test cases
	Known issue

	Functional Limitations
	Observations concerning Gobra

	Conclusion
	Future work

	Bibliography

