
Verifying Go’s Standard Library
Practical Work Project Description

Adrian Jenny
Supervised by Prof. Dr. Peter Müller, João Pereira

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Introduction
Go [1] is a statically typed and compiled programming

language that is continually gaining in popularity. It
was designed at Google and as such is notable for its
strong built-in support for building scalable and concur-
rent applications. Unlike other established languages in the
enterprise field (e.g. C++, C#, Java, etc.), Go employs
a version of structural subtyping instead of relying on
a nominal type system. On top of this, Go does not
provide classes but works purely with interfaces and type
definitions. Furthermore, Go offers a large standard library
of functions and methods that are used in varying contexts.
These range from the provision of simple data structures,
efficient implementations of commonly used mathematical
functions, a cryptography library and an entire network
stack. Consequently, Go programmers heavily rely on the
functionality provided by the standard library. Given that
the standard library is so heavily used, the correctness
of a Go program is typically dependent on the standard
library being implemented correctly. To help achieve this
correctness the developers of the standard library rely on
testing their implementation against a broad set of inputs.
Unfortunately, testing is not sufficient to ensure the cor-
rectness of a program. Thus, even the standard library
ships with bugs [2], [3]. This project aims at providing
stronger correctness guarantees for the standard library
implementations. Instead of testing, we want to verify
the functions. Program verification is an approach that
allows us to formally specify the intended behaviour of
a program and automatically check whether the program
behaves according to this specification. Typically, there is
considerable effort involved when deriving specifications
and applying verification. However, barring any large-
scale design changes, this would be a one-time investment.
Furthermore, considering other programs’ reliance on the
standard library, this would immediately benefit all users
of Go. Thus, this project’s overall goal is to apply verifica-
tion to a carefully selected subset of Go’s standard library.

II. Background
A. Testing and Verification

Testing has been a staple feature in the field of software
engineering for decades now. Often, this is achieved via

providing a suite of tests for any functions and even
further tests to examine whether the interaction of mul-
tiple components still yields the desired results. Typically
testing is done by providing sample inputs to a function
and comparing its outputs to the expected results. These
sample inputs have to be chosen carefully in the hope that
they cover every edge case a function might have. Having
functions that access mutable global state makes reliable
testing even more difficult. While we recognize the benefits
of testing, we also know its limits. Testing is simply not
enough to prove the absence of errors entirely.
Software Verification on the other hand aims to provide
tools to specify a given program and then verify that
program according to this specification. To achieve this,
verification engines rely on assumptions on the inputs to
a function as well as on the global state before the function
execution. These assumptions are called the pre-condition
of a function. Correspondingly, a post-condition is what
the verification aims to prove given a function and its pre-
condition. Pre- and post-condition together are called a
function’s specification. The example in listing 1 shows
a function nextCollatz together with its pre- and post-
condition under the requires and ensures clause respec-
tively. Verification aims to be a sound approach, i.e. it has

1 requires n > 0
2 ensures (res == n/2) || (res == 3*n+1)
3 func nextCollatz(n int) (res int){
4 if n \% 2 == 0{
5 return n/2
6 }
7 return 3*n+1
8 }

Listing 1: Example of pre- and post-condition of a func-
tion.

to disallow any behaviour that is not guaranteed to satisfy
the specification. Due to the inherent difficulty in proving
that a system’s behaviour follows a given specification,
coming up with a suitable specification that a verification
engine is able to verify in reasonable time can sometimes
be a challenge. Furthermore, the overhead effort of pro-
viding meaningful function specifications and verifying a
whole system is still large enough such that often only very

1

critically important software projects get formally verified.
Researchers have shown how building a verified system is
a significant up-front investment in developer time [4]. In
their example, they show how the additional annotation
overhead is a factor of 3.6 times larger (measured in source
lines of code) than the underlying implementation itself.
B. Gobra

With Go’s rise in popularity, having a strong verification
framework around the language grew ever more important.
To fit this need, the Programming Methodology Group at
ETH developed Gobra [5]. Gobra is a modular verifier for
the Go language. While Gobra still is a research project in
development, it already supports a wide array of Go’s more
advanced features. These include support for interfaces
and different methods of achieving concurrency. Gobra
works by translating Go programs and their specifications
to the Viper intermediate verification language [6] that
was likewise developed by the Programming Methodology
Group at ETH. While the overarching goal of verification
may be to prove the functional correctness of a program,
this often relies on also proving memory safety and termi-
nation for all valid inputs. Gobra’s mechanism for proving
memory safety is based on separation logic [7] and works
by augmenting specifications with requirements regarding
(exclusive) access permissions to given heap locations. This
helps to ensure that functions only access valid memory lo-
cations and the exclusive write-permissions allow proving
the absence of race conditions. For programs containing
loops and recursion structures termination can be enforced
by providing variants. A variant is an expression whose
value is guaranteed to decrease with every loop iteration
or recursive call.

III. Methodology
The overall goal of this work is to use Gobra to verify

a suitable subset of Go’s standard library. While we
recognize that verification can be a costly approach, the ra-
tionale behind this work is that having a properly verified
standard library is very important. Given the large user-
base of go, bugs in the standard library implementation
can have a far-reaching impact.Investing the effort to
verify the standard library will therefore provide value to
all those users. Furthermore, while there exist Gobra spec-
ifications for some standard library function definitions,
these have never been verified themselves. Therefore, the
verification of any Go program that relies on the standard
library cannot be guaranteed to be correct unless the used
standard library functions are themselves verified against
their specifications.
A. Choice of subset

Considering the fact that verification of the whole stan-
dard library is a project that could take a very long time,
the scope of this project is a small subset of the standard
library. There are multiple criteria to consider in the choice
of this subset:

• High impact: Verification might either succeed or fail.
In case of success, we can provide guarantees that
the function is indeed correct according to its specifi-
cation. In case of failure, we know that the function
might have a bug. For this project to be impactful,
it makes sense to verify functions and packages that
are heavily used by other packages in the standard
library and further often used by users of the standard
library.

• Bottom-Up: Like other packages, packages in the Go
standard library may themselves also depend on the
standard library. Starting with verifying packages
with few or no dependencies reduces the need to re-
adjust the specifications of packages with relatively
more dependencies. This is especially true in the likely
case that the specifications of the former need some
fine-tuning. It, therefore, makes sense to be verifying
packages with few or no dependencies first and work
bottom-up. However, when it comes to interfaces we
might have to reverse our approach where applicable.
While interface definitions can be seen as dependen-
cies of their implementations, it still makes sense to
first consider some of these implementations to get a
sense of the intended shared behaviour.

• Nothing machine/platform-specific: Somewhat con-
trary to the above yet still in tune with the first crite-
rion is that we wouldn’t want to work on any platform-
specific packages. For one, we would quickly run into
limitations of Gobra when dealing with inlined C or
assembly code. Furthermore, as per the first criterion,
our findings wouldn’t be as broadly applicable.

• Algorithm-heavy: A subset that encompasses a lot of
algorithmically interesting functions and data struc-
tures provides a good target for the application of
verification techniques. Not only are the more com-
plex algorithms the most likely to contain bugs, but
they also offer the additional benefit of allowing us
to test out the limits of Gobra’s practicability in real-
world use cases.

These criteria already provide some motivation for this
work’s impact. Moreover, they also outline this as a fur-
ther opportunity to test and showcase Gobra’s strengths
and weaknesses. Based on these criteria we identified the
following packages as candidates to verify:

• list, ring, heap: These packages define some fun-
damental and broadly used data structures. They
achieve this by providing type definitions and meth-
ods to insert and remove elements from the data
structure. Depending on the data structure, the cor-
responding package also provides functionality to re-
arrange or concatenate multiple instances of the data
structure.

• sort: Sorting is one of the most central and essential
operations in data handling pipelines. The sort pack-
age defines a type Interface whose implementations

2

provide comparability and other functionalities for
collections. On top of this, the package also offers
implementations of multiple sorting algorithms.

• io: Any useful real-world program has to deal with
input and output at some point. The io package
contains many well-documented interface definitions
for Reader and Writer types. It would be interesting
to specify the intended behaviour of these functions,
based on their documentation.

• bytes: The bytes package provides a multitude of
functions for manipulating slices of bytes. Further-
more, the package defines the type Buffer whose
methods in turn depend on the aforementioned bytes
functionalities.

This list is quite extensive. So this project may only
consider some selected units of functionality within these
packages and merely verify those.

B. Challenges
The standard library is a large code base with many

inter-dependencies. Since it was not originally developed
with verification in mind, some design decisions might
pose a challenge when it comes to deriving a suitable
specification. The general idea is to follow a bottom-up
approach. This applies to the overall structure concerning
the dependencies between packages (as mentioned
in III-A), as well as with regard to the dependencies
between functions within a particular package. Within
a given package we first verify the functional building
blocks lowest in the respective dependency hierarchy.
The public-facing methods and functions that are built
using these building blocks get verified at a later stage.
The advantage of this approach is that we can reduce the
assumptions on the specifications for lower-level functions.
Furthermore, we can gather all constraints on the pre-
and post-conditions from these lower-level functions first
and use them to build up and establish a clean public-
facing interface. The idea is to abstract any consistency
conditions of the underlying data structure under this
predicate whenever possible. Furthermore, for a method’s
contract to be explainable purely in terms of publicly
available members, we plan to introduce additional pure
functions and predicates. An issue with this approach
is that the specifications for the lower-level functions
might still need to be reevaluated when we later discover
calls to these functions that are not wholly compatible.
Moreover, as can be seen in listing 2 we will have to deal
with cyclically linked elements. This is specifically the
case for the packages list and ring. This poses additional
challenges since it requires cleverly constructed predicates
that differentiate the required permissions based on the
data structure’s current state (e.g. cyclical but empty or
even temporarily broken cycles etc.).

As mentioned before in I, Go employs a version of
structural subtyping. While this difference has many conse-

1 type Element struct {
2 // Next and previous pointers in the
3 // doubly -linked list of elements.
4 // To simplify the implementation , internally
5 // a list l is implemented as a ring, such that
6 // &l.root is both the next element of the last
7 // list element and the previous element of the
8 // first list element.
9 next, prev *Element

10 // The list to which this element belongs.
11 list *List

12 // The value stored with this element.
13 Value any
14 }

Listing 2: Definition of the Element type from the standard
library’s list package.

quences, one of the main points for users of the language
is that this represents a lack of opportunity to express
specific intent within the language itself when it comes to
subtyping relations. In some cases, it may even happen
that a subtyping relation between two user-defined types
is completely accidental. In this case, the expectations on
the behaviour of a type’s methods may not at all agree
with the behaviour of this type’s subtype’s methods or
vice-versa. We are hopeful that accidental subtyping will
not occur in the standard library implementation. Nev-
ertheless, the constraints of behavioural subtyping might
still be challenging.

IV. Goals
Having outlined the importance of having verified stan-

dard library primitives we can define the following goals
this project aims to accomplish:
(1) Applying verification:

Using Gobra to verify selected methods and functions
from the packages listed in III-A.

(2) Providing a clean abstraction:
The specifications for public-facing functions
should not reveal information about the internal
representation. This will be achieved via the use of
predicates and ghost pure functions in Gobra.

(3) Evaluating Gobra’s usability:
There are continuous efforts to extend Gobra to be
able to reason about all of Go’s features. We wish to
assess when Gobra’s capabilities are lacking when it
comes to verifying the selected functions. Moreover,
using any kind of verification tool often requires
considerable annotation overhead and workarounds
in order to help the underlying theorem prover. We
wish to identify cases where this overhead becomes
impractical.

(4) Issues and tests
Publicly known bugs and issues in the Go standard

3

library are observable on GitHub1. For the functions
we are able to specify, we want to track down whether
there are any remaining open issues and see whether
they would have been caught if verification was ap-
plied. For example, there is a known issue with a leaky
abstraction in the list package [2]. Similarly, where
there are already tests available we want to check if
our specification is sufficient to guarantee whether a
particular test will be successful.

References
[1] Go programming language. [Online]. Available: https://go.dev/

ref/spec
[2] Go stdlib bug list package. [Online]. Available: https://github.

com/golang/go/issues/53351
[3] Go stdlib bug net/url package. [Online]. Available: https:

//github.com/golang/go/issues/53763
[4] C. Hawblitzel, J. Howell, M. Kapritsos, J. Lorch,

B. Parno, J. Stephenson, S. Setty, and B. Zill,
“Ironfleet: Proving practical distributed systems correct,”
in Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP). ACM - Association for
Computing Machinery, October 2015. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
ironfleet-proving-practical-distributed-systems-correct/

[5] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C.
Pereira, and P. Müller, “Gobra: Modular specification and
verification of go programs,” in Computer Aided Verification
(CAV), ser. LNCS, A. Silva and K. R. M. Leino, Eds., vol.
12759. Springer International Publishing, 2021, pp. 367–379.
[Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-030-81685-8_17

[6] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verifi-
cation infrastructure for permission-based reasoning,” in Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

[7] J. Reynolds, “Separation logic: a logic for shared mutable data
structures,” in Proceedings 17th Annual IEEE Symposium on
Logic in Computer Science, 2002, pp. 55–74.

1https://github.com/golang/go/issues

4

https://go.dev/ref/spec
https://go.dev/ref/spec
https://github.com/golang/go/issues/53351
https://github.com/golang/go/issues/53351
https://github.com/golang/go/issues/53763
https://github.com/golang/go/issues/53763
https://www.microsoft.com/en-us/research/publication/ironfleet-proving-practical-distributed-systems-correct/
https://www.microsoft.com/en-us/research/publication/ironfleet-proving-practical-distributed-systems-correct/
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_17
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_17

	Introduction
	Background
	Testing and Verification
	Gobra

	Methodology
	Choice of subset
	Challenges

	Goals
	References

