
Welldefinedness and Expressiveness

of JML Specifications

Adrian Moos
adrian.moos@student.ethz.ch

October 24, 2005

Contents

1 Introduction 2
1.1 Background . 2
1.2 Quantifier Semantics . 3
1.3 Overview . 4

2 Method Calls in Specifications – Opportunities and Difficulties 4
2.1 Desirability of Method Calls in Specifications 4
2.2 Encapsulation of Object State . 5
2.3 Reestablishing Modularity . 5
2.4 Sound Verification . 7
2.5 Checking Well-foundedness of Dependency 8

3 Case Study: JMLObjectSet 9
3.1 Introduction . 9

3.1.1 JMLObjectSet . 9
3.1.2 Goals of the Specification 10

3.2 Equational . 11
3.2.1 Fix: Specification Describes Unallocated State 11
3.2.2 Fix: Instance Invariant Needs to Hold Only If Instances

Exist . 11
3.2.3 Fix: Incorrect Specification of Remove 12
3.2.4 Fix: Informal Specification of Immutability 13
3.2.5 Fix: Incomplete Specification of Equals 13
3.2.6 Fix: equals() Does Not Get Special Treatment in JML . . 13
3.2.7 The Fruit of Our Labor 15
3.2.8 Discussion . 15

3.3 Abstract Public Specification . 16
3.3.1 Soundness . 17

3.4 Implementation Specification . 18
3.4.1 Logical Structure . 18

1

3.4.2 Soundness . 18
3.4.3 Correctness . 20

3.5 Example: Using the Public Specification to Prove Correctness of
Client Code . 20

3.6 Proof Sketch: Equivalence of Method-centric and Equational Spec 23
3.6.1 Method-centric ⇒ Equational 23
3.6.2 Equational ⇒ Method-centric 28
3.6.3 Conclusion . 35

3.7 Conclusion . 35

4 Peculiarities of JML 36
4.1 Range of Quantification . 36

4.1.1 Extended Quantification Range 37
4.1.2 Limited Quantification Range 38
4.1.3 Conclusion . 39

4.2 Observability of Side Effects . 39
4.3 Relative Immutability of Abstract State 41

5 Conclusion 42

A Listings 43
A.1 Original Equational Specification 43
A.2 Improved Equational Specification 45
A.3 Method-Centric Specification . 48
A.4 Implemenation Specification . 49

1 Introduction

The Java Modeling Language [4] (JML) is a behavioral interface specification
language for Java. In order to be easily learnable by ordinary programmers,
its specification expression syntax is an extension of the side-effect free subset
of Java expressions. Among these extensions is the ability to call methods,
provided they are pure, which means that they cannot have any side-effect on
previously allocated objects. The use of pure methods makes specifications more
compact and expressive, but their translation to logic also introduces difficulties.

In this report we explore the expressive potential and the dangers inherent
to this extension by using pure methods to specify a class from JML’s model
library. We also make some observations about difficulties introduced by the
use of pure methods and explore potential solutions.

1.1 Background

According to Preliminary Design of JML [4], a method may appear in a specifi-
cation if and only if it is annotated pure. A method annotated pure is restricted

2

with the intent to let it behave like the evaluation of a mathematical function1.
Specifically, a pure method

• is provably free of observable side-effects, since it is not permitted to mod-
ify any location that was allocated in its pre-state, which is checked syn-
tactically.

• provably terminates given its precondition is met

• is deterministic

Unfortunately, the restrictions above fall short of that intent: Darvas and
Müller show that the store changes by a pure method must in general be modeled
to prevent unsoundness[1]. Also, I show in section 4.2 that side effects not
observable by the program can be observed in specifications and used to affect
the return value of another specification expression, contradicting the claim that
the evaluation order of specification expressions does not matter. We hope, but
did not prove, that the specifications we use are not affected by such side effects.

1.2 Quantifier Semantics

In JML, a quantified specification expression ranges over all potential values of
the specified type. If it is a reference type, this includes references to objects not
allocated so far [4]. The semantics of specification expressions referring to the
state accessible by these references are not defined. In this report, we assume
that properties enforced by the programming language (such as the type of the
reffered object) can be assumed for these objects, but properties enforced by
the program (i.e. conformance to its specification) can not – after all, the latter
are established by the execution of the constructor, which happens after object
allocation. In order to assume an object’s specification for a quantified variable,
we therefore need to restrict the quantification range. Gary Leavens suggested2

to test for allocation using a newly defined predicate

\allocated(o)

which yields true if and only if the object pointed to by o has already been
allocated. Thus, \allocated(null) will always yield false .

To make full use of not-yet-allocated references, it is neccessary that pure
methods can be invoked on them. This peculiar notion is beneficial to the
expressiveness of specifications, but complicates attempts to achieve sound ver-
ification. We show the former by using that feature in a case study. We discuss
the latter later in this report.

We think it is counter-intuitive that this can not be assumed to point to an
allocated object in a specification. We therefore define that, in this report, a

1i.e. for every pure non-static method m with one parameter p, there is a mathematical
function f such that the return value of r.m(p), executed in state OS, is f(OS, r, p).

2on the mailing list JML interest, see http://sourceforge .net/mailarchive/forum.php?
thread id=7244394&forum id=13320

3

method’s receiver can always be assumed to be allocated. Also, we extend the
meaning of the annotation non null to exclude not-yet-allocated objects. For
instance, the method specification

/∗@ public normal behavior
@ requires P ;
@ ensures Q;
@∗/

abstract /∗@ non null @∗/ Object foo(/∗@ non null @∗/ Object p);

desugars to

/∗@ public normal behavior
@ requires
@ \allocated(this) && // since the receiver is always allocated
@ \allocated(p) && // since p is non null
@ P ;
@ ensures
@ \allocated(\ result) && // since the return value is non null
@ Q;
@∗/

abstract Object foo(Object p);

This mirrors the treatment of null references in Java and should therefore be
easy to understand for programmers. Also, it permits to exclude non-allocated
references with little notational overhead.

It should be noted that these syntactical conventions have no bearing on
the additional need for checking the allocation status of references prior to
dereferencing them that is caused by including not-yet-allocated references in
quantification range.

1.3 Overview

In section 2, we briefly discuss the improvements to JML’s expressiveness per-
mitted by the use of pure methods, then spend quite some time discussing the
useful properties they jeopardize and how these could be reestablished. In sec-
tion 3, we study the questions thus raised by analyzing and then respecifying a
class from JML’s model library using two different approaches. In section 4, we
revisit some problems encountered in greater generality and suggest potential
solutions. In section 5, we conclude.

2 Method Calls in Specifications – Opportuni-
ties and Difficulties

2.1 Desirability of Method Calls in Specifications

JML extends the syntax of JML specification expressions to include calls to pure
methods. This introduces a highly flexible way to reuse specification expressions.

4

Also, it adds a more powerful means to reason about object state: Without
method calls, the only way a specification can refer to object state is by using
concrete or model fields. In either case, it is neccessary to give a representation
of object state. By specifying the method (or the set of methods) that accesses
it, we can specify modification of object state. If this method (or this set of
methods) is abstract, we do not need to give a representation of object state. For
instance, in the following skeleton3 specification of a hash map, the declaration
of get() postulates a mapping from Object → Object, which is modified by
set ().

//@ pure
abstract Object get(Object key);

/∗@ public normal behavior
@ ensures get(key)==value;
@∗/

abstract void set(Object key, Object value);

Using calls to pure methods in specification therefore enables us to talk
about object state even in the absence of a representation. In contrast, if calls
to pure methods in specifications can not be used, we are required to give a
representation.

2.2 Encapsulation of Object State

We can use data groups to infer noninterference for concrete and model fields.
Therefore, we can infer noninterference for object state if a representation is
provided. However, there is no syntactic construct permitting this for represen-
tationless state. A more thorough presentation of this problem and potential
solutions can be found in section 4.3.

2.3 Reestablishing Modularity

Consider a class with two methods m and n with associated specifications s, t.
Formally, we represent a method by the semantic function describing its execu-
tion4, and a specification as predicate over the set of methods that yields true iff
the methods satisfy the specification. Permitting method calls in specifications
shatters an important independence result: If method calls are not permitted
in specifications, s does not depend on n and t does not depend on m:

∀m,n, x; s(m,n) = s(m,x) ∧ t(m,n) = t(x, n)

This property is used to reason about safe implementation exchange, to show
behavioral subtyping permits safe application of the substitution principle and
other useful properties. Unless additional restrictions are applied, if method

3skeleton, since it is incomplete
4thereby avoiding the Fragile Base Class problem

5

calls are permitted in specifications, it is not true. For instance, in the skele-
ton specification above, replacing the implemenation of get() can invalidate the
method specification of set(), even while still conforming to get()’s method spec-
ification. Thus, unless additional restrictions are in place, behavioral subtyping
is not enough to guarantee safe subtyping or implementation exchange.

Unfortunately, since the ability to indirectly specify the semantics of a
method by describing its relationship with another method is also responsible
for their ability to describe object state, prohibiting such indirect specification
would defeat their purpose. On the other hand, if such indirect specification
were not restricted, modular verification would not be possible, because every
class loaded into the system could carry an additional invariant relying on un-
documented behavior of an otherwise unrelated class. Modular verification will
therefore by necessity have to restrict the range of indirect specifications. Vari-
ous kinds of restrictions are conceivable, but as this report deals primarily with
other matters, we discuss only one set.

1. While proving a contract containing pure methods, the implementation of
the contained methods may not be used

For instance, no implementation of set() could be proven correct, as the
effect it supposedly has on get can not be verified due to get()’s lack of
a specification. This rule has the drawback of requiring method specifi-
cations even for trivial methods. Also, since it must be possible to prove
a specification from the implementation, the latter must be at least as
strong as the former5 for this method to be applicable6. On the bright
side, implementation exchanges are safe and, as long as behavioral subtyp-
ing is strictly abided by, overriding methods is, too. Unfortunately, strict
compliance to inherited contracts conflicts with information hiding, as the
former requires all contracts to be respected, but the latter permits hiding
a contract from the subclass by declaring it private. In this report, we will
ignore the visibility problem by assuming all specifications are respected
by the subclass.

That rule implies that no verified, implemented method can indirectly
specify the semantics of a pure method appearing in its contract.

2. Even in specifications, pure methods may only be called if their receiver
is provably allocated.

Since the receiver is allocated, there is a concrete behavioral subtype in
the system. We assume all loaded types have been verified. Therefore,
this behavioral subtype has been verified. By the claim proven from rule
1, we conclude that the method in question can not indirectly specify pure
methods. Therefore, if a pure method is called in a specification, it does
not indirectly specify another pure method.

5as seen in section 4.1.1 this is non-trivial to achieve
6Circumventing that requirement by requiring correctness for allocated objects only still

permits indirect specification for non-allocated objects

6

For instance:

class A {
//@ pure
boolean m();

}

abstract class B {
/∗@ public normal behavior

@ ensures (\forall A a; \allocated(a); !a.m());
@ pure
@∗/

abstract void n();
}

B.n indirectly specifies A.m. However, if rule 2 is enforced and B.n is
called in a specification, it provably does not indirectly specify A.m.

This rule does not prevent indirect specification. However, it defines a
safe use of specifications that prevents indirect specification.

2.4 Sound Verification

Now that we have modularity, we address soundness. In program verification,
we want to show that the implementation of a class C is correct, i.e. the program
will perform according to its specification, i.e. for every program run all method
invocations7 i are correct:

∀i; correct(i)

To prove this, we use induction along execution time, i.e. we define

j < i ⇔ j completes before i does

< is well-founded, since at any point in time, only finitely many invocations
have completed and completion times are totally ordered.

∀i; (∀j; (j < i) ⇒ correct(j)) ⇒ correct(i)

which is implied by

∀i; (∀j; (j is called by i) ⇒ correct(j)) ⇒ correct(i) (1)

since
(j is called by i) ⇒ (j < i)

Equation (1) is then proved by case split according to the method invoked,
assuming the implementation of that method and the semantics of Java.

7not method names

7

Unfortunately, this proof obligation is not sufficient to prove a method spec-
ification that refers to a different pure method as the semantics of that method
are not known. We therefore need to provide additional information to the
proof obligation. We have seen in the previous subsection that providing the
implementation is not advisable. Therefore, we strive to use the specification,
that is: whenever a specification calls a pure method, we would like to permit
assuming correctness of that invocation, i.e. that its contract is met. Note that
this constitutes safe use of specifications, thus ruling out indirect specification.
We know verification is sound if there is a well-founded relation ∼ such that
invocation i may only rely on the correctness of invocation j if j ∼ i. This was
trivial for implementations because we could assume their termination, i.e. that
the call-graph is well-founded. However, when a pure method is invoked in a
specification, it depends not on the execution of the method, but on its specifi-
cation, and while the execution is required to terminate, the specification may
recurse without restriction. Therefore, the dependency graph for specifications
need not be well-founded, and thus induction along it need not be permissible.
Therefore, the verification system must prove this well-foundedness of depe-
dency prior to assuming the correctness of specification expressions. If that
step is skipped, the class may be incorrect even though all methods satisfy the
proof obligation:

/∗@ public normal behavior
@ ensures \result && !n();
@∗/

//@ pure
boolean m() {return true;}

/∗@ public normal behavior
@ ensures \result && !\result && m();
@∗/

//@ pure
boolean n() {return true;}

The first conjunct of m’s proof obligation can be inferred from Java’s seman-
tics, the second from correctness of n. The first conjunct of n’s proof obligation
is implied by Java’s semantics, the other two by correctness of m.

2.5 Checking Well-foundedness of Dependency

We say an invocation i of a specification expression depends on invocation j if
and only if i’s contract evaluates j. Similarly, we say a method specification
s depends on method specification t if and only if the contract of s contains
a call to the method t specifies. Obviously, if the method dependencies are
well-founded, so are invocation dependencies.

If that does not work, we can try inferring well-foundedness by providing
a mapping to some ordered set. For example, we can use allocation order by
showing:

8

∀i, j; (i depends on j) ⇒ receiver(j) <alloc receiver(i)

which we can deduce in constructor specification invocations using that in the
prestate

o 6= this ∧ allocated(o) ⇒ o <alloc this

We will use this method in this report.
Or, if we have an ownership relation at our disposal, we can write

∀i, j; (i depends on j) ⇒ receiver(i).owns(receiver(j))

which again implies well-foundedness.
However, no single ordering is applicable to all programs, therefore, sev-

eral well-founded relations need to coexist. Though we have not looked into
this, our intuition is that recursive specifications will rarely be mutually de-
pendent, therefore, interaction between different relations is rare (and of course
detectable).

Also, in general, the discovery of such mappings will have to be helped along.
[4] suggests to use a method’s measured by clause for that purpose, which works
by mapping the parameter space of the method onto a well-founded set, for
example the non-negative integers. However, its use can be a little impractical
as we will witness in our case-study.

A main goal of our work was to explore if and how specifications can be
rewritten to minimize the effort required to prove their soundness.

3 Case Study: JMLObjectSet

3.1 Introduction

3.1.1 JMLObjectSet

We consider the task of specifying JMLObjectSet, whose instances represent
mathematical sets of references, where two elements a and b are considered
equal if and only if the references are identical, i.e. a==b. JMLObjectSet
therefore differs in behavior from java. util .Set, which considers elements a,b
equal if and only if a.equals(b).

In order to keep matters simple, we focus on the core functionality of JMLObjectSet
(creation, insertion, removal, comparison, cardinality and iteration) and omit

convenience methods, since their semantics can easily be specified in terms of
the sequence of operations they are a shortcut for, and such specifications are
not difficult to handle.

To formally define the intended semantics, let A be the abstraction function,
i.e. for the current8 object store, A[s] denotes the set represented by s. Then,
we define9:

8or, at our leisure, any descendants of it, because instances are immutable
9to keep matters simple, we will ignore integer overflows in this report

9

A[new JMLObjectSet] = ∅
A[s.insert(a)] = A[s] ∪ {a}

A[s.remove(a)] = A[s] \ {a}
s.isSubset(s2) = A[s] ⊆ A[s2]

s.equals(s2) = A[s] = A[s2]
s.count() = |A[s]|

To permit accessing instances of JMLObjectSet in specifications, all mem-
bers are pure; insert () and remove() therefore work by returning new instances.

In order to permit treating the instance like the value it represents, instances
are immutable.

3.1.2 Goals of the Specification

Our goal is to find a specification for JMLObjectSet that is

• verifiably sound

• correct

• complete

• concise

• understandable (by programmers)

We call a specification verifiably sound if and only if its satisfiability can
be proved automatically. We call it correct, if and only if the properties of the
datatype the programmer has in mind imply the specification:

datatype ⇒ specification

which implies that every property provable from the specification is also provable
for the datatype. We call it complete, if and only if the specification implies the
logical description of the datatype:

datatype ⇐ specification

which implies that every property provable for the datatype is also provable
from the specification.

10

3.2 Equational

A well-studied approach for specifying sets is to use an equational theory. The
official specification [3] of JMLObjectSet contains an encoding of such a theory
in JML. We use the slightly beautified version listed in the appendix as starting
point.

Unfortunately, this specification has several shortcomings, causing it to be
both unsound and incomplete10, which we will describe and fix shortly. Before
we do that, you are welcome to try spotting them.

3.2.1 Fix: Specification Describes Unallocated State

In JML, quantification over reference types includes unallocated non-null refer-
ences in specification expressions. Consequently, the argument s2 to equational theory
() can not be assumed to be null or allocated, however, axioms 5 and 6 refer to
the result of method invocations on s2.

Non-allocated objects have not yet been initialized by the program and thus,
according to the semantics of JML, yield arbitrary values of the appropriate
type. Thus, the implementation of instance methods actually depending on
the state accessible through this is underspecified for these objects, and to
enable verification of an implementation, so must the specification. Therefore,
barring cases where the state refererred to by a reference passed to a method
(in receiver or parameter) need not be used in the implementation, we may not
specify semantics in case the reference does not point to a allocated object.

Note that references to unallocated objects do not cause that problem, only
dereferencing them does. Moreover, references to unallocated objects can be
useful, as we will witness shortly.

Here, isSubset() will clearly depend on the state referred to by this, and
therefore, we refrain from overspecification by replacing the quantification’s
range predicate with allocated(s2). Note that since neither e1 nor e2 need
to be dereferenced, omitting their allocation requirement is safe. Furthermore,
we shall see omitting the check is beneficial.

It should be noted that these allocation requirements are already implied by
the syntax convention from section 1.2 (which also establishes modularity rule
2), retroactively justifying that convention. However, for the sake of clarity, we
state allocation requirements explicitly in this report.

3.2.2 Fix: Instance Invariant Needs to Hold Only If Instances Exist

In the above specification, the equational theory is enforced as an instance
invariant of JMLObjectSet. This is too weak, since an instance invariant is only
required to hold for every instance. If no instance has been allocated so far, the
instance invariant is therefore trivially satisfied. The constructor’s specification
being part of that instance invariant, it, too, is trivially satisfied, regardless of

10the official specification compensates for the latter by additionally providing largely – but
not completely – redundant method specifications.

11

what the first constructor invocation does, thus failing to specify its semantics.
For example, the implementation

private static boolean first=true;

//@ pure
JMLObjectSet() {

// proper intialization to empty set
if (first) {

// evil code
first =false;

}
}

is provably correct, regardless of what modifications of local state happen in
//evil code. To get a better look at the problem, we desugar the instance
invariant to:

/∗@ public static invariant
@ (\ forall JMLObjectSet s; \allocated(s); (
@ (\ forall JMLObjectSet s2; \allocated(s2); (
@ (\ forall Object e1, e2; ;
@ equational theory(s , s2, e1, e2)))) ;
@∗/

and notice that the range predicates are too restrictive at least for the axiom
specifying the constructor. This is not a flaw of this particular equational theory
or of its summary treatment of the axioms: It is easy to prove that an equational
specification of constructor semantics can only be formulated in the prestate of
the constructor’s execution, where an instance invariant is trivially satisfied if
no object has been allocated so far. It is therefore impossible to completely and
equationally specify constructor semantics using an instance invariant.

We solve this problem by using a static invariant, where we can drop the
global allocation requirement. We compensate by requiring allocation for those
axioms that refer to the state pointed at by the quantified variable, i.e. those
that mention a field or a method on the quantified variable.

3.2.3 Fix: Incorrect Specification of Remove

The following axiom is incorrect, i.e. permits derivation of properties that do
not hold for a set:

@ s . insert (e1).remove(e2).equals(
@ e1 == e2 ? s : s .remove(e2).insert(e1)
@)

The first case of the ternary operator is incorrect, as it implies that if a is
an object reference and

{a} = (new JMLObjectSet().insert(a))

12

then
{a}. insert (a).remove(a).equals({a})

which clearly contradicts the semantics of mathematical sets.
We fix this by splitting the axiom for readability and adding a precondition

to the first case:

@ !s .has(e1) ==> s.insert(e1).remove(e1).equals(s)
@) && (
@ e1!=e2 ==>
@ s. insert (e1).remove(e2).equals(s.remove(e2).insert(e1))

3.2.4 Fix: Informal Specification of Immutability

Immutability is specified as a comment. We make this specification machine
readable and checkable by translating it to the history constraint

//@ public constraint (\forall Object o; \old(has(o)) == has(o));

Note that although, from a mathematical point of view, it might be more in-
tuitive (and general) to specify an object’s immutability as its equality to any
later version of itself, we can not express this is JML, as it would involve the
evaluation of equals() while its parameters refer to two different object stores.

3.2.5 Fix: Incomplete Specification of Equals

The equational theory defines equals() using s2, which is an instance of JMLObjectSet
. However, the parameter type of equals is Object. Therefore, the specification
does not define the semantics of equals() for references of other classes. For
instance, the return value of:

new JMLObjectSet().equals(”strange”);

is unspecfied. We fix this by quantifying over o and checking the parameter’s
dynamic type:

@ \allocated(s) ==> (\forall Object o; \allocated(o); (
@ s.equals(o) == (o instanceof JMLObjectSet)
@ && s.isSubset((JMLObjectSet)o)
@ && ((JMLObjectSet)o).isSubset(s)))

Note that requiring allocation for o does not cause incompleteness since the
case o = null is already defined by the specification inherited from Object [5].

3.2.6 Fix: equals() Does Not Get Special Treatment in JML

In mathematics, equality is not a relation like any other. By general conven-
tion, equal objects never behave differently and can therefore for all intents and
purposes be treated as if they were identical. Specifically, we can assume

a = b ⇒ f(a) = f(b) for all functions f

13

Though Java’s equals() is modeled after that mathematical ideal, its contract
only requires it to be an equivalence relation [5]. Thus, the equivalent to the
above equation,

(a.equals(b)) ⇒ f(a).equals(f(b)) for all operations f ,

is not implied by the contract of equals. Short of using reflection to quantify over
all methods (which works here since they are all pure), this would be impossible
to express at that level of generality, also, such a restrictive definition would not
be applicable to all implementations of equals() out there.

Translating mathematical models to JML therefore requires this implicit
assumption to be stated explicitly, while failure to do so ruins completeness.
For example, since our above specification assumes the special nature of equals
without prescribing it, serveral axioms11 are weaker than intended:

ax8 6⇒ ¬new JMLObjectSet().remove(a).remove(a).has(a);
ax3 6⇒ 0 = new JMLObjectSet().remove(a).count();

ax11 6⇒ new JMLObjectSet().remove(a).isEmpty();

Indeed, these expressions are undefined. We prove this by giving a correct
implementation that does not compute the expected return value. For the first
expression, the implementation given by the formulas

new JMLObjectSet() = (∅, ∅)
(I ,R).insert (a) = (I ∪ {a}, R \ {a})

(I ,R).remove(a) = (I ∪ {a}, R⊕ {a})
(I ,R).has(a) = a ∈ I \R

does not contradict any axiom, but

new JMLObjectSet().remove(a).remove(a).has(a);

contrary to the semantics of sets, yields true.
For the second expression, we take a correct implementation and add the

line

size=−4;

at the end of remove(). The correct implementation satisfies the axiom system,
and the modification does not change that, since no axiom contains both count()
and a property whose modification by remove() is specified. Nevertheless, the
code blatantly violates our notion of set cardinality.

For the third expression, since isEmpty() is specified in terms of count()
only, we can use a variant of the preceding exploit.

11the numbering refers to the improved specification listed in section A.2

14

We solve this problem by prescribing the special nature of equality for the
operations where it is not already implied by the specification in an additional
axiom:

@ s.equals(s2) ==> (
@ s.count() == s2.count()
@ && s.remove(e1).equals(s2.remove(e1)))

3.2.7 The Fruit of Our Labor

The result of applying the above patches is listed in section A.2
We could have specified choose() equationally, but, mirroring the official

specification we started from, did not.

3.2.8 Discussion

Our goal in this case study is to find a specification that is:

• verifiably sound

• correct

• complete

• concise

• understandable

Using mathematical logic, the specification’s soundness is a direct corol-
lary of its correctness and the existence of mathematical sets. However, the
datatype the specification is supposed to describe is not available in machine-
readable form, therefore, neither correctness nor the existence of such a datatype
is available to the verification environment. From the point of view of the verifi-
cation environment, it must be shown that there is a group of semantic functions
satisfying the specification. The verification environment does not know that
sets satisfy the specification and will thus be hard pressed to find a witness
for satisfiability. Aiding it along by specifying induction order is feasible, but
cumbersome due to its complexity. We conclude that it is not obvious how the
specification’s soundness could be verified automatically unless we burden the
programmer with cumbersome specifications of induction order.

Correctness of the specification can be proved by verifying that an implemen-
tation constructed according to the datatype satisfies the specification. Com-
pleteness could probably be shown by proving that the specification implies the
axioms specifying the data structure. The specification is hardly concise and
definitely not easy to understand by programmers.

Intuitively, it can’t be that hard to meet our goals when specifying something
as simple as sets. Indeed, it turns out we can do much better – provided we
choose another approach.

15

Our equational specification lacks an internal structure. Consequently, it is
not clear how to locate an axiom pertaining to some method short of looking
through the entire equational theory. Also, since axioms pertaining to the same
method are separated, it is easier to overlook contradictory specifications. Also,
the fewer method calls appear in specifications, the less dependent the method
specifications are (recall that changing the implementation of a pure method can
falsify a contract it appears in12; overriding a pure method therefore requires
revalidation of all methods whose contracts refer to it).

3.3 Abstract Public Specification

It seems therefore more intuitive and more practical for the user of the specifica-
tion to use method specifications to reduce the use of methods in specifications
to a minimum. We call this approach method-centric.

We shall prove shortly that the following method-centric specification is
equivalent to the equational one, that its soundness is easy to verify, and that
the correctness of its non-abstract methods can be proved.

To showcase JML’s usefulness for abstract specification, we specify the public
interface without providing (and thus without relying on) an implementation.

The specification’s listing can be found in section A.3. Some remarks:

• even though has() lacks a method specification, we shall see that it is
sufficiently specified.

• instance immutability (i.e. that the set represented by an instance is
immutable) is prescribed using the history constraint

• the precondition of equals() is necessary since we do not want to specify
the semantics of equals() if and only if s2 points to a not-yet-allocated
object, as such specification would refer to unallocated state, which, as
we have seen in section 3.2.1, is not advisable. The semantics in case
s2 = null are already defined by the inherited specification and therefore
not repeated.

• empty() is included to show that object initialization can be specified, too.
The capability for object initialization is not provided by a constructor,
because constructors can not be abstract, and no implemenation could be
verified in the abstract setting.

• like the equational specification, this specification relies on the inclusion
of not-yet-allocated objects in quantification range to specify that objects
created after initialization of the set are not part of the set. Otherwise,
the return value of

12for instance, correctness of the contract method might have been proven using a pri-
vate invariant that, since it is not visible to the overriding subclass, is not respected by the
overriding method

16

boolean demo() {
JMLObjectSet s = new JMLObjectSet();
Object o = new Object();
return s.has(o);

}

would be unspecified, as the reference to the newly allocated object would
not be in the quantification range of the constructor’s contract. This
matter is discussed in detail in section 4.1.

3.3.1 Soundness

To prove that the method-centric specification is sound, we observe that, because
every method is specified as a well-defined function of has(), if has() is sound, so
is the entire class. To show has() is sound, we have to show there is a semantic
function satisfying the specification of the class for every object there could be.
We do this using induction along the sequence of method invocations.

We observe there are only four ways client code can obtain a reference to an
instance of JMLObjectSet: the constructor and the methods empty(), insert ()
and remove(). For the induction step, we assume that has() is well-defined for
every allocated object in the pre-state of the operation invoked. We proceed by
case split:

• the operation is a constructor call:
The constructor’s postcondition is obviously sound.

• the operation is empty():
the postcondition is obviously sound

• the operation is insert ():
by the induction hypothesis, we know has() is well-defined for every al-
located object. The receiver is allocated, thus has() is well-defined for
the receiver. The postcondition defines \ result .has() as a well defined
function of this .has(). Thus, has() is well-defined.

• the operation is remove():
analogous to preceding case

Therefore, has() is well-defined for every newly passed out object. In ad-
dition, by the induction hypothesis, we know that for every previously passed
out object, has() is well-defined in the prestate, i.e. there is a semantic function
satisfying all axioms. The same semantic function trivially satisfies the history
constraint in the poststate. Also, the postcondition of the operation executed in
the meantime does not mention and thus does not care about previously passed
out objects. Therefore, has() is well-defined in the poststate for all previously
passed out objects as well.

We conclude that has() is well-defined for every allocated object there could
be. Thus, the specification is sound. q.e.d

17

The preceding proof follows a general pattern, only the parts specific to the
specification of JMLObjectSet would therefore have to be discovered by the
verification environment, which is within its capabilities.

3.4 Implementation Specification

The code listed in section A.4 provides an implementation for JMLObjectSet
in a subclass to it. We shall see shortly that the implementation is specified
sufficiently for it to pass verification. Also, the specification’s soundness can be
verified. It represents sets internally using a singly linked list without duplicates.

• If A[s] denotes the set represented by instance s,

A[s] = ∅ if and only if s.next = null

A[s] = {s.value} ∪A[s.next] otherwise

• The invariant states that the list does not contain duplicates. It also
implies acyclicity of the linked list.

• insert nonexisting () and remove existing() differ from insert () and remove
() rsp. only by their stronger precondition. Their more restrictive nature
can be used to assert membership properties in passing, as demonstrated
by the client code in the next section.

3.4.1 Logical Structure

Unlike the abstract specification we have seen before, the implementation spec-
ification refers to has() on other instances. We could provide a measured by
clause featuring count() to state an ordering on instances that could be used to
guarantee the absence of a cyclic dependency, but count() itself depends on the
recursive specification, so we would have to inline its definition, resulting in a
quite lengthy annotation. Fortunately, the class is immutable and no instance
points to itself, resulting in a provably well-founded reference structure. This
special nature can be exploited to prove soundness:

3.4.2 Soundness

Formally, we have to show that, for every allocated13 object, there is a semantic
function satisfying the description of has(). Since we may assume the receiver
to be allocated, we know it has been initialized by the program, and can use
induction along this program execution to prove soundness.

Induction hypothesis: the specification of has() is sound for all allocated
objects. Base case: trivially true. Induction step: Every object is either publicly
accessible in the prestate or newly allocated:

13since by convention from section 1.2, every specification has an implicit precondition
stating that the receiver is allocated

18

• accessible in prestate:
Only local axioms can introduce unsoundness. If no operation takes place,
only the invariant and the history constraint are applicable. By the induc-
tion hypothesis, the specification was sound in the prestate, that is: there
is a semantic function satisfying both history constraint and invariant in
the prestate. The same function for the post state satisfies the history
constraint and invariant in the poststate. Therefore, the specification is
sound for this object in the poststate.

• newly allocated:
The new object causes new axioms to require satisfaction. Those are: the
invariant, the contract for has.

The object has been created by a constructor. Its postcondition defines
∀o;¬has(o). The contract for has() agrees and implies: next = null. The
inherited contracts agree and imply nothing new.

The second constructor:

@ requires \allocated(n) && !n.has(v);
@ ensures value=v && next==n;

We notice the invariant is satisfied if the constructor’s postcondition holds.
Then, the contract for has is satisfiable, provided next.has() is. By the
induction hypothesis, has() is well-defined for all objects allocated in the
prestate. By the requires clause, n is allocated in the prestate. Thus,
n.has() is satisfiable. In the preceeding case we have seen we may propa-
gate soundness over time. Therefore, next.has() is satisfiable in the post-
state.

Note that the above proof only works because we can assume the receiver to
be allocated. It seems like the parts specific to JMLObjectSet would be simple
enough to be found automatically. Also, the framework might be applicable in
greater generality. We therefore show the crucial ingredient from a more general
point of view:

We permitted to assume the soundness of method invocation m(p) when
proving soundness of m(q) if:

\allocated(p) ∧ ¬\allocated(q)

which is sound, since \allocated is a monotone predicate over execution time

t < t′ ⇒ \allocated(t) ⇒ \allocated(t′)

and the condition thus implies:

allocationtime(pi) < allocationtime(qi)

permitting the assumption of the induction hypothesis.

19

We used this assumption in the prestate of q’s allocation, propagated the
knowledge about m(p) to the poststate and used it to establish satisfiability of
m(q). It is conceivable that this approach could work for structural induction
on immutable datatypes in general.

3.4.3 Correctness

We have informally verified the more problematic methods in the implementa-
tion and are confident it is correct. However, due to a lack of time, we did not
prove correctness formally.

3.5 Example: Using the Public Specification to Prove
Correctness of Client Code

Assuming correctness of JMLObjectSetImpl, we can prove correctness of the
following code:

public class JMLObjectSetClient {
/∗@ public normal behavior

@ ensures (\forall Object o; \result .has(o) == s1.has(o) && s2.has(o)
);

@∗/
public JMLObjectSet intersect(/∗@ non null @∗/ JMLObjectSet s1, /∗

@ non null @∗/ JMLObjectSet s2) {
JMLObjectSet s = s1;
JMLObjectSet r = new JMLObjectSetImpl();
while (!s.isEmpty()) {

Object co = s.choose();
if (s2.has(co)) {

r=r. insert nonexisting (co);
}
s=s.remove existing(co);

}
return r;

}
}

Please note that the use of the assertion variants insert nonexisting () and
remove existing() only strengthens the proof. Ok, here we go:
JMLObjectSet s = s1;

∀o; s.has(o) = s1.has(o)

JMLObjectSet r = new JMLObjectSetImpl();

r.isEmpty() ∧ ∀o; s.has(o) = s1.has(o)

∀o;¬r.has(o) ∧ s.has(o) = s1.has(o)

20

to keep notation short, we define:

loopinv := ∀o; (s.has(o) ⇒ s1.has(o))
∧ (r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o))

then
loopinv

while (!s.isEmpty()) {
¬s.isEmpty() ∧ loopinv

Object co = s.choose();
s.has(co) ∧ loopinv

¬r.has(co) ∧ s1.has(co) ∧ loopinv

if (s2.has(co)) {

s.has(co) ∧ ¬r.has(co) ∧ s1.has(co) ∧ s2.has(co) ∧ r = R ∧ loopinv

r=r. insert nonexisting (co);

s.has(co) ∧ s1.has(co) ∧ s2.has(co)
∧r.has(co) ∧ ∀o; o 6= co ⇒ (R.has(o) ⇔ r.has(o))
∧∀o; (s.has(o) ⇒ s1.has(o)) ∧ (R.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o))
))

⇒
s.has(co) ∧ s1.has(co) ∧ s2.has(co) ∧ r.has(co) ∧ (∀o; (

(s.has(o) ⇒ s1.has(o)) ∧
(o 6= co ⇒ (s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o) ⇔ r.has(o))

⇒
s.has(co) ∧ (r.has(co) ⇔ s1.has(co) ∧ s2.has(co)) ∧ (∀o; (

(s.has(o) ⇒ s1.has(o)) ∧
(o 6= co ⇒ (s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o) ⇔ r.has(o))

))
⇒

s.has(co) ∧ (∀o; (
(s.has(o) ⇒ s1.has(o)) ∧
(r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ (¬s.has(o) ∨ o = co))

))

} else {

s.has(co) ∧ ¬s2.has(co) ∧ loopinv

21

s.has(co) ∧ ¬s2.has(co) ∧ ∀o; (
s.has(o) ⇒ s1.has(o)) ∧ (
r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o))

)
s.has(co) ∧ (∀o; (

(s.has(o) ⇒ s1.has(o)) ∧
(r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ (¬s.has(o) ∨ o = co))

)

}

s.has(co) ∧ (∀o; (
(s.has(o) ⇒ s1.has(o)) ∧
(r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ (¬s.has(o) ∨ o = co))

)

s=s.remove existing(co);

¬s.has(co) ∧ ∀o; (o 6= co ⇒ s.has(o) = S.has(o)) ∧ (S.has(co) ∧ (∀o; (
S.has(o) ⇒ s1.has(o)) ∧ (
r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ (¬S.has(o) ∨ o = co))

))
⇒

¬s.has(co) ∧ (∀o; (
s.has(o) ⇒ S.has(o)) ∧ (
S.has(o) ⇒ s1.has(o)) ∧ (
r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o)

))
⇒

loopinv

}

s.isEmpty() ∧ ∀o; (r.has(o) ⇔ s1.has(o) ∧ s2.has(o) ∧ ¬s.has(o))
⇒

∀o; (r.has(o) ⇔ s1.has(o) ∧ s2.has(o))

return r;
∀o; \result.has(o) ⇔ s1.has(o) ∧ s2.has(o)

22

3.6 Proof Sketch: Equivalence of Method-centric and Equa-
tional Spec

3.6.1 Method-centric ⇒ Equational

We have to use JMLObjectSetImpl instead of JMLObjectSet since only the
concrete implementation supplies a callable constructor. The proof exploits
that knowledge only in order to use the contract of the constructor; the other
specifications in JMLObjectSetImpl are not used.

Assume there is an implementation satisfying the method-centric spec. We
have to prove this implementation also satisfies the equational spec.

Since said implementation satisfies the method spec, when can assume that
the properties given in the specification hold in all publicly visible states. We
note that all these properties contain the implicit14 precondition that guarantees
allocatedness of this. This precondition is automatically satisfied if we use a
reference returned by a member of JMLObjectSetImpl, which is all what we
will be doing.

1. ¬(new JMLObjectSetImpl()).has(e1)
constructor⇒

new JMLObjectSetImpl().isEmpty()

isEmpty()⇒
∀o;¬(new JMLObjectSetImpl().has(o))

¬(new JMLObjectSetImpl().has(e1))

2. s.insert(e1).has(e2) ⇔ (e1 = e2 ∨ s.has(e2))

case e1 = e2
insert⇒

s.insert(e1).has(e1)

s.insert(e1).has(e2)

e1 = e2 ∨ s.has(e2)

s.insert(e1).has(e2) ⇔ (e1 = e2 ∨ s.has(e2))

case e1 6= e2
insert⇒

s.insert(e1).has(e2) = s.has(e2)

s.insert(e1).has(e2) = (e1 = e2 ∨ s.has(e2))

14by convention in section 1.2

23

3. new JMLObjectSetImpl().count() = 0
constructor⇒

isEmpty()

isEmpty()⇒
∀o;¬has(o)

0
⇓
= (\sum o;has(o); 1) count= count()

4. s.insert(e1).count() = (s.has(e1)?s.count() : s.count() + 1)

case s.has(e1)
insert⇒

∀o; s.insert(e1).has(o) ⇔ s.has(o)
count⇒

s.insert(e1).count() = s.count()

case ¬s.has(e1)
insert⇒

s.insert(e1).has(e1)

∧∀o; o 6= e1 ⇒ (s.insert(e1).has(o) ⇔ s.has(o))

let o by any object, then:

o 6= e1 ⇒ (s.insert(e1).has(o) ⇔ s.has(o))

o 6= e1 ∧ s.insert(e1).has(o) ⇔ o 6= e1 ∧ s.has(o)
⇔ s.has(o)

s.insert(e1).count() count= (\sum o; s.insert(e1).has(o); 1)
= [s.insert(e1).has(e1)]︸ ︷︷ ︸

1

+(\sum o; o 6= e1 ∧ s.insert(e1).has(o); 1)︸ ︷︷ ︸
(\sum o; s.has(o); 1)︸ ︷︷ ︸

s.count()

5. s.isSubset(s2) ⇔ (∀o; (s.has(o) ⇒ s2.has(o))
isSubset⇒

s.isSubset(s2) ⇔ (∀o; (s.has(o) ⇒ s2.has(o))

6. s.equals(o) ⇔ (oinstanceof JMLObjectSet)∧s.isSubset(o)∧o.isSubset(s)

24

case oinstanceof JMLObjectSet

s.equals(s2)
equals⇔ (∀o; s.has(o) ⇔ s2.has(o))
⇔ ((∀o; s.has(o) ⇒ s2.has(o)) ∧ (∀o; s2.has(o) ⇒ s.has(o)))

isSubset⇔ s.isSubset(s2) ∧ s2.isSubset(s)

case ¬(oinstanceof JMLObjectSet)
equals⇒

¬s.equals(o)

¬((oinstanceof JMLObjectSet) ∧ s.isSubset(o) ∧ o.isSubset(s))

s.equals(o) ⇔ (oinstanceof JMLObjectSet)∧s.isSubset(o)∧o.isSubset(s)

7. s.equals(s2) ⇒ s.count() = s2.count()∧s.remove(e1).equals(s2.remove(e1))
assume s.equals(s2)
equals⇒

∀o; s.has(o) ⇔ s2.has(o)∑
o

s.has(o)

1 =
∑

o

s2.has(o)

1

count⇒
s.count() = s2.count()

Let o be an object. Then:

case o = e1
remove⇒

¬s.remove(e1).has(o)

¬s2.remove(e1).has(o)

s.remove(e1).has(o) ⇔ s2.remove(e1).has(o)

case o 6= e1

s.remove(e1).has(o) remove⇔ s.has(o)
m

s2.remove(e1).has(o) remove⇔ s2.has(o)

25

therefore

∀o; s.remove(e1).has(o) ⇔ s2.remove(e1).has(o)

equals⇒
s.remove(e1).equals(s2.remove(e1))

8. (new JMLObjectSetImpl()).remove(e1).equals(new JMLObjectSetImpl())
let ∅ = new JMLObjectSetImpl()
let o be any object

case o = e1
remove⇒

¬∅.remove(e1).has(e1)

¬∅.remove(e1).has(o)
constructor⇒

¬∅.has(o)

∅.remove(e1).has(o) ⇔ ∅.has(o)

case o 6= e1
remove⇒

o 6= e1 ⇒ (∅.remove(e1).has(o) ⇔ ∅.has(o))

∅.remove(e1).has(o) ⇔ ∅.has(o)

Therefore
∀o; ∅.remove(e1).has(o) ⇔ ∅.has(o)

equals⇒
∅.remove(e1).equals(∅)

9. ¬s.has(e1) ⇒ s.insert(e1).remove(e1).equals(s)
assume ¬s.has(e1)
let o be an object

case o = e1

¬s.has(o)
remove⇒

¬s.insert(e1).remove(e1).has(o)

s.insert(e1).remove(e1).has(o) ⇔ s.has(o)

case o 6= e1

s.insert(e1).remove(e1).has(o) remove⇔ s.insert(e1).has(o) insert⇔ s.has(o)

26

Therefore

∀o; s.insert(e1).remove(e1).has(o) ⇔ s.has(o)

equals⇒
s.insert(e1).remove(e1).equals(s)

10. e1 6= e2 ⇒ s.insert(e1).remove(e2).equals(s.remove(e2).insert(e1))
assume e1 6= e2
let o be any object

case o = e1
o 6= e2

insert⇒
s.insert(e1).has(e1)

s.insert(e1).has(o)

remove⇒

o 6= e2 ⇒ (s.insert(e1).remove(e2).has(o) ⇔ s.insert(e1).has(o))

s.insert(e1).remove(e2).has(o) ⇔ s.insert(e1).has(o)

s.insert(e1).remove(e2).has(o)

insert⇒
s.remove(e2).insert(e1).has(e1)

s.remove(e2).insert(e1).has(o)

s.insert(e1).remove(e2).has(o) ⇔ (s.remove(e2).insert(e1).has(o))

case o = e2
symetric to previous case. proof can be obtained by consequently
exchanging insert/remove, e1/e2 and putting ¬ in front of all inter-
mediate results of the form S.x for some S.

case e1 6= o 6= e2
insert⇒ 15

∀S; o 6= e1 ⇒ (S.insert(e1).has(o) ⇔ S.has(o))

∀S;S.insert(e1).has(o) ⇔ S.has(o)

15technically, this is not true, since the contract can only be applied in a state the receiver
is allocated in. However, for all instantions of this rule, this condition is met. More in the
remark after the proof.

27

remove⇒

∀S; o 6= e2 ⇒ (S.remove(e2).has(o) ⇔ S.has(o))

∀S;S.remove(e2).has(o) ⇔ S.has(o)

We now instantiate these rules for S ∈ {s, s1, s2}:

s.insert(e1)︸ ︷︷ ︸
≡s1

.remove(e2).has(o) S1⇔ s.insert(e1).has(o)

s m
s.has(o)

s m

s.remove(e2)︸ ︷︷ ︸
≡s2

.insert(e1).has(o) S2⇔ s.remove(e2).has(o)

Therefore

∀o; s.insert(e1).remove(e2).has(o) ⇔ (s.remove(e2).insert(e1).has(o))

equals⇒

s.insert(e1).remove(e2).equals(s.remove(e2).insert(e1))

11. isEmpty() ⇔ (count() = 0)
count⇒

count() =
∑

o

[has(o)]

count() = 0 ⇔
∑

o

[has(o)] = 0 ⇔ (∀o;¬has(o))
isEmpty⇔ isEmpty()

3.6.2 Equational ⇒ Method-centric

We begin with a few lemmas:

1. s.equals(s2) ⇔ (∀o; s.has(o) ⇔ s2.has(o))

s.equals(s2) a6⇔ s.isSubset(s2) ∧ s2.isSubset(s)
a5⇔ (∀o; (s.has(o) ⇒ s2.has(o)) ∧ (s.has(o) ⇐ s2.has(o)))
⇔ (∀o; s.has(o) ⇔ s2.has(o))

28

2. s.insert(e1).insert(e2).equals(s.insert(e2).insert(e1))
(insert operations commute with respect to equals)
Proof:
Let o be any object

s.insert(e1).insert(e2).has(o) a2⇔ (o = e2 ∨ s.insert(e1).has(o)) a2⇔ (o = e2 ∨ o = e1 ∨ s.has(o))
m

s.insert(e2).insert(e1).has(o) a2⇔ (o = e1 ∨ s.insert(e2).has(o)) a2⇔ (o = e1 ∨ o = e2 ∨ s.has(o))

Therefore

∀o; s.insert(e1).insert(e2).has(o) ⇔ s.insert(e2).insert(e1).has(o)

L1⇒
s.insert(e1).insert(e2).equals(s.insert(e2).insert(e1))

3. (s.insert(e1).insert(e1).equals(s.insert(e1)))
(idempotency of insert with identical parameters)
Proof:
Let o be any object

s.insert(e1).insert(e1).has(o)
a2 m

(o = e1 ∨ s.insert(e1).has(o))
a2 m

(o = e1 ∨ o = e1 ∨ s.has(o))
m

(o = e1 ∨ s.insert(e2).has(o))
a2 m

s.insert(e1).has(o)

Therefore

∀o; s.insert(e1).insert(e1).has(o) ⇔ s.insert(e1).has(o)

L1⇒
(s.insert(e1).insert(e1).equals(s.insert(e1)))

4. s.equals(s2) ⇒ s.u().equals(s2.u()) where u() ∈ {insert(e1), remove(e1)}
(updates maintain equality)
Assume s.equals(s2)

29

case u = insert(e1)
L1⇒

∀o; s.has(o) ⇔ s2.has(o)

let o be any object
s.has(o) ⇔ s2.has(o)

s.insert(e1).has(o) a2⇔ (e1 = o ∨ s.has(e2))
m

s2.insert(e1).has(o) a2⇔ (e1 = o ∨ s.has(e2))

L1⇒
s.insert(e1).equals(s2.insert(e1))

s.u().equals(s2.u())

case u = remove(e1)
a7⇒

s.remove(e1).equals(s2.remove(e1))

s.u().equals(s2.u())

The method specification only needs to hold for allocated receivers. We know
that every instance of JMLObjectSet has been returned by the constructor, or by
calling insert () or remove() on another instance. We can therefore characterize
every instance by the sequence of operations that created it.

5. there is a mapping f on operation sequences with the properties

(a) f(seq).equals(seq)

(b) f(seq) contains only insert operations. Moreover, every parameter
is unique within the sequence.

Proof sketch:
We proceed by giving a provably terminating algorithm computing f . Let
seq be the argument supplied to the algorithm. It has the invariant:

θ.equals(seq)

The algorithms starts by setting θ to seq. By its contract in class Object,
equals is reflexive. We therefore have:

seq.equals(seq)

θ.equals(seq)

30

i.e. the invariant holds.

We call an update of θ by θ′ legal if and only if θ′.equals(θ). Since equals
is transitive, legality implies:

θ′.equals(seq)

i.e. the invariant is maintained by all updates to θ. We will prove all
updates done by the algorithm are legal and thus maintain the invariant.

By axiom 10, insert and remove operations with differing arguments com-
mute at the end of the sequence with respect to equals. By Lemma 4,
this holds everywhere within the sequence. Therefore, we can rotate the
first remove operation to the front until the remove operation hits a cor-
responding insert operation or the constructor call.

case remove hits constructor
We remove the call to remove from the sequence (legal due to axiom 8
and lemma 4)
The remove has been removed from the sequence while maintaining
the invariant.

case remove hits corresponding insert
Because the current remove operation was the first and has only
moved to the head of the sequence, it is still first. Consequently,
there are only the constructor call and insert operations before it.
Also, we know there is an insert operation with matching argument
before the remove operation.
We rotate every insert operation with a matching argument towards
the remove until there are no non-matching inserts between it and
remove (obviously possible, legal due to lemma 2).
It then removes all but one matching inserts (legal due to lemma 3).
Now, the object represented by presequence of the matching insert
does not contain remove’s argument.
We then remove the matching insert along with its remove (legal
due to axiom 9, whose precondition we have just established, and
lemma 4)
The remove has been removed from the sequence while maintaining
equals.

We now repeat the above procedure until there are no more removes left
(which will happen, since the number of removes is a non-negative integer
and decreases with each iteration. Also, each iteration produces a well-
defined result) (this is legal since every step in every iteration is).

We then reorder the insert operations such that the sequence of arguments
is monotone according to some order (legal due to lemma 2) and remove
duplicate inserts (legal due to lemma 3).

31

We then return the current sequence.

Claim: The returned sequence satisfies the properties.
Proof: Since every step is legal and the invariant is initially satisfied,
property a) holds. Property b) trivially holds.

We are now ready to prove the contracts:

• isSubset: \result ⇔ (∀o;has(o) ⇒ s2.has(o))
a5⇒

this.isSubset(s2) ⇔ (∀o; (this.has(o) ⇒ s2.has(o))

\result ⇔ (∀o; (has(o) ⇒ s2.has(o))

• equals: \allocated(s2) ⇒ (\result ⇔ (s2instanceof JMLObjectSet) ∧
(∀o;has(o) ⇔ ((JMLObjectSet)s2).has(o))
Assume \allocated(s2)

case s2instanceof JMLObjectSet
L1⇒

this.equals(s2) ⇔ (∀o; this.has(o) ⇔ s2.has(o))

\result ⇔ (∀o;has(o) ⇔ s2.has(o))

\result ⇔ (s2instanceof JMLObjectSet) ∧ (∀o;has(o) ⇔ s2.has(o))

case ¬(s2instanceof JMLObjectSet)
a6⇒

¬\result

¬((s2instanceof JMLObjectSet) ∧ (∀o;has(o) ⇔ s2.has(o)))

\allocated(s2) ⇒

(\result ⇔ (s2instanceof JMLObjectSet)∧(∀o;has(o) ⇔ s2.has(o))

• insert: \result.has(o) ∧ (∀o2; o2 6= o ⇒ (\result.has(o2) ⇔ has(o2)))
a2⇒

∀o2; this.insert(o).has(o2) ⇔ (o = o2 ∨ this.has(o2))

∀o2; \result.has(o2) ⇔ (o = o2 ∨ has(o2))

let o2 = o

(o = o2 ∨ has(o2))

\result.has(o2) ⇔ (o = o2 ∨ has(o2))

\result.has(o2)

therefore
\result.has(o)

32

assume o2 6= o

(o = o2 ∨ has(o2)) ⇔ has(o2)

\result.has(o2) ⇔ has(o2)

therefore

∀o2; o2 6= o ⇒ (\result.has(o2) ⇔ has(o2))

\result.has(o) ∧ (∀o2; o2 6= o ⇒ (\result.has(o2) ⇔ has(o2)))

• remove: ¬\result.has(o) ∧ (∀o2; o2 6= o ⇒ (\result.has(o2) ⇔ has(o2)))
Let f be the mapping constructed in lemma 5
Let rr be f(\result)

L5⇒
rr.equals(\result)

L1⇒
rr.has(o) ⇔ (\result.has(o))

By construction, there are only insert operations in rr. Also, there is no
insert operation with an argument matching o. By axioms 1 and 2, we
conclude:

¬rr.has(o)

¬(\result.has(o))

For the second part of the proof, let rt be f(this). Let o2 be any object
such that o2 6= o. We observe that by construction, every insert operation
with argument o2 is present in rt exactly if it is present in rr.

this.has(o2)
L5,L1⇔ rt.has(o2) a2⇔ rr.has(o2)

L5,L1⇔ \result.has(o2)

• count: \result =
∑

o [has(o)]
let rt be f(this)
L5⇒

rt.equals(this)

rt only contains insert operations. Moreover, every parameter appears at
most once. We now prove∑

o

[rt.has(o)] = rt.count()

by induction along the sequence rt.

33

– Base case:
a1⇒

∀o;¬(new JMLObjectSetImpl().has(o))∑
o

[new JMLObjectSetImpl().has(o)] = 0

a3⇒
new JMLObjectSetImpl().count() = 0∑

o

[new JMLObjectSetImpl().has(o)] = new JMLObjectSetImpl().count()

– Induction step:
Let rtp denote the previous presequence. Since rt contains no insert
operation, the next presequence can be written as:

rtp.insert(e)

for some parameter e. Since parameters are unique in rt, rtp does
not contain e. By axiom 2, we conclude:

¬rtp.has(e)

insert⇒

rtp.insert(e).has(e) ∧ (∀o; o 6= e ⇒ (rtp.insert(e).has(o) ⇔ has(o)))∑
o [rtp.insert(e).has(o)]

=
∑

o [e = o ∧ rtp.insert(e).has(o)] +
∑

o [e 6= o ∧ rtp.insert(e).has(o)]
= 1 +

∑
o [e 6= o ∧ rtp.has(o)]

= 0 +
∑

o [e 6= o ∧ rtp.has(o)] + 1
=

∑
o [e = o ∧ rtp.has(o)] +

∑
o [e 6= o ∧ rtp.has(o)] + 1

=
∑

o [rtp.has(o)] + 1

a4⇒
rtp.insert(e).count() = rtp.count() + 1

We assume the induction hypothesis∑
o

[rtp.has(o)] = rtp.count()

∑
o

[rtp.has(o)] + 1 = rtp.count() + 1

and conclude the induction step:∑
o

[rtp.insert(e).has(o)] = rtp.insert(e).count()

34

We have proven: ∑
o

[rt.has(o)] = rt.count()

L1⇒
∀o; rt.has(o) ⇔ has(o))

a7⇒
rt.count() = \result

∑
o

[has(o)] = \result

• isEmpty(): \result ⇔ (∀o;¬has(o))
a11⇒

isEmpty() ⇔ (count() = 0)
count⇒

count() =
∑

o

[has(o)]

count() = 0 ⇔
∑

o

[has(o)] = 0 ⇔ (∀o;¬has(o))

\result ⇔ (∀o;¬has(o))

3.6.3 Conclusion

We have proven that the method-centric specification is equivalent to the equa-
tional one. This is surprising, as the method-centric specification is by far
more restricted in the induction order its use requires than the equational the-
ory. Also, we have seen that the non-trivial induction order required by the
equational theory makes proving even relatively simple properties difficult and
cumbersome.

3.7 Conclusion

We started with the equational specification extracted from the official specifi-
cation of JMLObjectSet, which turned out to be both incorrect and incomplete,
due to several bugs which seem to have been caused by a poor understanding of
the pitfalls of encoding an equational theory in JML. In particular, we identi-
fied and fixed an incorrect axiom, unintended specification of unallocated state,
a too weak specification due to the application condition inherent to instance
invariants, inadvertent loss of a required basic mathematical property during
translation. We also enhanced the original specification by a formal specifi-
cation implying instance immutability. The resulting equational specification
seems sound and complete, but the fixes cluttered the specification to an extent

35

where its usability was impaired. Even in its original, flawed, version, the spec-
ification was neither concise nor easy to understand. We think the flexibility of
specification placement granted by using an invariant instead of method speci-
fications contributed to that problem, as unnecessary flexibility in the absence
of coding guidelines often does.

Consequently, we switched to a more orderly method-centric approach. We
provided an abstract specification followed by an implementation in a subclass,
which we verified based on the private specifications given. Checking the sound-
ness of the private specification shed some light on automatic sanity-checking
of recursive specifications. To demonstrate the expressiveness and ease of use
of the specification, we gave a formal verification of a client method computing
the intersection of sets. Also, we formally proved that our method centric spec-
ification is at least as strong as the equational one and provided a proof sketch
for the reverse direction.

It was the goal of this case study to develop a verifiably sound, correct, com-
plete, concise and understandable specification for JMLObjectSet. Our specifi-
cation is provably sound, correct, and complete, and substantially more concise
and understandable than previous approaches.

4 Peculiarities of JML

4.1 Range of Quantification

The proper definition of quantified expression poses a design decision: Should
quantification over a reference type include references that point to objects not
allocated yet? While this may seem a curious notion a first glance, [4] states
this. To study the respective advantages of these approaches, we consider the
problem of specifying the return value of

JMLObjectSet s = new JMLObjectSet();
Object o = new Object();
return s.has(o);

The relevant parts16 of the method-oriented specification are:

//@ public constraint (\forall Object o; \old(has(o)) == has(o));

//@ pure
abstract boolean has(Object o);

/∗@ public normal behavior
@ ensures (\forall Object o; ! has(o)) ;
@∗/

//@ pure
JMLObjectSet() {...}

16definition of isEmpty() inlined to keep matters concise

36

4.1.1 Extended Quantification Range

If quantification range includes the non-allocated non-null references, the above
specification permits us to prove that the return value is false .

Unfortunately, if the quantification range is extended and we are permitted17

to use the quantified variables as receiver or actual parameter of methods, the
semantic function described by the specification of has() must be defined for
these references. However, a basic assumption in program verification is that
an implementation is at least as strong as the specification, i.e. if the spec-
ification prescribes something, the implementation computes that. However,
this would imply that, since the specification’s semantic function must accept
not-yet-allocated objects, so must the implementation’s.

We can choose to forego that property or to establish it by slightly extending
the semantics of Java to permit not-yet-allocated references at the discretion of
the specification. In practise, this would mean to drop the assumption that
parameters are either null or \allocated from Java’s semantics, but add an
additional proof obligation that no reference to not-yet-allocated state is deref-
erenced. Of course, a method’s specification could require that a parameter
is \allocated; only in the absence of such a requirement would the program’s
semantic function be generalized.

In essence, a reference can be used to represent an identity or as pointer
to an object. Programs that only care about identity will not dereference and
therefore satisfy the proof obligation. JMLObjectSet is such a class. If we do not
require the parameter of has() to be allocated, but require that the parameter
of insert() is allocated or null, we can easily prove

∀o;has(o) ⇒ \allocated(o) ∨ o = null

while providing semantics for has() even for not-yet-allocated objects, and thus
specifying the membership status of newly allocated objects, without requiring
any program modification. However the notation of the allocated clauses also
takes up space and is not conducive to readability.

It must be noted that while this extension of Java’s semantics may seem
unintuitive, sacrificing the property that the implementation is stronger than
the specification is really ugly. For instance:

/∗@ public normal behavior
@ ensures \result && (o!=null && !\allocated(o) ==> !safe ==> safe

)
@∗/

//@ pure
boolean unsound(Object o) {return true;}

boolean safe;

17if we are not, the extended quantification range is useless at least in our example and
where we must resort to the ugly approach described below

37

/∗@ public normal behavior
@ ensures safe && (\forall Object o;;unsound(o));
@∗/

void main () {
safe=false;

}
}

The specification of unsound() is obviously unsound, but as we may as-
sume \allocated(o) ∨ o = null for the verification of unsound, we can prove its
correctness. Obviously, we can prove ¬safe. Since unsound()’s specification
does not call methods, dependency is well-founded, and main() may assume
the specification of unsound(). However, since there is a reference o such that
o 6= null ∧ ¬\allocated(o), permitting deduction ¬safe ⇒ safe and thus safe.
Also, this shatters our result that a correctly implemented method referring to
a pure method in its specification can not constrain that method’s semantics:

//@ pure
abstract boolean m();

/∗@ public normal behavior
@ ensures o!=null && !\allocated(o) ==> m();
@∗/

//@ pure
void n (Object o) {}

which falsifies our results about safe implementation exchange or overriding of
pure methods. Extending the semantics of Java seems to be the better choice.

4.1.2 Limited Quantification Range

On the other hand, if quantification range were defined as the set of values
permitted by the semantics of Java (specifically, null and references to objects,
provided they are allocated), the specification proposed above would be invalid,
since the history constraint would potentially call has() with an unallocated
object. We can fix this by replacing the offending constraint with:

//@ public constraint (\forall Object o;
//@ has(o) == \old(\allocated(o)) ? \old(has(o)) : false) ;

While this is strong enough, and the implementation can be proven, this
approach explicitly mentions object allocation, is therefore a nonmodular, dy-
namic description, very close to the operation of the program, but far from the
view of the caller – at least, I don’t think about a set by considering the effect
object allocation has on membership . . .

Also, unlike the preceding one, this approach does not generalize well to
mutable sets: A history constraint is the only way to describe the effect of
unrelated object allocation. If there was no mutation, a history constraint
has to define has() to yield false for newly allocated objects. If a mutation

38

happened, has() must yield either true or false , depending on the mutation.
A mutation changing has() to true must therefore leave a trace visible to the
specification. We can use a modification counter in a model field to accumulate
such traces:

// define an encapsulated instance model field
// containing a mathematical integer
// that is incremented by every insert

//@ public constraint \old(modcount) == modcount ==>
//@ (\ forall Object o; ;
//@ has(o) == \old(\allocated(o)) ? \old(has(o)) : false) ;

but this is hardly concise ...

4.1.3 Conclusion

We conclude that while it is possible to specify the intended semantics with
both approaches, the extended quantifier range permits a substantially smaller,
more intuitive and more general specification than is possible without. On the
other hand, proper handling of the problems introduced by extending the range
also introduces some complexity and the need for additional notation.

4.2 Observability of Side Effects

The following specification observes side effects of a pure method. Assuming
that these side effects can be ignored leads to unsound verification.

class A {
/∗@ public normal behavior

@ ensures !valid();
@∗/

//@ pure
A() {}

/∗@ public normal behavior
@ ensures !\result;
@∗/

//@ pure
boolean valid() {return false;}

}

class B {
/∗@ public normal behavior

@ ensures (\result instanceof A) ==> !((A)\result).valid();
@∗/

//@ pure
static /∗@ non null @∗/ Object p() {

39

return new A();
}

}

class C {
/∗@ public normal behavior

@ requires \forall A a; \allocated(a) ==> a.valid();
@∗/

void m() {
Object o = B.p();
if (o instanceof A) {

A a = (A)o;
assert a.valid () ;

}
}

}
}

Claim: The above code (including the assertion) verifies correct.
Proof: A.valid() is correct and so is A.A(). Since A.A() is pure, so is B.p(),
satisfying its contract. It remains to verify C.m(). At the beginning of method
execution, we may assume the precondition. By the assumption and B.p()’s
purity, we may assume the property holds after evaluating B.p(). Since the
property does not refer to o, assignment to o does not affect the property, thus,
it still holds before the if-statement. The condition in if is side-effect free,
thus the property still holds in the true-branch. Casting is side-effect free, and
updating a can not affect the property, it therefore still holds at the assertion,
where we know \allocated(a) ∧ typeof(a) = A and can thus derive a.valid().
However, we can also prove ¬a.valid(), permitting to prove arbitrary properties
about the program.

We conclude that execution of a pure method can violate a specification
expression anywhere in the call chain. This has far-reaching consequences as
the absence of such interference was used to prove that changing evaluation
order of specification expressions does not affect the return value. Indeed, for
instance, && is not commutative, since in a state where no object of class A
was allocated so far, the following expressions differ in their return value:

(\ forall A a; \allocated(a) ==> a.valid()) && !B.p().valid(); // true
!B.p(). valid () && (\forall A a; \allocated(a) ==> a.valid()); // false

There seems to be no trivial change fixing this. It seems required to restrict
the range of observation of quantification expressions, but no simple restriction
seems to do the job, since the range of oberservation would have to depend on
the current scope, and these scopes do not seem to have an immediately useful
mathematical structure such as a subset-relation. Also, a reference entering
scope (like in method C.m()) would entail additional proof obligations in order
to safely include it in quantification range.

40

It is worth noting that this problem is not affected by the presence of not-
yet-allocated objects in quantification range, since these are excluded by the
quantification’s range predicate in the preceding example.

4.3 Relative Immutability of Abstract State

We noted in the introduction that abstract state can be represented in JML
by prescribing a relationship with other state, forming a recursion ending in
concrete state. Alternatively, it can be represented using a family of abstract
pure methods describing the state. We have seen functional properties can be
expressed in either case. However, to use those functional properties in practise,
and to modularly prove history constraints, we need to be able to establish that
state is not manipulated from outside the instance (or at least the class). We call
this property relative immutability, because only local methods can mutate the
state. It is worth noting that relative immutability is weaker than encapsulation,
because it is only concerned with write access to internal state.

In JML, we can limit the range of write effects using assignable clauses. Since
an assignable clause can only mention visible locations, and concrete state can
be declared private, we can enforce relative immutability for concrete state.
Given a mapping from concrete to abstract state, we can propagate relative
immutability to abstract state. However, if abstract state is represented using
a family of pure methods, there is no syntactic construct that would permit
inference of relative immutability.

For instance, in the specification of JMLObjectSet, we can not express that
the return value of has() is relatively immutable, i.e. can be affected only using
methods of the class. Therefore, the history constraint we used to prescribe
immutability of has() is not modularly checkable.

If we want to avoid additional notation, we could use ownership types to
restrict dependencies by enforcing that a pure method may only be affected by
locations its receiver owns. Since we are only interested in relative immutabil-
ity and not full encapsulation, the owner-as-modifier property [2] is sufficient,
permitting the application of the relatively flexible universe type system [6].

However, this approach does not permit to keep state in the interface class,
which is too restrictive in our opinion. Therefore we suggest to permit infer-
ence of relative immutability by defining an affected by clause that, if present,
exhaustively lists the method invocations18 that can affect the method’s return
value. We can then specify relative immutability of has() by writing:

//@ affected by \nothing
//@ pure
abstract boolean has(Object o);

Even relative immutability of a mutable variant of JMLObjectSet could then
be conveniently specified:

//@ affected by empty(),insert(o),remove(o)

18i.e. including receiver and parameters

41

//@ pure
abstract boolean has(Object o);

meaning that the return value of the expression has(o) depends only on in-
vocation of empty() with matching receiver, and on invocations of insert/re-
move with matching receiver and matching parameter. For safe subtyping, the
subclass may not define additional methods that affect has, nor broaden the
affected by clause.

The reason we list method invocations, and not concrete fields or data groups
is that concrete fields are too inflexible (no implementation exchange), and data
groups may be extended by subclasses regardless of the relative immutability of
the added elements. Specifically, a subclass may put public fields declared by it
in a datagroup specified by its superclass.

5 Conclusion

In this report we studied the benefits and problems caused by permitting calls to
pure methods in specifications. We have seen that pure methods extend JML’s
range of expressiveness to abstract state, but that their introduction jeopar-
dizes modularity and soundness of verification. We suggested rules to prevent
indirect specification from correctly implemented methods and thus partially
reestablished modularity. We presented techniques to guarantee soundness of
verification that work in our example, but whose general applicability has yet
to be determined.

We developed two specifications for JMLObjectSet, where one is substan-
tially more concise and user-friendly than the official version and proved their
equivalence, correctness and completeness.

We showed that the public interface of JMLObjectSet can be specified with
acyclic method specification dependencies. Specifying its implemenation, we
showed that structural induction is best described using a recursive specifica-
tion. We have not suceeded in finding an example where mutual recursion in
specifications is required, giving rise to the hope that such cases are rare.

We showed that while including references to not-yet-allocated objects in
quantification range eliminates the need to specify initial return values for these
references, proper treatment of such references is not trivial and that the anno-
tation overhead caused is significant. We also showed that it is not enough to
prevent side-effects observable to the program in order to guarantee the absence
of observable side effects to specification expressions and proved that contrary
to [4], order of evaluation does matter for specification expressions. Finally, we
showed that the usefulness of pure methods in specifications is limited because
effects on the state they represent can not be expressed, and suggested a syntax
extension to fix that.

42

References

[1] Á. Darvas and P. Müller. Reasoning About Method Calls in JML Specifica-
tions. In Formal Techniques for Java-like Programs, 2005.

[2] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal
of Object Technology (JOT), 2005. To appear.

[3] G. Leavens, A. Baker, C. Ruby, et al. JML-Specification of
org.jmlspecs.models.JMLObjectSet. from www.jmlspecs.org. revision 1.72.

[4] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-
06x, Iowa State University, Department of Computer Science, 2004. See
www.jmlspecs.org.

[5] Gary T. Leavens and Specifications from Compaq SRC’s ESC/Java. JML-
Specification of java.lang.Object. from www.jmlspecs.org. revision 1.42.

[6] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and
dependency control. Technical Report 279, Fernuniversität Hagen, 2001.

A Listings

A.1 Original Equational Specification

//−@ immutable
public /∗@ pure @∗/ class JMLObjectSet
{

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ equational theory ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

/∗@ public invariant (\ forall JMLObjectSet s2; s2 != null;
@ (\ forall Object e1, e2; ;
@ equational theory(this , s2, e1, e2))) ;
@∗/

/∗∗ An equational specification of the properties of sets .
∗/

/∗@ public normal behavior
@ {|
@ // The following are defined by using has and induction.
@
@ ensures \result <==> (
@ !(new JMLObjectSet()).has(e1)
@) && (
@ s. insert (e1).has(e2) == (e1 == e2 || s.has(e2))
@) && (

43

@ (new JMLObjectSet()).count() == 0
@) && (
@ s. insert (e1).count()
@ == (s.has(e1) ? s.count() : s .count() + 1)
@) && (
@ s.isSubset(s2)
@ == (\forall Object o; ; s .has(o) ==> s2.has(o))
@) && (
@ s.equals(s2) == (s.isSubset(s2) && s2.isSubset(s))
@) && (
@ (new JMLObjectSet()).remove(e1).equals(new

JMLObjectSet())
@) && (
@ s. insert (e1).remove(e2).equals(
@ e1 == e2 ? s : s .remove(e2).insert(e1)
@)
@);
@
@ // The following are all defined as abbreviations.
@
@ also ensures redundantly \result <==>
@ (
@ s.isEmpty() == (s.count() == 0)
@) && (
@ (new JMLObjectSet(e1)).equals(new JMLObjectSet().insert(

e1))
@) && (
@ s.isProperSubset(s2)
@ == (s.isSubset(s2) && !s.equals(s2))
@) && (
@ s. isSuperset(s2) == s2.isSubset(s)
@) && (
@ s.isProperSuperset(s2) == s2.isProperSubset(s)
@) ;
@ |}
@
@ implies that // other ways to specify some operations
@
@ ensures \result <==> (
@ (new JMLObjectSet()).isEmpty()
@) && (
@ !s . insert (e1).isEmpty()
@) && (
@ (new JMLObjectSet(e1)).has(e2) == (e1 == e2)
@);
static public pure model boolean equational theory(JMLObjectSet s,

44

JMLObjectSet s2,
Object e1,
Object e2);

@∗/

//@ pure
abstract boolean has(Object o);

//@ pure
abstract boolean isEmpty(Object o);

//@ pure
abstract boolean isSubset(/∗@ non null @∗/ JMLObjectSet s2);

//@ pure
// overrides Object.equals()
abstract boolean equals(Object s2);

//@ pure
JMLObjectSet() {}

//@ pure
abstract /∗@ non null @∗/ JMLObjectSet insert(Object o);

//@ pure
abstract /∗@ non null @∗/ JMLObjectSet remove(Object o);

//@ pure
int count() {

return isEmpty() ? 0 : 1+remove(choose()).count();
}

/∗∗ a minimalistic iterator ∗/
/∗@ public normal behavior

@ requires !isEmpty();
@ ensures has(\result);
@∗/

//@ pure
abstract Object choose();

}

A.2 Improved Equational Specification

/∗@ pure @∗/ abstract class JMLObjectSet {

//@ public constraint (\forall Object o; \old(has(o)) == has(o));

45

/∗@ public static invariant (\forall JMLObjectSet s,s2; ;(
@ (\ forall Object e1, e2; ;
@ equational theory(s , s2, e1, e2)))) ;
@∗/

/∗∗ An equational specification of the properties of sets .
∗/

/∗@ public normal behavior
@ {|
@ ensures \result <==> (
@ !(new JMLObjectSet()).has(e1)
@) && (
@ \allocated(s) ==>
@ s. insert (e1).has(e2) == (e1 == e2 || s.has(e2))
@) && (
@ (new JMLObjectSet()).count() == 0
@) && (
@ \allocated(s) ==>
@ s. insert (e1).count() == (s.has(e1) ? s.count() : s .count

() + 1)
@) && (
@ \allocated(s) && \allocated(s2) ==>
@ s.isSubset(s2) == (\forall Object o; ;(s .has(o) ==> s2.

has(o)))
@) && (
@ \allocated(s) ==> (\forall Object o; \allocated(o); (
@ s.equals(o) == (o instanceof JMLObjectSet)
@ && s.isSubset((JMLObjectSet)o)
@ && ((JMLObjectSet)o).isSubset(s)))
@) && (
@ \allocated(s) && \allocated(s2) ==>
@ s.equals(s2) ==>
@ s.count() == s2.count() && s.remove(e1).equals(s2.

remove(e1))
@) && (
@ (new JMLObjectSet()).remove(e1).equals(new

JMLObjectSet())
@) && (
@ \allocated(s) ==>
@ !s .has(e1) ==> s.insert(e1).remove(e1).equals(s)
@) && (
@ \allocated(s) ==>
@ e1!=e2 ==>
@ s. insert (e1).remove(e2).equals(s.remove(e2).insert(

e1))

46

@) && (
@ \allocated(s) ==>
@ s.isEmpty() == (s.count() == 0)
@);
@ |}
@
@ implies that // other ways to specify some operations
@
@ ensures \result <==> (
@ (new JMLObjectSet()).isEmpty()
@) && (
@ \allocated(s) ==>
@ !s . insert (e1).isEmpty()
@) ;
static public pure model boolean equational theory(JMLObjectSet s,

JMLObjectSet s2,
Object e1,
Object e2);

@∗/

//@ pure
abstract boolean has(Object o);

//@ pure
abstract boolean isEmpty(Object o);

//@ pure
abstract boolean isSubset(/∗@ non null @∗/ JMLObjectSet s2);

//@ pure
// overrides Object.equals()
abstract boolean equals(Object s2);

//@ pure
JMLObjectSet() {}

//@ pure
abstract /∗@ non null @∗/ JMLObjectSet insert(Object o);

//@ pure
abstract /∗@ non null @∗/ JMLObjectSet remove(Object o);

//@ pure
int count() {

return isEmpty() ? 0 : 1+remove(choose()).count();
}

47

/∗∗ a minimalistic iterator ∗/
/∗@ public normal behavior

@ requires !isEmpty();
@ ensures has(\result);
@∗/

//@ pure
abstract Object choose();

}

A.3 Method-Centric Specification

/∗@ pure @∗/ abstract class JMLObjectSet {
// to do: express that has() depends on encapsulated state only.

//@ public constraint (\forall Object o; \old(has(o)) == has(o));

//@ pure
abstract boolean has(Object o);

/∗@ public normal behavior
@ ensures \result == (\forall Object o; ! has(o)) ;
@∗/

//@ pure
abstract boolean isEmpty();

/∗@ public normal behavior
@ ensures \result == (\forall Object o; has(o) ==> s2.has(o));
@∗/

//@ pure
abstract boolean isSubset(/∗@ non null @∗/ JMLObjectSet s2);

/∗@ also public normal behavior
@ requires \allocated(s2);
@ ensures \result == (s2 instanceof JMLObjectSet) && (\forall

Object o;; has(o) <==> ((JMLObjectSet)s2).has(o));
@∗/

//@ pure
// overrides Object.equals()
abstract boolean equals(Object s2);

//@ pure
JMLObjectSet() {}

/∗@ public normal behavior
@ ensures \result.isEmpty();

48

@∗/
//@ pure
abstract /∗@ non null @∗/ JMLObjectSet empty();

/∗@ public normal behavior
@ ensures \result.has(o) && (\forall Object o2; o2!=o; \result .has(o2)

== has(o2));
@∗/

//@ pure
abstract /∗@ non null @∗/ JMLObjectSet insert(Object o);

/∗@ public normal behavior
@ ensures !\result.has(o) && (\forall Object o2; o2!=o; \result .has(o2

) == has(o2));
@∗/

//@ pure
abstract /∗@ non null @∗/ JMLObjectSet remove(Object o);

/∗∗ a minimalistic iterator ∗/
/∗@ public normal behavior

@ requires !isEmpty();
@ ensures has(\result);
@∗/

//@ pure
abstract Object choose();

/∗@ public normal behavior
@ ensures \result == (\sum Object o; has(o); 1);
@∗/

//@ pure
int count() {

return isEmpty() ? 0 : 1+remove(choose()).count();
}

}

A.4 Implemenation Specification

/∗@ pure @∗/ class JMLObjectSetImpl extends JMLObjectSet {
private Object value;
private JMLObjectSetImpl next;

/∗@ private invariant
@ next==null || !next.has(value);
@∗/

/∗@ private normal behavior

49

@ ensures \result == (next!=null) && ((o==value) || next.has(o));
@∗/

//@ pure
boolean has(Object o) {

return (next!=null) && ((o==value) || next.has(o));
}

boolean isEmpty() {
return next==null;

}

boolean isSubset(/∗@ non null @∗/ JMLObjectSet s2) {
// this implementation could also go into the superclass ’ code
JMLObjectSet s = this;
while (!s.isEmpty()) {

Object o = choose();
if (! s2.has(o)) {return false;}
s=s.remove(o);

}
return true;

}

boolean equals(Object s2) {
return s2!=null

&& (s2 instanceof JMLObjectSet)
&& this.isSubset((JMLObjectSet) s2)
&& ((JMLObjectSet)s2).isSubset(this) ;

}

/∗@ public normal behavior
@ ensures isEmpty();
@∗/

//@pure
JMLObjectSetImpl() {

next=null;
}

/∗@ private normal behavior
@ requires \allocated(n) && !n.has(v);
@ ensures value=v && next==n;
@∗/

//@ pure
JMLObjectSetImpl(Object v, JMLObjectSetImpl n) {

value=v;
next=n;

}

50

/∗@ non null @∗/ JMLObjectSet empty() {
return new JMLObjectSetImpl();

}

/∗@ non null @∗/ JMLObjectSet insert(Object o) {
if (has(o)) {

return this;
} else {

return insert nonexisting(o);
}

}

/∗@ public normal behavior
@ requires !has(o);
@ ensures \result.has(o) && (\forall Object o2; o2!=o; \result .has(o2)

== has(o2));
@∗/

//@ pure
/∗@ non null @∗/ JMLObjectSet insert nonexisting(Object o) {

return new JMLObjectSet(o,this);
}

/∗@ non null @∗/ JMLObjectSet remove(Object o) {
if (has(o)) {

return remove existing(o);
} else {

return this;
}

}

/∗@ public normal behavior
@ requires has(o);
@ ensures !\result.has(o) && (\forall Object o2; o2!=o; \result .has(o2

) == has(o2));
@∗/

//@ pure
/∗@ non null @∗/ JMLObjectSet remove existing(Object o) {

if (value==o) {
return next;

} else {
return next.remove existing(o).insert(value) ;

}
}

public Object choose() {

51

return value;
}

}

52

