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Introduction

The Viper project [5] is a verification infrastructure developed by the Chair of
Programming Methodology at ETH Zürich. As shown in Figure 0.1, inspired
by [5], Viper currently consists of an intermediate language, which provides a
flexible permission model, and two back-end verifiers: Silicon [8], a verifier that
uses symbolic execution, and Carbon [3], a verification-condition-generation-
based verifier.

Figure 0.1: Viper Infrastructure and the underlying tools

Viper is based on separation logic [7] which is a permission-based logic
that introduces two important connectives: separating conjunction and magic
wands (also known as separating implication). Magic wands are useful for
iterative traversal of data structures. In [9], Malte Schwerhoff and Alexander
J. Summers show how to support magic wands in automatic verifiers along
with an implementation for their approach in Silicon. Magic wands were then
supported in Carbon in [6]. Finally, a new version of magic wand support was
introduced in [1] and implemented in Silicon. The main goal of this bachelor
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thesis is to support the magic wands introduced in [1] in Carbon.
We first provide the necessary information about Viper, Carbon and magic
wands. Then we introduce our design for adding the new magic wand support
to Carbon. Finally, we discuss an extension for our design in Chapter 3 which
we had time to work on as an extension of our core goals.



Chapter 1

Background

In this chapter, we will describe the relevant Viper information from Figure 0.1
level by level. First, we will introduce the Viper language constructs that are
relevant to our project. Then, we will introduce Carbon and Boogie. Finally,
we will focus on the magic wands in both the Viper language and Carbon as
it is essential for our work.

1.1 Viper Language

Viper language supports basic constructs such as methods, predicates (Section
1.1), conditionals and loops. Viper language also supports specifications using
pre/post conditions as well as loop invariants. The following subsections descri-
be the Viper language constructs that are necessary for understanding our
project. We are going to explain the necessary Viper constructs using the
example in Listing 1, which is a simple Viper program to copy the values of
the field y.f to x.f. Ref type in Viper is similar to class in object-oriented
languages.

1 field f: Int
2

3 method copy(x: Ref, y: Ref)
4 requires acc(x.f) && acc(y.f, 1/2)
5 ensures acc(x.f) && acc(y.f, 1/2) && x.f == y.f
6 {
7 x.f := y.f
8 }

Listing 1: A method that copies the value of y.f to field x.f

Permissions

Reasoning about heap locations in Viper programs requires having permissi-
on to these locations. Field permissions specify which heap locations can be
read/modified by some operation. In Listing 1, the copy method modifies the
value of x.f and reads the value of y.f. Thus, a write permission for x.f and

3
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a read permission for y.f are required. The write permission (full permission)
to x.f is gained by having acc(x.f) in the precondition of the method in line
4. The read permission is gained by acc(y.f, 1/2) in the precondition.
In general, a permission to a field in Viper is represented by a fraction value.
Permission to some field x.f is written as acc(x.f, p) (we call them accessibili-
ty predicates) where p is a non-negative fractional value. Writing acc(x.f)
means having the full permission to x.f which is the equivalent to writing
acc(x.f, 1) and having a full permission enables different operations to modify
x.f. A positive permission value to x.f means the value of x.f can be read
by different operations but cannot be modified unless the full permission is
possessed.

Permissions are transferred between methods through method calls. When-
ever a method is invoked, its preconditions should be transferred to the callee
by the caller. Then, after the callee method finishes executing its body, its
postconditions are transferred to the caller method. In Listing 2, the copy
method is being called from another method (client). When the copy method
is called, the caller method, client, gives away permission for acc(x.f) and
acc(y.f, 1/2), which are stated by the preconditions of the copy method,
and after the call, the postconditions of the copy method are transferred to
the client method. Thus, after the call the client method gains permission
for acc(x.f) and acc(y.f, 1/2), along with the information that x.f and
y.f are now equal. The operation of losing permissions is called exhaling the
permissions. Whenever a permission is exhaled, the current method should
possess at least the required amount needed to be exhaled; otherwise, the
exhale fails. The opposite operation of gaining permissions is called inhaling a
permission.

1 field f: Int
2

3 method copy(x: Ref, y: Ref)
4 requires acc(x.f) && acc(y.f, 1/2)
5 ensures acc(x.f) && acc(y.f, 1/2) && x.f == y.f
6 {
7 x.f := y.f
8 }
9

10 method client(x: Ref, y: Ref)
11 requires acc(x.f) && acc(y.f)
12 {
13 copy(x, y)
14 }

Listing 2: The copy method is now invoked from a client method.

The concept of permissions is useful in solving the frame problem (which
parts of the heap are guaranteed to be left unchanged). Framing means proving
that a value or a certain assertion is not changed by modifying the heap.
Permissions can be distributed among different methods such as in Listing 2,
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when the copy is called, half permission for y.f is transferred to the copy
method while the other half permission remains with the client method.
However, the total summation of permissions for a certain location distributed
among different methods at one time should not exceed 1 in order to prevent
data races (having a field permission with an amount greater than 1 leads to an
inconsistent state in Viper). Thus, only one method can modify this location.
If some method has a positive permission to the field x.f, it is guaranteed
that this value can not be modified by any other method as no other method
can gain the full permission to x.f. For instance, in Listing 2, the client
method keeps half permission to y.f when calling copy(x, y); therefore, the
verifier knows that the copy method can only read y.f, and the value for y.f
is unchanged after making the call. We say in this case that y.f is framed (not
changed) across the method call.

Predicates

So far, we discussed permissions to single fields. In some cases, we need to
express permission to data structures of an unbounded size such as linked
lists and trees. As a linked list can have arbitrary length, one cannot specify
permissions to all its fields by enumerating all the relevant fields. Viper
supports predicates to represent permissions to such unbounded data structures.
Listing 3 shows an example for a predicate, recursively defined, representing
permissions to a null-terminating linked list. In Viper, the predicate and
its body are not equivalent to prevent infinitely unrolling recursive predicate.
For instance, having permission to predicate list(x) does not directly imply
having permission to x.value. This exchange between the predicate and
its body can be done explicitly through unfold and fold statements. The
statement unfold list(x) exchanges the predicate with its body; in other
words, the predicate list(x) gets exhaled and its body gets inhaled leading
to having permission to both fields x.value, x.next and to list(x.next)
provided that it is not null. Folding a predicate has the reverse effect: the
body of the predicate gets exhaled, then the predicate itself gets inhaled.

1 field value: Int
2 field next: Ref
3

4 predicate list(x: Ref){
5 acc(x.value) && acc(x.next) && (x.next != null ==> list(x.next))
6 }

Listing 3: recursive predicate for linked list

Similar to single field permissions, the permissions for predicates are written
acc(list(x), p) . We can write list(x) as a short for acc(list(x), 1).
Viper also supports the unfolding expressions which unfold the predicate
temporarily in order to evaluate an expression and the folds the predicate
again. It can be written as unfolding list(x) in x.value == 2.
Viper supports framing across fold-unfold pairs. This means having the field
x.value with some value, e.g. 2, before folding the predicate list(x) and
then unfolding list(x) later should preserve the value for x.value unchanged
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(equals 2 in this example). This is shown in Listing 4. The value x.value
is assigned to 2 in line 13. The predicate list(x) is then folded and any
operation that does not give away the whole permission to list(x) does not
affect the value for x.value as it is framed and the verifier is able to prove the
information that x.value == 2 after doing the unfold.

1 field value: Int
2 field next: Ref
3

4 predicate list(x: Ref){
5 acc(x.value) && acc(x.next) && (x.next != null ==> list(x.next))
6 }
7

8 method foo(x: Ref)
9 requires list(x)

10 {
11 unfold list(x)
12 x.value := 2
13 fold list(x)
14

15 // some operations that do not give away list(x)
16

17 unfold list(x)
18 assert x.value == 2
19 }

Listing 4: A Viper example that shows framing values across fold-unfold pairs.

1.2 Carbon

Carbon translates Viper code into Boogie[4] code which is then used for generat-
ing verification conditions that are passed to Z3 (SMT solver). As Boogie is
lower-level language than Viper, many Viper features such as heaps, permissions
and predicates need to be encoded into Boogie. We will show in this section
the encoding of the main Viper features discussed in the previous section.

State
A carbon state is represented by permissions to heap locations as well as the
values of these locations. We keep the permissions in a variable called Mask
and we keep the values in another variable called Heap. Both Mask and Heap
are represented as Boogie maps. Boogie supports updatable maps. A Boogie
map entry can have multiple (possibly different type) key but only one value.
The Heap map is represented by a map from reference and field to a value
of the same type of the field. For example, the value of x.f is translated to
Heap[x, f] and the returned value is of the same type as the field f. The Mask
map is also a map from reference and field but it maps to a fraction value. A
fraction in Boogie can be represented by type real. Having a reference as a
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location works fine when talking about a certain field but it is not clear why
we need a reference key when referring to permissions to predicates. Instead of
keeping permissions to predicates in a separate map, they are stored in the same
Mask map but the reference value for them is null and the field, in this case,
will be the Boogie translation of the predicate itself. Hence, the permission
to a predicate list(x) is translated to Mask[null, list(x)]. The rest of
the thesis when we refer to a Carbon state, we will use the symbol σ instead
of referring to the Mask and Heap separately unless we need to specify some
operation related to the Mask alone or the Heap.

type ref ;
type Field a;
type HeapType = <a> [ref, Field a] a;
var Heap: HeapType;

Listing 5: Program heap encoding as a map in Boogie

Listing 5, inspired by [3], shows the encoding of the program heap in Boogie.
The type ref and a polymorphic Field type are first defined. The keyword
type in Boogie is used to define new types. Then, we define the heapType to
be a map from a ref and a Field of type a to a value of type a. Finally, we
declare the heap as a variable of type heapType.

Exhale

As exhale is not an operation in Boogie, it needs to be translated as a sequence
of Boogie statements. Boogie supports assert statements. Therefore, exhaling
a pure expression (an expression with no accessibility predicates) will just be
translated as an assert statement. When a permission to a certain field is
exhaled, the permission amount to this field needs to be subtracted from the
Mask. After subtracting the permission amount, if the whole permission to a
field is lost, the value for this field is not framed anymore, which means it could
have any arbitrary value. Giving a field an arbitrary value is called to havoc
the field. Boogie supports havocing a variable by using the havoc keyword.
The way this havocing after an exhale is translated in Carbon is by having
a fresh heap (with all its locations assigned to arbitrary values). Then, only
values for locations to which a positive permission is still held are transferred to
the new fresh heap. Finally, the new heap is assigned to the original program
heap resulting in having the same values before the exhale for all the locations
to which a permission is still held and having arbitrary values to the other
locations.

Mask[x, f] := Mask[x, f] - p;
havoc ExhaleHeap;
assume IdenticalOnKnownLocations(Heap, ExhaleHeap, Mask);
Heap := ExhaleHeap;

Listing 6: The translation of an exhale statement to Boogie
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Listing 6 shows the Boogie encoding for an exhale statement. First, the
needed permission is removed from the current Mask. Then, a temporary heap
(ExhaleHeap) is havoced. The locations on the Heap is then assumed to be
equal to the corresponding values on ExhaleHeap for all the locations to which a
permission is still held in Mask. This is done via the IdenticalOnKnownLocations
function. Finally, the ExhaleHeap gets assigned to Heap. Notice that the
function IdenticalOnKnownLocations is a Boogie-level function, whose behav-
ior is specified through writing Boogie axioms. We will provide a high level
description of the function instead of providing the implementation detail as it
is not really important for our discussion: it is a function that takes two heaps
and a mask and equates all the locations, to which the mask has permission,
on both heaps. We chose to introduce it here to present two Boogie features
which are Boogie functions and axioms that are used to specify the behavior
of different functions without implementing the body of the function.

Fold

Most Viper operations can be translated as a sequence of exhales and inhales.
The fold operation, for instance, can be seen as exhaling the body of the
predicate and then inhaling the predicate itself. Thus, when a fold statement
is translated, Carbon will determine the body of the predicate, generates
the Boogie translation of exhaling the body and then generates the Boogie
translation of inhaling the predicate.
Consider a predicate p(x) whose body is acc(x.f). Listing 7 shows the Boogie
encoding for folding such a predicate. The predicate body is first exhaled by
removing the permissions from Mask. The predicate itself is inhaled. Finally,
the locations to which permissions are lost get havoced. Notice that the
havocing step here is postponed after inhaling the predicate p(x) to frame
the values across fold-unfold pairs as mentioned in section 1.1.

Mask[x, f] := Mask[x, f] - p;

Mask[null, cell(x)] := Mask[null, cell(x)] - p;

havoc ExhaleHeap;
assume IdenticalOnKnownLocations(Heap, ExhaleHeap, Mask);
Heap := ExhaleHeap;

Listing 7: The translation of an exhale statement to Boogie

1.3 Magic Wand

Magic wand (or separating implication) is a binary connective in separation
logic [7]. The magic wand is written as A−∗B, where both A and B are assertions.
A and B are called left-hand side and right-hand side of the wand respectively.
The magic wand is defined semantically as follows:

σ ⊧ A −∗B ⇔ ∀σ′ ⊥ σ ⋅ (σ′ ⊧ A ⇒ σ ⊎ σ′ ⊧ B)
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Here, σ ⊎ σ′ means that the two states σ and σ′ are compatible. Two states
are compatible, if and only if, for each heap location the summation for its
permission in the two states does not exceed the full permission and the value
for this location agrees on the heaps of both states. This definition means that
for all the states σ′ in which A holds, σ′ can be combined with the magic wand
to result in a state in which B holds. More informally, the magic wand can
be thought of as the difference between the right-hand side state, in which B
holds, and the left-hand side state, in which A holds.

Magic wands are supported in Viper. Although the magic wand is another
construct in Viper such as predicates, we chose to present magic wands in a
separate section, instead of having it in Section 1.1, due to its importance for
our work. First, we will explain how magic wands are used in Viper. Then, we
will present how the magic wands were implemented in the Carbon back end.

Viper

In Viper, the syntax of magic wands is A−∗B, where both A and B are self-framed
assertions. By self-framing, we mean that if some field appears in the assertion,
e.g. x.f, the required permission to this location must appear earlier in the
assertion, e.g. acc(x.f). We will use the example in Listing 8 throughout the
thesis to explain magic wands. It is a straightforward example for traversing a
linked list. The computation done during the traversal is omitted (line 21) as
it is not important for our discussion but it may be computing the sum of the
values in the list for example. The predicate in line 4 represents permissions
to the list and is shown in Section 1.1. The variable cur is the iterator which
traverses the list node by node, it starts at node x (line 12) and then during
the loop, it advances to the next node each time (line 24) until the next
value is null as specified by the loop condition. Both package statements
on lines 13, 26 and the apply statement on line 32 will be explained shortly.
Let us now consider the specification in the pre/post conditions and the loop
invariants. Line 9 specifies that the method should have permission to list(x)
as a precondition. Similarly, line 10 specifies that when the method finishes
execution, it should return permission to list(x) to the caller. The loop
invariants on lines 16 and 17 preserve the permissions between the iterations.
The first invariant represents the permissions from the current node to the end
of the list (represented by list(cur)). The second invariant represents the
rest of the list as the magic wand can be interpreted as the difference state
between the right-hand side, list(x), and the left-hand side, list(cur), of
the wand.

Packaging a wand

Packaging a magic wand in Viper means creating a new wand and adding it to
the current state. This is done using a package statement, e.g., package list(cur)
--* list(x). More informally, one can think of packaging a magic wand as

computing the difference state between the right-hand side and the left-hand
side. Packaging the wand is the guarantee that it is sound to transform the
left-hand side to the right-hand side of the wand. The state representing the
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1 field value: Int
2 field next: Ref
3

4 predicate list(x: Ref){
5 acc(x.value) && acc(x.next) && (x.next != null ==> list(x.next))
6 }
7

8 method traverse(x: Ref)
9 requires list(x)

10 ensures list(x)
11 {
12 var cur: Ref := x
13 package list(cur) --* list(x)
14

15 while(unfolding list(cur) in cur.next != null)
16 invariant list(cur)
17 invariant list(cur) --* list(x)
18 {
19 unfold list(cur)
20

21 // do something with cur.value
22

23 var prev: Ref := cur
24 cur := cur.next
25

26 package list(cur) --* list(x){
27 fold list(prev)
28 apply list(prev) --* list(x)
29 }
30 }
31

32 apply list(cur) --* list(x)
33 }

Listing 8: Viper example for traversing a linked list using magic wands.

difference between the two sides of the wand is called the footprint of the magic
wand σfoot.
Generally, program verification in presence of magic wands, without any user
guidance, is known to be undecidable. However, In [9], Schwerhoff and Summers
present an approach for automating verification in presence of magic wands
by allowing ghost operations provided by the user to provide guidance to the
verifier. The ghost operations guide the verifier how it could transform the left-
hand side of the wand to the corresponding right-hand side (computing σfoot).
The allowed ghost operations in [9] are folding, folds a predicate, unfolding,
unfolds a predicate, applying, applies a magic wand (explained in the next
subsection), and packaging, packages a magic wand.
In Viper, the [9] version of the magic wand was supported. Then, another
version [1] was supported in the Silicon back-end but not in Carbon. The
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main differences between the two versions are: 1) The newer version has
different syntax while packaging the wand regarding the way ghost operations
are written. Figures 1.1 and 1.2, taken from [1], show the difference in syntax.
2) The newer version also adds support to more ghost operations than the four
operations mentioned in [9]. It allowed more arbitrary code to be written during
packaging a wand such as assert statements and branching via if statements.
The new version of magic wands can be considered as a generalization of the
older version. Thus, through the rest of this thesis, we will denote the new
version of magic wands by generalized magic wands.

package statement := package assertion –* assertion with ghost operations

Figure 1.1: Old syntax of the package statement.

package statement := package assertion –* assertion {
statements as ghost operations

}

Figure 1.2: New syntax of package statement.

The example in Listing 8 shows the syntax for the generalized magic wands.
Let us see how the ghost operations guide the wand to transform the left-hand
side to the right-hand side. Lines 27 and 28 show the ghost operations needed
to guide the verifier to package the wand. Before packaging the wand in line 26
the program state has permission to list(cur) and list(cur) −∗ list(x)
from the loop invariants. The first ghost operation folds list(prev) which
results in permission to the predicate list(prev). Then, the apply statement
in line 28 gets executed resulting in the right-hand side of the wand which is
list(x) (the right-hand side of the wand in line 26 as well). Thus, starting with
the left-hand side of a package statement and following the ghost operations
stated results in the right-hand side of the wand. Failing to perform a ghost
operation or reach the right-hand side state causes the package statement to
fail, raising a verification error.

Applying a wand

One can apply a held magic wand using apply statement, e.g., apply list(cur)
--* list(x). Once a magic wand is packaged, it is treated, in Viper, as
an opaque resources. In other words, the verifier knows nothing about the
footprint of the magic wand. It is seen as a promise to return the right-hand
side state whenever a left-hand side state is provided. Therefore, in order
for a magic wand to be successfully applied, the current state should have
permission to the magic wand to be applied and the left-hand side of the wand
should hold in the current state. Both the left-hand side and the magic wand
are then exhaled and the right-hand side of the wand is inhaled. Consider the
apply statement in line 32 in Listing 8, notice that the left-hand side of the
wand, list(cur), holds before applying the wand as it is preserved by the loop
invariant. The wand is then applied resulting in the right-hand side, list(x),
causing the postcondition in line 10 to verify successfully.
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Carbon
At the moment we started this project, only the old magic wand [9] was
implemented in Carbon. Our main aim through this project is to extend
Carbon to support the generalized version of magic wands. As our work is
to extend the older version, one needs to understand the implementation of
the older version to be able to understand our work. The older magic wand
version was based on [9]. However, the design in [9] is more suitable for symbolic
execution. Thus, we are going to describe a modified version of it which is
more suitable for Carbon. This modified version is similar to the supported
magic wands in [6]. The main differences between the [9] version and the
old implemented version in Carbon are: 1) Carbon generates a Boogie code;
therefore, the Carbon methods return statements instead of states. 2) The
states in carbon are represented by mutable maps while the states in the [9]
version are immutable. Thus, we can in Carbon add permission to some state
or assign a state to some other state instead of creating a new state every time
we need to modify one.

Packaging a wand

In order for a magic wand to be packaged successfully, the verifier needs to
successfully compute the footprint σfoot of the magic wand. Figure 1.3 shows
the algorithm for computing the footprint of the magic wand. We will trace
the algorithm for the package statement in line 26 in Listing 8 to explain the
algorithm. Before we trace the code, note that Listing 8 uses the generalized
magic wand syntax while the algorithm mentioned in Figure 1.3 is for the
old syntax. Therefore, what we are really tracing is the syntax in Listing 9.
First when the package statement is encountered, the package method in

1 package list(cur) --* folding list(prev) in
2 applying (list(prev) --* list(x)) in
3 list(x)

Listing 9: Package statement with the old magic wand syntax

Figure 1.3 is invoked on the magic wand. A fresh state, σops, is created
which will accumulate the result of executing the ghost operations as we will
see. Then, a fresh state, σA, is created and the left-hand side, list(cur), is
inhaled in σA. Then the exec method is called to start executing the ghost
operations. The ’++’ operator means concatenation between different Boogie
statements as each method return some Boogie statements and the result is
the concatenation of these statements together. As the first ghost operation
is a folding operation, then the corresponding exec method is invoked. As
the required permissions may come from the left-hand side state, denoted by
σA, or the current state before the package, denoted by σcurr, both states
are put on a stack of states, denoted by σi. A fresh state σtemp is created,
then the body of the predicate list(prev) is transferred from σi to σtemp via
calling exhale ext method (by transferred we mean the permission is removed
from its old state and added to the new state, σtemp in this case). Thus, the
list(prev.next) (which is list(cur)) is transferred from σA, while both
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acc(prev.value) and acc(prev.next) are transferred from σcurr. The σtemp
state now has all the required permissions to perform the fold, then the fold
statement is executed in σtemp and the exec method is called recursively on the
rest of the right-hand side. Note that σops becomes σops ⊍ σtemp when making
a recursive call to exec, which means that the new σops is the result of adding
the permissions of both σtemp and the old σops.
The exec method is now called with the applying case as it is the next ghost
operation. Once again, σtemp is a new fresh state then both the left-hand side
of the wand to be applied, and the wand itself are transferred from σops and
σcurr respectively to σtemp. Only then, the apply statement can take place in
σtemp and again the exec method is called on the rest of the right-hand side.
Finally, the last exec method is called as there are no more ghost operations,
a fresh σtemp state is created, then the assertion in the right-hand side of the
wand is transferred to this σtemp and finally, the wand is successfully packaged
and added to the current state. We consider all the permission removed from
states other than the left-hand side and σops as the footprint of the magic
wand. More details on the implementation of exhale ext and description of
the algorithm are mentioned in [9] and [6].

State Booleans
State booleans is introduced in [6] as a part of encoding of package statements
in Carbon. We will introduce the problem that the state booleans solves; then,
we will show what is meant by state booleans and how they are used. Consider
the magic wand in Listing 10. The left-hand side of the magic wand is false;

1 field f: Int
2

3 method foo(x: Ref)
4 {
5 package false --* acc(x.f)
6 }

Listing 10: Packaging a wand with an inconsistent left-hand side.

therefore, this wand cannot be applied in a consistent state (false must hold
in such a state which means it is an inconsistent state) and as a result, the wand
should be trivially packaged without affecting the global state after packaging
the wand. When this wand is packaged in Carbon, the left-hand side assertion
is inhaled into the left-hand side state; thus, false should be assumed in σA.
In Carbon, assumptions cannot be done in a certain state without affecting the
global state and assuming false will lead to an inconsistent global state after
the wand is packaged. The solution introduced in [6] is using state booleans.
A state boolean is a boolean expression that carries the assumptions about
some state. This way, assumptions about different states are kept separately
in their state booleans. For instance, to add the assumption x.f == 2 in some
state σi, it is added to the state boolean bi := bi && (x.f == 2). When we
assert that x.f == 2 in the same state, it is encoded as an implication assert
bi Ô⇒ (x.f == 2). We will denote to the state boolean of some state σi by
σi.boolvar in the rest of this thesis. State booleans are fully explained in [6].
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σ.package(A −∗G) ↝
σops := freshState()
σA := freshState()
σA.inhale(A)
return exec(σ ⋅ σA, σops,G) + +

σ′.addWand(A −∗ nested(G))

exec(σi, σops,foldingP (e)inG) ↝
σtemp := freshState()
v ∶= σops.eval(e)
return exhale ext(σi ⋅ σops, σtemp,Body(P )[param↦ v]) + +

σtemp.fold(P, v) + +
exec(σi, σops ⊍ σtemp,G)

exec(σi, σops,unfoldingP (e)inG) ↝
σtemp := freshState()
v ∶= σops.eval(e)
return exhale ext(σi ⋅ σops, σtemp, P (e)) + +

σtemp.unfold(P, v) + +
exec(σi, σops ⊍ σtemp,G)

exec(σi, σops,applyingA −∗B inG) ↝
σtemp := freshState()
return exhale ext(σi ⋅ σops, σtemp,A ∗ (A −∗B)) + +

σtemp.apply(A −∗B) + +
exec(σi, σops ⊍ σtemp,G)

exec(σi, σops,packagingA −∗G1 inG2) ↝
σtemp := freshState()
σA := freshState()
σtemp.inhale(A)
return exec(σi ⋅ σops ⋅ σA, σtemp,G1) + +

σops.addWand(A −∗ nested(G1)) + +
exec(σi, σops,G2)

exec(σi, σops,A) ↝
σtemp := freshState()
return exhale ext(σi ⋅ σops, σtemp,A)

Figure 1.3: The old implementation of magic wands in Carbon based on
ECOOP15’ Paper. In the package method, nested(G) means the assertion
in the right-hand side without the ghost operations.



Chapter 2

Design

In this chapter, we describe our design for supporting the generalized magic
wand. The final design we implemented is in Section 2.3. However, it is not
easy to explain the final design alone. Therefore, we decided to present the
intermediate designs that act as transitions to reach the final design. These
intermediate designs are not actually implemented but they show how we
reached the final design that we implemented. We will present 3 different
designs, each one will be a modification on the previous design.

2.1 Design 1: Straightforward Design

The first design is the straightforward extension to Figure 1.3. Design 1 is
shown in Figure 2.1. Comparing the two designs, one can find that the exec
method in the older design is now separated into two different methods: the
execProof method which is responsible for translating the ghost operations
(denoted by proof script) and the execRhs method which translates the right-
hand side assertion of the magic wand. The proof script of the magic wand
is now translated in an iterative manner using a for loop which is more
intuitive as the proof script is a sequence of statements instead of a nested
assertion. Finally, the generalized magic wand supports more ghost operations
than Figure 1.3, we showed one extra operation which is the exhale operation
as an example of these extra operations. It is rather similar to older ghost
operations such as the fold. Consider translating an exhale statement such
as exhale acc(x.f) && x.f == 2 as a part of the proof script. First, a fresh
σtemp state is created. Then, the permission acc(x.f) is transferred to σtemp.
Next, the assertion gets exhaled in σtemp by removing permission to acc(x.f)
and asserting that x.f == 2. Finally, everything in σtemp is added to σops.

Issue with Design 1

In this design, we have a separate case for every different statement that can be
written inside a package statement, e.g., fold, exhale. Having different cases
for every statement was acceptable in the old magic wand as there is only 4
different ghost operations. However, the generalized magic wand allows writing
more arbitrary statements inside the proof script; therefore, having a separate
case for each statement makes the code harder to maintain. Furthermore,
consider we want to change the implementation of some operation (e.g., fold)

15
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σ.package(A −∗B,proofscript) ↝
σops := freshState()
σA := freshState()
σA.inhale(A)
return execProof(σ ⋅ σA, σtemp,proofscript) + +

execRhs(σ ⋅ σA, σops,B) + +
σ.addWand(A −∗B)

execProof(σi, σops,proofscript) ↝
returnStmt := emptyStatement()
for(stmt: proofscript)

σtemp := freshState()
if(stmt == fold P(e))

v ∶= σops.eval(e)
returnStmt := returnStmt ++ exhale ext(σi ⋅ σops, σtemp,Body(P )[param↦ v])
returnStmt := returnStmt ++ σtemp.fold(P, v)
returnStmt := returnStmt ++ σops := σops ⊍ σtemp

else if (stmt == exhale (e))
v ∶= σops.eval(e)
returnStmt := returnStmt ++ exhale ext(σi ⋅ σops, σtemp, e)
returnStmt := returnStmt ++ σtemp.exhale(v)
returnStmt := returnStmt ++ σops := σops ⊍ σtemp

...
return returnStmt

execRhs(σi, σops,A) ↝
σtemp := freshState()
return exhale ext(σi ⋅ σops, σtemp,A)

Figure 2.1: During packaging a wand we will execute the proof script in the
body of package statement first, then we handle the rhs of the wand. execRhs
is the same as the implementation in [9]. In execProof we iterate through the
body and behave according to the type of the statement to be executed. Here
only fold and exhale are shown as two examples of a modification for the old
implementation, and adding a new operation.

in the future. These changes will normally take place in the method responsible
for translating the fold statement but we also need to change the way that case
fold is treated inside the execProof method. Thus, changes to some feature
will require making the modifications twice. Similarly, adding a new feature to
Carbon will require handling this new feature outside the package statement
and handling a special case for it inside the execProof method as well. This
special treatment for every case during a package statement makes the code
more error-prone, harder to maintain and harder to scale to new operations.
Therefore, we need another design that avoids treating each operation inside
the proof script as a special case which was our motivation for developing our
second design.
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2.2 Design 2: More Well-engineered Design

The main idea behind the second design is that almost every Viper statement
can be translated as a sequence of exhale and inhale statements (the fold
case is explained in Subsection 1.2). We will show that it is enough to handle
these inhales and exhales (along with expressions evaluation as we will see
later) and the other operations will not need special treatment anymore.

Overview
We aspire to have an implementation for execProof method such as Figure 2.2.
In Figure 2.2, all statements that are written inside the proof script of the magic
wand are handled in the same way, by calling translateStmt(stmt) method.
The translateStmt method is the method responsible for translating different
statements outside the package statements as well. Note that this way if we
want to modify the implementation of some operation in the future or support
a new feature, we do not need to change the execProof method which solves
the issue of the previous design.

execProof(σi, σops,proofscript) ↝
returnStatement := emptyStatement()
for(stmt ∶ proofscript)

σtemp := freshState()
returnStatement := returnStatement ++ transalteStmt(stmt)

Figure 2.2: The special treatment for different cases is removed from the
execProof method.

Before moving to the implementation of exhale, inhale and evaluate
methods, Figure 2.3 shows how a fold ghost operation is translated according
to this design. The execProof method calls the translateStmt method,
which in turn finds out that the statement being translated is a fold statement;
therefore, it calls the fold method that is responsible for translating a fold
statement in Carbon. The fold method then calls the methods responsible
for exhaling, inhaling and evaluating expressions during a package statement
resulting in the correct translation for the fold statement. Instead of having
new methods exhale inWand, inhale inWand and evaluate inWand, we
decided to modify the existing exhale, inhale and eval methods (which are
responsible for exhaling, inhaling and evaluating expressions outside a package
statement respectively) to be parameterized with an extra boolean variable,
denoted by inWand, to express whether the current statement is being translated
during a package statement or not. Let us now see how to modify the exhale,
inhale and eval methods to ensure the correct translation of the ghost operations
during packaging a wand.

Exhale
How the exhale should behave when being translated during a package statement
is already mentioned in Section 2.1 and its implementation is shown in the
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Figure 2.3: Translation of a fold ghost operation according to the second
design

exhale case in Figure 2.1. We moved the implementation to the exhale
method instead of execProof and added the inWand boolean variable as shown
in Figure 2.4.

σ.exhale(e, inWand) ↝
if(inWand)

v ∶= σops.eval(e)
returnStatement := exhale ext(σi ⋅ σops, σtemp, e) + +

σtemp.exhale(v, inWand ∶= false)
σops := σops ⊍ σtemp
return returnStatement

else
// perform exhale normally

Figure 2.4: Exhale method modified to handle exhaling while packaging a
magic wand. If inWand is true then this means we are currently inside package
statment, so we need to transfer the needed permissions from σi to σtemp and
then exhales it from σtemp.

Inhale

The main difference between inhaling a statement during packaging a wand
and outside it is how we treat assumes as mentioned in Section 1.3. We modify
the inhale method as in Figure 2.5.
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σ.inhale(e, inWand) ↝
if(inWand)

v ∶= σops.eval(e)
returnStatement := exchangeAssumsWithBool(σtemp.inhale(e), σtemp.boolvar)
σops := σops ⊍ σtemp
return returnStatement

else
// perform inhale normally

Figure 2.5: While inhaling inside a package statement, we inhale to σtemp, and
every assume statement is added as a conjunction to σtemp.boolvar. So for
example assume e becomes σtemp.boolvar := σtemp.boolvar && e

Evaluate

In carbon evaluating expressions means translating the Viper expression to its
corresponding Boogie expression. For instance, the expression x.f is translated
as Heap[x, f]. While packaging a magic wand, there are more than one state
(e.g, σA and σcurr); therefore, the eval method (responsible for evaluating
expressions) needs to decide the correct state in which the evaluation takes
place. To determine which states should be used, consider the example in
Listing 11. Permissions to both x.f and y.f along with assumption about
their values are gained via the inhale statements in lines 5 and 6. The magic
wand in line 7 is then packaged, the first ghost operation will transfer the
permission to y.f from σcurr to σops (as assert statements, unlike exhale,
transfer the permission only without exhaling it). Line 9 is then executed,
transferring the permission to x.f to σtemp. By the time the verifier checks for
the assertion y.f == 2 && x.f == 3, the permission to x.f is in σtemp while
the permission to y.f is in σops; therefore, one state is not sufficient to evaluate
the expressions. Instead, the expressions should be evaluated in a union state,
denoted by σunion, that carries the summation of the permissions of both states
along with their heap values. The ⊍ operator here means the union of two state,
which results in a state in which each location has permission equivalent to the
summation of its permissions in the two input states. For each of the input
states, the resulting union state agrees on the heap values of the locations which
have positive permission in this input state.
Figure 2.6 shows the implementation for eval method, where the σunion is first
computed and then used to evaluate the expression e.

Issue with Design 2

The second design solves the issues with the previous one as the modification
to different operations or adding new features need to be added in one place
now. However, this second design makes heavy use of the union operator, ⊍, as
it is used in exhale, inhale and eval methods which are used for translation
of almost every statement. Thus, every statement translated inside the proof
script uses the union operator at least once. The way this union operator
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1 field f: Int
2

3 method foo(x: Ref, y: Ref)
4 {
5 inhale acc(x.f) && x.f == 3
6 inhale acc(y.f) && y.f == 2
7 package true --* true {
8 assert acc(y.f)
9 exhale acc(x.f) && y.f == 2 && x.f == 3

10 }
11 }

Listing 11: Viper example to show which states are needed while evaluating
an expression during packaging a wand.

eval(e, inWand) ↝
if(inWand)

σunion := σops ⊍ σtemp
return (σunion.eval(e))

else
// perform eval normally

Figure 2.6: Expression evaluation takes place in the union of σtemp and σops
together.

is encoded in Boogie (Listing 12) makes the union an expensive operation. It
calls the sumMask function, which sums the permission values on both masks for
every heap location, then calls IdenticalOnKnownLocations twice and each
of these calls quantifies over all the locations on both heaps which is expensive.
The motivation behind the third and final design is to make less use of this
union operator to improve the performance of Carbon.

assume sumMask(UnionMask, Mask1, Mask2);
assume IdenticalOnKnownLocations(Heap1, UnionHeap, Mask1);
assume IdenticalOnKnownLocations(Heap2, UnionHeap, Mask2);

Listing 12: The boogie code for computing the union state (HeapUnion,
MaskUnion) of two states: State1 (Heap1, Mask1) and State2 (Heap2, Mask2)

2.3 Design 3: More efficient version

We are going to show how to get rid of the union operator from both inhale
and exhale methods and making less use of it in case of eval method as it is
not clear for us how to get rid of it completely.
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Inhale
Getting rid of the union operator inside the inhale method is pretty straightforward.
In the implementation discussed so far, we inhale the expressions into an empty
state and then union this state with σops. Instead of moving the permissions
twice; first to σtemp and then to σops, using the union, we can inhale directly
into σops without the need to do the union.

Exhale
Let us use the code in Listing 13 to see how the previous design handles the
exhales and see how to get rid of the union. In Listing 13, P(x) is a predicate
with a permission to a single field x.f. Let us trace the first few steps of
packaging the wand in line 7. Initially, a left-hand side state, σA, is created
and the left-hand side assertion is inhaled in this state. The fold operation in
line 8 is then executed. A new σtemp will be created and then the body of the
predicate will be exhaled according to the exhale method in Figure 2.4. The
permission acc(x.f) will be transferred from σA to σtemp and then exhaled
from σtemp and after that the union of σtemp and σops is computed and stored in
σops. However; in this case, when the union takes place the σtemp state is empty
as acc(x.f) is exhaled from it before the union. This is not a coincidence, every
time the exhale method is called during a package statement, some expression
e gets transferred to σtemp and then exhaled from it before the union. Thus,
when the union operation is done, σtemp is always empty; which means that
the union operation is not even necessary.

1 predicate P(x: Ref){
2 acc(x.f)
3 }
4

5 method foo(x: Ref)
6 {
7 package acc(x.f) && x.f == 2 --* P(x) && unfolding P(x) in
8 x.f == 2 {
9 fold P(x)

10 }
11 }

Listing 13: Viper example that uses framing across fold-unfold to verify the
right-hand side assertion

Let us trace our example again but this time we will remove the union operation
in the exhale method and see if it works. The first few steps of the tracing
are the same as we did, the left-hand side is inhaled in σA, and the permission
acc(x.f) get transferred to σtemp and exhaled from it but now we do not
perform the union. To continue the fold operation the predicate P(x) is then
inhaled in σops. The right-hand side assertion is then checked, P(x) is present
in σops and can be transferred but by unfolding the predicate the verifier fails
to prove that x.f == 2 as it only inhaled the predicate and never learned
anything about the value of x.f in σops. The missing information here is that
the value x.f should be framed across the fold-unfolding statements because
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the exhale and inhale of the fold are done in different states (exhale in
σtemp and inhale in σops). We need to transfer the values on the σtemp heap
to the σops heap whenever the exhale is not expected to havoc the σtemp
heap afterwards. We achieved this problem by equating the heaps for σops and
σtemp whenever we do not want to havoc the heap after the exhale which is
the case in the translation of fold and unfold. Adding this equality at the
end of translation of the exhale gives the verifier the information that x.f on
σops heap is equal to its value on σtemp which equals 2. Therefore, the verifier
can now successfully verify the right-hand side of the wand and package the
wand. This equality solves the problem here but before adding it to our design,
let us argue its soundness. Equating the two heaps means that all the fields
on the two heaps have equal values. We will fields the values on σtemp heap
into two types: fields that have specific values such as x.f in our example,
and fields that can have arbitrary values (about which the verifier learned
nothing). For the fields that can have arbitrary values, equating these fields to
the corresponding fields on σops is sound as it will never contradict with the
values on σops and Carbon will never learn more information about them in the
future (as other operations will have their own σtemp) so they will not affect
σops later on. Regarding the fields that the verifier knows their value, these are
the values that we do not want to havoc and we want to transfer them to σops
(x.f in this case); therefore, the effect of equating them to the corresponding
field on σops is the exact effect that we want. One final note, because the
σtemp for a certain exhale is not referred to again after this exhale is finished,
then removing the σtemp.exhale(v, inWand := false) from Figure 2.4 will
not affect the program result. To understand this more, one can retrace the
example in Listing 13 but as this tracing is similar to what we have done above,
we chose to leave it to the reader.

Eval
As explained in Section 2.2, within the same statement some expression may
need to be evaluated in σtemp and others in σops; therefore, it is not clear how
to totally remove the union operation from the eval method. However, in this
final design, we only used the union operation inside the eval method when it
is necessary. One way to understand how we handle the union operations is to
think of it as caching. We keep a version of the last valid state that represents
the union of σops and σtemp. We denote this union state as σunion. We use the
σunion state to evaluate expression during packaging a wand and we update
it only when necessary. The question now is when it is necessary to update
σunion. For each statement, σunion is assigned to σops as initially the σtemp
state is empty. The σunion is then updated whenever the σtemp is updated (e.g,
permissions get transferred to it) because only then the σunion is changed. This
way the union operator is not used in evaluating every expression, for instance,
if an inhale statement is being translated, nothing is added to σtemp; thus, the
union between σtemp and σops is never computed. Figure 2.7 shows the final
design that we implemented for supporting the generalized magic wands in
Carbon.
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execProof(σi, σops,proofscript) ↝
returnStatement := emptyStatement()
for(stmt ∶ proofscript)

σtemp := freshState()
σunion := sops
returnStatement := returnStatement ++ transalteStmt(stmt, inWand := true)

return returnStatement

inhale(σ, e, inWand) ↝
if(inWand)

v ∶= e.eval(inWand := true)
return exchangeAssumsWithBool(σops.inhale(e), σops.boolvar)

else
// perform inhale normally

σ.exhale(e, inWand) ↝
if(inWand)

returnStatement := emptyStatement()
v ∶= σops.eval(e)
returnStatement := returnStatement ++ exhale ext(σi ⋅ σops, σtemp, e)
if(!havocheap)

returnStatement := returnStatement ++
exchangeAssumsWithBool(assume (σops.heap == σtemp.heap) , σops.boolvar)

return returnStatement
else

//perform exhale normally
eval(e, inWand) ↝

if(inWand)
return (σunion.eval(e))

else
// perform eval normally

Figure 2.7: The final design for supporting generalized magic wands in Carbon.
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Framing

We were concerned so far with handling permissions and how to compute the
footprint of a magic wand. In this section, we are more concerned with the
values of the heap location rather than the permissions to these locations. One
way to preserve information about fields in the footprint of the magic wand is
to add this information to the assertion on the right-hand side. Consider the
example in Listing 14.

1 field f: Int;
2

3 method wand_framing(x: Ref)
4 requires acc(x.f) && x.f == 3
5 {
6 package true --* acc(x.f) && x.f == 3
7 apply true --* acc(x.f) && x.f == 3
8 assert x.f == 3
9 }

Listing 14: Viper example that asserts the value for x.f on the right-hand side
of the wand

When the wand is being packaged, the permission to acc(x.f) is successfully
added to the footprint of the wand and the right-hand side assertion holds;
thus, the wand is successfully packaged. When the wand is applied in line
7 the left-hand side of the wand is exhaled and then the right-hand side is
inhaled. Therefore, the current state gains permission to acc(x.f) along with
the information that x.f == 3, which makes the verifier able to prove the
assertion in line 8. By adding the assertion x.f == 3 to the right-hand side,
we were able to preserve the information about the value of x.f when it is
added to the footprint of the wand. Suppose we now modify this example
as shown in Listing 15 Similar to the example in Listing 14, the permission
to acc(x.f) is removed from the current state and added to the footprint of
the magic wand. The right-hand side assertion is then checked and it holds as
acc(x.f) is now in the footprint of the magic wand and the wand is successfully
packaged. When the wand is applied in line 6, the left-hand side is exhaled
and the right-hand side is inhaled but this time only acc(x.f) is inhaled (with
no assumptions about x.f). As the wands is treated as opaque resources once

25
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1 field f: Int;
2 method wand_framing(x: Ref)
3 requires acc(x.f) && x.f == 3
4 {
5 package true --* acc(x.f)
6 apply true --* acc(x.f)
7 assert x.f == 3
8 }

Listing 15: Viper example that needs framing the footprint of the magic wand.

they are packaged (the verifier knows no information about the footprint as
discussed in Section 1.3), the verifier has no way to learn that x.f came from
a state where its value equals 3 and that it should have the same value when
the wand is applied. From the point of view of the state before packaging the
wand, the permission to acc(x.f) is lost to the footprint of the magic wand;
therefore, value to the field x.f gets havoced. Consequently, the assertion in
line 7 fails.
We explored many different options to support framing in magic wands. We
decided to separate framing support in magic wands into two different cases:
when the magic wand is packaged and applied in the same state (Section 3.1)
and when the magic wand is inhaled in a different state other than the state in
which it is packaged (Section 3.2). The reason handle each case differently is
that each approach is useful for one case but hard to implement in the other.
Finally, in Section 3.3, we discuss the limitations of these two approaches and
provide some suggestions that might act as solutions but we did not have
enough time to explore thoroughly.

3.1 Packaging a wand

We will use the example in Listing 15 to explain our approach to support
framing when the magic wand is packaged and applied in the same state. In
this case, the verifier should keep the values on the heap for these locations
whose permissions belong to the footprint unchanged until the wand is given
away (through an exhale or apply statements for instance). In order to keep
these fields unchanged, we should modify the verifier to be able to: 1) know
which locations on the heap are framed by the wands currently held. 2) keep
these framed values unchanged when havocing the heap. In order to identify
the locations that are framed by a certain wand, we have a map for each
magic wand instance that maps different heap locations to boolean values.
This is implemented as a Boogie map which maps a certain reference and field
(similar to the state Mask) to true if this field belongs to the footprint of the
magic wand and to false otherwise. This map is called secondary mask and
the concept of secondary masks is explained in [2]. We will denote to the
secondary mask for a certain magic wand instance, w, by w sm. The secondary
masks for different magic wand instances are kept on the Heap, the secondary
mask w sm is kept in Heap[null, w sm]. The null means that this is not
a field of some reference (as the case with predicates), the w sm here means
the Boogie translation of the secondary mask and Heap[null, w sm] returns
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a Boogie map from a reference and a field to a boolean value, which represents
the secondary mask for wand w. The value of a certain field is then assigned to
true on the secondary mask whenever it is added to the footprint of the magic
wand. Let us see how this works on the code in Listing 15. We will denote to
the wand in line 5 by w and its secondary mask by w sm. When the wand w is
packaged, the permission acc(x.f) is transferred from σcurr to the footprint
of the magic wand. Thus, Heap[null, w sm][x,f] is assigned to true. Notice
that Heap[null, w sm] represents the secondary mask of the wand which is a
map; therefore, Heap[null, w sm][x,f] is the value of the key [x,f] on this
map. The wand is then successfully packaged and the verifier knows that the
values x.f should remain unchanged as long as it holds a permission to the
magic wand w. What remains is how this information in the secondary mask
can be used to prevent havocing the framed values in the secondary mask.
The way havocing the heap is shown in Listing 6 by havocing a temporary
heap ExhaleHeap and then transfer the values of locations to which the Mask
still have permission through the IdenticalOnKnownLocations function. We
added the suitable axioms to the definition of IdenticalOnKnownLocations
to ensure that it copies the value of locations inside the secondary masks of the
held magic wands as well. We chose not to provide the implementation details
for these axioms as they contain much technical details and are not essential
for our discussion. In Listing 15 after the wand is packaged, the value for x.f
is then framed until the wand is applied in line 6 and the permission to x.f is
inhaled; therefore, the assertion in line 7 holds.

3.2 Inhaling a wand

In this section, we will discuss the case where the wand is inhaled in a state
other than the state in which it is packaged. When a wand is inhaled, it is not
clear how to construct its secondary mask as the construction for the secondary
mask is done during packaging the wand (which is never done in the current
state in which the wand is inhaled). Thus, the previous approach that uses the
secondary mask is not useful in this case. First, we will explain how can one
refer to the locations whose permissions are kept in the footprint of a magic
wand. Then, we will explain how to keep the assumption made about these
locations to be used later when the wand is applied. Finally, we will give an
example to explain the discussed approach.

Applying

To be able to refer to fields whose permissions are kept in the footprint of
the magic wand, one can use applying expression. The applying (similar to
unfolding to predicates) expression applies the magic wand temporarily to
then takes hold of the wand again. When the wand is applied temporarily, the
right-hand side of the wand (including its permissions) is inhaled temporarily
and one can add assumption or read the heap values of the locations that are
stored in the footprint of the magic wand. For instance, assume we inhaled a
magic wand w, where w is acc(x.f) --* acc(x.f) && acc(x.g). Without
applying the wand the permission for x.g is in the footprint of th magic
wand and cannot be referred to in the current state. If one wants to add an
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assumption about the value of x.g such as assuming that x.g equals 2, one can
write assume applying (acc(x.f) --* acc(x.f) && acc(x.g)) in (x.g
== 2).

Snapshots

Applying expressions allows us to refer to heap values that belong to the
footprint of a magic wand. We need to be able to use these assumptions when
the same magic wand is applied again. For instance, in Listing 16, lines 7 and 8
inhale the wand and add the assumption about x.g as discussed in the previous
subsection. When the wand is then applied in line 10, the verifier should be
able to prove that the value of x.g equals 2 from the assumption in line 8
and consequently the assertion in line 11 should hold. In order to keep the

1 field f: Int
2 field g: Int
3

4 method foo(x: Ref)
5 requires acc(x.f)
6 {
7 inhale acc(x.f) --* acc(x.f) && acc(x.g)
8 assume applying (acc(x.f) --* acc(x.f) && acc(x.g)) in
9 (x.g == 2)

10 apply acc(x.f) --* acc(x.f) && acc(x.g)
11 assert x.g == 2
12 }

Listing 16: Viper code where applying expression is used to add assumptions
about the right-hand side of the magic wand.

assumptions about the right-hand side of the wand, we supported snapshots
[10] for magic wands in Carbon. Snapshots can be thought of as a summary
for the heap values kept by a field permission, a predicate or a magic wand.
The snapshot of a single field is represented by a singleton with its value, e.g.,
snapshot for x.f whose value equals 3 is (3). The snapshot for a predicate is
represented by a tuple depending on the permission in its body: snapshot for
predicate P(x) whose body is acc(x.f) && acc(x.g) and the values for x.f
and x.g are 2 and 3 respectively is the pair (2, 3). If the values are not known
it can be represented by an unknown constant; for example, if in the previous
example, the value of x.f is 2 and the value of x.g is unknown, the snapshot for
the predicate P(x) is (2, K), where K is a constant representing the value for
x.g at the moment the predicate was folded. The snapshot of a magic wand is a
function rather than a tuple. It is a function that maps left-hand side snapshot,
denoted by Slhs to the right-hand side, denoted by Srhs snapshot. Both the
left-hand and the right-hand sides of the wand are represented by tuples as
their snapshots. However, the right-hand side snapshot itself is a function of
the left-hand side snapshot. Let us compute the snapshot for the wand in
Listing 16, acc(x.f) --* acc(x.f) && acc(x.g), while being packaged. As
the left-hand side of the wand is not known until the wand is applied (a future
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state), the value to x.f is unknown during packaging the wand. The snapshot
for the left-hand side is then (s). The right-hand side snapshot is a pair as it
has permission to x.f and x.g, the value for x.f comes from the left-hand side
of the wand; therefore, it has the same snapshot as the snapshot for x.f in the
left-hand side (which is (s)). At the moment of packaging the wand the value
for x.g is also unknown but it is some constant value that is not dependent on
the left-hand side; thus, the snapshot for the right-hand side is (s, K). It is
important to understand that s is a variable that can take any value that will
be in the left-hand side state at the moment of applying the wand, and that K
is a constant that represents the value of x.g when the wand is packaged and is
not changed by applying different left-hand sides. The snapshot for the whole
wand is the function from the left-hand side to the right-hand side: λ s.(s,
2). When the assumption in line 8 is added, the verifier learns the information
that K == 2. When the wand is actually applied in line 10, the verifiers knows
that x.g == K and also that K == 2; therefore, it can now prove the assertion
x.g == 2 in line 11. In Listing 16, the wand is packaged in the same state and
not inhaled but the argument is rather similar when the wand is inhaled. The
snapshot for the left-hand side is some variable slhs and the snapshot for the
right-hand side is some pair s1, s2. Note that the correspondence between
the x.f in the left-hand side and x.f in the right-hand side was clear when
the ghost operations for packaging the wand was present (by tracing the ghost
operations it is easy to find which permission comes from the left-hand side)
but that is not the case when the wand is inhaled without having the ghost
operations used to package the wand; therefore, the snapshot of the right-hand
side is unknown variables that may or may not be dependent on the left-hand
side. Line 8 adds the assumption that s2 == 2 and when the wand is applied
in line 10 the verifier knows that x.g == s2 and s2 == 2 and can now prove
the assertion in line 11.

More realistic example
The example we have given in the previous subsection is a simple example to
explain the concept of snapshots of magic wands. Let us now consider a more
realistic and complex example in Listing 17 where the applying expression
and the magic wands snapshots are useful. This example is rather similar
to the one in Listing 8 for traversing a linked list. Notice that the function
sorted is also omitted as the implementation itself is not important for our
discussion: it checks the sortedness of the linked list. The difference between
this example and that in figure 17 is that the method traverse requires the
input list to be sorted and ensures that after the method finishes, the list
will remain sorted. The only line we need to introduce to the code in order
to achieve this is line 18, which shows how applying is useful in simplifying
the encoding of complex examples. If we want to verify this example without
the use of applying, we need to add sorted(x) to the right-hand side of the
wand, which will require adding more specifications to the left-hand side of the
wand. A similar example where applying is not used is shown in Appendix A.
To explain how our implementation handles this example, we need to explain
three parts: 1) how to establish the loop invariant in line 18 before the first
iteration. 2) how to reestablish this loop invariant after each iteration. 3)
how this loop invariant proves the postcondition in line 10. Note that the loop
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1 field value: Int
2 field next: Ref
3

4 predicate list(x: Ref){
5 acc(x.value) && acc(x.next) && (x.next != null ==> list(x.next))
6 }
7

8 method traverse(x: Ref)
9 requires list(x) && sorted(x)

10 ensures list(x) && sorted(x)
11 {
12 var cur: Ref := x
13 package list(cur) --* list(x)
14

15 while(unfolding list(cur) in cur.next != null)
16 invariant list(cur)
17 invariant list(cur) --* list(x)
18 invariant applying (list(cur) --* list(x)) in sorted(x)
19 {
20 unfold list(cur)
21

22 // do something with cur.value
23

24 var prev: Ref := cur
25 cur := cur.next
26

27 package list(cur) --* list(x){
28 fold list(prev)
29 apply list(prev) --* list(x)
30 }
31 }
32

33 apply list(cur) --* list(x)
34 }

Listing 17: Viper example for traversing a sorted linked list and needs framing
the footprint of the magic wand to verify.

invariant of interest is that in line 18, so in our argument whenever we refer
to a loop invariant, it is the invariant in line 18 unless otherwise stated. The
establishment of the loop invariant before the first iteration is because of how
applying a wand is implemented in Carbon: when applying a wand, the left-
hand side is exhaled first, the right-hand side of the wand is inhaled and then
the locations to which we do not have permissions on the heap are havoced.
Thus, when the wand in line 13 is applied, list(x) is exhaled, then, list(x)
is inhaled again, only then, the unknown locations are havoced. Therefore, the
value for list(x) (represented by the predicate snapshot) is never havoced,
keeping the information that it is sorted and establishing the loop invariant.
The second part is to show how this loop invariant is reestablished after every
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iteration. Assume the execution of some arbitrary iteration, i, we need to show
that the loop invariant is established for the next iteration. Note that the wand
used to verify the loop invariants in lines 17 and 18 for the next iteration is the
wand packaged in line 27 in the current iteration. Thus, what we need to prove
is that applying the wand in line 27 for iteration i results a sorted list(x).
During this iteration i, we hold a magic wand wi inhaled from the loop invariant
in line 17. As the wand is inhaled, we get fresh snapshots for both left-hand
and right-hand sides of the wand. We will call the snapshot for the left-hand
side and the right-hand side of this magic wand Slhs and Srhs respectively.
Consequently, the snapshot for the magic wand wi is λSlhs.Srhs, where we
know that applying the wand with the current left-hand side snapshot results
in a sorted list because of the loop invariant in line 18. Notice that the left-
hand side of the wand is a predicate with 3 permissions; therefore its snapshot
is some triplet, let us denote to it by (s1, s2, s3). The wand in line 27,
denoted by wi+1, is then packaged. In order to package wi+1, we fold predicate
list(prev). As acc(prev.value) and acc(prev.next) comes from σcurr,
they have the same snapshots as in σcurr, which are s1 and s2 respectively.
However, as the list(prev.next) comes from the left-hand side state, it takes
a variable snapshot (S). We then apply wand wi in line 29 to get a right-hand
side snapshot which equals to applying the snapshot function on (s1, s2, S).
When the loop invariant in 18 is then checked, the wand is applied with a
left-hand side snapshot s3, which means we end up with the right-hand side
list(x) with snapshot equals to applying the snapshot function on (s1, s2,
s3), which results in a sorted list. Thus, sorted(x) holds and as a result the
loop invariant in line 18 holds. The final part to prove postcondition using
the loop invariants is simple, as the loop invariants states that applying the
magic wand stated in line 17 with the same left-hand side snapshot will result
a list(x) where sorted(x) holds and that is exactly what is done in line 33.
Thus, the whole example verifies with the help of snapshots.

3.3 Limitations for applying

While applying is useful in cases such as listing 17, the way that the snapshots
is implemented limits the use of applying in other cases causing incompleteness
such as Listing 18. In Listing 18, a magic wand is inhaled in line 7, the
assumption x.g == 2 is then added via the applying expression in line 9,
the value for the left-hand side of the wand (x.f) is changed and finally, the
assertion x.g == 2 is checked. When the wand is inhaled in line 7, the snapshot
for the magic wand is λSlhs.(Srhs1, Srhs2). The connection between the x.f
in both sides of the wand is not made as the ghost operations used for packaging
the wand is missing; as a result, they have different snapshots (as discussed in
the previous section). The value of x.f is then assigned to 3. When the wand
is applied in line 9, the left-hand side snapshot is (3); thus, the snapshot of
the right-hand side of the wand at the point where Slhs == 3 is (S′rhs1, S′rhs2)
and the assumption S′rhs2 == 2 is added. The left-hand side of the wand x.f
is then assigned to 4. When the wand is applied again in line 11, the snapshot
of the right-hand side is the result of the snapshot function of the wand at
the point where Slhs == 4, which is unknown because the assumption added
in line 9 was at Slhs == 3. Consequently, the snapshot of the right-hand side
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1 field f: Int;
2 field g: Int
3

4 method wand_framing(x: Ref)
5 requires acc(x.f)
6 {
7 inhale acc(x.f) --* acc(x.f) && acc(x.g)
8 x.f := 3
9 assume applying (acc(x.f) --* acc(x.f) && acc(x.g)) in x.g == 2

10 x.f := 4
11 assert applying (acc(x.f) --* acc(x.f) && acc(x.g)) in x.g == 2
12 }

Listing 18: A Viper example that shows the incompleteness of the snapshot
representation of magic wands using in Section 3.2.

is some unknown values (S′′rhs1, S′′rhs2). As a result, the assertion in line 11
fails because the verifier knows nothing about the value of (S′′rhs2) which is the
value of x.g when the wand is applied with left-hand side x.f == 4. However,
the permission acc(x.g) belongs to the footprint of the magic wand because
it cannot come from the left-hand side state as the permissions in the left-hand
side have already been fully transferred to the right-hand side in the form of
acc(x.f); as a result, the value for x.g is a constant and changing the left-hand
side of the wand should not affect its value. Consequently, assuming that x.g
== 2 with any left-hand side of the wand should be sufficient to prove that for
any left-hand side x.g is not changed. This example shows the incompleteness
in this representation for snapshots for magic wands as a function.
This shows that applying expression is not powerful when the wand is inhaled
and the left-hand side changes because it only adds assumption one point at
a time (for a specific magic wand with a specific left-hand side snapshot) and
changing the left-hand side gives a totally different snapshot for the right-
hand side. This way of representing snapshots that we discussed cannot know
what permissions belong to the footprint of the magic wand to keep the values
to these fields unchanged even when applying different left-hand sides. This
representation is helpful as long as the left-hand side of the wand is not changed
such as in data structure traversal (Listing 17) but when we begin to modify
the data structure and change the left-hand side values, the applying becomes
less powerful.
We explored different ideas to be able to solve this incompleteness issue and
verify the example in listing 18 but we did not have time to explore these ideas
fully. One option is to accept that the applying is not useful in cases we
change the left-hand side and we can introduce a new expression that can add
assumptions about certain locations regardless of the left-hand side applied.
This expression has the same syntax the applying but is more general that it
can be used to add assumptions about the right-hand side snapshot regardless
of the left-hand side snapshot. It is not yet clear whether this general is going
to be useful in many cases or not and it is also not clear whether it is going
to be more useful (such as make the code simpler) in some cases than adding
these information about the right-hand side values as assertions to the right-
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hand side of the wand. Another suggestion is to have a different representation
for snapshots. One representation that we explored is that if we assume that
we have a function that tells what goes into the footprint of the magic wand
(similar to the secondary mask), we can use this to add an assumption that for
all left-hand sides applied to the magic wand, the values for these locations are
the same. Thus, we can now connect these locations among different applying
statements even when the left-hand side differs. It is not clear for us how this
function that tells what is in the footprint can be implemented.





Chapter 4

Conclusion

We present in this chapter the current status of implementation, other achievem-
ents that are done through the project and future work.

4.1 Status of Implementation

Currently, Carbon supports the generalized magic wands. The majority of the
tests in the Silicon test suites passed. Some of the tests fail because we have
left some features unsupported during a package statement such as quantified
permissions as we decided to spend the time on other directions such as magic
wands snapshots. Other tests fail as the current encoding for magic wands is
incomplete in some cases. More information about this incompleteness can be
found in [6]. Finally some tests that shows unsound behavior in Silicon passes
in Carbon successfully by our implementation. These tests are related to wands
snapshots as the current implementation of wands snapshots in Silicon shows
unsound behavior in some cases.

4.2 Other achievements

During our project, we also made some other achievements that are not mentio-
ned in the previous sections. We have written many Viper tests for magic
wands. We also encoded more complex Viper examples for data structures
that uses magic wands such as priority queue in Appendix A. We also explored
different snapshots encoding designs other than the mentioned designs in Chapt-
er 3 before deciding on the implemented design. We fixed some bugs and filed
some issues. We explored some Carbon optimizations that are not wand-related
such as optimizing the Boogie output code during asserting an accessibility
predicate.

4.3 Future Work

We have left some features such as quantified permissions during packaging
a wand unsupported. Other than supporting quantified permissions inside
package statements, another extension is to support writing quantified permissi-
ons inside both sides of the magic wands and to support writing magic wands
inside quantified permissions as well.

35
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The limitation for the applying expression discussed in Section 3.3 is an
interesting area to explore. As we mentioned in Section 3.3, one of the solutions
we explored is adding a more general expression that reasons about any magic
wand, regardless its left-hand side snapshot, but we did not have enough time
to explore. It is not clear whether having this general expression will be useful
or not and also if it provides more power over adding assertions to the right-
hand side of the wand. The other solution that we mentioned is having a
different representation for magic wand snapshots which is also worth more
exploration.



Appendix A

Priority queue encoding without
the use of snapshots

1 field val: Int
2 field next: Ref
3

4 predicate priorityQueue(q: Ref){
5 acc(q.val) && acc(q.next) && ((q.next != null) ==> priorityQueue(q.next))
6 }
7

8 function sorted(q: Ref): Bool
9 requires priorityQueue(q)

10 ensures (result == true) ==> (forall i:Int :: {greaterThanOrEqual(q, i)}
11 i<= (unfolding priorityQueue(q) in q.val) ==> greaterThanOrEqual(q, i))
12 {
13 unfolding priorityQueue(q) in
14 q.next == null?true:((unfolding priorityQueue(q.next) in q.val <= q.next.val)
15 && sorted(q.next))
16 }
17

18

19 function greaterThanOrEqual(q: Ref, x: Int): Bool
20 requires priorityQueue(q)
21 {
22 unfolding priorityQueue(q) in
23 (q.val >= x && (q.next != null?greaterThanOrEqual(q.next, x):true))
24 }
25

26 method peek(q: Ref) returns(front: Int)
27 requires priorityQueue(q) && sorted(q)
28 ensures priorityQueue(q) && sorted(q)
29 ensures greaterThanOrEqual(q, front)
30 {
31 unfold priorityQueue(q)
32 front := q.val
33 fold priorityQueue(q)

37
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34 }
35

36 method poll(q: Ref) returns(front: Int, qprime: Ref)
37 requires priorityQueue(q) && sorted(q)
38 ensures qprime != null ==> priorityQueue(qprime)
39 ensures qprime != null ==> greaterThanOrEqual(qprime, front)
40 {
41 front := peek(q)
42 unfold priorityQueue(q)
43 qprime := q.next
44 }
45

46 function getFirst(x: Ref): Int
47 requires priorityQueue(x)
48 {
49 unfolding priorityQueue(x) in x.val
50 }
51

52 method insert(q: Ref, x: Int) returns(ret: Ref)
53 requires priorityQueue(q) && sorted(q)
54 ensures priorityQueue(ret) && sorted(ret)
55 {
56 if(x <= getFirst(q)){
57 ret := new(*)
58 ret.val := x
59 ret.next := q
60 fold priorityQueue(ret)
61 }else{
62 // x > getFirst(cur)
63 var cur: Ref := q
64 var oldCur: Int := unfolding priorityQueue(q) in q.val;
65 package (priorityQueue(cur) && sorted(cur)
66 && getFirst(cur) >= oldCur) --*
67 priorityQueue(q) && sorted(q)
68 while(unfolding priorityQueue(cur) in cur.next != null
69 && unfolding priorityQueue(cur.next) in cur.next.val<x)
70 invariant priorityQueue(cur) && sorted(cur)
71 invariant getFirst(cur) >= oldCur
72 invariant x >= getFirst(cur)
73 invariant priorityQueue(cur) && sorted(cur) &&
74 getFirst(cur) >= oldCur --* priorityQueue(q) && sorted(q)
75 {
76 var p: Ref := cur
77 var oldP: Int := oldCur
78 unfold priorityQueue(cur)
79 cur := cur.next
80 oldCur := unfolding priorityQueue(cur) in cur.val
81 package priorityQueue(cur) && sorted(cur) &&
82 getFirst(cur) >= oldCur --*
83 priorityQueue(q) && sorted(q){
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84 fold priorityQueue(p)
85 apply priorityQueue(p) && sorted(p) &&
86 getFirst(p) >= oldP --*
87 priorityQueue(q) && sorted(q)
88 }
89 }
90

91 var node: Ref
92 node := new(val, next)
93

94 unfold priorityQueue(cur)
95 node.val := x
96 assert x >= cur.val
97 node.next := cur.next
98 cur.next := node
99 fold priorityQueue(node)

100 fold priorityQueue(cur)
101 apply priorityQueue(cur) && sorted(cur) &&
102 getFirst(cur) >= oldCur --* priorityQueue(q) && sorted(q)
103 ret := q
104 }
105 }
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