
Formally Validating the
AST-to-CFG Phase of the Boogie

Program Verifier

Bachelor’s Thesis

Aleksandar Hubanov

August 23, 2022

Advisors: Gaurav Parthasarathy, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

The outputs of a program verifier are trustworthy only if the implementation of
the program verifier is correct. Unfortunately, program verifier implementations
are rarely verified. One exception is the Boogie program verifier. Existing work
provides formal guarantees for parts of its implementation by generating per-run
validation certificates in Isabelle via an instrumentation of the Boogie verifier.
However, the Boogie verifier implementation contains a transformation from
an abstract syntax tree (AST) program representation to a control flow graph
(CFG) representation for which the prior work does not provide any formal
guarantees in its generated certificate.

The work presented in this report extends the prior work to automatically
produce Isabelle certificates that validate the AST-to-CFG transformation. We
evaluate our work on the benchmarks used to evaluate the prior Boogie certificate
generation work along with additional examples.

Contents

1 Introduction 2
1.1 The AST-to-CFG Phase and the Optimizations 3
1.2 Approach Towards Validation of the Phase 4
1.3 Outline . 4

2 Formalization of Boogie’s Abstract Syntax Tree 6
2.1 Boogie’s Internal Abstract Syntax Tree 6
2.2 Formalization in Isabelle . 11

2.2.1 Formalization of the AST Syntax 11
2.2.2 Formalization of the AST Semantics 13

3 Proof Generation 21
3.1 Local Lemma . 24
3.2 Global Lemma . 25

3.2.1 Loop Head AST Blocks 26
3.2.2 Generating Global Lemmas for

Loop Head AST Blocks 28
3.3 Addition of Empty AST Blocks 29
3.4 Continuation Lemmas . 30

4 Implementation and Evaluation 32

5 Conclusion 35
5.1 Future Work . 35

A The Boogie Language 37

1

Chapter 1

Introduction

Program verifiers are tools concerned with proving the correctness of a given
program with respect to a formal specification. Unfortunately, formal guarantees
regarding the implementations of program verifiers are often not supplied. As
a result, large parts of the verifier implementation (consisting of many lines of
code) are often part of the trusted code base. That is, one must trust the verifier
implementation itself to be correct in order to deduce that the verifier’s produced
verification result is correct. One exception is the Boogie program verifier, which
verifies programs written in the Boogie intermediate verification language [1].
Parthasarathy et al. [2] instrument the Boogie verifier by adding a validation
engine, which can be used to remove a large fraction of Boogie’s implementation
from the trusted code base. The validation engine employs a formalization of a
subset of the Boogie language to automatically produce per-run formal proofs
in the interactive theorem prover Isabelle [3], which serve as certificates for the
correctness of Boogie’s outputs.

The Boogie verifier verifies an input Boogie program via a series of program-
to-program transformations before finally producing a mathematical formula
called a verification condition (VC). Figure 1.1 illustrates this. In the figure, G1

denotes the abstract syntax tree (AST) of the program, which Boogie builds after
it parses the source code of the program. Boogie then transforms the abstract
syntax tree into a control-flow graph (CFG), denoted by G2 in the figure. We
refer to this transformation as the AST-to-CFG phase of Boogie. After this,
Boogie applies basic optimizations to the CFG to create what we informally
call the “optimized CFG”, denoted by G3 in the figure. From the optimized
CFG, Boogie produces the verification condition during the CFG-to-VC phase.
Both the optimizations and the CFG-to-VC phase consist of multiple “smaller”
phases. After having created the VC, Boogie queries an external SMT solver to
determine if the VC is valid and, if it is, Boogie outputs that the input program
is correct. (Correctness of a program includes that no assertion in the program
can ever fail.)

A validation certificate that captures the correctness of the Boogie imple-
mentation from the AST to the VC for a single run of Boogie requires showing
that the validity of the VC implies that the AST of the input program is correct:
valid(VC) |= correct(G1). Proving that the verification condition is indeed valid
if the SMT solver says so is an orthogonal concern that relates to the correctness

2

of the SMT solver.
The validation engine for Boogie provided in [2] produces per-run certificates

for the CFG-to-VC phase of Boogie. Referring to figure 1.1, such a certificate
shows that valid(VC) |= correct(G3). In order to achieve the desired certifi-
cate, one needs to additionally prove correct(G3) |= correct(G2) (validation of
optimizations), and correct(G2) |= correct(G1) (validation of the AST-to-CFG
phase). The goal of the work presented in this report is to extend the validation
engine to produce certificates that validate the AST-to-CFG phase of Boogie.

G1 G2 G3 VC
AST-to-CFG Optimizations CFG-to-VC

Goal of this work:

correct(G2) |= correct(G1)
Prior work [2]:

valid(VC) |= correct(G3)

Figure 1.1: Outline of the program-to-program transformations Boogie applies
in order to generate a verification condition (VC) from an abstract syntax tree
(AST).

1.1 The AST-to-CFG Phase and the Optimiza-
tions

In the AST-to-CFG phase, Boogie transforms a program represented as an
astract syntax tree (AST) into a control-flow graph (CFG). The AST is a direct
representation of the source code via an inductively defined datatype. In the
examples given in this report, we will occasionally omit showing the AST form
explicitly and instead directly refer to the source code form. The CFG in Boogie
is a graph that illustrates all possible execution paths through the program. It
eliminates branching constructs such as if-clauses, while-loops and breaks. Other
control-flow statements, such as jumps and return-statements, are treated as
transitions between nodes in the graph and unconditional halts, respectively.

Figure 1.2 shows two representations of the same Boogie program, where
the source code is shown on the left and the CFG form is shown on the right.
The goal of the AST-to-CFG phase is to transform an AST representation of
the source code into the CFG on the right. Figure 1.3 shows the same for a
program containing a while-loop. We will use both of these as running examples
throughout this document.

After the AST-to-CFG phase has been completed, Boogie optimizes the CFG.
It does this by applying optimizations such as pruning of unreachable blocks,
elimination of dead variables and block coalescing (combining two blocks of the
CFG into one if the second block is the only successor of the first and if the
second block has no further predecessors).

3

havoc x;

if(x > 5)
{
x := 10;

} else {
x := 1;

}
assert x > 0;

havoc x;

assume x > 5;

x := 10;

assume x <= 5;

x := 1;

assert x > 0;

Figure 1.2: Example program containing an if-statement in the form of its source
code on the left and the same program in its CFG form on the right.

1.2 Approach Towards Validation of the Phase

The work presented in this report uses the formalization provided in [2] as a
foundation and follows the same approach towards validation. The formalization
given there is in terms of the syntax and semantics of Boogie’s CFG.

We devise and implement a formalization of Boogie’s internal AST represen-
tation and a corresponding semantics in Isabelle building on the existing CFG
formalization and semantics. We do include goto- and break-statements in the
formalization but we do not support proof generation for programs containing
either of those yet. Then, we employ this formalization in deriving general
lemmas in Isabelle, which are used in producing the concrete per-run certificates
for the phase. Lastly, we extend the already existing instrumentation of Boogie
to realize the automation of the proof generation.

1.3 Outline

In Chapter 2, we clarify how Boogie builds the AST from the source code
and we present our formalization of the syntax and semantics of the AST. In
Chapter 3, we break down and explain the proof generation approach we use and
we show our theorems that realize it. We also describe some key implementation
details of our work. In Chapter 4, we clarify how we integrate our work into the
Boogie verifier modules as an extension of the previous work on its validation [2]
and we present the qualitative and quantitative evaluation of our work. That
is, we discuss the example Boogie programs we applied our work on and we
show a performance comparison in terms of time between the generation of a
certificate for both the AST-to-CFG phase and the CFG-to-VC phase versus
the generation of a certificate just for the CFG-to-VC phase. In Chapter 5, we
draw conclusions and outline possibilities for future work on the project. For

4

i := 0;

assume n > 0;

while(i < n)
invariant i <= n;

{
i := i + 1;

}
assert i >= n;

i := 0;

assume n > 0;

assert i <= n;

assume i < n;

i := i + 1;
assume i >= n;

assert i >= n;

Figure 1.3: Example program containing a while-loop in the form of its source
code on the left and the same program in its CFG form on the right.

reference, we also provide an appendix to this document, where we give a brief
overview the Boogie language and some of its elements.

5

Chapter 2

Formalization of Boogie’s
Abstract Syntax Tree

In this chapter we discuss Boogie’s abstract syntax tree (AST) and we present
our formalization for it. We outline how it is built and, in subsection 2.1, we give
a detailed explanation of its structure, content and characteristics. Following
this, in subsection 2.2 we provide a formal syntax and semantics of the AST.
Such a formalization is required in order to achieve the goal of constructing a
correctness proof for the AST-to-CFG phase of Boogie.

In Boogie, a program comprises a set of procedures. Each procedure has a
procedure body and a specification. After a user runs Boogie with some input
program, Boogie converts it into a stream of parsing tokens. After this, Boogie’s
parser module iterates through this stream and, for the body of each procedure
in the program, it builds what we refer to as the internal abstract syntax tree of
the procedure. For the rest of this document, we always speak of an AST for a
single procedure body.

2.1 Boogie’s Internal Abstract Syntax Tree

Boogie builds the internal AST of a procedure body by dividing and thereby
delineating the source code of the procedure into parts which are to be executed
consecutively. Each part has at most two elements:

1. A sequence of simple commands. These are program statements in the
Boogie language, which are not control-flow. Examples include assume- and
assert-statements, assignments and havoc-statements. Refer to appendix
A for more details on the Boogie language.

2. A single program construct that indicates a branch or a stopping point
in the code - an if-statement, a while-loop, a break-statement, a goto-
statement or a return-statement.

Each part is encoded into a special construct called an AST block. Therefore,
the internal AST of a procedure is an ordered list of AST blocks.

Figures 2.1 and 2.2 outline the separation of the source code into parts to
be encoded into AST blocks for our two example programs. In figure 2.1 the

6

--- start of AST block 0 ---

havoc x;

if(x > 5)
{
--- start of AST block 1, nested in AST block 0 ---

x := 10;

--- end of AST block 1, nested in AST block 0 ---

} else {

--- start of AST block 2, nested in AST block 0 ---

x := 1;

--- end of AST block 2, nested in AST block 0 ---

}

--- end of AST block 0 ---

--- start of AST block 3 ---

assert x > 0;

--- end of AST block 3 ---

Figure 2.1: Separation of source code into parts delineating the AST blocks for
a program with an if-statement.

presence of the if-statement causes Boogie to split the procedure right after it,
thus creating two parts and, accordingly, two AST blocks. AST block 0 encodes
the if-statement in itself. The content of each branch of the if-statement is
also encoded in AST blocks as illustrated. These AST blocks are recursively
contained or nested in AST block 0. Similarly, in figure 2.2, due to the presence
of the while-loop, Boogie partitions the procedure into two parts encoded into
two AST blocks, where the first one recursively contains another AST block
which encodes the content of the loop body.

Our Isabelle formalization (described in Section 2.2) of a Boogie AST closely
follows Boogie’s internal AST. That’s why we now give a more detailed explana-
tion of an AST block as represented in Boogie’s implementation.

An AST block consists of an optional name, a list of simple commands, an
optional structured command and an optional transfer command :

1. Name: If a label exists as a program statement in the procedure, upon

7

--- start of AST block 0 ---

i := 0;

assume n > 0;

while(i < n)
inv i <= n;

{
--- start of AST block 1, nested in AST block 0 ---

i := i + 1;

--- end of AST block 1, nested in AST block 0 ---

}

--- end of AST block 0 ---

--- start of AST block 2 ---

assert i >= n;

--- end of AST block 2 ---

Figure 2.2: Separation of source code into parts delineating the AST blocks for
a program with a while-loop.

8

encounter by the parser, its corresponding token immediately triggers the
creation of a new AST block and the label serves as a name for that AST
block. Otherwise, the AST block has no name.

2. Simple Commands: A possibly-empty list of simple commands.

3. Structured Command: This is an encoding of an if-statement, an encod-
ing of a while-loop or an encoding of a break statement. We refer to these
encodings as an If-Command, a While-Command and a Break-Command,
respectively. If necessary, an If-Command and a While-Command may
themselves contain lists of AST blocks, so as to accurately reflect the
program construct they represent.

• If-Command: contains a guard condition (an expression), a possibly-
empty list of AST blocks corresponding to the branch satisfying the
guard, and possibly-empty optional lists of AST blocks corresponding
to the else-if and else- branches.

• While-Command: contains a guard condition and a possibly-empty
list of AST blocks corresponding to the body of the loop.

4. Transfer Command: This is an encoding of a return-statement or an
encoding of a goto-statement.

An AST block has a couple of notable characteristics. Firstly, it can never
contain a structured command and a transfer command at the same time.
Secondly, if an AST block contains a structured command str (or a transfer
command tr), then the simple commands it contains (if any) always precede
str (or tr) in the code. Any simple commands, which come after str (or tr)
are delegated to a following AST block. Summarized, this means that an AST
block is either 1.) a contiguous sequence of simple commands, 2.) a contiguous
sequence of simple commands followed by a structured command or 3.) a
contiguous sequence of simple commands followed by a transfer command.

Figures 2.3 and 2.4 illustrate the concrete AST representations of our example
procedures. Both procedures are broken down into AST blocks without names,
since there are no explicit label statements in either of them. In AST block 0 in
figure 2.3 the list of simple commands contains only havoc x as this is the only
simple command before the if-statement. In accordance to the description in the
previous paragraph, the simple command assert x > 0 cannot be in AST block
0 and is therefore delegated to AST block 3 which contains only assert x > 0

and nothing else. The structured command in AST block 0 is an If-Command,
since it encodes an if-statement and there is no transfer command as there is no
return- or goto-statement in the procedure. Similar reasoning applies for figure
2.4 where the structured command in AST block 0 is a While-Command instead
of an If-Command.

9

--- start of AST block 0 ---

havoc x;

if(x > 5)
{
--- start of AST block 1 ---

x := 10;

--- end of AST block 1 ---

} else {

--- start of AST block 2 ---

x := 1;

--- end of AST block 2 ---

}

--- end of AST block 0 ---

--- start of AST block 3 ---

assert x > 0;

--- end of AST block 3 ---

Name: -
Simple Commands: [havoc x;]
Structured Command:

If-Command {
guard: x > 5;,
then-branch: AST block 1,
else-branch: AST block 2 }

Transfer Command: -

AST block 0

Name: -
Simple Commands: [assert x > 0;]
Structured Command: -
Transfer Command: -

AST block 3

Figure 2.3: Example program with an if-statement in the form of its (annotated)
source code on the left and its concrete internal AST representation on the right.

10

--- start of AST block 0 ---

i := 0;

assume n > 0;

while(i < n)
inv i <= n;

{
--- start of AST block 1 ---

i := i + 1;

--- end of AST block 1 ---

}

--- end of AST block 0 ---

--- start of AST block 2 ---

assert i >= n;

--- end of AST block 2 ---

Name: -
Simple Commands: [i := 0; assume n > 0;]
Structured Command:

While-Command {
guard: i < n,
invs: [i <= n]
loop body: AST Block 1,

Transfer Command: -

AST block 0

Name: -
Simple Commands: [assert i >= n;]
Structured Command: -
Transfer Command: -

AST block 2

Figure 2.4: Example program with a while-loop in the form of its (annotated)
source code on the left and its concrete internal AST representation on the right.

2.2 Formalization in Isabelle

We formally model the behaviour of the AST by formalizing the syntax and
semantics of the AST blocks in Isabelle. We chose this approach, so as to reflect
Boogie’s representation as closely as possible. This makes the connection between
our formalization and Boogie’s implementation clearer. Another approach would
have been to formalize a more generic notion of an AST that could have possibly
reflected the original source code more closely.

2.2.1 Formalization of the AST Syntax

Figure 2.5 shows the formal syntax of a structured command, a transfer
command, an AST block and an AST as datatypes in Isabelle. The simplecmd
type is part of the existing formalization of the Boogie’s control flow graph [2]
and it is congruent with the notion of a simple command outlined in the previous
section. Similarly, the expr type is congruent with the notion of an expression.

A while-loop in our formalization is a WhileWrapper term applied to
a While term as illustrated in figure 2.6. The None keyword in the figure
denotes non-existence of the name, structured command and transfer command
of the AST block. (We elaborate on Some and None below.) We employ the

11

str ::= If expr [astblock] [astblock] | While expr [expr] [astblock] |
Break nat | WhileWrapper str

tr ::= Return | Goto s

astblock ::=

ASTBlock option< s > [simplecmd] option< str > option< tr >

ast ::= [astblock]

Figure 2.5: Formalization of the AST syntax in Isabelle

WhileWrapper term even though the While term already formalizes the
syntax of a while-loop fully. The WhileWrapper term is used in the inference
rules of the semantics to identify the first time a while-loop is encountered in a
trace. After this first instance, the WhileWrapper is removed. This special
treatment of the first encounter is useful for formalizing the semantics of break
statements. We go into more detail about how the WhileWrapper is useful in
section 2.2.2.

while(i < n)
inv i <= n;

{
i := i + 1;

}

WhileWrapper
(While (i < n) [i ≤ n]
(ASTBlock None [i := i+ 1] None None))

Figure 2.6: Formalization of a while-loop in Isabelle

The type nat in figure 2.5 represents natural numbers. A Break type
constructor with a nat argument formalizes the notion of a numbered break
statement. Numbered break statements are a simplified version of labeled break
statements in Boogie where a label associated with some outer enclosing loop l1
is provided. The loop associated with the label is the loop that is to be jumped
out of. So, instead of specifying exactly which loop is to be broken out of, in our
model, the number in the numbered break indicates how many loops to jump
out of until one has broken out of the loop associated with l1.

In figure 2.5, the types option< s >, option< str > and option< tr >
capture the possibility that an AST block may or may not contain a name, a
structured command or a transfer command, respectively. Some and None are
the type constructors that comprise this polymorphic option<> type. None is
nullary, Some encapsulates a data type.

Additionally, there are two discrepancies between our formalization and the
syntax of Boogie’s AST. Our formalization models else-branches of a given
if-statement explicitly, even if the if-statement has no such branch in Boogie.
For this reason we always add an empty else-branch to if-statements, which have

12

none. We elaborate on this in section 3.3. The second discrepancy concerns
else-if -branches. Our formalization does not handle these currently.

2.2.2 Formalization of the AST Semantics

In this section, we present our formal semantics for Boogie’s AST via a
small-step semantics describing the possible executions through the AST of a
procedure in Boogie. We model the semantics via continuations as is done by
Appel and Blazy [4] and Leroy [5].

In our formalization we reuse the formalized notion of a Boogie program state
from [2]. (Sometimes we say just “program state”.) As defined there, a program
state could be a failure state F, reached when an assertion or a loop invariant is
not satisfied, a magic state M, reached when an assume-statement is not satisfied
and a normal state N(ns) in all other cases, where ns is a partial mapping from
variables to values.

We employ the notion of a Boogie program state to introduce and formalize
the notion of an AST configuration. This is a triplet of an AST Block, a
continuation and a state as illustrated in figure 2.7. A trace through the AST in
our formalization is a sequence of AST configurations.

ASTConfig ::= (astblock, cont, state)

Figure 2.7: AST Configuration

Our continuations are similar to the ones used by Appel and Blazy [4],
but adjusted for the case of Boogie. Figure 2.8 illustrates our definition of a
continuation.

cont ::= KStop | KSeq astblock cont | KEndBlock cont

Figure 2.8: Continuations

A continuation indicates how a trace through the AST blocks needs to
continue once the current AST block has been processed. A KStop continuation
term means that the trace must stop (i.e., the current AST block is the last one
to be executed). A KEndBlock term denotes the exit of a loop. This means
that the current AST block is part of the body of a loop and, once it and all
of its nested AST blocks have been executed, all subsequent AST blocks in the
AST are not part of the loop body. A KSeq term means that there is an AST
block following the current one and then, there is some continuation after that.

A final AST configuration represents that the procedure has finished execut-
ing. An AST configuration is final if it consists of an AST block with an empty
list of simple commands, no structured command and no transfer command, and
a KStop continuation.

A small-step judgement of the form
T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 , s0)⟩ →AST (b1 , k1 , s1) denotes a transition from the
AST configuration (b0 , k0 , s0) to the AST configuration (b1 , k1 , s1) in the

13

context of T ,Λ,Γ,Ω, S, where T ,Λ,Γ and Ω are reused from [2]. T is a type
interpretation map from abstract values to types. This is needed to accommodate
uninterpreted types. Λ is a variable context, which is necessary to distinguish
global from local variables. Γ is a function interpretation map, which is needed
to interpret Boogie’s functions. Ω is a type substitution map, which is needed
to handle type parameters in procedures. S denotes the AST (i.e., the list of
AST blocks). The judgement T ,Λ,Γ,Ω, T ⊢ ⟨(b0 , k0 , s0)⟩ →∗

AST (b1 , k1 , s1)
denotes a sequence of such transitions (i.e., transitive closure). Figures 2.9, 2.10
and 2.11 illustrate our inference rules defining the AST configuration transition
relation.

The inference rules use judgements of the form T ,Λ,Γ,Ω ⊢ ⟨cs, s0 ⟩ [→] s1 ,
denoting a reduction of a list of simple commands cs from state s0 to s1, and
judgements of the form T ,Λ,Γ,Ω ⊢ ⟨expr ,N(ns)⟩ ⇓ val , denoting evaluation of
an expression in the normal state N(ns), as well as the predicate expr all sat
that takes as arguments a context and a list of expressions and returns true if all of
the expressions in the list evaluate to true in the context. Both of the judgements
and the predicate were defined as part of the previous Boogie proof generation
work [2]. We also employ the auxiliary functions is final, list to cont and
find label in the formalization. is final returns true if an AST configuration is
final. list to cont takes a list of AST blocks and a continuation k as arguments
and converts the list into a corresponding KSeq continuation, which it prepends
to k. find label returns the point in the AST where a given label resides (we
explain find label in more detail below). Finally, we make use of Isabelle’s
concatenation operator @ and Isabelle’s cons operator :: in the definitions of
some of our rules. A term of the form xs@ys denotes that the list ys is appended
to the list xs. A term of the form x :: xs denotes a list, where x is the first
element and xs is the tail of the list (i.e., a sublist consisting of all of the other
elements in the list in order).

We build our formalization in such a way so as to first have a transition
via a single step from a configuration C1 to a configuration C2, where C1 and
C2 contain the same AST block and continuation with the distinction that,
in C2, the simple commands of the AST block have been reduced/processed.
Afterwards we define rules that deal with the structured command or transfer
command, which may both alter the continuation since both of these commands
may contain breaks or gotos. If one ever reaches an AST block that contains
no simple commands, no structured command and no transfer command, then
one directly inspects the continuation in order to transition to the next AST
configuration. In the following paragraphs we provide more details for some of
the more notable rules.

The second of the simple rules in figure 2.9 formalizes the notion of an
incomplete trace through the AST. This is a trace which models an execution
of the procedure, which ends prematurely because either an assume-statement
or an assert-statement fails. The rule states that one should immediately
stop execution if a Magic or a Failure state has been reached. Precisely, it
expresses that if the current AST configuration is not final, the current state is
one of Failure or Magic and the current AST block has already had its simple

14

commands reduced, then one should disregard the continuation, the structured
and transfer commands and immediately transition into a final configuration,
effectively ending the trace.

Regarding branching constructs, the Boogie language allows for if-clauses
and while-loops to have no guard condition. In that case, it is decided non-
deterministically whether the branch is taken or not. We reflect this in our rules
for these constructs. For example, the first rule for if-statements in figure 2.10
formalizes taking the then-branch by having as a premise that, if there is a guard
condition, the guard condition should hold true. If there isn’t a guard condition,
the premise is trivially satisfied and the rule is still applicable.

Let us now consider the rules regarding while-loops in figure 2.10. Firstly, we
define a rule for “unwrapping” a While term. Recall our use of the WhileWrap-
per term from figure 2.6. When a loop is encountered for the first time in an AST
configuration, it is in a “wrapped” state. That is, it has the WhileWrapper
term applied to it. On encounter, the WhileWrapper is removed and instead, a
KEndBlock term is applied to the existing continuation. Subsequently, on every
following iteration through the loop, the “unwrapped” variant of the loop (i.e a
While term encoding the loop) is added to the continuation so that the loop
can be executed again. Should there happen to be a (potentially labelled) break
statement in the body of the loop, then one must go through the continuation and
look for KEndBlock terms. After one has gone through as many KEndBlock
terms as the natural number parameter of the break indicates (recall breaks are
“numbered” in our model), one transitions to a configuration with an empty AST
block and a configuration equivalent to the rest of the continuation after the
latest KEndBlock term that was discovered. An empty AST block is an AST
block with no name, empty list of simple commands, no structured command
and no transfer command.

After that, we define a rule for the case where an invariant of a loop does
not hold true in some state s, in which the loop is reached. In order to formalize
the failure of an arbitrary invariant, we do the following: we represent the list of
invariants invs as a concatenation of three list - invs1, [I] and invs2, where [I] is
a singleton list. We then require as a premise of the rule that all invariants in
invs1 hold true in s and the invariant I fails in s. Then, if the guard expression
of the loop also holds true in s, the trace transitions into an ending state and
stops execution. This formulation of the rule captures the possibility of failure
of any arbitrary invariant in the list invs and ensures that the first invariant
that fails will immediately end the trace.

Lastly, let us discuss the rule we define for goto-statements. If the trace
is in an AST configuration, where the AST block has a goto statement as its
transfer command, then the find label function with the label of the goto as
its argument is employed. Similar find label function can be found in [5]. The
find label function starts iterating through the AST of the procedure from the
beginning. Once it finds an AST block with a name that is equivalent to the
label, it records the AST block and it computes the corresponding continuation
of this AST block. The AST trace transitions to a configuration consisting of
the newly found AST block, the computed continuation and the same state it

15

was already in. Figures 2.12 and 2.13 illustrate our precise definition of the
find label function in Isabelle.

Simple rules

T ,Λ,Γ,Ω ⊢ ⟨cs,N(ns)⟩ [→] s1 cs ̸= []
b0 = ASTBlock name cs str tr
b1 = ASTBlock name [] str tr

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 , k0 , s1)

(s1 = M) ∨ (s1 = F) ¬is final (b0 , k0 , s1)
b0 = ASTBlock name [] str tr

b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 , s1)⟩ →AST (b1 ,KStop, s1)

b0 = ASTBlock name [] None None
k0 = KSeq b1 k1

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 , k1 ,N(ns))

b0 = ASTBlock name [] None None
k0 = KEndBlock k1

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b0 , k1 ,N(ns))

Rule for Return-statements

b0 = ASTBlock name [] None (Some (Return))
b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 ,KStop,N(ns))

Figure 2.9: simple inference rules defining transitions between AST configurations
which reduce the simple commands, end the trace in the case of a execution with
failing assume- and assert-commands or manipulate the remaining continuation.
The symbol [] denotes the empty list.

16

Rules for If-Statements

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ True
b0 = ASTBlock name [] (Some (If guard (then hd :: then blks) else blks)) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (then hd , list to cont then blks k0 ,N(ns))

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ False
b0 = ASTBlock name [] (Some (If guard then blks (else hd :: else blks))) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (else hd , list to cont else blks k0 ,N(ns))

Rules for While-Loops

b0 = ASTBlock name [] (Some (WhileWrapper whilecmd)) None
b1 = ASTBlock name [] (Some whilecmd) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 ,KEndBlock k0 ,N(ns))

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ True
invs = invs1@[I]@invs2 expr all sat T Λ Γ Ω ns invs1

T ,Λ,Γ,Ω ⊢ ⟨I,ns⟩ ⇓ False
b0 = ASTBlock name [] (Some (While guard invs (body hd :: body blks))) None

b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 ,KStop,F)

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ True
expr all sat T Λ Γ Ω ns invs

b0 = ASTBlock name [] (Some (While guard invs (body hd :: body blks))) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (body hd , list to cont (body blks@b0) k0 ,N(ns))

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ False
expr all sat T Λ Γ Ω ns invs

b0 = ASTBlock name [] (Some (While guard invs bodyastblocks)) None
b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 , k0 ,N(ns))

Figure 2.10: inference rules defining transitions between AST configurations
regarding return-statements, if-statements and while-loops. The symbol []
denotes the empty list.

17

Rules for Breaks

b0 = ASTBlock name [] (Some (Break 0)) None
b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 ,KEndBlock k0 ,N(ns))⟩ →AST (b1 , k0 ,N(ns))

b0 = ASTBlock name [] (Some (Break n)) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 ,KSeq b k0 ,N(ns))⟩ →AST (b0 , k0 ,N(ns))

b0 = ASTBlock name [] (Some (Break n + 1)) None
b1 = ASTBlock name [] (Some (Break n)) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 ,KEndBlock k0 ,N(ns))⟩ →AST (b1 , k0 ,N(ns))

Rule for Gotos

b0 = ASTBlock name [] None (Some (Goto label))
(find label label S KStop) = (Some (found astblock , found cont))

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (found astblock , found cont , N(ns))

Figure 2.11: inference rules defining transitions between AST configurations
regarding break-statements and goto-statements. The symbol [] denotes the
empty list.

18

find label lbl, [], k = None

find label lbl, (ASTBlock n cs None None) :: [], k ={
Some ((ASTBlock n cs None None), k) if lbl = n

None otherwise

find label lbl, (ASTBlock n cs None None) :: blks, k ={
Some ((ASTBlock n cs None None), list to cont blks k) if lbl = n

find label lbl blks k otherwise

find label lbl, (ASTBlock n cs (Some (If g thn blks else blks)) None) :: blks, k =

Some ((ASTBlock n cs

(Some (If g thn blks else blks)) None),

list to cont blks k) if lbl = n

find label lbl (thn blks@blks) k if (lbl ̸= n ∧
a find label lbl then blks k ̸= None)

find label lbl (else blks@blks) k otherwise

find label lbl, (ASTBlock n cs (Some (While g invs body blks)) None) :: blks, k =

Some ((ASTBlock n cs

(Some (While g invs body blks)) None),

list to cont blks k) if lbl = n

find label lbl body blks

(list to cont(blks@

(ASTBlock None []

(Some (While g invs body blks))

None)) k) if (lbl ̸= n ∧
a find label lbl body blks cont ̸= None)

find label lbl blks k otherwise

Figure 2.12: Isabelle definition of the find label function, part 1. Meaning of
symbols: lbl - label, [] - empty list, k - continuation, n - name, cs - simple com-
mands list, blks - AST blocks, thn blks - AST blocks in then-branch, else blks
- AST blocks in else-branch, body blks - AST blocks in a loop body, g - guard
condition, invs - list of loop invariants.

19

find label lbl, (ASTBlock n cs (Some (Break nat)) None) :: blks, k ={
Some ((ASTBlock n cs (Some(Break nat)) None), list to cont blks k) if lbl = n

find label lbl blks k otherwise

find label lbl, (ASTBlock n cs (Some (WhileWrapper loop)) None) :: blks, k =
find label lbl, (ASTBlock n cs (Some (loop) None) :: blks, k

find label lbl, (ASTBlock n cs None (Some tr)) :: blks, k ={
Some ((ASTBlock n cs None (Some tr)), list to cont blks k) if lbl = n

find label lbl blks k otherwise

find label lbl, (ASTBlock n cs (Some str) (Some tr)) :: blks, k = None

Figure 2.13: Isabelle definition of the find label function, part 2. Meaning of
symbols: lbl - label, n - name, cs - simple commands list, nat - natural number,
k - continuation, blks - AST blocks.

20

Chapter 3

Proof Generation

In this chapter we present how we realize the generation of per-run certificates
for the AST-to-CFG phase of Boogie. To begin with, we make clear what is
the guarantee which a certificate provides, we describe our proof generation
approach and we show an example. Next, we present and explain the formal
theorems we formulate in their general forms, which when applied on a run of
Boogie, constitute the overall certificate for the AST-to-CFG phase. Lastly, we
discuss in more detail some important features of our implementation of the
proof generation.

Let us now clarify the meaning of a certificate for the AST-to-CFG phase.
Each procedure in Boogie has some formal specification which consists of pre-
conditions, postconditions, loop invariants and assertions in the code. We say
that the AST of a procedure (that is, the AST representation of the procedure
body) is correct if no executions through the AST are failing. In other words,
there must be no executions through the AST, which result in a failure of any
postcondition, loop invariant or assertion.

Let us now define what a failing execution means formally. Recall from
chapter 2 that an execution through the AST is expressed in our formalization
via a sequence of AST configurations we call an AST trace. Recall also that an
AST configuration is a triplet of an AST block, a continuation and a Boogie
program state, and an AST configuration is final if it consists of an AST block
with an empty list of simple commands, no structured command and no transfer
command, and a KStop continuation. Within this context, a failing execution
is an AST trace, which at some point transitions into an AST configuration that
is not valid. An AST configuration is valid if:

1. Its state is not a failure state.

2. If it is final and its state is some normal state N(ns), then all postconditions
in the specification of the procedure are true in N(ns).

With these definitions of AST correctness and a failing execution in mind, we
say that the AST-to-CFG phase for a given procedure in Boogie is correct if it
holds that, if the CFG of a procedure body obtained via the AST-to-CFG phase
from a corresponding AST S of the procedure body has no failing executions,
then the AST S also has no failing executions. A certificate for the AST-to-CFG
phase for a procedure is a formal proof of this claim. The strategy we adopt

21

towards constructing such a proof is to show that for every execution in the
AST there is a corresponding execution in the CFG. So, if the corresponding
execution in the CFG does not fail, then neither does the execution in the AST.

We now describe in more detail our approach towards generating a certificate.
Recall that Boogie’s AST is an ordered list of AST blocks, where an AST block
could potentially contain other nested AST blocks in its structured command.
In this setting, the concept of corresponding executions through the AST and
CFG manifests itself in the idea of corresponding AST and CFG blocks. Figure
3.1 gives some high-level intuition about this. It shows the AST representation
of our example program containing a while-loop on the left and its unoptimized
CFG representation on the right. In the figure, we illustrate with colours which
AST blocks informally coincide with which CFG blocks. AST block 0, coloured
in blue, is translated into the blue-coloured CFG blocks on the right. Similarly,
AST block 1 is translated into the magenta-coloured CFG block on the right,
and the olive-coloured AST block nested in AST block 0 is translated into the
olive-coloured CFG block on the right. For this particular example, Boogie
also creates the black-coloured CFG block on the right, which does not have
a matching AST block. Boogie always produces such CFG blocks at the end
of while-loops, which serve as an ending point of the loop. These consist of a
single assume-command, reflecting the assumption that the guard of the loop
does not hold true and the execution should continue after the loop. Because of
their simple structure, the lack of a matching AST block for these CFG blocks
does not pose a significant challenge for generating AST-to-CFG certificates.

Name: -
Simple Commands:
[i := 0; assume n > 0;]

Structured Command:
While-Command:
guard: i < n,
invs: [i <= n]
loop body:
AST block for i := i + 1

Transfer Command: -

AST block 0

Name: -
Simple Commands: [assert i >= n;]
Structured Command: -
Transfer Command: -

AST block 1

i := 0;

assume n > 0;

assert i <= n;

assume i < n;

i := i + 1;
assume i >= n;

assert i >= n;

Figure 3.1: The AST and the CFG representation of a procedure with a while-
loop

22

We utilize this notion of corresponding AST and CFG blocks to devise
lemmas regarding the correctness of each AST block (in the list or nested). For
each pairing of an AST block and a CFG block we produce a local and a global
lemma:

• Local lemma: Assuming that no executions through a given CFG block
are failing, then executing just the simple commands of a corresponding
AST block starting from a given program state will result in a final program
state, which is not a failure state F , and is the same as the one that would
be the result of executing the simple commands of the CFG block. A local
lemma is not generated if the AST block contains no simple commands.

• Global lemma: Assuming that no executions through the CFG starting
at a given CFG block from some program state s and extending to the end
of the CFG are failing executions, then, executing a given arbitrary AST
trace t starting from an AST configuration tstart from the same program
state s will result in a valid AST configuration. There are no restrictions
on the trace t. It may execute more than the simple commands in the AST
block in tstart. In particular, t could be a trace which extends to the end
of the AST.

In order for a global lemma for a trace starting at some AST configuration
to be proved, one needs to first prove global lemmas for traces starting at
each successive AST configuration in the trace. Therefore, the overall proof is
constructed bottom-up, from the end of the AST to the beginning. For instance,
the first global lemma that is constructed involves the final AST block at the end
of the AST and its corresponding CFG block. This first global lemma expresses
a result about the final AST configuration transition in the AST trace (if an AST
trace reaches this final AST block). Then, one by one, the proof generates global
lemmas for AST blocks appearing earlier in the program until it finally generates
a global lemma for the initial AST block at the beginning of the procedure. Such
a global lemma covers an execution of the procedure in its entirety.

For example, in figure 3.1, global lemmas will be generated for each of the
three colour pairings. A global lemma L0 will first be generated for the magenta-
coloured pairing. This pairing consists of blocks, which are final blocks in their
respective representations of the procedure. Hence, L0 can be proved without
requiring global lemmas for block pairings regarding successor blocks, since there
are no such pairings. Afterwards, global lemmas L1 and L2 will be generated for
the olive-coloured pairing and for the blue-coloured pairing, respectively. The
proof of L2 will depend on both L0 and L1, since those are both global lemmas
that concern pairings of AST and CFG blocks appearing after the blocks in the
blue-coloured pairing. At this point, one complication regarding the blocks in
the olive-coloured pairing arises. Since these olive-coloured blocks represent a
body of a loop, where the loop as a whole is represented by the blocks in the
blue-coloured pairing, the proof of L1 will depend on L2. Said in simpler terms,
the proofs of L1 and L2 depend on each other because the blocks in blue are both
predecessors and successors to the blocks in olive. This introduces a circular

23

dependency. We resolve this issue by generating another lemma Lloop
2 , which

concerns only the parts of the blocks in the blue-coloured pairing regarding the
loop, and we apply an inductive argument in the proof of Lloop

2 on the number of
steps left in the execution at the corresponding point in the procedure. L1 then
carries as an assumption an induction hypothesis. The proof of L2 then only
depends on Lloop

2 . We explain this in more detail in sections 3.2.1 and 3.2.2.
In the following sections we present and explain the precise formulations of a

local and a global lemma.

3.1 Local Lemma

The local lemma can be formally expressed as follows:

Theorem 1 (AST-to-CFG Local Lemma) Let B be an AST block with a
non-empty set of simple commands cs0 , and let its corresponding CFG block
have the set of simple commands cs1 . Then, if:

1. T ,Λ,Γ,Ω, T ⊢ ⟨(B0 , k0 ,N(ns))⟩ →AST (B1 , k1 , s1)

2. ∀s2. T ,Λ,Γ,Ω ⊢ ⟨cs1 ,N(ns)⟩ [→] s2 =⇒ s2 ̸= F

then: s1 ̸= F and if s1 is some normal state N(ns ′), then it holds true that
T ,Λ,Γ,Ω ⊢ ⟨cs1 ,N(ns)⟩ [→] N(ns ′).

In premise 1 the symbol →AST denotes a single-step transition between AST
configurations and in premise 2 the symbol [→] denotes the reduction of a list
of simple commands. The conclusion states that the single-step transition in
the AST trace will not result in a failing state and if it results in a normal
state, then it will be the same normal state that is reached after executing the
simple commands in the CFG block from the same starting state. Note that in
the conclusion of the lemma one does not need to formally reason about the
possibility for an execution to enter a magic state. If s1 is a magic state, then
the conclusion trivially holds. This is because, if s1 is a magic state, this means
that there is a command assume A in cs0 that is reached in the AST trace such
that A does not hold. In such a case, any command that appears afterwards in
the trace is ignored (intuitively, since a preceding assumption does not hold) and
so the corresponding AST trace can never fail.

Syntactic relation between blocks. In order to prove a local lemma for a
particular pairing of an AST and a CFG block, one needs to make concrete the
abstract idea of the correspondence between the two blocks. In our implementa-
tion we do this by using an auxiliary syntactic relation between AST and CFG
blocks. We say that an AST block and a CFG block are syntactically related if
one of the following is true:

24

1. The simple commands in the AST block are exactly the same as the simple
commands in the CFG block.

2. The simple commands in the CFG block include all of the commands in the
AST block but there is an additional assume-command in the beginning
of the CFG block. The reason for this is because, in creating the CFG
blocks from the AST, Boogie removes branching constructs and inserts an
assume-command in each branch indicating the condition that is assumed
to have been satisfied in order for the branch to be taken. Refer back to
figure 1.2, where this is shown for our example procedure that contains an
if-statement.

3. The AST block has an empty list of simple commands and a While-
Command as its structured command. The simple commands in the CFG
block are assert-statements for the invariants in the While-Command.

We show that an AST block and its corresponding CFG block are syntactically
related and use this fact to then derive the local lemma. Specifically, when
generating a local lemma, we do so according to one of 4 different local lemma
templates we define in Isabelle. There is one template that reflects case 1 above,
one template that reflects case 3 and two templates which reflect case 2. Of
these two, one carries the assumption that a guard has been satisfied and the
other carries the assumption that a guard has failed.

Each local lemma for corresponding blocks serves as a building block for a
global lemma for the same blocks.

3.2 Global Lemma

The global lemma can be formally expressed as follows:

Theorem 2 (AST-to-CFG Global Lemma) Let B be an AST block with a
set of simple commands, and let C be a corresponding CFG block. Then, if:

1. T ,Λ,Γ,Ω, T ⊢ ⟨(B , cont0 ,N(ns))⟩ →∗
AST (EndB ,EndCont ,EndState)

2. ∀m1s1.

T ,Λ,Γ,Ω, G ⊢ (C,N(ns)) →∗
CFG (m1, s1) =⇒

((s1 ̸= F) ∧
(is final (m1, s1) =⇒ (∀ns ′. s1 = N(ns′) −→

(expr all sat T Λ Γ Ω ns′ postconditions))))

then: (EndB,EndCont,EndState) is a valid AST configuration.

Point 1 states that there is some arbitrary AST trace from the configuration
(B, cont0 ,N(ns)) until some ending configuration (EndB,EndCont,EndState).
Point 2 captures the assumption that the CFG has no failing executions.

25

A global lemma shows that executing the AST from the point in the program
corresponding to (B, cont0 ,N(ns)) cannot result in a failing state. This validates
the correctness of the part of the procedure from that point onwards. Hence, if
(B, cont0 ,N(ns)) represents a starting configuration for the entire AST, then its
global lemma validates correctness of the AST-to-CFG phase.

If B has a non-empty set of simple commands, we first prove a local lemma
for B and C in order to prove the global lemma. Recall that the local lemma
provides the guarantee that, assuming that executing the simple commands in
C does not result in a failing state, one can also execute the simple commands
in B without failing.

Additionally, in order to prove the global lemma, we first prove the global
lemmas relevant for successive AST configurations. That is, our proof strategy
for the global lemma is to first show that the given AST trace in premise 1 can
be split into a first step and remaining steps, where the first step leads to a
non-failing state. To obtain the conclusion we apply an already proved successor
global lemma for the AST trace for the remaining steps. The AST trace for the
remaining steps proves premise 1 of the successor global lemma. Premise 2 of
the successor global lemma can be derived from premise 2 of the original lemma.

We derive the global lemma for a given pairing of an AST and a CFG block
using one of 5 different formulations (i.e., templates in Isabelle) depending on the
structure of the AST block or its position in the AST. We formulate a template
for:

• An AST block with no structured command and no transfer command.

• A final AST block - An AST block that either has an encoding of a return-
statement as its transfer command, or it is an AST block to be executed
last in the AST.

• An AST block with an If-Command as its structured command.

• An AST block with a While-Command as its structured command.

• A special, artificially created AST block modelling a loop. We elaborate
on this in the next subsection.

3.2.1 Loop Head AST Blocks

In this section we explain in detail the way we model AST blocks corre-
sponding to parts of the source code with while-loops as it is different than
our modelling for other blocks. Afterward, we clarify how we generate the
corresponding local and global lemmas for loops.

Recall from figure 2.6 that in our Isabelle formalization of Boogie’s syntax,
a while-loop is encoded with a While term that we require to be subject to a
WhileWrapper term application. Then, to reflect the fact that in Boogie’s
internal AST a loop (i.e., its encoding via a While-Command) must always be
part of an AST block, we require in our formalization a WhileWrapper term
to always be subject to an ASTBlock term application.

26

Rules for While-Loops

b0 = ASTBlock name [] (Some (WhileWrapper whilecmd)) None
b1 = ASTBlock name [] (Some whilecmd) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 ,KEndBlock k0 ,N(ns))

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ True
invs = invs1@[I]@invs2 expr all sat T Λ Γ Ω ns invs1

T ,Λ,Γ,Ω ⊢ ⟨I,ns⟩ ⇓ False
b0 = ASTBlock name [] (Some (While guard invs (body hd :: body blks))) None

b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 ,KStop,F)

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ True
expr all sat T Λ Γ Ω ns invs

b0 = ASTBlock name [] (Some (While guard invs (body hd :: body blks))) None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (body hd , list to cont (body blks@b0) k0 ,N(ns))

∀b. guard = (Some b) ⇒ T ,Λ,Γ,Ω ⊢ ⟨b,ns⟩ ⇓ False
expr all sat T Λ Γ Ω ns invs

b0 = ASTBlock name [] (Some (While guard invs bodyastblocks)) None
b1 = ASTBlock name [] None None

T ,Λ,Γ,Ω, S ⊢ ⟨(b0 , k0 ,N(ns))⟩ →AST (b1 , k0 ,N(ns))

Figure 3.2: inference rules defining transitions between AST configurations
regarding while-loops.

Recall also our operational semantics rules concerning these constructs (il-
lustrated in figure 3.2). As can be seen in the first rule in the figure, when a
configuration with an AST block with no simple commands and a WhileWrap-
per is encountered, the WhileWrapper is removed. We call the resulting AST
block with an “unwrapped” While term and without simple commands a Loop
Head AST block. The trace continues by checking if the guard condition of the
While term holds in the current program state and, if it does, the trace needs to
model one or more iterations through the body of the loop. As indicated by the
third rule, it does this by adding the Loop Head AST block to the continuation
of the target AST configuration of the transition this rule models. The addition
ensures that the Loop Head AST block will be encountered again later in the
trace, thereby simulating iteration through the loop.

We now need to reconcile this formalization of loop iteration with the gener-

27

ation of global lemmas. We do this in the following way:

1. For each AST block in Boogie that contains a While-Command, we dis-
tinguish between two corresponding AST blocks - a primer AST block
that reflects it closely by encoding its simple commands and its While-
Command and “wrapping” it, and one Loop Head AST block with no
simple commands and “unwrapped” While term. In a sense, the Loop
Head AST block is a snapshot of the primer a few steps ahead in its
processing.

2. We generate global lemmas for both of these AST blocks. The global
lemma for the Loop Head AST block provides the validation guarantee for
the loop execution, whereas the global lemma for the primer only shows
that one can execute its simple commands without failing and then one
can “unwrap” it.

Note that the global lemma for the primer is necessary. One cannot rely
only on a local lemma for the primer because AST blocks in the AST which, for
example, precede the primer are dependent on the primer AST block, meaning
that, in proving their global lemmas, one requires the global lemma of the primer
and not the global lemma of the Loop Head AST block. In contrast to all other
AST blocks, a Loop Head AST block does not appear explicitly in the AST. It
is neither a member of the list of AST blocks, nor is it nested in any other AST
block. It also can never appear in a starting configuration of a full trace through
the procedure - even in the continuation. It is simply a convenient stepping
stone for constructing the global lemma of its primer.

One could also consider separating the primer and the Loop Head AST block
entirely and then incorporating the Loop Head AST block into the AST as a
direct successor of the primer. On the one hand, doing so would simplify the
programming logic in Isabelle because it would make one of the templates for a
global lemma redundant. On the other hand, it would introduce a larger gap
between the AST formalization and Boogie’s internal AST representation.

3.2.2 Generating Global Lemmas for
Loop Head AST Blocks

Generating global lemmas for Loop Head AST blocks requires inductive
reasoning, since one cannot know a priori how many iterations of the loop
should be executed. Hence, in order to prove these global lemmas, we prove an
adjusted global lemma that makes explicit the number of transitions j taken in
the given input AST trace starting from a given starting configuration As until
some ending configuration Af and shows under further assumptions that Af is
valid. We prove this adjusted global lemma by induction on j. The induction
hypothesis gives us that for any AST trace starting from the same Loop Head
AST block transitioning to Af in some number of steps j′ with j′ < j, we know
that Af is valid. That is, we assume that if we encounter the Loop Head AST

28

block in the same configuration again, we assume that its execution will not lead
to a failing state.

Global lemmas for any AST block Bbody that is part of the body of the loop,
i.e., is nested in the Loop Head AST block, need to carry the induction hypothesis
as an assumption as well, because any trace that enters a configuration with
Bbody as its AST block, must have already encountered the Loop Head AST
block in a previous configuration and it will encounter it again. Therefore, in
proving the global lemma for Bbody, one uses the induction hypothesis for the
Loop Head AST block to discharge correctness for the part of the trace after
that second encounter.

Importantly, assuming there are no breaks and gotos in a procedure, the only
exit point of a loop is when the end of the loop body is reached. In particular,
if an execution of the procedure is at a point inside of a loop that is nested n
levels deep, then it is certain that it will exit each of the n loops one by one. As
a result, to prove the global lemma for a block nested inside a loop one must
only know about the induction hypothesis of that loop.

Said in terms of AST blocks, this means that a global lemma for an AST
block needs to carry only the induction hypothesis of its immediate enclosing
Loop Head AST block. It does not need to carry hypotheses for other outer
Loop Head AST blocks it may be nested in.

3.3 Addition of Empty AST Blocks

A secondary important point regards the presence of empty AST blocks
in the AST. We say an AST block is empty if it does not have a name, a
structured command or a transfer command and its list of simple commands
has no elements.

The only way such an AST block can be included in the AST during the
process of creating the AST is if the procedure itself is empty (i.e., contains no
program statements). However, there are cases where either the Boogie verifier
adds empty AST blocks itself or cases where we add empty AST blocks to make
the proof generation easier. In total, there are three cases where such empty
AST block additions occur. The necessity for these additions in two of the cases
in which it occurs (end of procedure, lack of else-branches), stems from our
formalization and proof generation approach, while the third (target for breaks)
was hardcoded in the verifier prior to this work:

• End of procedure: If the procedure ends with a loop and therefore its
AST ends with an AST block that contains a While-Command, we add an
empty AST block after it. This is because our proof generation approach
requires an AST block that serves as a clear ending point of the procedure.

• Lack of else-branches: If an if-statement in the procedure has no else-branch,
then Boogie leaves the else-branch in its If-Command encoding uninitialized.
However, our Isabelle formalization of an If-Command requires AST blocks

29

for both the then- and else-branches, hence we change the If-Command
encoding by initializing the else-branch to an empty AST block.

• Target for breaks: If the body of a loop ends with another loop, then
an empty AST block is inserted at the end of the list of AST blocks
corresponding to the body, so that if there happened to be a break statement
in the body of the inner loop, there would be a clear target for it in the
AST.

Only the last one of these cases (targets for breaks) has implications for the
resulting unoptimized CFG after the AST-to-CFG phase. In this last case, the
added empty AST block translates into an empty CFG block, which is optimized
away after the AST-to-CFG phase.

3.4 Continuation Lemmas

As explained in previous sections, we define the terms KEndBlock and
KSeq as part of the continuations. KSeq denotes a sequence of AST blocks
that are to be executed after the AST block in the current configuration has
been completed. KEndBlock marks a point in a sequence of continuations that
separates the AST blocks that are to be executed as part of some corresponding
loop body and the AST blocks that come after the loop.

The continuations, which these terms define, naturally engender rules in our
operational semantics for transitions that cause a change in the continuations
themselves. For example, the following rule defines a simple advancement in the
sequence of AST blocks comprising the continuation:

b0 = ASTBlock name [] None None
cont0 = KSeq b1 cont1

T ,Λ,Γ,Ω, T ⊢ ⟨(b0 , cont0 ,N(ns))⟩ →AST (b1 , cont1 ,N(ns))

Here is another example, where KEndBlock is simply skipped:

b0 = ASTBlock name [] None None
cont0 = KEndBlock cont1

T ,Λ,Γ,Ω, T ⊢ ⟨(b0 , cont0 ,N(ns))⟩ →AST (b0 , cont1 ,N(ns))

Such rules provide utility but they do not advance the execution of the trace
through the AST. Nevertheless, given our modular proof generation approach,

30

one needs to be able to generate global lemmas for traces starting in AST
configurations, where only such rules can be applied. We refer to these lemmas
as continuation lemmas.

Essentially, they show that if one could validate correctness for some trace
starting in configuration As and ending in configuration Af , then one could also
validate correctness for a trace starting in configuration A′

s, which goes through
As at some later point and ends again Af but the only transitions that could be
applied from A′

s to As are defined by such utility rules.

31

Chapter 4

Implementation and Evaluation

In this chapter we discuss the implementation of our proof generation as well
as a qualitative and a quantitative evaluation of our work.

Implementation. We implement the proof generation for the AST-to-CFG
phase of Boogie as an extension of the existing validation engine [2], which is
implemented as a C# module compiled with Boogie. We instrument Boogie’s
core module in order to collect information about the AST, which allows us to
generate the certificates for the phase. We add 2 new small files and a little
more than 100 lines to Boogie’s existing codebase. Certificates are generated
automatically on each run of the verifier.

In terms of expressions and simple commands, the certificates, which the
extended validation engine produces, support the same subset of the Boogie
language as the original validation engine (that is, maps and bitvectors are not
included) and in terms of control-flow program statements, our work covers
if-statements, while-loops and return-statements. Break-statements and goto-
statements are not supported yet.

Currently, our work successfully generates certificates for the AST-to-CFG
phase for our supported Boogie language subset, in cases where the optimizations,
which Boogie applies on the CFG after the AST-to-CFG phase, have no effect.
Referring to figure 1.1, this means that G2 and G3 denote exactly the same
program representation. In such cases, the certificate for the AST-to-CFG phase
is connected with the certificate for the CFG-to-VC phase to produce a certificate
for Boogie’s pipeline from the AST to the VC. If the optimizations cause the CFG
to change, the certificate generation for the AST-to-CFG phase fails, while the
certificate generation for the CFG-to-VC phase remains unaffected. This failure
is due to the fact we do not currently have a mechanism in our programming logic
to concretely distinguish between the CFG before and after the optimizations.
Adding such a mechanism is straightforward and part of future work. Once this
mechanism is in place, then the generation of the AST-to-CFG certificates will
no longer fail, i.e., the validation engine will be able to produce AST-to-CFG
certificates even for programs in our supported Boogie subset, for which the
optimizations do change the CFG. In such cases, one would not be able to
directly link the AST-to-CFG to the CFG-to-VC certificate. To connect the two

32

certificates, one would additionally need to produce an intermediate certificate
that validates correctness of the optimizations. This is also part of future work.

Qualitative evaluation. For the evaluation of our work we use the same
benchmark programs on which the original validation engine [2] was evaluated.
These consist of 100 benchmark programs collected from Boogie’s testsuite and
a group of 10 external benchmark programs. Additionally, we applied our work
on 36 simple Boogie programs we wrote, each consisting of a single procedure.

Of the 100 testsuite benchmark programs, for 78 of them we successfully
generate certificates for the full pipeline of Boogie. Of the remaining 22 programs,
16 contain breaks or gotos, which causes the AST-to-CFG certificate to fail
because our work does not support these features yet. One program contains an
assert false statement. Such an assertion renders unreachable any following
program statements and CFG blocks. One of the optimizations Boogie applies
to the CFG after the AST-to-CFG phase augments the CFG to reflect this by
transforming the assert false into a return and removing edges outgoing
from the CFG block, which contains the assertion. This optimization causes
the generation of the AST-to-CFG certificate to fail. As mentioned earlier, this
will not be the case once programming logic to distinguish the unoptimized
CFG from the optimized CFG has been added. For the last 5 programs in the
testsuite, the generation of the CFG-to-VC certificate fails.

We also succesfully generate a certificate for 8 of the 10 external benchmark
programs and for the 36 simple example programs. The certificates for the
remaining 2 external benchmark programs fail due to breaks or gotos.

Quantitative evaluation. For the 8 external benchmark programs that are
in our supported subset, we evaluate the certificates in terms of the time it takes
for their validity to be checked in Isabelle. Table 4.1 shows the time it takes
for Isabelle to check both the certificates for the AST-to-CFG and CFG-to-VC
phases and the time it takes for Isabelle to check the certificate covering only
the CFG-to-VC phase. For these programs, the table shows that coverage of the
AST-to-CFG phase adds an average slow down of 6.55 sec.

33

Program #P #LOC T1 T2
DivMod 2 69 27.89 sec 20.50 sec
Summax 1 23 21.16 sec 16.73 sec

MaxOfArray 1 22 23.94 sec 17.95 sec
SumOfArray 1 22 18.32 sec 16.21 sec

Plateau 1 50 23.91 sec 21.01 sec
WelfareCrook 1 52 45.09 sec 35.72 sec

ArrayPartitioning 2 57 32.38 sec 28.69 sec
DutchFlag 2 76 65.87 sec 49.33 sec

Table 4.1: Times needed for Isabelle to check validity of certificates per program.
#P denotes the number of procedures in a program. #LOC denotes the
number of lines of code in a program. T1 denotes the time in seconds it takes
for Isabelle to check a certificate covering the AST-to-CFG phase and the CFG-
to-VC phase. T2 denotes the time in seconds it takes for Isabelle to check a
certificate covering only the CFG-to-VC phase. These times were produced on
an HP Pavilion 15, i5-8250U 1.60GHz, Ubuntu 18.04.

34

Chapter 5

Conclusion

The main goal of this thesis was to extend the validation engine provided by
Parthasarathy et.al. [2] with support for formal validation of the AST-to-CFG
phase of the Boogie program verifier. To this end, we devised and mechanized in
Isabelle a formalization of the syntax and semantics of Boogie’s abstract syntax
tree representation. We did so by building upon the existing mechanization in
the validation engine, of Boogie’s control-flow graph. We employed our AST
formalization to realize the generation of per-run certificates for the AST-to-
CFG phase of Boogie, applicable to Boogie programs that utilize a subset of
the Boogie language. We extended the already existing instrumentation of the
Boogie verifier to automate the generation of the certificates and we evaluated
our work by applying it on Boogie’s testsuite as well as examples from the
literature and additional examples.

5.1 Future Work

Generating overall certificates covering Boogie’s AST-to-VC pipeline

In order to achieve the overall goal of producing validation certificates for
the correctness of Boogie’s implementation from the AST to the VC, one needs
to validate the sequence of basic optimizations Boogie applies to the CFG after
the AST-to-CFG phase. This includes validating correctness for pruning of
unreachable blocks, elimination of dead variables and coalescing of CFG blocks.

Generating certificates for programs containing breaks and gotos

Currently, even though breaks and gotos are included in our formalization of
the AST syntax and semantics, the certificate generation for the AST-to-CFG
phase fails if the input program contains breaks or gotos. This is because the
mechanization of our proof generation approach in Isabelle does not handle them.
A natural continuation of our work would be to extend the mechanization with
support for these statements.

35

Bibliography

[1] K. R. M. Leino, “This is boogie 2.” June 2008.

[2] G. Parthasarathy, P. Müller, and A. J. Summers, “Formally validating a
practical verification condition generator,” in Computer Aided Verification
(CAV) (A. Silva and K. R. M. Leino, eds.), vol. 12760 of LNCS, pp. 704–727,
Springer International Publishing, 2021.

[3] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof assistant
for higher-order logic, vol. 2283. Springer Science & Business Media, 2002.

[4] A. W. Appel and S. Blazy, “Separation logic for small-step cminor,” in
Theorem Proving in Higher Order Logics (TPHOLs) (K. Schneider and
J. Brandt, eds.), (Berlin, Heidelberg), pp. 5–21, Springer Berlin Heidelberg,
2007.

[5] X. Leroy, “A formally verified compiler back-end,” Journal of Automed
Reasoning (JAR), vol. 43, no. 4, pp. 363–446, 2009.

[6] A. J. Summers, “The boogie intermediate verification language.”
url: https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-
method/pm/documents/Education/Courses/SS2017/Program%20Verification/08-
Boogie.pdf, 2017.

36

Appendix A

The Boogie Language

The Boogie language, as presented in [1] and [6], is an intermediate verification
language. It is imperative and procedural. It supports built-in types for integers
(int), booleans (bool), real numbers (real) as well as for maps and bitvectors.
The language allows for declarations of custom types, global variables and
procedures as well as axioms and functions. We do not discuss axioms and
functions further. One could also declare local variables at the beginning of a
procedure body.

The signature for a procedure in Boogie is illustrated in figure A.1. In the
figure, <T, ...> denotes (optional) type parameters, (x : T1,...) denotes
value parameters and (y : T1’,...) denotes values returned to the caller.
requires and ensures are keywords enforcing the specification of the procedure
in the form of pre- and post-conditions, respectively.

procedure name <T, ...> (x : T1,...) returns (y : T1’,...)

requires ... ;

ensures ... ;

{
\\ procedure body

}

Figure A.1: Signature for a procedure in Boogie. The figure is adapted from [6].

In terms of constructs in a procedure body, Boogie supports features such as
simple program statements (assignments, assert-statements, assume-statements,
havoc-statements), break-statements, jumps, return-statements, if-statements,
while-loops (with optional invariants) and call statements. A detailed description
of all of these can be found in the Boogie reference manual [1]. We now give a
brief overview of the simple program statements.

Assignments. An assignment in Boogie assigns a value to a variable. For
example, the assignment x := y + z assigns the sum of the values of the
variables y and z as value to the variable x. Boogie also allows for parallel
assignments such as x,y = z,w, where the value of the variable z is assigned to
the variable x and the value of the variable w is assigned to the variable y.

37

Havocs. A havoc-statement in Boogie assigns arbitrary values to a set of
variables. For example, if the variables x and y are of type int, then the
statement havoc x, y would assign to them arbitrary integer values.

Assertions. In Boogie, an assert-statement at a given program location gives
an boolean expression that must evaluate to true at that location during any
execution that reaches the location. Informally, it defines a check. For example,
assert x > 0 checks is the value of the variable x is bigger than 0.

Assumptions. In Boogie, an assume-statement at a given program point gives
an expression that is assumed to be true at that point. For example, if there
is an assume x > 0 at some program point p, then the value of the variable x

is assumed to be bigger than 0 at p. Informally, the goal of assumptions is to
restrict the set of execution paths through a program. As explained thoroughly
in [1, pg. 27-28], if an execution arrives at an assumption that fails, the path it
took to reach the assumption is rendered “infeasible”. To visualize this, consider
the a havoc, followed by an assumption as in havoc x; assume x > 0. Here,
the integer variable x may have been assigned any integer value by the havoc-
statement but because of the assume-statement after it, executions, where the
value assigned to x are smaller or equal to 0, are disregarded.

The control-flow statements which Boogie supports, namely break-statements,
jumps, return-statements, if-statements, while-loops and call statements, are all
defined analogously as in other imperative programming languages. One notable
point concerns if-statements and while-loops in Boogie. The language allows
if-statements and while-loops to have a wildcard expression as their condition,
which reflects the possibility of a non-deterministic choice. An if-statement with
a wildcard means that Boogie chooses non-deterministically, which branch of the
if-statement to take. Similarly, a while-loop with a wildcard means that Boogie
chooses non-deterministically, whether to execute the body of the loop.

38

