ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Adding Algebraic Data Types to a
Verification Language

Practical Work
Alessandro Maissen

Tuesday 26" April, 2022

Advisors: Prof. Dr. Peter Miiller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Ziirich

Abstract

Viper is an intermediate language that powers several front-end verifiers
for high-level programming languages. Nowadays, most programming
languages support the use of algebraic data types (ADTs). Therefore,
this work introduces native support of ADTs in Viper via a plugin. This
does not only facilitate the use of ADTs in Viper but also provides a
unified solution for front-end verifiers and reduce boilerplate encodings.

ii

Acknowledgements

I want to thank my supervisor Dr. Malte Schwerhoff for his flexibility
and constant support in the weekly meetings. Moreover, I would like
to thank Prof. Dr. Peter Miiller for allowing me to be part of Viper’s
research group and to work on this project.

Contents

Contents

1 Introduction
1.1 Motivation
12 Goalsandoutline

2 Background

21 Algebraicdatatypes
22 VIper
221 Architecture
2.2.2 Language overview
22.3 Plugin infrastructure

3 ADT Plugin for Viper

31 Basicsyntax 0.
3.1.1 Declaration
3.1.2 Instantiation
3.1.3 Destructors e
3.1.4 Discriminators

32 Deriving System L oo
321 Syntax
322 Supported functions Lo

33 Encoding
33.1 Basicencoding
332 Containsfunction.

34 Implementation
341 Codebaseandusage
342 ASTextension.
343 Encoder
344 Tests e

iii

N —

O = = B W W

ii

CONTENTS

345 Performance.
3.5 Future Work

4 Conclusion

A Appendix
Al Signatures of new ASTnodes

Bibliography

iv

31

33
33

35

Chapter 1

Introduction

1.1 Motivation

Nowadays, program verification plays an increasingly important role, since
security and safety critical software is everywhere. This includes technology
for self-driving cars, blockchains and smart contracts, systems for aviation
and astronautics, payment systems, but also internet protocols providing
strong security guaranties.

Consequently, many automated verification tools were developed. How-
ever, most program verification tools follow an architecture in which they
transform the program to be verified, including its specification, into a much
simpler intermediate verification language. Viper [13] is such an intermediate
language that currently powers the front-end verifiers Gobra [17], Prusti [1]
and Nagini [8] for Go, Rust and Python, respectively. A good intermediate
language provides necessary instruments in a way that most, ideally all, fea-
tures from high-level languages can be encoded. Shared or similar features
among high-level languages should not require a complex and boilerplate
encoding, which leads us to algebraic data types (ADTs).

ADTs first came up in functional programming languages, but have now also
gained popularity in object-oriented programming languages. Concretely,
ADTs are supported in more than 30 programming languages, which include
Go, Rust, Python, Haskell, Scala, Java, Swift and C++. Hence, existing but
also future program verification tools (i.e. front-ends) using Viper as an
intermediate language could benefit from a unified solution that is natively
part of Viper. A unified solution for ADTs does not only avoid boilerplate
encodings but also reduce the points of failure. The reason for this is that the
correctness of the encoding does only need to be proved once, and not in all
front-ends. However, extending core Viper directly to support ADTs would
possibly require adaptions in existing front-ends. Because of that, this work
adds ADTs to Viper via plugin, that can be enabled by front-ends if needed.

1. INTRODUCTION

1.2

Goals and outline

In this work the main goal is to support ADTs in Viper as a built-in type via
a Viper plugin by:

Designing a suitable source syntax, and implementing the necessary
parsing, typechecking, etc.

Designing and implementing an internal representation of ADTs in
Viper

Designing and implementing a desugaring of ADTs into core Viper
features and reusing the encoding developed to support ADTs in Gobra

[5]

Designing and implementing an interface to automatically deriving
useful functions (e.g. contains, toSet, toMultiSet, map) from ADT
definitions and implement some of them

Provide a bunch of suitable unit tests to cover most introduced features
for ADTs

The outline of this work is the following. In Chapter 2 we introduce the
necessary background about algebraic data types, the Viper intermediate
language and its plugin infrastructure used to support ADTs. On the other
hand, Chapter 3 presents the ADT plugin in greater detail, while Chapter 4
concludes the work.

Chapter 2

Background

In this chapter we first introduce the concept of algebraic data types (ADTs).
Afterwards, we give a brief overview of the Viper framework in general, and
discuss relevant features for this work in greater detail.

2.1 Algebraic data types

Algebraic data types were first introduced in an experimental applicative
language called Hope [4]. Nowadays, it is a fundamental feature in most
functional programming languages but also available in other languages like
Scala. However, we introduce algebraic types in terms of Haskell [14] since it
comes with very intuitive syntax. For instance, in Haskell, the following code

data Tree a = Leaf | Node a (Tree a) (Tree a)

represents an algebraic data type for a tree containing elements of type a.
It has two data constructors, namely Leaf and Node. The former takes no
arguments and defines a leaf node. On the other side, the data constructor
Node has three arguments: an instance of type a and two instances of type
Tree a defining the left and right sub-tree, respectively. A concrete instance
would look the following.

Node 1 (Node 2 Leaf Leaf) (Node 3 Leaf Leaf)

Algebraic data-types come with two important properties, which are the
injectivity of constructors (Definition 2.1) and the exclusivity of algebraic data
types (Definition 2.1).

Definition 2.1 (Injectivity of constructors) For an n-ary data constructor C,
matching arquments p1, pa, ..., Pn and 41,42, . . ., Gn we have that

2. BACKGROUND

C(p1, P2, pn) =C(q1,92, -, 9n) = Vi€ [Ln]: pi=g;

Definition 2.2 (Exclusivity of algebraic data types) For an instance d of an
algebraic data type D with m data constructors C; it holds

i € [1,m]: d = Ci(pi,, Pips- - - Pi,), for some pj, pi, ... Pi,

where 3! is the unique existential quantifier.

Described properties form the basis to define equality of two ADT instances,
a notion of destructors (inverse of construction), discriminators and pattern
matching, as we will see later in Chapter 3.

2.2 Viper

Viper (Verification Infrastructure for Permission-based Reasoning) [13] is
an intermediate language and a set of tools developed at ETH Zurich for
program verification. It is implemented in Scala, a modern object-oriented
and functional programming language. Compared to similar verification
infrastructures such as Boogie [2] and Why3 [3], Viper has strong support
for permission logics such as separation logic and implicit dynamic frames,
which are well-suited for verifying heap-manipulating programs and thread
interactions in concurrent software.

2.2.1 Architecture

As depicted in Figure 2.1, Viper comes with an intermediate language and
currently supports two different verification back-ends, one is called Silicon
[15] and the other is called Carbon. Both back-ends use the SMT solver Z3
[7] for verification. Silicon applies symbolic execution and directly encodes
to SMT code. On the other hand, Carbon involves verification conditions and
encodes Viper code to Boogie, which under the hood as well uses Z3.

Viper’s architecture easily allows to develop new verification tools (front-
ends) for commonly used programming languages. This can be achieved
naturally by encoding verification techniques for front-end programming
languages into the Viper intermediate language. Some examples are Gobra
[17], Prusti [1] and Nagini [8] for Go, Rust and Python, respectively.

2.2.2 Language overview

The Viper intermediate language (internally called Silver) is an impera-
tive language, where its design has been influenced by existing verification

2.2. Viper

Python Rust . Ja:/a E E)petnCI(; Chalice Research
ront-en ront-en

Front-end Front-end Front-end Prototypes

ront-en ront-en (U.Twente) (U.Twente) ront-en typ

Intermediate .-~ >\« Specification
language .~ Inference

Symbolic

VC Generation Execution Vip E R
l

Boogie
VC Generation
(Microsoft Research)

Z3
SMT Solver
(Microsoft Research)

Figure 2.1: Viper verification infrastructure: Front-ends (top layer) use Viper's intermediate
language to encode verification problems. Those are then verified with Carbon (VC Generation +
Boogie) or Silicon (symbolic execution-based verifier). Ultimately, both backends use the SMT
sovler Z3 (bottom layer). The graphic is sourced from the Viper Online Tutorial [9].

languages like Boogie, Dafny [11] and Chalice [12]. A Viper program is
structured around different top-level declarations, which includes methods,
functions, fields, predicates and domains.

Methods A method, more specifically its body, is a sequence of statements
(e.g conditionals, loops, etc.). The signature of a method consist of input
arguments, a return value and the method’s specification. The latter includes
preconditions and postconditions, which can be specified with keywords
requires and ensures, respectively. An example of a method declaration
can be found in Listing 2.1 starting on line 7. Method declarations are verified
independently of each other, by checking that the method’s body fulfills its
postcondition under assumptions made by the precondition. On the other
hand, the method implementation is unknown for a caller of the method.
Hence, the effect of a method is solely observed though its specification.

Functions In contrast to a method, the function’s body is an expression, not
a sequence of statements. (see Listing 2.1 line 4). In Viper all expressions in-
cluding functions are pure. Consequently, there cannot be any modifications

2. BACKGROUND

to the program state, and therefore function calls can be part of specifications.
When a function is called, the result is simply equated with the expression
in the function’s body. As for methods, one can specify preconditions and
postconditions for functions. While preconditions are checked on a function
call, postconditions are assumed without checking against the function’s
body. This has the consequence, that postconditions for functions can easily
introduce unsoundness.

function fac(mn: Int): Int
requires n >= 0

{
n==071:nx*x fac(n-1)

}

method factorial(n: Int) returns (res:Int)
requires n >= 0
ensures res == fac(n)

var i: Int
i =

o

res 1

while (i < n)
invariant i >= 0 && i <= n
invariant res == fac (i)

Listing 2.1: Example of Viper methods and functions. Both implement the factorial. Observe
that in the specification of the method we prove equality of the two implementations.

Fields and predicates Viper supports objects (type Ref) on the heap. Fields
can be declared as in Listing 2.2 on line 1. Every object has all the declared
fields, hence there is no notion of classes in Viper. To access a field or perform
a field assignment one needs permissions, which can, for instance, be ac-
quired with acc(...), as in Listing 2.2 on line 5. In Viper there exists several
levels of permissions, also called fractional permissions with permission
amounts between 0 and 1. In particular, any non-zero permission allows read
access, only a permission amount of 1 (write) allows write access, whereas
0 (none) prohibits any access. Predicates can be used to gather permissions,
which allows to represent object-like structures as they are common in object-
oriented programming languages. In combination with fractional permission
this can for example be used to model read-only objects, as the predicate

2.2. Viper

readOnlyAccount(...) does in Listing 2.2 starting on line 3. Furthermore,
predicates can also be recursive so that one can specify permissions over
heap structures like lists and trees. However, permissions are not relevant for
this work, hence we do not explain this topic any further, instead we refer to
the Viper Online Tutorial [9] for a more information.

field balance: Int

predicate readOnlyAccount (this:Ref)
{

acc(this.balance, 1/2)
}

function getBalance(a: Ref): Int
requires readOnlyAccount (a)
{
unfolding readOnlyAccount(a) in a.balance

}

Listing 2.2: Example of Viper fields and predicates. To access a field in a function one has
to acquire permission, which can be done in the precondition. In this example we can acquire
the required permission via the predefined predicate readOnlyAccount (. ..), however it must
explicitly be unfolded.

Domains Viper domains allow to define additional types, mathematical
functions, and axioms over these functions specifying certain properties.
This is one of the most important features for this work, since it can be
used to encode ADTs in Viper. The declaration of a domain consists of a
name with type parameters and a body in which one can define domain
functions and axioms. In contrast to ordinary functions, domain functions
are always abstract, i.e they have no function body. Hence, properties of
domain functions can only be defined via domain axioms. Listing 2.3 shows
a way one could encode a an equivalent to Haskell’s Maybe data type using
the concept of domains.

Domain axioms are often defined using forall quantifiers, which need so-
called trigger expressions (Listing 2.3 line 8 in curly braces). Triggers are
used in the context of e-matching [6], a technique applied in SMT solvers to
approach verification of programs with specification containing first-order
logic. To put it simple Viper can only use an axiom if it is instantiated with
concrete values. Looking at the axiom in Listing 2.3, there are infinitely many
ways to instantiate the equality value == get(Just(value)). Accordingly,
in e-matching triggers are matched against expressions in the program (e.g.
using patter matching), and only on a success axioms are instantiated. For
instance, if the expression Just(5) is present in the program, the axiom

2. BACKGROUND

5 == get(Just(5)) is learned by the SMT solver. However, it is crucial to
choose good triggers to guide the SMT solver towards a quick solution. Bad
triggers might lead to an infinite loop of instantiations, which is called a
matching loop. If this happens, the SMT solver fails the verification with a
timeout. Moreover, choosing to restrictive triggers might fail verification as
well, since necessary axioms for the proof are not learned by the SMT solver.

domain Maybe[T] {
function Nothing(): Maybe[T]
function Just(value: T): Maybel[T]

function get(m:Maybe[T]): T

axiom {
forall value: T :: {Just(value)}
value == get (Just(value))

}

Listing 2.3: Example of a Viper domain with domain functions and domain axioms that implement
an equivalent to Haskell's Maybe data type.

Built-in Types Beside the possibility to introduce user-defined types, Viper
offers a bunch of standard types, some of which we have already seen in
above code examples. They include

® Bool for Boolean values

¢ Int for mathematical (unbounded) integers
* Ref for references to objects

* Perm for permission amounts

® SeqlT], Set[T] and Multiset[T] for immutable sequences, sets and
multisets with element type T

2.2.3 Plugin infrastructure

There are many front-ends that build on top of Viper. Hence, constantly
making changes to Viper is undesirable since front-ends need to be adapted
too. As a consequence, Viper has a plugin infrastructure, which allows to
add new features to Viper without changing the core Viper language.

In a nutshell Viper goes through four main phases, depicted in Figure 2.2.
It first parses the input program into the parser abstract syntax tree (PAST).
Afterwards the PAST is type-checked, resolved and translated to the internal
representation in Viper, namely to the Viper abstract syntax tree (Viper AST).

2.2. Viper

Then, Viper uses either Silicon or Carbon to retrieve the verification result,
and finally reports it. In the next paragraphs we discuss how the plugin
infrastructure can be used to hook into the different phases, and further how
one can extend the PAST and the Viper AST with new nodes to represent a
new Viper feature.

General callbacks As previously said, the Viper plugin infrastructure allows
to intercept the described Viper phases by overriding different callbacks.
Figure 2.2 lists all the callbacks, whereas important callbacks for this work
are:

* beforeParse(...) is called after the input file, to be verified, is read
but just before parsing has started. This callback can for instance
enables to add new custom parsers to extend the syntax of the Viper
intermediate language. We will see more details about extending the
parser later in a subsequent paragraph.

* beforeResolve(...) is called after the PAST is created from the input
file but before the PAST is type-checked and resolved. Often it is
used to apply transformations on PAST nodes. For a concrete use
case consider the following example. First, observe that a function or
method application in Viper is syntactically identical. Hence, both are
parsed into the same PAST node but later distinguished in the process of
resolving. If an other feature with same syntax is introduced, hence also
sharing the same PAST node, the plugin infrastructure only allows to
alter resolving and type-checking if the new feature is represented with
a new node in the PAST. Therefore, this callback can be used explicitly
transform a “wrongly” parsed node. In this work we concretely apply
this for ADT constructors.

* beforeVerify(...) is called before the AST is passed to the verification
back-end (Sillicon or Carbon). Suitable for transforming new AST
nodes, introduced by the plugin to represent new features, to ordinary
Viper AST nodes, since back-ends only support the latter nodes.

Additional hooks, which are not used in this work but also important, are
the following.

e beforeTranslate(...) is called before the PAST is translated to the
Viper AST.

* mapVerificationResult(...) is one of the final hooks of the Viper
verification pipeline before the result is returned. It takes the verification
result as argument. This is the place one can apply changes to the
verification result, and in particular used for error back translation.

2. BACKGROUND

Pxrust—i m

Direct access for
front-ends

Type-checking, Resolving and
Parse Translation

Viper Program ———> Parser AST (PAST) " T Viper AST
E i ' beforeVerify(...) --»
E : E Verifying
! ! ! (Sillicon/Carbon)
beforeParse(...) beforeResolve(...) beforeTranslate(...)
Error Reporting Verification Result

———m--»

mapVerificationResult(...) @

Figure 2.2: Viper plugin infrastructure.

Extending the parser As previously mentioned, the beforeParse(...)
callback can be used to make changes to the ordinary Viper parser, i.e. to
extend the syntax of the Viper intermediate language. Concretely, this can
be achieved by creating custom parsers for newly introduced syntax using
the library (used by Viper’s parsers). They can then be added to the existing
parser in Viper by using different hooks provided by the plugin infrastructure.
In this works we used the following hooks.

* addNewDeclAtEnd(...)" extends the top-level declarations. This can
be used to introduce syntax for new functions, new methods or in the
case of this work an ADT declaration.

* addNewKeywords(...) extends the set of program keyword. In partic-
ular, we used this hook to introduce the keywords adt, derives and
without, which we will present in Sections 3.1 and 3.2.

For completeness and documentation we discuss the remaining hooks.

* addNewExpAtEnd(...)" extends basic expressions.

* addNewStmtAtEnd(...)" extends the grammar for statements. An pos-
sible application could include a statement for a try-catch block or a
statement for pattern matching.

* addNewPreCondition(...) allows to add custom precondition expres-
sions.

* addNewPostCondition(...) allows to add custom postcondition ex-
pressions. This is for instance used by the the termination plugin [16]

10

2.2. Viper

to add new syntax for the decrease clause, which is used to check if a
function or method terminates.

* addNewInvariantCondition(...) allows to add custom specification
for loops. Like the previous hook, it is currently used by the termination
plugin to a decrease clause.

For presented hooks above with suffix End (marked with 1), there is a match-
ing hook with the same name, but with suffix Start. Namely,

e addNewDeclAtStart(...)
® addNewExpAtStart(...)
e addNewStmtAtStart(...)

To explain the difference, we first need to introduce the either-or operator
| for parsers. In particular, p; | po first tries to apply parser p;, and if that
fails it tries parser p,. Then, in the context of the hooks provided by the
plugin infrastructure, adding a custom parser p. to an existing parser p at
start results in a new parser p. | p. On the other hand, adding the custom
parser at end leads to a new parser p | p.. Hence, adding parsers at start
overwrite the existing parser, while adding them at end will not affect parsing
of ordinary Viper syntax. Consequently, a good practice is to run the Viper
test suite with the plugin activated, if new parsers are added at start, to make
sure that parsing of ordinary Viper syntax still works correctly.

Extending the PAST When introducing new syntax, one most likely also
wants to extend the PAST by creating new PAST nodes. This can be achieved
by extending the trait, PExtender where one has to implement the following
methods

¢ getSubnodes () returns the subnodes of the receiver node. This method
is mostly used by Viper’s internal framework for traversing and rewrit-
ing the PAST, e.g. to collect all top-level declarations during resolving
or deleting nodes from the PAST.

* typecheck(...) allows to implement custom type-checking and re-
solving. Note that this method is overloaded and accepts an additional
argument to specify an expected type, which in especially should be
implemented for new expression nodes (e.g for ADT constructor appli-
cations) that can be assigned to a typed local variable.

The following methods are related to the translation of the PAST node to
a corresponding AST node. Observe that only a few of those following
methods need to be implemented, which depends on the kind of the node
(top-level declaration, statement, expression or type).

11

2. BACKGROUND

12

* translateMemberSignature(...) is only necessary to implement for
new top-level declarations, that can be accessed globally. For instance in
the context of this work, this applies to an ADT constructor declaration
that can be called in a method and function body. An application or
access to a declared construct (e.g. an ADT constructor application)
needs additional information for the process of translation that is held
by its declaration. Hence, signatures are translated first, so that circular
dependencies do not break the translation process.

* translateMember(...) is only necessary to implement for new top-
level declarations, that can be accessed globally. Often the signature is
already translated by translateMemberSignature(...), so it remains
to translate the member’s body.

* translateExp(...) is only necessary to implement for new expres-
sions, like this work does for ADT constructors.

* translateType(...) is only necessary to implement for new types,
like we do for the newly introduced built-in type representing ADT’s.

* translateStmt(...) is only necessary to implement for new state-
ments.

Finally, there is a method transformExtension(...), which is deprecated
since node transformations now usually happen through Viper’s internal
rewriting framework.

Extending the AST Similar as when extending the PAST, there are different
traits one can extend to create new AST nodes. This includes

* ExtensionMember for top-level declarations
* ExtensionExp for expressions

* ExtensionStmt for statements

* ExtensionType for types

All traits share the method prettyPrint, and if implemented, enables to
display and print the AST with extensions. Moreover, most traits require
to implement the method extensionSubnodes. As it was already the case
for the PAST, this method is required by Viper’s node rewriting strategy
framework to traverse the AST. Beside of that, only the trait ExtensionExp
demands to implement additional methods related to the purity and type of
the expression.

Currently, it is not supported to pass an AST with extensions nodes to
verification back-ends. Therefore, it is far more important to include the
necessary fields and information needed later to encode extensions nodes as

2.2. Viper

ordinary Viper AST nodes. We will see concrete examples of such fields in
Section 3.4.2, where we present the internal representation of ADTs in the
AST.

13

Chapter 3

ADT Plugin for Viper

The chapter first introduces the basic syntax for ADTs in Viper, while after-
wards we present a deriving system to automatically derive useful functions
for ADTs. Subsequently, the encoding of ADTs as domain functions is pre-
sented more generally before we discuss some implementation details.

3.1 Basic syntax

In this section we present the basic syntax for ADTs that is added to Viper
with the developed plugin. Furthermore, we discuss alternative designs and
their trade-offs.

3.1.1 Declaration

A special keyword adt indicates the start of an ADT declaration. The signa-
ture of an ADT declaration consists of a unique identifier optionally followed
by type parameters in square brackets. Formally, the signature of an ADT
declaration is identical to that of a domain, except for the difference in the
corresponding keyword. The body of an ADT (delimited by braces) consists
of arbitrarily many ADT constructors. As seen in Listing 3.1, constructor
declarations have high resemblance to domain function declarations (see
Section 2.2.2), except that they do not require a return value. Moreover,
constructor declarations do not need to be preceded by a special keyword.

Finally, we require that argument identifiers have to be unique among all
constructors within an ADT declaration. This is because argument identifiers
implicitly define the identifiers for their corresponding destructors, which
are presented in Section 3.1.3. As a concrete example, there cannot be two
constructors in an ADT declaration both taking an argument named value,
otherwise the corresponding destructor is ambiguous.

15

3. ADT PLUGIN FOR VIPER

16

= W N -

adt List[T] {

Nil ()

Cons(value: T, tail: List[T])
}

Listing 3.1: Example of an ADT declaration. In particular, the ADT defines a list containing
elements of type T.

While deciding for the final syntax we considered some alternative ideas. One
idea included the keyword constructor for an ADT constructor declaration,
shown in Listing 3.2. But since only constructors can be part of an ADT’s
body, introducing such a keyword would only lead to notational overhead.
Because of that we choose the former approach shown in Listing 3.1.

1 adt List[T] {

2 constructor Nil ()

3 constructor Cons(value: T, tail: List[T])
4 %

Listing 3.2: Alternative design for ADT declarations (not chosen).

3.1.2 Instantiation

An ADT can be instantiated by calling one of the defined constructors with
suitable arguments. Basically, this is the same as calling a regular function
or a domain function. Listing 3.3 shows how one can instantiate an ADT of
type List [Int], by nesting the constructor Cons () several times to form a
list, which is then assigned to a local variable.

1 var list: List[Int]
2 list := Cons (1, Comns (2, Cons(3, Nil())))

Listing 3.3: ADT instantiation of a list with three elements.

3.1.3 Destructors

Until now we have seen how to declare ADTs with their constructors, and
how one can instantiate them. However, we do not only want the possibility
to construct ADTs, but also destruct them. For instance, we would like to
retrieve the value of the first element of our List ADT. Accordingly, for each
constructors of arity n there are n destructors. Our for destructors is inspired
by Dafny [11] and matches the syntax for field accesses. In particular, for
each constructor argument P, there is a destructor P that can be applied on
an ADT instance, as illustrated in Listing 3.4. Recall from Section 3.1.1 that

3.1. Basic syntax

identifiers of constructor arguments are unique within one ADT declaration,
such that ambiguities across different ADTs can be resolved by inspecting
the type of the receiver.

1 assert list.value == 1
2 assert list.tail == Cons (2
3 assert list.tail.value ==

, Cons (3, Nil()))
2

Listing 3.4: Syntax for ADT destructors, building on Listing 3.3.

Another approach would be to introduce a function-like destructor getP(a)
for each argument P of a constructor, where a is an ADT instance. Destructors
are than called in a static manner to avoid name collisions. An example of
this syntax is shown in Listing 3.5. The reader may realize that accessing the
second element of a list, as in Listing 3.5 on line 3, already results in a quite
big notational overhead, which linearly growths with the level of nesting.
Furthermore, Viper does currently not have a notion of classes and hence
invoking the destructors in a static fashion seems rather odd. Because of
these reasons it is not hard to argue for the first approach.

1 assert List.getValue(list) == 1
2 assert List.getTail(list) == Cons (2, Cons(3, Nil()))
3 assert List.getValue(List.getTail(list))==

Listing 3.5: Alternative syntax for ADT destructors, building on Listing 3.3 (not chosen).

3.1.4 Discriminators

In Section 2.1 we learnt about the exclusivity of ADTs. This property allows
to introduce the notion of discriminators. Concretely, a discriminator for
a constructor C(...) returns true if and only if the instance of the ADT
was constructed using C(...). As previously for the destructors, our first
approach matches Dafny’s syntax. Namely, for each constructor C(...),
there is a discriminator C? that can be applied via dereferencing an ADT
instance. Listing 3.6 shows the described syntax in an example.

1 assert list.Cons? == true
2 assert list.tail.Cons? == true
3 assert 1list.Nil? == false

Listing 3.6: Desired syntax for ADT discriminators (not chosen).

Viper supports ternary operators of the formb ? e; : ep, where b is some
condition and e, e some expressions. Unfortunately, presented syntax for

17

3. ADT PLUGIN FOR VIPER

18

discriminators conflict with the syntax of ternary operators. The Viper plugin
infrastructure did not allow to resolve this conflict without big changes to
existing parses, i.e. to the existing grammar of the language. For this reason, a
slight adaptation (see Listing 3.7) of the syntax is necessary. Precisely, for each
constructor C(. . .) there is a destructor isC. The reader may observe that in
contrast to Dafny’s approach this does increase the number of identifiers in a
given program, and thus increase the changes for name clashes.

1 assert list.isCons == true
2 assert list.tail.isCons == true
3 assert list.isNil == false

Listing 3.7: Example illustrating the final syntax for ADT discriminators.

3.2 Deriving System

Haskell [14] provides a deriving system to automatically derive commonly
used functions. Concretely, this can be achieved by adding a deriving clause
(e.g deriving (...)) at the end of a data type declaration. Listing 3.8
shows an example where the class Show is derived for a data type Tree a.
Consequently, the implementation of the function show, which can be used
to display an instance of Tree a, is synthesized by the compiler.

1 data Tree a = Leaf |

2 Node a (Tree a) (Tree a) deriving (Show)

Listing 3.8: Example of a Tree that derives the class Show.

In Haskell 98 there is a list of derivable standard classes, which include Eq,
Ord, Enum, Ix, Bounded, Read, and Show, each potentially containing more
than one function. Depending on the Haskell compiler, this list might be
longer. For instance, the Glasgow Haskell Compiler (GHC) [10] additionally
supports derivation of the class Functor, which includes a function fmap.

Automatically deriving such functions has the advantage that programmers
do not have to repeatedly write boilerplate code to support basic operations.
Therefore, we aim to provide a similar feature for ADTs in Viper. The Gobra
front-end already supports a deriving system for ADTs, which is inspired by
Haskell’s deriving system. To allow a simple encoding of Gobra’s deriving
system into Viper’s extended intermediate language, our deriving system is
influenced by both, Gobra’s and Haskell’s, solutions.

3.2. Deriving System

3.2.1 Syntax

In this subsection we present the syntax that enables to derive useful func-
tions for ADTs. Currently, our deriving system only supports a function
contains. Hence, we use additional function identifiers, i.e toSet and depth,
to illustrate the syntax in the upcoming examples. These functions are intro-
duced later in Section 3.2.2. However, to understand certain features of the
syntax some necessary information about their semantics is explained on the

fly.

In a first step, we add an optional derives-clause at the end of an ADT
declaration, where derivable functions can be specified. Listing 3.9 shows
an ADT implementing a List [T], while additionally the functions contains
and depth are automatically derived.

adt List[T] {
Nil ()
Cons(value: T, tail: List[T])

} derives { contains depth }

Listing 3.9: Basic syntax for deriving useful functions for ADTs in Viper. In this example the
functions contains and depth are automatically derived.

The presented syntax above allows to derive trivial functions. However, we
require syntax with more expressiveness to support automatic derivation
of functions like toSet, which abstracts an ADT into a set. To see why
this is the case let us consider the definition of the ADT Speciallist in
Listing 3.10. When deriving the function toSet for SpecialList it not clear
if the resulting Set should contain all values of type Int or of type Bool.
To address this problem, identifiers of derivable functions in the derives-
clause are followed by an optional type parameter that can be used to resolve
potential ambiguities.

adt SpecialList {

Nil ()

Cons (valuel: Int, value2: Bool, tail: Speciallist)
} derives { toSet[Int] }

Listing 3.10: Abstracting Speciallist into a Set leads to ambiguities, which can be resolved
with type parameters. In this case the derivable function toSet collects all integers in the list.

Finally, as in Gobra’s deriving system, we introduce the keyword without,
which allows to add ADT constructor arguments to a blocklist' so that they

1A blocklist contains a list of items that should be excluded. The counterpart to a blocklist
is a clearlist.

19

3. ADT PLUGIN FOR VIPER

20

® N3 O U o= W N =

are excluded when deriving a function. A concrete example of the syntax
is shown in Listing 3.11. The effect of applying blocklisting to a derivable
function solely depends on its implementation and accordingly differs from
function to function. In the case of the derivable function contains, which
in the context of trees defines a sub-tree relation, excluding the argument
value has the effect that 1 is not contained in Node (1, Leaf(), Leaf()).

adt TreelT] {

Leaf ()

Node (value: T, left: Treel[T], right: Treel[T])
} derives {

contains without value

toSet [T] without left, right
}

Listing 3.11: Extended syntax, which allows fine-grained blocklisting.

The reader may realize that in the presented syntax it is required to specify
function identifiers in the derives-clause, while in Haskell derivable classes
need to be specified. Gobra’s approach is similar to Haskell and currently
a set of functions, namely len, set and mset can be generated by deriving
Collection. Due to the lack of a notion of classes in Viper we have decided
against this approach. Moreover, requiring to specify functions allow a
more fine-grained derivation, i.e a more fine-grained blocklisting. This is
for instance in shown in Listing 3.11, where each derivable function has its
own blocklist. On the other hand, in Gobra there is only one blocklist for all
derived functions.

3.2.2 Supported functions

In the previous section we presented an expressive syntax for the deriving
system that allows to support automatic derivation of trivial functions but
also more complex functions that require parametrization. Nevertheless,
currently the deriving system only supports the function contains, while
the other functions (i.e. depth and toSet) were only used to illustrate the
syntax of the deriving system. However, additional derivable functions could
easily be added.

Contains The derivable function contains(a: A, b: B): Bool is a tran-
sitive binary relation, which contains the tuple (a,b) if a is contained in b.
Note that “contained” in the context of ADTs, means that the instance b is
created with a constructor, where a was one of the constructor’s arguments.
In particular for an ADT that defines a Tree, as in Listing 3.11, we have that

3.3. Encoding

e Leaf () is contained in Node (42, Leaf(), Leaf())
e 42 is contained in Node (1, Node(42, Leaf(), Leaf()), Leaf())

Potentially derivable functions in future As already, mentioned one could
easily add more derivable functions to the ADT plugin. Concretely, this can
be done by firstly extend the parser to accept the identifier of the derivable
function, which does not take more than one line of code. In a second step
one has to provide the encoding of the derivable function. The scope of
adding the encoding strongly depends on the function and its complexity.

Following list present some functions that could be added to the deriving
system in future.

* depth takes an ADT as argument and returns its maximum level of
nesting. For an ADT List [T] this corresponds to the length, while for
a Tree[T] it is simply its depth.

* toSet[T] takes an ADT as argument and abstracts it into a set. For
example, applying toSet [T] on an ADT defining a List [T], returns
the elements of type T of the list in a set.

* toMultiSet[T] is the same as toSet [T], except that we allow a multi-
set.

* map[T] takes an ADT and a function f as argument. Then, the ADT is
recursively transformed, according to the function f. As an example
one could increase each element of a List[Int] by one, with the
function f(x) = x + 1. However, since it is currently not possible to
pass functions as arguments to functions, this would also require to
extend Viper’s syntax.

3.3 Encoding

The encoding of ADTs as Viper domains is based on previous work that
added ADTs in Gobra [5]. In this section we will first present the basic
encoding for general ADTs more formally. To do so, we use the previously
introduced syntax for ADTs in Section 3.1. Additionally, we allow identifiers
with subscripts, which simplifies generalization. In a second step, we show
the encoding for the function contains that is part of the deriving system.

3.3.1 Basic encoding

Using the extended syntax with subscripts, a generalized definition of an ADT
A is shown in Listing 3.12. It has k type parameters T; and n constructors
C; with m; arguments each. Observe that S;; corresponds to the type of
argument p; ; and might be parameterized by Ty, ..., Tj.

21

3. ADT PLUGIN FOR VIPER

22

10
11

10
11
12

adt A[T{,To,...,T]l {
Ci(p11: S11, P12° S125---sPLm: Sim)

Co(pa1: So1, P22: S22, v+ sP2myt Som,)

Cn (pn,l : 8u1s Pu2 Su2s---5sPnmy: Sn,mn)

}

Listing 3.12: Shows an ADT A with k type parameters and n constructors. Each constructor C;
takes m; arguments p; ; of type Sij

As already mentioned in previous sections, domains are used to encode
ADTs in Viper. Accordingly, in a first step a matching domain A is generated
for the ADT A with same number of type parameters. Then, each constructor
C; is simply encoded as a domain function C; that returns a value of type
A[Ty,...,T]. This encoding scheme is shown in Listing 3.13.

domain A[T7,...,Tel {
// Constructors
function Cy(p11: S11s---sPlm: Stmy): ALDT1, ..., Tkl
function Cp(p21: S21,.-->P2m: S2omy): ALTy, ..., Tkl
function Cu(pu1: Suis--->Pumy: Sumy): ALT1, ..., Tkl

}

Listing 3.13: Viper domain and encoded constructors for the general ADT definition in Listing
3.12.

Remember that each constructor C; has exactly m; destructors. Consequently,
for each constructor argument p;; of type S;; a domain function Dy, ; with an
axiom is generated to encode the matching destructor. This function-axiom
pair is stated in Listing 3.14. Furthermore, it can easily be shown that the
set of axioms for all destructors of one constructor generated according to
Listing 3.14 imply injectivity of the constructor as introduced in Definition
2.1. A proof can be found in the work that introduced ADTs in Gobra [5],
while the authors furthermore as well evaluate the chosen trigger, namely

O 0 N N Ul = W N =

10
11
12

14
15

3.3. Encoding

Ci(pi1s--->Pnm). Recall our discussion in Section 2.2.2 about triggers, and
how they affect the verification process.

function Dpu(a: ATy, ..., Ted) s 8y

axiom {
forall Pi1: Si,l:"'»pi,mi: Si,mi I {Ci(Pi,l""’pn,mi)}
pi,j == Dpi,j(ci(Pi,l:--- ’pi,m,'))
}

Listing 3.14: A destructor Dp,; and the corresponding axiom for a constructor argument p; ;.
Consequently, for each constructor C; exactly m; such function-axiom pairs are generated.

Finally, to support basic functionality of ADTs, it remains to encode the
discriminators. This is achieved by adding a so called tag function TG4 for an
ADT A that maps instances to integers. Concretely, for two instances a; and a;
of an ADT A instantiated by different constructors, the resulting tag given by
the tag function differs as well. In particular, we have TG4 (a;) !'= TGa (az).
Listing 3.15 gives the definition of the tag function with its axioms for an
ADT A.

// Tag function
function TGp(a: A[Ty,...,Tg]): Int

// Tag axioms

axiom {
forall py1: S11s---5Plm: Sty 0 {C1(p11s--- s Pum)l
TGA(Cl(Pl,l,---:Pl,ml)) == 1
}
axiom {
forall pui1: Spis--->Pumy: Summy ¢ LCu(Puis-vsPumy)t
TGA(Cn(pPyis--->Pum,)) == 1
}

Listing 3.15: The corresponding tag function and its axioms for the ADT A. Accordingly, an
instance of an ADT A created with constructor C; has tag i.

A discriminator for a constructor C; can then be encoded as TG, (a) == i,
where a is some instance of ADT A.

However, there is still a missing piece. Namely, the exclusivity of ADTs
introduced in Definition 2.1. Given the encoding for constructors, destructors

23

3. ADT PLUGIN FOR VIPER

24

1
2
3

and the tag function, implementing Definition 2.1 as domain axioms is
straight-forward, as shown in Listing 3.16.

axiom {
forall a: A[Tqy,...,Tel :: {TGx(a)}{Dy1(ad}.. {Dym,(ad}
a == Cl(DM(a),...,Dlrml(a)) [... 1]
a == Cy(Dy1(a),...,Dum,(a))
}

Listing 3.16: Encoding exclusivity for an ADT.

3.3.2 Contains function

As already mentioned in Section 3.2.2, the derivable function contains is a
transitive binary relation, which contains the tuple (A, B) if and only if A
is contained in B. We encode the contains relation as a domain function
belonging to a domain named ContainsDomain with two type parameters A
and B. (see Listing 3.17)

domain ContainsDomain[A,B] {
function contains(a:A, b:B): Bool

}

Listing 3.17: The domain for the derivable contains function.

Whenever the contains function is derived for an ADT, we generate domain
axioms that encode the contains relation as defined in Section 3.2.2. In partic-
ular, for every constructor C;, each argument p; ; is contained in constructor
C;. Listing 3.18 shows the corresponding axiom for constructor C;. Remember
that our deriving system allows blocklisting. Accordingly, if for instance the
argument p; ; is blocklisted, we omit contains(p;;, Ci(pi1,-..,pim)) from
the axiom.

axiom {
forall pj1: Sits--sPim: Sim ¢ {Ci(Pi1s--sPim)?
contains(p;1, Ci(pi1,-.- Pim)) && ... &&
contains (pjy, Ci(pPi1,---,Pim))
}

Listing 3.18: The axiom defining the semantics of the contains relation for ADT instances
created by constructor C;.

Finally, it remains to encode transitivity of the contains relation, which turned
out to be more involved than encodings we have seen until now, as discussed

Ul = W N =

3.4. Implementation

in the work on ADTs in Gorba [5]. The authors came up with the following
three-step strategy.

1. For each call to contains, if the types of its arguments are concrete?,
collect the types as a tuple in a set S

2. Compute the transitive closure S* of the tuples in S. In particular,
we start by initially setting St = S. Then we repeatedly apply the
following rule. For two tuples (A, B) and (B,C) in ST we add the tuple
(A,C) to ST.

3. For each tuple (A,B) and (C,D) in the set S, if B = C generate a
domain axiom encoding transitivity as shown in Listing 3.19

axiom {
forall a: A, b: B, c: C :
{contains(a,b)}{contains(b,c)}
contains(a,b) && contains(b,c) ==> contains(a,c)

}

Listing 3.19: The axiom that encodes transitivity of the contains relation for a triple (A, B,C)
of concrete types.

3.4 Implementation

In this section we will first reference the codebase, where the ADT plugin is
implemented. We proceed by discussing and document the new extension
AST nodes that internally represent ADTs. This section is specifically useful
for front-end developers, which plan to use the ADT plugin. Afterwards,
we shortly list the necessary tasks of the encoder to encode extension AST
nodes into ordinary AST nodes. We omit to give more implementation
details since they are quite straightforward and hence refer to the codebase
for the interested reader. Finally, we discuss the testing infrastructure and
performance of the ADT plugin.

3.4.1 Codebase and usage

Currently, the ADT plugin is implemented on a fork of Silver and is publicly
available on GitHub®. To use the plugin it is additionally required to install
either Silicon or Carbon. We suggest to install our forked versions of Silicon*
and Carbon® to also include unit tests. See Section 3.4.4 how to run tests.

2A concrete type is a type where all type parameters are resolved.
Shttps://github.com/amaissen/silver
4https://github.com/amaissen/silicon
Shttps://github.com/amaissen/carbon

25

https://github.com/amaissen/silver
https://github.com/amaissen/silicon
https://github.com/amaissen/carbon

3. ADT PLUGIN FOR VIPER

26

However, in future we plan to add the ADT plugin to Viper’s original

repositories®.

Another thing worth mentioning is that the ADT Plugin is currently imple-
mented as a default plugin, which means that the plugin is automatically
activated. If this changes in future, one can activate the plugin by pass-
ing --plugin <classPath> via command line option to Silicon or Carbon,
respectively. The current class path for the ADT plugin is the following:

viper.silver.plugin.standard.adt.AdtPlugin

For general instructions how to install Silver, Silicon or Carbon we refer to
their documentation.

3.4.2 AST extension

As discussed in Section 2.2.3, the plugin infrastructure allows to extend the
Viper abstract syntax tree (AST). AST nodes are generally defined via Scala
case classes with multiple argument lists and extend a base class named
Node. To support ADTs in Viper via plugin, several new nodes are added
to the AST. The list below documents the new AST nodes, where some of
them have relevant information in a secondary argument list. We omit the
signature of the nodes here for reasons of space but list them in the Appendix
(see Appendix A.1).

* Adt(...) extends ExtensionMember, represents an ADT top-level dec-
laration, and takes the following arguments: a unique name (String),
a sequence of AdtConstructor’s and a sequence of type variables.

¢ AdtConstructor() (...) extends ExtensionMember, represents an ADT
constructor, and takes the following arguments: a unique name (String)
and a sequence of local variable declarations defining the constructor’s
argument list. In the secondary argument list it additionally takes an
AdtType that defines the return type and a String for the correspond-
ing ADT name the constructor belongs to. There exists a matching
companion object that should be used to correctly set the arguments in
the secondary list by passing the associated ADT instance.

* AdtType(...) extends Type via ExtensionType and represents the
newly introduced type for ADT’s. It requires a name of an ADT
as String and a Map for type variable mapping as arguments. Addi-
tionally, it takes a sequence of type variables in the secondary argument
list as input. Since the type variables should match the type variables
defined in the corresponding ADT instance, the associated companion
object should be used to set them correctly.

bhttps://github.com/viperproject

https://github.com/viperproject

3.4. Implementation

* AdtConstructorApp(...) extends Exp via ExtensionExp and repre-
sents a constructor application. It requires the name of the constructor
(String), a sequence of argument expressions (Exp) and a Map for the
type variable mapping. The arguments of the secondary argument list
equal the secondary arguments of AdtConstructor(...), which can
be set correctly with the corresponding companion object.

* AdtDestructorApp(...) extends Exp via ExtensionExp and represents
a destructor application. As argument it takes a String which should
match a valid destructor identifier, an expression (Exp) for the receiver
and a Map for the type variable mapping. The secondary argument list
does not differ from the one in AdtConstructorApp(...)

* AdtDiscriminatorApp(...) extends Exp via ExtensionExp and repre-
sents a destructor application. It takes exactly the same arguments as
AdtDestructorApp(...), except that there is no return type to be set,
since it is fixed to Bool.

3.4.3 Encoder

The encoder is implemented as a class AdtEncoder and applies the encoding
of ADTs as presented in Section 3.3. The primary task of the encoder is to
transform, more specifically to encode, extension AST nodes into ordinary
AST nodes. To do so, the encoder traverses the extended AST using Viper’s
internal rewriting strategies and

¢ transforms every Adt node to a Domain with corresponding DomainFunc
nodes and DomainAxiom nodes according to the encoding for ADTs
presented in Section 3.3.

¢ transforms every AdtConstructorApp, AdtDestructorApp and AdtDis-
criminatorApp to the matching DomainFuncApp.

¢ transforms every AdtType to the matching DomainType.

Moreover, the encoder implements a name manger that keeps track of all cur-
rently used identifiers in the program. In particular, it provides a mechanism
to generate new unique identifiers. This is very handy to avoiding name
clashes when it comes to create new domains and domain functions used to
encode constructors, destructors, discriminators and other ADT features.

As already mentioned in Section 2.2.3, the encoding of extension nodes
to ordinary AST nodes should happen in the beforeVerify(...) hook
provided by the plugin infrastructure. In particular, before the AST is passed
to a verification backend. Consequently, this is the location where the encoder
is invoked.

27

3. ADT PLUGIN FOR VIPER

28

3.4.4 Tests

The absence of bugs can not be proved with testing, however their number can
be reduced. Hence, we implemented a great amount of tests. In particular,
we added a new test suite to check ADT features that includes 39 test
files, each containing several corner cases. It covers all main stages of the
Viper infrastructure, which includes parsing, typechecking/resolving and
verification. Furthermore, there are tests that checks the ADT encoding itself
and that it does not introduce any unsoundness.

Tests can only be executed with Silicon or Carbon as backend verifier. All
available tests including those from core Viper can be executed by calling
sbt test. However, one can execute the ADT tests only with following
command

e for Silicon: sbt "testOnly viper.silicon.tests.AdtPluginTests"
e for Carbon: sbt "testOnly viper.carbon.AdtPluginTests"

However, as mention in Section 3.4.1 make sure to install the forked versions
of Silicon and Carbon, otherwise tests for the ADT plugin are not available.

3.4.5 Performance

The ADT plugin does not perform complex operations that would lead
to a significant drop in performance. However, as mentioned in Section
3.4.3, the Viper AST is traversed to transform extension nodes to core Viper
nodes, respectively to apply the encoding for ADTs, which is the most
costly operation. To implement those traversals and transformations we
used Viper’s internal framework, so called rewriting strategies that can be
applied on an AST. Consequently, overall performance of the ADT Plugin
boils down to the performance of this framework and the entire plugin
infrastructure. Hence, benchmarking our ADT plugin would most likely not
lead to surprising or insightful results, so we omitted a performance analysis.
However, far more interesting results could be collected by benchmarking
Viper’s plugin and rewriting infrastructure but this was out of the scope for
this work.

3.5 Future Work

The presented plugin comes with the basic functionality to support use of
ADTs in Viper, which includes the possibility of ADT construction, destruc-
tion and discrimination. Moreover, it comes with a deriving system that
currently supports exactly one function, namely the contains function. In
Section 3.2.2, we already discussed some useful functions the deriving system
could support in future, hence we will not repeat those ideas here again.

NS G 0N =

3.5. Future Work

However, another feature that is often used together with ADTs is pattern
matching. Consider the ADT Maybe[T] that represents the data type of
same name in Haskell. It has two constructors, namely Just(value: T) and
Nothing(). Then, one might want to implement a method getOrElse(...)
that takes an instance of Maybe [Int] and a default value of type T as argu-
ments. If the passed instance of Maybe [T] was created by the constructor
Just (value: T) its value is returned, otherwise the default value is returned.
Listing 3.20 gives the concrete implementation of the method getOrElse(...)
in Viper.

method getOrElse(m:Maybe[Int], d:Int) returns (res:Int)
{
if (m.isJust) {
res := m.value
} else {
res := d
}
}

Listing 3.20: A method that returns the value of an instance of Maybe [Int], if it was created
with constructor Just (value: Int). Otherwise, the default value d is returned.

Introducing a Scala-like match-expression for pattern matching would allow
to rewrite the method getOrElse(. . .) by conditioning on each constructor
with case-clauses, as shown in Listing 3.21. The reader may observe that
match-expression can be rewritten as if-else statements, however, for more
complicated ADTs this results in big notational overhead. Furthermore, one
could extend the plugin to automatically generate exhaustiveness checks for
match-expression. Hence, supporting this kind of pattern matching would
facilitate the use of ADTs in Viper, and could provide a unified solution for
front-end verifiers such as Go and Rust.

method getOrElse (m:Maybe[Int], d:Int) returns (res:Int)
{
res := m match {
case Just(v): v
case Nothing: d
}
}

Listing 3.21: The getOrElse(...) method implemented with a pattern matching expression
instead with an if/else statement. Note that this is hypothetical Viper code, that is not yet
supported by the ADT plugin.

29

Chapter 4

Conclusion

This work presented a plugin for Viper to enable support for ADTs. In
particular, we designed a fitting syntax to support basic functionality of
ADTs in Viper, which includes constructors, destructors and discriminators,
and justified our design decisions.

Using Viper’s plugin infrastructure we implemented the corresponding
parsing and typechecking for the new ADT features. Additionally, we
extended the abstract syntax tree (AST) to internally represent ADTs in Viper.
To facilitate the development of front-ends, that would like to support ADTs,
we discussed the internal representation of ADTs in more detail and hence
it is well documented. Moreover, we formalized the encoding for ADTs,
originally elaborated by Gobra’s work, and later applied it on the extended
AST to encode ADT features to core Viper.

Furthermore, we designed an extendable deriving system to automatically
derive useful functions for ADTs with the intention to reduce boilerplate
code. Despite, it currently only supports the derivable function contains,
we described potential functions that could easily be added in the future. We
provided a bunch of suitable unit tests that cover every introduced feature
for ADTs to ensure that our implementation has a high probability of being
correct. Finally, we discussed a pattern matching expression that could be
introduced in a future project.

Summing up, the ADT plugin not only facilities the use of ADTs in Viper,
but also provides a unified solution for existing and future front-ends, which
use Viper as an intermediate language.

31

Appendix A

Appendix

A.1 Signatures of new AST nodes

In the following section we list the complete signature of the AST nodes
related to ADTs in Viper.

ADT declaration

Adt(

name: String , constructors: Seq[AdtConstructor],

typVars: Seq[TypeVar] = Nil,

derivingInfo: Map[String , (Option[Type], Set[String])] = Map.empty
) (

val pos: Position = NoPosition,

val info: Info = Nolnfo,

val errT: ErrorTrafo = NoTrafos
) extends ExtensionMember {...}

ADT constructor

AdtConstructor (
name: String,
formalArgs: Seq[LocalVarDecl]
)(
val pos: Position,
val info: Info, wval typ: AdtType,
val adtName : String,
val errT: ErrorTrafo
) extends ExtensionMember {...}

ADT type
AdtType(

33

A. APPENDIX

34

adtName: String,

partialTypVarsMap: Map[TypeVar, Type]
)(

val typeParameters: Seq[TypeVar]
) extends ExtensionType {...}

ADT constructor application

AdtConstructorApp (
name: String,
args: Seq[Exp],
typVarMap: Map[TypeVar, Type]

val pos: Position,
val info: Info,
override val typ: Type,
val adtName: String ,
val errT: ErrorTrafo

) extends ExtensionExp {...}

ADT destructor application

AdtDestructorApp (

name: String,

rcv: Exp, typVarMap: Map[TypeVar, Type]
) (

val pos: Position,

val info: Info,

override val typ: Type,

val adtName: String ,

val errT: ErrorTrafo
) extends ExtensionExp {...}

ADT discriminator application

AdtDiscriminatorApp (
name: String,
rcv: Exp,
typVarMap: Map[TypeVar, Type]

val pos: Position,
val info: Info,
val adtName: String ,
val errT: ErrorTrafo
) extends ExtensionExp {...}

Bibliography

(1]

V. Astrauskas, P. Miiller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), volume 3,
pages 147:1-147:30. ACM, 2019.

Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Jacobs, and
K. Rustanm. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Formal Methods for Components and Objects: 4th
International Symposium, FMCO 2005, volume 4111 of Lecture Notes in
Computer Science, pages 364-387. Springer, 2006.

Frangois Bobot, Jean-Christophe Fillidtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd Your Herd of Provers. In Boogie 2011: First
International Workshop on Intermediate Verification Languages, pages 53-64,
Wroclaw, Poland, 2011.

R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An experi-
mental applicative language. In Proceedings of the 1980 ACM Conference
on LISP and Functional Programming, LFP "80, page 136-143, New York,
NY, USA, 1980. Association for Computing Machinery.

Paul Dahlke. Extending a Go Verifier with Algebraic Data Types. Bachelor’s
thesis, ETH Zurich, Ziirich, 2021.

Leonardo de Moura and Nikolaj Bjerner. Efficient e-matching for smt
solvers. In Frank Pfenning, editor, Automated Deduction — CADE-21,
pages 183-198, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Leonardo de Moura and Nikolaj Bjerner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337-340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

35

BIBLIOGRAPHY

36

(8]

[15]

[16]

[17]

Marco FEilers and Peter Miiller. Nagini: A static verifier for python. In
Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verifi-
cation, pages 596603, Cham, 2018. Springer International Publishing.

Programming Methodology Group. Viper online tutorial. https://
viper.ethz.ch/tutorial/. Online; accessed 20th April 2022.

Haskell.org. Glasgow haskell compiler. https://downloads.haskell.
org/~ghc/latest/docs/html/users_guide/index.html. Online; ac-
cessed 20th April 2022.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, pages 348-370,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Rustan Leino and Peter Miiller. A basis for verifying multi-threaded
programs. In ESOP '09 Proceedings of the 18th European Symposium on
Programming Languages and Systems: Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, page 378.
Springer-Verlag Berlin, Heidelberg, March 2009.

Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Proceedings
of the 17th International Conference on Verification, Model Checking, and
Abstract Interpretation - Volume 9583, VMCALI 2016, page 41-62, Berlin,
Heidelberg, 2016. Springer-Verlag.

Simon Peyton Jones. A history of haskell: being lazy with class. In
The Third ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), June 2007.

Malte H. Schwerhoff. Advancing Automated, Permission-Based Program
Verification Using Symbolic Execution. PhD thesis, ETH Zurich, Ziirich,
2016.

Fabio Streun. ETool Support for Termination Proofs. Bachelor’s thesis, ETH
Zurich, Ziirich, 2019.

Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, Jodo C.
Pereira, and Peter Miiller. Gobra: Modular specification and verifi-
cation of go programs. In Alexandra Silva and K. Rustan M. Leino,
editors, Computer Aided Verification, pages 367-379, Cham, 2021. Springer
International Publishing.

https://viper.ethz.ch/tutorial/
https://viper.ethz.ch/tutorial/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/index.html

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Adding Algebraic Data Types to a Verification Language

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

Maissen Alessandro

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)
Zurich, 04/26/22 e
L/0afser.

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Alessandro Maissen
Adding Algebraic Data Types to a Verification Language

Alessandro Maissen
Maissen

Alessandro Maissen
Alessandro

Alessandro Maissen
Zurich, 04/26/22

	Contents
	Introduction
	Motivation
	Goals and outline

	Background
	Algebraic data types
	Viper
	Architecture
	Language overview
	Plugin infrastructure

	ADT Plugin for Viper
	Basic syntax
	Declaration
	Instantiation
	Destructors
	Discriminators

	Deriving System
	Syntax
	Supported functions

	Encoding
	Basic encoding
	Contains function

	Implementation
	Codebase and usage
	AST extension
	Encoder
	Tests
	Performance

	Future Work

	Conclusion
	Appendix
	Signatures of new AST nodes

	Bibliography

