
Creating an Advanced Debugger for
Symbolic Execution
Master’s project description

Alessio Aurecchia
supervised by Arshavir Ter-Gabrielyan

March 2018

Introduction
In recent years, tools for program veri�cation have made signi�cant progress and are becoming
more widely used. The veri�cation environments built around them provide features that help
the user in writing valid speci�cations easily and, more importantly, they provide a way to
work with the veri�er in an interactive fashion. Yet, these tools still lack e�ective facilities to
allow investigating and understanding veri�cation errors.

Determining the source of a veri�cation error can still be tedious. The errors are found by the
SMT1 solver that “sits” at the lowest layer of most veri�cation toolchains and they are speci-
�ed with respect to the SMT encoding of the program being veri�ed. This makes it generally
di�cult to relate these problems back to the higher level of abstraction that the user works
at. In addition to that, the matter is made even more complex by the inherent incompleteness
of SMT solving, which means veri�cation may fail for reasons other than the program being
incorrect.

The IDE built around the Viper framework [1] has been largely expanded as part of Ruben
Kälin’s thesis [2] and allows fast feedback on the state and result of the proof when working
with the veri�er. Moreover, the project provides an early prototype for a Semantic Execu-
tion debugger, proving that it is, in fact, possible to build such a tool and laying down a solid
foundation to build a more advanced debugger on.

The IDE o�ers three levels of tool support for working with the Viper framework: writing Viper
code, verifying it, and debugging failed program proofs. With this project, we focus on the third
of these levels in order to provide a tighter integration with the external tool by enabling the
user to interactively investigate veri�cation failures at the level of abstraction of the Viper
language, and not of its implementation. Our main objective is to update the Viper IDE so that

1https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

1

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

the existing debugger prototype works with the current version of the Silicon backend (see
Core Goals). After that, we will build on top of it and experiment with new ideas on how to
debug and visualise Viper programs written using quanti�ed permissions (discussed in section
Extensions).

Previous Work
The existing Viper IDE provides a series of features to help users write Viper code (e.g., syntax
highlighting, code completion, automatic syntax checking) and also o�ers a debugger which
allows visualising and exploring the symbolic heap in di�erent states of a failed veri�cation
attempt.

The IDE has proven to be a very useful tool for quickly verifying programs with the Viper
framework and is used for a large part of the Program Veri�cation course 2. In addition to that,
the built-in debugger prototype provides a solid foundation for building an advanced debugger
for symbolic execution.

The Viper IDE provides two debugging modes: the simpli�ed debugging mode and the advanced
debugging mode. The simpli�ed mode allows the user to explore a restricted set of veri�cation
paths that lead to a veri�cation failure (called reference states) and compare any of them with the
error state. The advanced mode allows the user to inspect and compare any pair of states, not
only those that are on the path to a veri�cation failure. This second debugging mode is aimed
more at developers of the Silicon backend rather than users of the veri�er. In both debugging
modes, the IDE displays markers on the source code that denote veri�cation states related to
the currently selected one (non-relevant ones are hidden). Clicking on these markers changes
the selection of states to display.

Working with recursive predicates can become cumbersome if the way data is accessed does
not follow the way the structure of the predicate, that is why Quanti�ed Permissions were in-
troduced to the Viper framework [3]. These enable the users to avoid specifying many manual
proof steps when working with structures such as arrays, cyclic data structures or graphs.
Despite their usefulness, structures on the heap de�ned via the use of quanti�ed permissions
cannot currently be visualized by the Viper debugger, therefore adding support for them is one
of the goals of this project (see Extensions).

In his Master’s Thesis, Ivo Colombo worked on building a debugger for the Chalice language on
top of the Syxc veri�er. Despite the lack of more advanced language features (such as quanti�ed
permissions) in Chalice, Ivo’s work provides some useful insights and guidelines on building a
debugger for a symbolic execution veri�er (in fact, Ruben Kälin’s work is also based on some of
these observations). The ideas that are most relevant for us are those regarding the conceptual
design of a symbolic execution debugger [4, sec. 3]

2http://www.pm.inf.ethz.ch/education/courses/program-verification.html

2

http://www.pm.inf.ethz.ch/education/courses/program-verification.html

The VeriFast Program Veri�er [5] is also implemented via symbolic execution and provides a
visual debugger that allows exploring the states of veri�cation. This project can be studied to
understand which ideas are e�ective and which are not for debugging symbolic execution.

Alloy [6, 7] is a language and analyser for software modelling. It allows describing sets of
structures via the use of constraints and then �nding instances (or counterexamples) of these
models. The search-space for these instances is limited to a “scope” de�ned by the user. The
tool displays these structures graphically as an interactive graph. It is possible to “go to the
next instance” so that all instances in the scope can be inspected manually.

The Symbolic Execution Debugger (SED) [8] is a platform for symbolic execution and allows
to interactively debug programs based on symbolic execution. In addition to that, SED also
allows verifying programs (or parts of them) when JML 3 speci�cations are provided. SED is
implemented on top of the Eclipse IDE and uses KeY’s Symbolic Execution Engine [9]. Debug-
ging is performed by exploring the symbolic execution tree of the program. The system allows
visualizing information about each state such as the symbolic stack, path conditions, and the
memory layout. In case of potential aliasing, SED provides a slider to change the visualization
of the memory layout between all possible con�gurations.

Core Goals
The overall goal we would like to achieve with this project is to �nd an e�ective way of visually
representing dynamic structures de�ned via the use of quanti�ed permissions.

Updating the existing infrastructure The current version of Viper IDE currently only pro-
vides features for writing Viper code, not for debugging it. The code in other parts of the
framework has evolved and the compatibility with the debugging features of the IDE has been
broken.

The �rst task of the project is to gather the requirements for the design of an infrastructure
that would allow us to add debugging features to the IDE and then to actually put in place that
infrastructure. The logging infrastructure of Silicon will also need to be updated in order to
provide the debugger with all the information needed to visualise the veri�cation states.

Visualization of Quantified Permissions In order to achieve our main objective we will �rst
de�ne some signi�cant examples of Viper programs written using quanti�ed permissions that
are going to be used as the main use cases of our debugger. After that, we will have to ex-
periment and design the most suitable visualization for those use cases and �nally we will
implement basic support for visualising and debugging them.

With the basic support for quanti�ed permissions (the fall-back solution), we aim at providing
a simple visualization for some speci�c debugging use cases. These visualizations will not
necessarily be 100% usable (for example, they may be too big to work with), but they will still

3http://www.eecs.ucf.edu/~leavens/JML/index.shtml

3

http://www.eecs.ucf.edu/~leavens/JML/index.shtml

provide a complete view of the structures on the heap. As part of the extensional goals, we
want to devise the best possible way to simplify and to layout this information, in order to
provide the most usable visualization to the user, assuming all the information needed to do
that is already available. In the Schedule we refer to this task as “the best” QP support.

Extensions
Understanding heap structures

In order to visualize dynamic structures de�ned via quanti�ed permissions, we need to un-
derstand what type of structure a group of locations on the heap actually represents. Initially,
we will work with the assumption that we have all the information needed to visualize the
structures on the heap, then work on ways to gather it from di�erent sources:

1. Verifier / Encoding The most immediate way for the debugger to understand the structure
of the heap is to extract the information from the Viper program itself. It should be possible
to match certain encoding patterns to some types of visualization, by using heuristics. For
example, specifying access to locations via ordered integers is likely to be used when denoting
an array-like structure and a suitable approach at visualizing that information would be to
display the memory locations being accessed as consecutive on the heap diagram, possibly
with an indication of the lenght of the array with respect of variables in the store.

Moreover, in some situations, it is possible that we have complete information about aliasing
from the encoding itself. E.g., in the snippet

if (x != y) {

// s1

} else {

// s2

}

Silicon de�nitely knows that in s1 there is no aliasing between x and y, whereas in s2 the
variables are aliased.

2. Additional Queries to the SMT Solver In case not all of the information needed for visual-
izing the heap can be gathered from the veri�er, we have the option of sending some additional
queries to the SMT Solver directly, bypassing the veri�er. The debugger may try to perform
some queries in order to understand whether the user speci�cation of the heap is equivalent
to known model speci�cations. For example, we may be able to prove that the requirement

requires len(a) == |s|

requires forall i: Int :: 0 <= i && i <= |s| ==> i in s

requires forall i: Int :: i in s ==> acc(loc(a, i).val)

is in fact equivalent to

4

requires forall i: Int :: 0 <= i && i < len(a) ==> acc(loc(a, i).val)

3. User guidance The last resource for determining what heap locations represent is direct
user guidance. Ideally, this is only needed in ambiguous situations and should be reduced to
the minimum (if possible it should be avoided completely). Initially we will assume that we can
have all of the guidance we want and then see how much of that information can be inferred
via heuristics.

In case guidance is needed, the debugger could allow a way for the user to specify her assump-
tions about the data so that the heap locations can be visualized according to them. Moreover,
the user could get immediate feedback in case the speci�cation is incompatible with her as-
sumptions.

Drawing useful models of the state

Aliasing One additional problem we have to consider when visualizing the heap is that of
aliasing between references. Aliasing describes the situation in which di�erent variables re-
fer to the same memory location on the heap. Aliased references would be represented with
separate arrows pointing to the same container in the heap visualization, whereas non-aliased
references would point to separate containers.

Displaying references becomes problematic when we do not have full information about pos-
sible aliasing between references. Drawing two arrows pointing to the same container may
be confusing for the programmer since it is not certain that the references are aliases of each
other. On the other hand, pointing the arrows to separate containers would also be ambiguous,
as it is not necessarily true that the two references are distinct (and we might mislead the user
into thinking that they cannot be aliases).

Figure 1: Inspecting the memory layouts caused by aliasing in SED. The scrollbar changes which
of the two visualizations in the red boxes is shown. Only one concrete situation is visible
at any time. 4

5

Currently, the Viper debugger draws references pointing to di�erent boxes on the heap, despite
some of them possibly being aliases. In SED (see Previous Work) the memory layout visual-
ization provides a way of choosing di�erent visualizations in case there might be aliasing, as
displayed in �gure 1 .

Sub-heaps Another issue we have to consider is that of “sub-heaps”, the situation in which
one or more structures are part of a larger structure. Again, we have the problem of how to
detect this situation and also of how to visualize it.

The problem arises when dealing with locations that we know are part of a larger data structure
(for example sections of an array or list) since we previously had that information, but we
cannot come to that conclusion because the veri�er had to “forget” some of that information
in order to proceed with the proof.

Schedule
The following table outlines the estimated time for each task during the course of the project
and the corresponding starting date.

4Picture from http://i12www.ira.uka.de/key/eclipse/SED/index.html

6

http://i12www.ira.uka.de/key/eclipse/SED/index.html

Task Time Start Date
C Learning phase: getting to know the framework’s infrastruc-

ture and previous work / Finding example use cases
2 weeks 26.03.2018

C Gather requirements for the design of the infrastructure 1 week 09.04.2018
Prepare Initial presentation (19.04.2018) 0.5 weeks 16.04.2018

C Enable the new infrastructure design 5 weeks 19.04.2018
C Design QP visualization (for the use cases found) 2 weeks 24.05.2018

Prepare Intermediate presentation: Design (14.06.2018) 1 week 07.06.2018
C Implement basic QP support (Fall-back) 2 weeks 14.06.2018
E Implement "the best" QP support (assuming all needed infor-

mation is available)
3 weeks 28.06.2018

E Implement the heuristics to gather the information 3 weeks 19.07.2018
E Re-enable Ruben’s debugging features on top of the new ar-

chitecture
1 weeks 09.08.2018

E More Testing, Continuous Integration (Jenkins), Additional
features

1 weeks 16.08.2018

E Documentation 1 weeks 23.08.2018
Writing the thesis 2.5 weeks 30.08.2018

Project Deadline 16.09.2018
Final Presentation 24.09.2018

C: Core Goal E: Extensional Goal

References
[1] P. Müller, M. Schwerho�, and A. J. Summers. Viper: A veri�cation infrastructure for

permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Veri�cation,
Model Checking, and Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62.
Springer-Verlag, 2016.

[2] Ruben Kälin. Advanced features for an integrated development environment. Master’s
thesis, ETH Zürich, 2015.

[3] P. Müller, M. Schwerho�, and A. J. Summers. Automatic veri�cation of iterated separating
conjunctions using symbolic execution. In S. Chaudhuri and A. Farzan, editors, Computer
Aided Veri�cation (CAV), volume 9779 of LNCS, pages 405–425. Springer-Verlag, 2016.

[4] Ivo Colombo. Debugging symbolic execution. Master’s thesis, ETH Zürich, 2012.

[5] Bart Jacobs and Frank Piessens. The verifast program veri�er. Technical report, 2008.

[6] AlloyTools. alloytools.org, 2017. URL http://alloytools.org/.

[7] Daniel Jackson. Software Abstractions. MIT Press, 2012.

7

http://alloytools.org/

[8] Martin Hentschel, Richard Bubel, and Reiner Hähnle. The symbolic execution debugger
(sed): a platform for interactive symbolic execution, debugging, veri�cation and more.
International Journal on Software Tools for Technology Transfer, Mar 2018. ISSN 1433-2787.
doi: 10.1007/s10009-018-0490-9. URL https://doi.org/10.1007/s10009-018-0490-9.

[9] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,
and Mattias Ulbrich, editors. Deductive Software Veri�cation - The KeY Book - From The-
ory to Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016. ISBN
978-3-319-49811-9. doi: 10.1007/978-3-319-49812-6. URL http://dx.doi.org/10.1007/

978-3-319-49812-6.

8

https://doi.org/10.1007/s10009-018-0490-9
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6

	Introduction
	Previous Work
	Core Goals
	Extensions
	Understanding heap structures
	Drawing useful models of the state

	Schedule

