
Visual Debugging for
Symbolic Execution

Master’s Thesis
16 September 2018

Alessio Aurecchia
aalessio@student.ethz.ch

supervised by
Arshavir Ter-Gabrielyan

Chair of Programming Methodology
Department of Computer Science

ETH Zürich

aalessio@student.ethz.ch

Abstract
In recent years, tools for program verification have made significant progress and are
becoming more widely used. Yet, they still lack effective facilities to allow investigating
and understanding verification errors, especially when the input program makes use
of more advanced language features, such as quantified permissions in Viper.

We think the most effective way to help a user in identifying the source of a verification
error is by employing a visual debugging approach, therefore we want to provide a
technique to automatically produce small, visual counterexamples based on the infor-
mation provided by a symbolic execution engine.

We conducted a feasibility study to understand whether we could effectively gener-
ate counterexamples via bounded modeling with Alloy, a language and analyser for
software modeling. The main idea behind this methodology is that Alloy, because it
performs a bounded search, is not affected by the problems involving quantifier instan-
tiation, and is therefore able to provide complete concrete models in situations where
the SMT solver would not.

In our technique, we encode the information about a symbolic execution state into a
model and use Alloy to generate instances of it. These instances can then be used to
build a visual diagram of the program’s state. When the state being modeled is one
where a verification error occurred, and we additionally encode the last failed query
performed to the SMT solver, then the instances Alloy generates are counterexamples
to the failed verification.

As part of our feasibility study, we have implemented a subset of the technique de-
scribed in this thesis into a tool, integrated with the Viper IDE. This proof of concept
for a debugger demonstrates that our approach for visualizing counterexamples to ver-
ification failures in the context of symbolic execution is a feasible one and is worth
exploring in more detail.

3

Contents
1 Introduction 7

1.1 Motivation . 7
1.2 Previous Work . 8
1.3 Main Objective . 9

1.3.1 Updating the existing infrastructure 9
1.3.2 Visualization of Quantified Permissions 9

1.4 The Structure of this Report . 10

2 Approach 11
2.1 Verification Failures . 11
2.2 Bounded Modeling . 12

3 Translation to Alloy 15
3.1 Modeling Terms . 16

3.1.1 Binary Operations . 16
3.1.2 Unary Operations . 17
3.1.3 And, Or, Ite . 18
3.1.4 Let expressions . 18
3.1.5 Combines . 19
3.1.6 Sortwrappers, First, and Second 20
3.1.7 Quantifiers . 21
3.1.8 Function Applications . 23
3.1.9 Field Lookups . 24

3.2 Built-in Collections . 24
3.3 Sorts . 25
3.4 Permissions . 26
3.5 Treatment of Booleans . 28
3.6 Required Information . 29
3.7 Structure of the Model . 30

3.7.1 Preamble . 31
3.7.2 Modeling References . 32
3.7.3 Modeling the Store . 33
3.7.4 Modeling Heap Chunks and Permissions 35
3.7.5 Modeling Path Conditions . 40
3.7.6 Modeling Domain Axioms . 42
3.7.7 Ptaken Functions . 42
3.7.8 Facts Gathered During the Translation 44

5

Contents

3.7.9 Failed SMT Query . 47
3.7.10 Reachability and Signature Restrictions 47

4 Architecture 49
4.1 The Existing Infrastructure . 49
4.2 The New Infrastructure . 50

4.2.1 Communication with the Main Extension 51
4.2.2 ViperServer and Silicon . 52
4.2.3 The Webview Panel . 52

5 The Debugger 55
5.1 The Panel . 55

5.1.1 Navigation Bar and Heap Visualization 56
5.1.2 Symbolic State Information . 57
5.1.3 Diagnostics . 58

6 Evaluation 59
6.1 A Case Study of the Modeling Technique 59

6.1.1 Showing Counterexamples . 59
6.1.2 Soundness and Completeness . 66

6.2 Supported Subset of the Viper Language 68
6.2.1 Implemented Features . 69
6.2.2 Non-Implemented Features . 69

6.3 Limitations . 70
6.3.1 Cardinalities . 70
6.3.2 Increasing Complexity when Removing Permissions 71
6.3.3 Limitations of Integers . 72
6.3.4 Large relations . 78
6.3.5 States in the Symbolic Execution Trace 80

6.4 Implementation . 81
6.4.1 Performance . 81
6.4.2 Extensibility . 82
6.4.3 Modularity . 83

6.5 Comparison to Other Tools . 83
6.5.1 Previous Debugger . 83
6.5.2 VeriFast IDE . 85
6.5.3 SED . 86

7 Conclusion and Future Work 89
7.1 Future Work . 90

Bibliography 93
Appendix A Configuration 95
Appendix B Preamble source 97
Appendix C Encoded Running Example 105

6

1
Introduction
In recent years, tools for program verification have made significant progress and are
becoming more widely used. The verification environments built around them provide
features that help the user in writing valid specifications easily and, more importantly,
they provide a way to work with the verifier in an interactive fashion. Yet, these tools
still lack effective facilities to allow investigating and understanding verification er-
rors, especially in the context of more advanced language features, such as quantified
permissions[1], in the case of the Viper language[2].

1.1 Motivation
Determining the source of a verification error can still be tedious. The errors are found
by the SMT solver[3], that “sits” at the lowest layer of most automated verification
toolchains, and they are specified with respect to the SMT encoding of the program
being verified. This makes it generally difficult to relate these problems back to the
higher level of abstraction that the user works at. In addition to that, due to the inherent
incompleteness of SMT solving, verification may fail for reasons other than the program
being incorrect (e.g. for formulas involving quantifier or non-linear integer arithmetic),
and the solvers may not be able to come up with models for more complex problems.

The IDE built around the Viper framework [2] has been largely expanded as part of
Ruben Kälin’s thesis [4] and allows fast feedback on the state and result of the proof
when working with the verifier. Moreover, the project provides an early prototype for
a Symbolic Execution debugger, laying down a solid foundation to build a more ad-
vanced debugger on. This debugger is limited in that it does not support visualizing
structures defined via quantified permissions and its abilities of providing counterex-
amples to a verification error are lacking, mainly because of only visualizing symbolic
states and having to rely on the SMT solver to provide the model for building a coun-
terexample.

In the presence of advanced language features, this approach is not powerful enough
to provide the user with effective visual representations of the problem, therefore we
want to explore alternative ways of building counterexamples with the information

7

Chapter 1 Introduction

provided by the symbolic execution engine, and without necessarily having to rely on
models from the SMT solver.

1.2 Previous Work
The original debugger offered support for navigating through the various states of the
symbolic execution performed by Silicon, as well as inspecting their internal informa-
tion. In addition to that, its graphical representation of the symbolic state supported
visualizing local variables, functions, predicates and objects on the heap. These fea-
tures were intended to provide a visual counterexample to a verification error, in or-
der to help the user identify where the problem with the specification might be. This
approach is limited by the fact that all the information about local variables or heap
chunks is symbolic. For this reason, there is a limited amount of facts that can be
learned directly about the values of local variables or whether, for example, references
are aliases. The debugger tries to discover some of this information from explicit facts
in the path conditions of the state being inspected.

The VeriFast Program Verifier [5] is a tool for the verification of C and Java programs
annotated with preconditions and postconditions written in separation logic, and is
implemented via symbolic execution, which make it, at least in principle, very similar
to Silicon. The VeriFast IDE also provides debugging features similar to those provided
by the original Viper Debugger: it allows navigating through the states explored by
symbolic execution and displays the store, the heap, and the path conditions for each
one of them, but does not provide a visual representation of this information.

The Symbolic Execution Debugger (SED) [6] is a platform for symbolic execution that
allows debugging programs by exploring their symbolic execution tree interactively. In
addition to that, SED also allows verifying programs (or parts of them) when JML[7]
specifications are provided. The tool is implemented on top of the Eclipse IDE and
uses KeY’s Symbolic Execution Engine [8]. The system allows visualizing information
about the current symbolic state being executed, such as the symbolic stack and path
conditions. In case of potential aliasing between local variables, SED allows displaying
graphs of the memory layout and provides a slider to inspect all the possible aliasing
configurations.

Alloy [9, 10] is a language and an analyser for software modeling. It allows describing
sets of structures via the use of constraints and then finding instances of these models,
or counterexamples to assertions about facts in the model. The search space for these
instances is limited to a scope defined by the user. The tool displays these structures
graphically as an interactive graph. It is possible to “go to the next instance” so that all
instances in the scope can be inspected manually. Moreover, Alloy performs symmetry-
breaking to avoid showing multiple instances of the model that would essentially be
equivalent. We are going to investigate whether Alloy can be used as the main tool to
solve our problem of counterexample generation.

8

1.3 Main Objective

1.3 Main Objective

The overall objective we would like to achieve with this project is to find an effective
way of visually representing dynamic structures defined via the use of quantified per-
missions. We will conduct a feasibility study in order to understand whether a bounded
modeling approach can be employed to build these visualizations and to identify coun-
terexamples when a verification error occurs.

1.3.1 Updating the existing infrastructure

The current version of the Viper IDE only provides features for writing Viper code,
not for debugging it. The code in other parts of the framework has evolved and the
compatibility with the debugging features of the IDE has been broken.

The first task of this project is to understand the requirements for the design of an
infrastructure that would allow us to add debugging features to the IDE and then to
actually put it in place. The architecture should allow extensibility and should not force
other components of the system to depend on debugging features they do not need.
The logging infrastructure of Silicon will also need to be updated in order to provide
the debugger with all the information needed to visualise the verification states.

1.3.2 Visualization of Quantified Permissions

In order to achieve our main objective, we will devise a technique that will allow us
to encode the information about a symbolic execution state into an Alloy model. The
model will then be used to generate instances of the symbolic state

Our technique for modeling symbolic states will be integrated into a broader pipeline,
that will allow solving some limitations of working with Alloy alone. In this thesis,
though, we will only focus on the part of the pipeline that deals with modeling the
program’s state.

One important distinction between the approach of the previous debugger and the ap-
proach we take with the new one is that, in this new project, we focus on providing
concrete counterexamples, whereas the visualization provided by the original debug-
ger only showed symbolic states, where the value of variables were not known. This
means that we also always display visualizations where the aliasing relation between
reference is known.

Finally, we will conduct an evaluation to understand whether our technique is practi-
cally effective in visualizing counterexamples and whether it has fundamental limita-
tions, both in terms of the approach and of its implementation.

9

Chapter 1 Introduction

1.4 The Structure of this Report
In this section, we give a short overview of the contents and the structure of this re-
port.

Chapter 1 introduced the main motivation behind the project, it briefly described re-
lated work that has been done in the field, and it outlined the goals we would like to
ultimately achieve.

In Chapter 2, we explain our approach to solving the problem of counterexample gen-
eration. We describe both the more general pipeline we envisioned and the subset that
we focused on as part of this thesis.

Chapter 3 presents the translation of Silicon terms that appear in the symbolic execution
trace into Alloy, and describes the technique we use to encode the symbolic state into a
model that can be used to generate counterexamples.

In Chapter 4 we discuss the previous architecture of the system and how it was updated
to enable integrating the new debugger extension. In chapter 5 we briefly describe the
features offered by the debugger.

In Chapter 6 we evaluate the models produced by the debugger by considering some
concrete use cases and we discuss its limitations in terms of the technique and its imple-
mentation. Then, we compare our approach with that of other program verifiers based
on symbolic execution that offer debugging features.

Finally, in Chapter 7 we draw conclusions about the project and briefly list some poten-
tial interesting topics for future work.

10

2
Approach
In this chapter we discuss the approach we have decided to take in order to tackle the
problem of counterexample visualization for programs that use quantified permissions.
First, we discuss the problem of verification failures when quantifiers are involved.
Then, we describe our general approach to solving this problem (including ideas that
we have not implemented in the current system). Finally, we go into more details on
the parts of the pipeline that this thesis focuses on.

2.1 Verification Failures
When a failure occurs in the context of quantified permissions, it is likely that the SMT
solver was also not able to produce a definite answer to the query that it was presented,
e.g. because of a quantifier-related incompleteness. In these situations we usually don’t
get candidate models for the failure from the solver, and even if we did they would
only be partial models.

During symbolic execution, the verifier performs many different queries to the SMT
solver, trying to prove that in the current symbolic state the next operation is safe and
satisfies the specification. In general, the verifier is trying to prove that the following
formula holds.

PC |= PO ≡ ¬PC ∨ PO

Where PC are the facts known about the current state (path conditions), and PO is the
proof objective, corresponding to the next step we want to verify in the program. In
order to prove this fact, the verifier would query the SMT solver with the negation of
this formula, hoping to find that it is unsatisfiable.

Q := ¬(¬PC ∨ PO) ≡ PC ∧ ¬PO

If sat(Q) is indeed false, then the original formula holds and symbolic execution pro-
ceeds to the next step. In the other cases we have a problem. If sat(Q) is true, then
we definitely have a verification failure, but we also have a model for the failure from
the solver, which can be used to build a counterexample. On the other hand, if the

11

Chapter 2 Approach

solver is not able to prove or disprove sat(Q) (a common outcome in verification fail-
ures with quantifiers), we still have to consider this a failure, but we get no model (or
only a partial one). In this third case, we need to find an alternative way for building a
counterexample.

2.2 Bounded Modeling

If a concrete counterexample to the program’s specification does exist, then it has to
satisfy the formula PC ∧ ¬PO. The intuition behind our approach is that, though the
SMT solver may not have been able to deal with the problem because of unbounded
quantifiers, we could still try performing the search in a bounded scope and we might
find an instance satisfying the formula nonetheless. This is based on the idea, referred
to as the Small Scope Hypothesis, that if an assertion is invalid, it is likely to have a small
counterexample, so by exploring all the small cases, we are likely to find one [10].

We decided to use Alloy[9, 10] as a tool to perform our bounded search. Alloy is a
language and analyser for software modeling, it allows describing models via the use of
constraints and then finding instances (or counterexamples) of them. The search space
for these instances is limited to a scope defined by the user. The tool allows “going to
the next instance” so that all instances of the model whithin the current bounds can be
inspected. In addition to that, Alloy performs symmetry-breaking by default, so that
equivalent instances are shown only once.

PC ∧ ¬ PO

Z3

UNSAT SAT
Unknown
Timeout

Trace to Alloy

Alloy

Model

CE Candidates

Z3

Instance
to SMT

CE

Approx.
Leftovers

SE Trace

Figure 2.1: A diagram of the pipeline in our counterexample generation approach.

The “pipeline” of our approach for counterexample generation is shown as a diagram
in Figure 2.1. When a verification failure occurs, we can take the informations from the
symbolic execution and encode them into an Alloy model to generate a counterexam-
ple. Consider the formula PC ∧ ¬PO. In our case, PC corresponds to the information
about the symbolic execution state the verifier was in when the verification failure oc-
curred. sat(PC ∧ ¬PO) is the last query that was performed to the SMT solver and
could not be falsified. Both conjuncts of the formula can be retrieved from Silicon as
part of the symbolic execution trace.

12

2.2 Bounded Modeling

Once we have retrieved the symbolic execution trace, we can use it to encode an Alloy
model of a symbolic state we are interested in, for example the one where the failure
occurred. Chapter 3 describes this translation in detail. With our model, we can run an
analysis in Alloy, via its API, and get counterexamples back.

Depending on the modeling technique we use, not all instances generated by Alloy
might be actual counterexamples. If we apply approximations when we build our
model of the symbolic state, we may end up generating instances that do not satisfy
¬PO, which therefore are not counterexamples to the specification, or we may end up
with instances that do not satisfy PC, meaning that they contradict some of facts known
to the symbolic execution engine.

With our technique, we perform an over-approximation of the counterexample space
(modulo bounds). This means that all counterexamples within the bounds specified
when performing the analysis of the model will be identified, but there might also be
additional instances found by Alloy which are not actual counterexamples (i.e. they are
spurious counterexamples).

Counterexample
Space

Bounded Search
Space Spurious Counterexample

Candidates

Actual Counterexamples
in Bounded Space

"Big Cunterexamples"

Figure 2.2: A diagram showing the relation between the whole counterexample space, the
bounded space we explore, and the spurious counterexamples that might result from
approximating the formula.

Figure 2.2 shows the relation between the whole counterexample space and what we
can explore via our bounded search. Note that the “Big counterexamples” area, that
we do not explore, is potentially infinite, depeding on the specification in the original
program. If we did not approximate the formula, then the bounded search we per-
form would only explore the actual counterexamples in the bounded space, if instead we
were to approximate parts of the formula, we would allow Alloy to generate spurious
counterexample candidates, which are not part of the counterexample space

If we decide to use approximations, then we need an additional phase at the end of our
pipeline, where we employ an oracle to distinguish actual counterexamples from spu-
rious ones. In our case, Z3 can act as the oracle: we can take the counterexample candi-
dates generated by Alloy and all the “leftover” constraints that were approximated or
ignored when building the model, and encode them back into an SMT2 formula. This
new formula could then be analysed by the SMT solver in order to filter out spurious
counterexamples: for these, the formula would not be satisfiable as they would violate

13

Chapter 2 Approach

the constraints that were previously approximated. In our current implementation the
“filtering phase” of the pipeline is not implemented.

In addition to the facts coming from the symbolic execution trace, our approach would
allow for additional facts to be added to the encoded model. These might be used to
constrain the counterexamples to a more manageable size (for example, by limiting the
size of sets) or to explicitly exclude non-interesting configurations. The ability for users
to specify additional constraints for the counterexample search at the Viper level could
be integrated as part of the graphical interface of the debugger. This feature has not
been implemented in the current project, but a similar effect can be achieved by adding
preconditions or assumptions to the program.

In the current implementation, we do not retrieve Z3’s partial model, but delegate coun-
terexample generation to Alloy alone. It would be of course possible to encode the facts
found by Z3 as additional constraints into the Alloy model. It is important to note that
we have no guarantees about the completeness of Z3’s model in the cases where the
verification did not return sat.

In these sections, we explained our approach with the final goal of generating coun-
terexamples. This applies to situations where there is a mismatch between the program
specification and the failed assertion (the specification is too weak or the assertion is
too strong), as well as cases where there is an implementation problem. The pipeline
also allows to generate examples of the program’s symbolic states (by not encoding the
failed proof objective into the Alloy model) This may still be beneficial, for example to
find unexpected situations even before a verification failure occurred.

14

3
Translation to Alloy
In this chapter, we describe our approach to translating the information about a sym-
bolic execution state, that we get from Silicon’s symbolic execution trace, into a model
in the Alloy language. This model can be used to generate counterexamples (or just
examples) of the program’s specification.

When defining generic translation rules we will use the following informal notation,
where by Silicon term we mean literals, variables and expressions that Silicon uses to
encode facts about the program.

• translate(t) denotes the translation of a Silicon term t following the rules de-
scribed in Section 3.1.

• sanitize(i) denotes the sanitization of identifier i by replacing all @ symbols ap-
pearing in it with an underscore.

• Italic text denotes either arbitrary Silicon terms or values computed during the
translation. In this second case their meaning is explained in the accompanying
text.

• Strings in a monospaced, bold font represent plain text in either Viper or Alloy.
They are fixed input or output strings.

• Ellipses are used to denote a repetition of the previous pattern, for example a
concatenation of terms with the same operator.

As an example, the following rule describes the translation of a Viper conjunction into
Alloy: a conjunction of n Viper terms is translated by applying the translate function to
each of the terms, conjoining them by && and wrapping them in parentheses.

translate(term1 && . . . && termn) =

(translate(term1) && . . . && translate(termn))

Silicon’s symbolic values have names of the form v@01@0 and are translated just by
replacing the @ symbol with an underscore, but for the sake of readability and space-
saving we have simplified the names by removing their last part in the snippets pre-
sented in this chapter.

15

Chapter 3 Translation to Alloy

3.1 Modeling Terms
In this section we describe the rules used to translate Silicon terms that appear in the
symbolic execution trace.

3.1.1 Binary Operations

Binary operations are translated based on the sort of their operands and on their oper-
ator.

When we implement operations via predicates (e.g. for permissions), we explicitly de-
clare a fresh name for the result. This is because we want to have precise control over
the fact that an instance representing the result does exist. If we were implementing
these operations via Alloy functions, rather than predicates, there would be no way to
ensure that the result of an operation is always present in the current universe, other
than adding an explicit generator axiom stating that a result exists for each pair of
operands. The problem with generator axioms is that they explode the complexity of
the model, since they force the existence of results which may not be needed, hence
why we chose to declare the results explicitly.

Operations involving terms of sort Set, Seq, or Multiset are translated according to
the following scheme

translate(term1 op term2) =

opPred[translate(term1), translate(term2), termres]

where opPred is a predicate that implements operation op for the specific type of the
operands. For example, the union operation between sets is implemented by the
pred_union predicate. Here, termres is a fresh name in the signature of the result’s
type, and is passed to the predicate so it can be constrained as the actual result value.

The operations on collections that result in a Boolean type, are translated to binary
predicates without the result parameter. These include, for example, the in or subset
operations on sets. The translation has the form

translate(term1 op term2) = opPred[translate(term1), translate(term2)]

Operations on permissions are also translated to predicate calls of the form

translate(perm1 op perm2) =

perm_opPred[translate(perm1), translate(perm2), permres]

Again, each operator op has a corresponding predicate implementing it. The third pa-
rameter, permres, is a fresh instance for the result, but in this case it is used in the trans-
lation of all operations.

16

3.1 Modeling Terms

Binary equalities where both operands have Alloy’s built-in PrimitiveBoolean type
(for example, because the operand is translated into a predicate call) are translated
with a double implication, because the equality operator cannot be used on
PrimitiveBoolean. On the other hand, Binary equalities between operands of type
Bool (our custom signature for boolean types) are translated directly, since Bool is a
signature like any other. For all other binary operations involving Booleans, the
operands are wrapped into a LogicalWrapper such that Alloy’s logical operations (=>,
<=>, . . .) can be applied to them directly. The special handling of Booleans is described
in more details in Section 3.5.

Currently, integers are implemented via a custom Integer signature, that simply wraps
a value of the built-in Int type. Operations between integers are implemented by ac-
cessing the wrapped value directly. Arithmetic operations are implemented via the
built-in functions plus, minus, mul, div, and rem. The resulting code is a simple func-
tion application:

translate(term1 oparith term2) =

termres.val = f unarith[translate(term1).val , translate(term2).val]

Here, termres is a fresh instance of the Integer signature, that represents the result of the
operation. Comparisons are also applied directly to the wrapped values. The relational
operators are the same in Viper and Alloy. The operands are translated recursively. The
translation is as follows:

translate(term1 opcomparison term2) =

(translate(term1).val opcomparison translate(term2).val)

The built-in integers are limited in bit-width by the value set in when declaring the run
command, therefore the results of some operations might not be representable. This
problem is discussed in Section 6.3.

3.1.2 Unary Operations

There are only a handful of unary operations that we have to translate: the logical
negation operator, and the cardinality operations on collections.

The negation operation is translated directly with Alloy’s ! operator, unless the
operand has sort Bool, in which case the operation is translated as

isFalse[translate(operand)]

This is because we need to represent Booleans via a custom signature, which cannot be
used directly in logical operations. The issue is discussed in Section 3.5.

17

Chapter 3 Translation to Alloy

The cardinality operations on collections are of the form

translate(|termcoll|) =
coll_cardinality[translate(termcoll)]

Where coll_cardinality is a function defined in the preamble the implements the car-
dinality operation for the specific collection type (e.g. set_cardinality).

3.1.3 And, Or, Ite

Conjunctions, disjunctions, and if-then-else expressions are translated with their equiv-
alent in the Alloy language.

translate(term1 && . . . && termn) =

(translate(LogicalWrapper(term1)) &&
...

...
...

translate(LogicalWrapper(termn)))
translate(term1 || . . . || termn) =

(translate(LogicalWrapper(term1)) ||
...

...
...

translate(LogicalWrapper(termn)))
translate(cond ? then : else) =

(translate(LogicalWrapper(cond)) implies translate(then)
else translate(else))

To ensure that the terms in conjunctions, disjunctions and in the condition of the if-then-
else expression are of type PrimitiveBoolean, they are wrapped in a LogicalWrapper
before being translated, which makes sure the resulting operation has the right type.
This issue and the need for a LogicalWrapper are discussed in more details in Sec-
tion 3.5.

3.1.4 Let expressions

Let expressions exist both in Viper and Alloy, so their translation is almost identical.
The only difference is that the encoded body is potentially expanded with additional
facts, introduced during its translation to constrain fresh variables. The facts are added
inside the body because they may reference one of the variables bound by the actual let
expression.

translate(let vari = termi, . . . in body) =
(let (sanitize(vari) = translate(termi), . . .) |

addFacts . . . && translate(body))

18

3.1 Modeling Terms

3.1.5 Combines

As explained in Schwerhoff’s thesis [11, sec. 3.2], snapshots are used to represent the
values of heap locations to which an assertion has permissions. In Silicon, snapshots
are represented as nested pairs forming a binary tree, built via the pair function:

pair : Snap→ Snap→ Snap

These nested pairs, in the symbolic execution trace, take the form of Combine operations,
having two snapshots as arguments and being themselves an object of type Snap (their
combination). Silicon makes use of Sortwrapper (or box/unbox functions, as they are
referred-to in the thesis) to wrap object of various types before combining them in a
snapshot. They are discussed in the next section.

Encoding combine operations into the Alloy model is important to ensure that the gen-
erated counterexample is valid. Consider the program in Listing 3.1. The verification
fails because, unless x != null, we don’t know for certain that x.v is equal to 3. With-
out the information “stored” in the combines, we wouldn’t know of the relation be-
tween the two fields in the predicate, so Alloy could come up with counterexamples
where x.v is indeed different from 3, but where x.r might be different from null.

1 field r: Ref
2 field v: Int
3
4 predicate foo(x: Ref) { acc(x.r) && acc(x.v) }
5
6 method test(x: Ref)
7 requires acc(foo(x))
8 requires unfolding acc(foo(x)) in x.r != null ==> x.v == 3
9 {

10 unfold acc(foo(x))
11 assert x.v == 3 // Verification fails
12 }

Listing 3.1: An example of a program where encoding the combine information is
necessary to ensure that we generate correct counterexamples.

In this example, the Symbolic Execution Log gives us the following information about
the symbolic state when had the verification failure:

Heap Store
x@1.v : Int→ $t@7 # W x : Re f → x@1
x@1.r : Re f → $t@6 # W

but we learned about the relation between x.r and x.v in a different symbolic state,
when we temporarily unfolded the predicate. This is encoded in the path condition

19

Chapter 3 Translation to Alloy

!($t@5 == Null) ==> ($t@4 == 3)

and the link with the current symbolic state is given by other two path conditions, that
include the combine operations for the snapshots.

($t@19 == Combine(SortWrapper($t@6, Snap), SortWrapper($t@7, Snap)))
($t@19 == Combine(SortWrapper($t@5, Snap), SortWrapper($t@4, Snap)))

Here, $t@19 is the snapshot of the pair predicate, when it was folded. With these
additional facts, we learn that the symbolic values in the current state are equal to the
symbolic values in the unfolding expression.

Combines are binary operations in the symbolic execution trace, and are translated via
the combine helper function, defined in the preamble (see Section 3.7.1). The result of
their translation has the form

translate(Combine(term1, term2)) =
combine[translate(term1), translate(term2), termres]

Where termres is a fresh instance in the Snap signature. The combine predicate makes
sure that the fresh snapshot is an instance of the Combine signature, so it hase the left
and right fields, and constrains them to be equal to the two snapshots being com-
bined.

3.1.6 Sortwrappers, First, and Second

Sortwrappers are used by Silicon to wrap primitive values in order to be able to use
them where snapshots are expected, or the other way round. As explained in the
previous section, snapshots summarise values on the heap. Primitive values are
wrapped into a snapshot via a Sortwrapper(v, Snap) or unwrapped via, for example,
Sortwrapper(v, Int) operations. These terms correspond to the box and unbox
functions defined in Schwerhoff’s thesis [11] as:

boxS : S→ Snap
unboxS : Snap→ S

Moreover, Schwerhoff also defines the f irst and second functions, to deconstruct pairs
of snapshots (Combines in our case):

f irst : Snap→ Snap
second : Snap→ Snap

The construction and deconstruction of snapshots is axiomatised as:

∀s1, s2 : Snap · f irst(pair(s1, s2)) = s1 ∧ second(pair(s1, s2)) = s2

20

3.1 Modeling Terms

These operations are available to us as Silicon terms, where the box and unbox functions
correspond to Sortwrappers, and the f irst and second functions are the unary First
and Second operations respectively.

Sortwrappers may be translated in two ways, depending on the resulting type. If the
sortwrapper should result in an object of Snap type (i.e. if it correponds to the box
operation), then it is translated by declaring a fresh name in the Snap signature and
constraining its value via the sortwrapper_new predicate.

translate(SortWrapper(term, Snap)) =
sortwrapper_new[translate(term), termres]

Where termres is a fresh name representing the resuling snapshot. The predicate
sortwrapper_new is defined in the static preamble of our model, described later on in
Section 3.7.1, and makes sure that the wrapped relation on the resulting snapshot
points to the term being wrapped.

When the resulting type of the sortwrapper is not Snap, then we are performing an
unbox operation and the translation is as follows:

translate(SortWrapper(term, sort)) = (translate(term)).wrapped

Here, we know that term must be an object of type Snap that had been previously
wrapped, therefore we can access the wrapped relation directly.

The f irst and second functions correspond to unary operations with the same name and
are translated as follows:

translate(First(term)) = (translate(term)).left
translate(Second(term)) = (translate(term)).right

Just like for the unboxing operation, when we are retrieving the first or the second
element of a snapshot, then that snapshot must be the result of a pair operation (a
Combine in our case) therefore we can simply access the left and right relations on
that signature.

3.1.7 Quantifiers

Viper’s universal and existential quantifiers are translated into Alloy’s all and some
quantifiers, respectively. In general, we sanitize the names of the variables declared in
the quantifier and translate their sorts to build the parameters of the Alloy quantified
formula, then complete it with the translation of the body.

Sometimes we define additional constraints during the translation of a term, so that we
can constrain the values of fresh variables that we introduce. For example, when using
predicates to implement some operations.

21

Chapter 3 Translation to Alloy

In case we gather such facts during the translation of the quantifier’s body, we append
them to the translated body, as additional constraints that have to be satisfied.

A quantifier of the form

forall (v : Sort, . . .) :: body

is translated to

(all (sanitize(v) : translate(Sort), . . .) | (addFacts && . . .) translate(body))

The same formula, but with some instead of all, would be used to translate and exis-
tential quantifier, except in the case described later in this section, when the quantifier
appears inside a negation.

As a more practical example, consider the following snippet in which we have a se-
quence of sets of integers, constrained so that all the elements in the sequence are the
singleton {1}.

var ns: Seq[Set[Int]]
assume forall s: Set[Int] :: s in ns ==> s == Set(1)

1 one sig fresh_quantifier_vars_0 {
2 temp_1’: Set_Integer -> lone Set_Integer
3 }
4 fact { all s: Set_Integer |
5 set_singleton[1, fresh_quantifier_vars_0.temp_1’[s]] &&
6 (seq_in[s, ns] => (s = fresh_quantifier_vars_0.temp_1’[s]))
7 }

Listing 3.2: The translation of a quantifier in Alloy when fresh variables are needed.

The translation of the quantifier in the assumption is shown in Listing 3.2. Set single-
tons are implemented via predicates (see Section 3.2). Therefore in order to “instan-
tiate” one, we need to get a fresh variable that we can constrain by passing it to the
predicate. This additional constraint defining the singleton appears on line 5 in the
translation, whereas line 6 corresponds to the body of the original quantifier. Note that
in this example, the fresh variable that we declare is actually part of relation temp_1’.
This happens because we are declaring fresh names inside a quantification, therefore
we might need a fresh name for each of the distinct assignments of the quantified vari-
able. In this example, there is no need to introduce a relation, because the predicate call
does not depend on the quantified variables, so the translation could be implemented
as

one sig temp_1’ in Set_Integer {}
fact { all s: Set_Integer |
set_singleton[1, temp_1’] && (seq_in[s, ns] => (s = temp_1’))

}

22

3.1 Modeling Terms

However, in the general case the additional constraints do depend on quantified vari-
ables, hence the need for declaring fresh names in relations.

These additional constraints might become problematic inside a negated existential
quantifier, because Alloy may try to falsify those instead of the facts that appeared
in the original body.

Whenever the negation of an existential quantifier is encountered, it is transformed
into a universal quantification and the negation is pushed into its body according to
the equivalence

¬∃ v ∈ V. P(v) ≡ ∀ v ∈ V · ¬P(v)

The translation of the term will then proceed normally, but this small reformulation
has the consequence that all additional facts will be added to the body of the quantifier
outside of the negation, resulting in the translation

¬∃ v ∈ V. P(v) → ∀ v ∈ V · addFacts ∧ ¬P(v)

which correctly models the fact that the constraints we want Alloy to falsify are those
from the original formula, not the additional facts.

Another approach to solving this problem, which is not currently implemented in the
debugger, would be to declare the additional facts in a separate quantifier, which is
equivalent to the other approach.

∀ v ∈ V · addFacts ∧ ¬P(v) ≡ ∀ v ∈ V · addFacts ∧ ¬∃ v ∈ V. P(v)

Declaring the additional facts in a stand-alone quantifier could also be applied in gen-
eral, and not only when the quantifier is negated.

3.1.8 Function Applications

Function application terms have the form Application(name, args, resSort). Where
name is the name of the applicable being invoked, args is a sequence of argument
terms, and resSort is the sort of the function.

Applications are translated into the form

translate(Application(name, arg1, . . . , resSort) =
FunSig.sanitize(name)[translate(arg1), . . .]

Where FunSig is the signature in which a relation for name will be declared. This
may be signature Fun for regular functions defined in the source program, or signa-
ture PTAKEN for pTaken functions introduced by Silicon (see Section 3.7.7).

Whenever we translate a function application, we also make sure to record the func-
tion’s type signature, so that it may be declared in the model later, as we will discuss in
Section 3.7.8.

23

Chapter 3 Translation to Alloy

3.1.9 Field Lookups

When quantified field chunks are involved, field accesses are represented as a lookup
in a certain snapshot map. Consider the following snippet, where we use quantified
permissions to denote access to field val for all reference in set nodes

method test(nodes: Set[Ref], n: Ref)
requires forall r: Ref :: r in nodes ==> acc(n.val)
requires n in nodes

{
var v: Int := n.val
// Encoding the state here

}

In the state being modeled, we have the following store, where we see variable v has a
lookup term as its symbolic expression.

Store
nodes : Set[Re f]→ nodes@91
n : Re f → n@92
v : Int→ Lookup(val, sm@98(), n@92)

For each field used in a lookup we encounter, we declare a relation with the same name
as part of the Lookup signature, and the lookup operation is translated into an applica-
tion of that relation, as follows

Lookup.val[sm_98_01, n_92_01]

The Lookup signature and all the fresh relations we introduce need to be declared in the
model. Their declaration will be discussed in Section 3.7.8.

3.2 Built-in Collections
The built-in collection types each have their own abstract signature to represent them.
Alloy does support built-in sets and sequences, but it is not possible to declare nested
sets or sequences using the set and seq keywords. Still, our signature-based represen-
tations of the Viper collection ultimately rely on the built-in relations to “store” their
elements. This means that we can also implement operations on our custom signature
by defining them in terms of operations on the built-in relations.

Ideally, we would like to model operations on the Viper collections via functions, but
it is not possible to ensure that new instances are created when they are applied. We
want precise control over instantiation in order to ensure that operations always result
in a concrete instances.

24

3.3 Sorts

Because of this reason, we model the operations via predicates and we declare a fresh
signature to represent each of their results. The result signature is declared outside
of the predicate definition and is passed to the predicate as an additional argument,
so that it can be properly constrained. Declaring fresh names externally also requires
flattening operations and chaining them one after the oher.

The Viper snippet

method areDisjoint(s1: Set[Ref], s2: Set[Ref]): Bool
{
var c: Int := |s1 intersection s2|
// Encoding the state here

}

would be translated as follows

one sig s1_91 in Set_Ref {}
one sig s2_92 in Set_Ref {}
fact { Store.s1’ = s1_91 }
fact { Store.s2’ = s2_92 }
one sig temp_0’ in Set_Ref {}
fact { set_intersection[s1_91, s2_92, temp_0’] &&

Store.c’ = set_cardinality[temp_0’] }

Representing the built-in collections concretely rather than axiomatising them, enables
us to detect some situations when the verifier raises spurious verification errors due to
the incompleteness of the axioms used to model collections in Z3. Some more details
are discussed in Section 6.1.2.

An alternative approach to avoid declaring fresh variables manually would be to en-
code the operations on collections as ternary relations and adding facts to constrain the
third term in the relation to represent the result of the operation on the arguments (the
other two atoms in the relation). This is possible but risks causing an explosion in the
complexity of the model [10, sec. 5.3.1].

3.3 Sorts
Silicon defines symbolic expressions as terms and formulas of a many-sorted first-order
logic, and, for each Viper type, it employs a matching sort in the signature of its logic.
When we talk about sorts, we refer to Silicon’s internal mapping of the Viper types.

During the encoding of a program, sorts are translated to signatures. For simple sorts
(without elements) the mapping is the following:

• The Ref sort is translated into the Ref signature, whose encoding is discussed in
Section 3.7.2.

25

Chapter 3 Translation to Alloy

• The Snap sort is translated into the Snap signature, defined in the preamble (see
Section 3.7.1).

• The Int sort is modeled via a custom Integer signature. This is discussed in
Section 3.7.1.

• The Bool sort is translated as the Bool signature, provided by the util/boolean
module, included in Alloy. A discussion about the treatment of Boolean-typed
values can be found in Section 3.5.

• The Perm sort is modeled via the Perm signature, defined in the static preamble
(Section 3.7.1). In Section 3.4 there is a discussion about ways of modeling frac-
tional permissions, their advantages and disadvantages.

Types “with elements”, such as the collection types or field value functions, are trans-
lated by declaring fresh signatures based on the types involved. For example, the Viper
sort Set[Set[Ref]] would be translated by recursively encoding the element signa-
tures, having the following result

sig Set_Ref extends Set {} {
set_elems in Ref

}
sig Set_Set_Ref extends Set {} {
set_elems in Set_Ref

}

The procedure is also applied to the other sorts with elements, mentioned above.

User sorts, defined via domains, are translated slightly differently to avoid name
clashes. As an example, the user sort Array would be translated into the signature
declaration

sig User_Array’ {}

Both the collection sorts and the user sorts are declared in the “gathered facts” section
of the model, described in Section 3.7.8.

3.4 Permissions
Values of Viper’s Perm type type are represented by instances in the Perm signature. As
mentioned in Section 3.1, the operations on Perm instances are abstracted via predicates,
that update the actual internal representation of the permission objects.

We experimented with two representations for permissions: one where we explicitly
model numerator and denominator fields, and one where all permissions are symbolic
and we only model the relations between them.

With the first approach, the definition of the Perm, R, and W signatures relies on Alloy
Int. The definitions are the following.

26

3.4 Permissions

abstract sig Perm {
num: one Int,
denom: one Int

} {
num >= 0
denom > 0

}
one sig W in Perm {} {

num = 1
denom = 1

}
one sig Z in Perm {} {

num = 0
denom = 1

}

The predicates that implement operations between these permissions effectively com-
pute those operations on rational numbers (defined by num and denom). The implemen-
tation of these predicates is shown in Appendix B.

In second approach, permissions are just symbols and have no fields.

abstract sig Perm {}
one sig W in Perm {}
one sig Z in Perm {}

Information about these instances is encoded in relations, declared in the
PermRelations signature. In this case, the predicates that implement the operations
between permissions keep these relations up to date based on the facts we know about
a certain permission value.

one sig PermRelations {
eq: Perm -> Perm,
lessthan: Perm -> Perm,
add: Perm -> Perm -> lone Perm,
new: Int -> Int -> lone Perm

} {
all a:Perm | perm_equals[a, a]

}

The fact that in both the approaches the interface with permissions is defined by the
predicates that implement their operations, means that we are free to change the way
we implement the Perm signature without having to change the rest of the model. Both
approaches have their advantages and drawbacks, discussed in Chapter 6. The main
issue with the first approach is the boundedness of Alloy integers, whereas with the
second technique the need to approximate some operations becomes problematic.

27

Chapter 3 Translation to Alloy

3.5 Treatment of Booleans
Alloy lacks a user-accessible Boolean type. The language does have a type for Boolean-
valued expressions, called PrimitiveBoolean, but this is not accessible to the user: it
is not possible to declare a relation which contains Boolean terms. The system offers a
utility module that implements Boolean values in the Alloy language and that we use
to model Boolean values from Viper programs. The problem with this approach is that
there is a disconnect between the Bool signature that we use to model Viper’s Boolean
type and the type that can be used in assertions (PrimitiveBoolean), requiring an
additional mechanism to allow us to mix them together.

Consider the following example, where we use a variable of Bool type in the left-hand
side of an implication in the method’s precondition

method test(b: Bool, v: Int)
requires b ==> v > 3

{
assert true

}

When modeling the symbolic state on the assertion, we would like to express the path
condition gathered in the method’s precondition with the following fact in Alloy’s
model:

fact field { b => v > 3 }

We encounter a problem if we try doing this: we cannot declare variable b with type
PrimitiveBoolean and, at the same time, it is not possible to use any expression of a
type other than PrimitiveBoolean in a logical operation (the implication, in this case).
In this example, we can solve this problem by declaring the variable with type Bool
(from the util/boolean module) and use the isTrue predicate whenever we need a
PrimitiveBoolean type. We model the path condition as

fact { isTrue[b] => v > 3 }

This problem also happens in the inverse direction, for example when we want to call
a function with the result of a logical operation, like in the following snippet.

function f1(b: Bool): Int
method foo(v: Int) {
var i: Int := f1(v > 0)
assert true

}

Here, the path condition from the function call is translated by introducing a condi-
tional expression[10, app. B.7.7] that returns the appropriate Boolean atom.

fact { i = Fun.f1[Unit, ((v > 0) implies True else False)] }

28

3.6 Required Information

These type of situations occur in various moments during the translation of the pro-
gram facts. Whenever we know that either only the PrimitiveBoolean type or the
Bool type are expected, we insert auxiliary LogicalWrapper or BooleanWrapper oper-
ations, that wrap the expressions being translated and eventually transform the result,
in case the type of the sub-expression is not the one expected by the outer expression.

The insertion of the LogicalWrapper happens in the following moments:

• When translating an expression that will finally end up in a stand-alone fact (for
example a path condition).

• When translating the body of a quantifier.

• When translating the condition of an “if-then-else” expression.

• When translating each of the elements in an And or an Or term.

• When translating the operands of a boolean binary expression, unless they both
have type Bool and the operation is a binary equality.

The insertion of a BooleanWrapper happens:

• When translating the value of a store variable that is a logical operation.

• When translating the arguments of an application where the expected type is
Boolean.

3.6 Required Information
The translation of a symbolic verification state into an Alloy model has several prereq-
uisites. In our case, these are all provided to us via the Symbolic Execution Logger. This
tool is integrated into Silicon and provides information about the actions performed
during verification and about the symbolic states they were applied to. More details
about it can be found in Chapter 4.

The most fundamental piece of information for the translation is the execution trace,
which contains the Store, the Heap, and the Path Conditions for each state generated by
by Silicon during symbolic execution of the program.

If verification failed due to an SMT incompleteness, then we need to encode the prob-
lematic assertion into our model, as it is essential to distinguish counterexamples to
the program’s specification from other instances of the symbolic state being modeled.
More details on this are discussed in Chapter 2.

Each time Silicon removes permissions from heap chunks, the amount removed from
the chunk for a specific reference is abstracted into a pTaken function. These functions
are needed to determine how much permission is left in a certain heap chunk (if any)
and to correctly model presence or absence of fields. The translation of these functions
is described in Section 3.7.7.

29

Chapter 3 Translation to Alloy

If one or more user-defined domain types are used (for example arrays), their axioms
have to be encoded in the model as well, in order to ensure that the generated instance
respects the desired semantics.

Function postconditions are axiomatised in Silicon. The resulting axioms have to be
retrieved in order to correctly model function results.

3.7 Structure of the Model

We translate a symbolic state into a single Alloy model, in which we have conceptually
separate parts, each encoding a different aspect of the original program. The model is
structured according to the parts described in the following sections.

In practice, we can distinguish two big groups in the model:

• Definitions for facts from the symbolic state (encoding store, heap, path condi-
tions and permissions), in the first four sections after the preamble.

• All the other definitions, that encode additional facts, functions axioms, domains,
etc.

We will be using the program in the following snippet as a running example to show
how each section of the model is translated. Its complete encoding can be found in
Appendix C.

1 field val: Int
2 method example(nodes: Set[Ref], n1: Ref, n2: Ref)
3 requires forall r: Ref :: r in nodes ==> acc(r.val)
4 requires n1 in nodes
5 requires n2 in nodes
6 {
7 exhale acc(n1.val)
8 var v: Int := n2.val // Verification fails here
9 }

Listing 3.3: In this Viper snippet we have a set of references, nodes, and we have full
permission to the val field for each of the references in this set. We know that n1
and n2 belong to nodes, and we have permission to their field, at least initially. On
line 8, we exhale all permissions for field val from n1, and on line 10 we try reading
val from reference n2. The verification fails because n1 and n2 may be aliases, therefore
we might not have permission to n2’s val field anymore.

30

3.7 Structure of the Model

3.7.1 Preamble

The first part in the model is a static preamble, which contains signature definitions for
the built-in types. Operations on them are implemented via predicates and functions,
that are also defined in the preamble.

In the preamble we define signatures for Silicon snapshots and the operations involving
them. Snapshots are used in Silicon to abstract over values of heap locations to which
an assertion includes permissions. Heap snapshots are combined into a binary tree
structure via the combine operation, which takes two snapshots and returns another one
representing their pair. The values in the leaves of this structure are either the empty
Unit snapshot, or heap values, contained in a SortWrapper. These wrappers allow
using a value of any type where a snapshot-typed object is expected. Snapshots are
needed in the debugger because they encapsulate information which may be needed
to produce a valid counterexample, as discussed in Section 3.1.5. A more thorough
explanation of how snapshots work can be found in Schwerhoff’s thesis [11, sec 3.1].1

The abstract snapshot type is represented by the Snap signature. The Unit signature
represents empty snapshots. The SortWrapper signature represents sortWrappers, and
is effectively a container of objects of other sorts. The sortwrapper_new predicate is
used to state the constraint that a newly-declared sortwrapper contains a certain value.
The Combine signature represents combinations of two snapshots, and the combine
predicate is used to constrain an instance of the signature to be a combination of two
specific snapshots.

abstract sig Snap {}
one sig Unit extends Snap {}
abstract sig SortWrapper extends Snap {
wrapped: one univ

}
abstract sig Combine extends Snap {
left: one Snap,
right: one Snap

}

pred sortwrapper_new [e: univ, sw: Snap] {
sw in SortWrapper
sw.wrapped = e

}
pred combine [l, r: Snap, c: Combine] {
c.left = l && c.right = r

}

1Note that, in the thesis, the combine and sortWrap functions are defined as pair and box respectively.
We use the names that these operations have when they appear in the symbolic execution trace and in
Silicon’s implementation.

31

Chapter 3 Translation to Alloy

The preamble also defines (or imports) all signatures needed to encode Viper’s built-in
types (Perm, Int, and Bool) and collections (Set, Seq, and Multiset).

To model Viper’s Perm type we declare the Perm signature and define a series of pred-
icates (e.g. perm_plus or perm_less) that implement the operations on them. We ex-
perimented with two implementations of fractional permissions using, different tech-
niques. A more detailed discussion of the two implementations is presented in Sec-
tion 3.4.

To model Viper’s integers we declared the custom Integer signature. It is just a wrap-
per with a field value holding a built-in Alloy integer. The definition is as follows:

abstract sig Integer {
value: one Int

}

The reason behind introducing this wrapper has to do with modeling total functions
and the way Alloy instantiates the built-in integers. A detailed discussion of this prob-
lem can be found in Section 6.3.3. Operations between Integer objects are imple-
mented via the built-in functions provided by alloy and by accessing the wrapped field
value directly.

We import the boolean module, which provides a definition for Boolean values, used
to encode Viper’s Bool sort, and a series of utility functions to work with them. The
ternary, and relation modules are also included to provide helper functions for the
manipulation of relations.

We define signatures Set, Seq, and Multiset to model the built-in collections. Again,
operations on these types are implemented via predicates. More details about the im-
plementation of built-in Viper collections can be found in Section 3.2.

The complete definition of all these signatures can be found in Appendix B.

3.7.2 Modeling References

In the second part of the model, we define the reference signature, which represents
Viper’s Ref type. The definition is not part of the static preamble because it has to
include a relation for each of the fields that a reference might have access to in the
symbolic state being modeled.

Each of the fields known from the symbolic heap is added to the signature with mul-
tiplicity lone. Note that not all fields in the original Viper program are necessarily
modeled in the reference signature: if no permission to a field is held in the symbolic
state being modeled, then that field is not declare in the Reference signature. At the
same time, the lone multiplicity expresses the possibility that a field may not to exist on
an instance: not all references in the program might have permission to it all fields.

32

3.7 Structure of the Model

Additionally, a helper field refTypedFields’ of type set Ref is added to the signature
and constrained to be the union of all fields of sort Ref. This relation will be used to
encode a reachability constraint later (see Section 3.7.10).

Along with the Ref signature, we also declare NULL extending Ref. NULL can be used
wherever a reference can, but it is constrained to have no fields at all.

1 sig Ref {
2 val: lone Integer,
3 refTypedFields’: set Ref
4 } {
5 refTypedFields’ = none
6 }
7
8 one sig NULL extends Ref {}
9 fact { NULL.refTypedFields’ = none && no NULL.val }

Listing 3.4: Encoding of the reference signature for the running example in Listing 3.3.

For our running example, the reference signature is encoded as shown in Listing 3.4.
Since there are no reference-typed fields in the program, refTypedFields’ is defined
to be the empty set, none. The NULL signature is followed by a constraint that ensures
it does not possess val field.

3.7.3 Modeling the Store

The store contains all the local variables accessible in a symbolic state. These may “point
to” a concrete value, or to a term (usually a VariableTerm). For example, inspecting the
symbolic state at the location marked in the following snippet

field val: Int
method store(a: Array)
requires forall i: Int :: 0 <= i && i < len(a)

==> acc(loc(a, i).val)
{
var i: Int := 1
var v: Int := loc(a, i).val
// Encoding the state here

}

33

Chapter 3 Translation to Alloy

would result in a store containing both types of values

Store
a : Array→ a@1
i : Int→ 1
v : Int→ Lookup(val, sm@10(), loc(a@1, 1))

Local variable a has symbolic value a@1, variable i holds the concrete value 1, and the
value of variable v is a more complex term (in this case, a lookup of field val on the
reference resulting from the call loca(a@1) in the snapshot given by sm@10).

In the translated model we declare a special Store signature with multiplicity one that
holds a field for each of the symbolic store’s variables. In addition to that, we also de-
clare a set called refTypedVars’ to encode the union of all store variables with type
Ref, as shown in the encoding for the running example in Listing 3.5. Like for the
refTypedFields’ set in the reference signature, this is used later in constraining refer-
ences to be reachable from the store. We add an apostrophe to the name of all variables
to prevent name clashes with built-in Alloy keywords (otherwise declarations such as
var some: Int in Viper could become problematic).

1 one sig Store {
2 nodes’: one Set_Ref,
3 n1’: one Ref,
4 n2’: one Ref,
5 v’: one Integer,
6 refTypedVars’: set Ref
7 } {
8 refTypedVars’ = n1’ + n2’
9 }

10
11 one sig nodes_3 in Set_Ref {}
12 fact { Store.nodes’ = nodes_3 }
13 one sig n1_4 in Ref {}
14 fact { Store.n1’ = n1_4 }
15 one sig n2_5 in Ref {}
16 fact { Store.n2’ = n2_5 }
17 one sig v_11 in Integer {}
18 fact { Store.v’ = v_11 }

Listing 3.5: Encoding of the store for the sunning example in Listing 3.3

For the running example in Listing 3.3, the encoding of the Store appears in Listing 3.5.
First, we declare the Store signature with all the known variables, then we add a se-
ries of facts to constrain their values to the ones that we have in the symbolic store.

34

3.7 Structure of the Model

In building these constraining facts we may encounter new objects, which need to be
declared. In this case, we find the symbolic values for all the variables, so we declare a
new signature for each one of them before the fact they are used in (note that the order
of declarations does not matter in Alloy, we just keep the declarations close together so
they are easier to find).

Note that all the additional types (in this case Set_Ref) are declared later on in the
model. Alloy does not put any restriction on the order of declarations: as long as all
needed signatures are declared somewhere, everything is fine. Note also that the names
of symbolic values are sanitized (by replacing the @ symbol with an underscore) before
being used to define new signatures.

3.7.4 Modeling Heap Chunks and Permissions

The third section in the encoded model is where we declare heap chunks and permis-
sions. Heap chunks are used to express information about a heap locations: which
symbolic value(s) they have, how much permission we hold, what is the receiver (in
case of a field chunk) or predicate (in case of a predicate chunk). From the heap in the
symbolic execution trace, we know all chunks for which there might be at least some
permission. We may have different types of heap chunks in the heap, such as field
chunks, predicate chunks, quantified field chunks, etc. The translation of each heap
chunk type is performed slightly differently.

Field Chunks

For field chunks we first add three main constraints. The first one relates the field of
the receiver to the symbolic value we have in the heap, the second one encodes the
permission held for that specific receiver, and the third one states that we do not hold
more than full permission. As usual, encoding a fact might require declaring fresh
names and introducing additional facts to constrain them.

1 field val: Int
2 method example(r: Ref)
3 requires acc(r.val)
4 {
5 // Encoding the state here
6 }

Listing 3.6: An example of a snippet with a simple field chunk.

Consider the snippet in Listing 3.6. In the heap have a field chunk r@02.val: Int ->
$t@03 # W, where r@02 is the symbolic receiver of the field access (reference r in the
snippet), $t@03 is the symbolic value of the field, and # W denotes the fact that we have
full permission to this chunk. The resulting encoding is

35

Chapter 3 Translation to Alloy

one sig t_03 in Integer {}
fact { r_02.val = t_03 && PermFun.val[r_02] = W }
fact { perm_at_most[PermFun.val[r_02], W] }

Here, we constrain field val on reference r_02 to be equal to t_03, a fresh name for
an integer representing the symbolic value in the heap chunk. In addition to that, we
encode the currently held permission via the relation PermFun.val. This is a freshly-
declared relation named after the field and of type Ref -> lone Perm, which repre-
sents the permission held for that specific field and reference. Whenever we encounter
a field chunk, we add such a function (unless one for that field existed already) to en-
code permissions.

We keep track of all references and fields for which we have some permission, so we
can constrain the entries in the permission function to be only the references for which
we do have some permission. Assume that we had permission to field val of symbolic
references r_01 and r_02, then we would encode the following constraint

fact { (PermFun.val).univ = r_01 + r_02 }

In which we state that the domain of the PermFun.next relation corresponds just to
those two references.

Predicate Chunks

Encoding predicate chunks requires two additional signatures: one to represent the
predicate itself, and one containing relations that can be used to constrain the permis-
sion to predicates. For example, consider the following snippet

method example(r: Ref)
requires acc(wrap(r))

{
// Encoding the state here

}

Access to predicate wrap results in the following heap chunk

wrap(SortWrapper($t@16, Snap); r@15) # W

where the first argument of wrap, before the semicolon, is a snapshot representing the
predicate and all the other values after the semicolon are the arguments. The permis-
sion we hold is denoted by the expression after the hash symbol. In this case we have
full permission.

The predicate chunk is encoded with the declarations in Listing 3.7. First, we define an
abstract signature pred_wrap to represent instances of the predicate. Then, we intro-
duce Preds.wrap to map the snapshot of the heap chunks to actual predicate instances.
We want to to make sure that there are no instances other than the ones we explicitly
add to this relation, therefore signature pred_wrap is constrained to be equal to the

36

3.7 Structure of the Model

1 abstract sig pred_wrap {
2 arg0: one Ref
3 }
4 one sig Preds {
5 wrap: Snap -> lone pred_wrap
6 }
7 fact { pred_wrap = Preds.wrap[Snap] }
8 one sig t_16 in Snap {}
9 fact { one Preds.wrap[t_16] => Preds.wrap[t_16].arg0 = r_15 }

10 fact { PermFun.wrap[t_16] = W }
11
12 fact { (PermFun.wrap).univ = t_16 }
13 fact { all s: Snap |
14 perm_less[Z, PermFun.wrap[s]] <=> one Preds.wrap[s]
15 }

Listing 3.7: Encoding of a predicate chunk.

atoms contained in the Preds.wrap relation. The multiplicity lone makes this relation
a partial function, which is required since not necessarily all snapshots should refer to
a predicate.

After declaring the relation between pred_wrap and the tuples in Preds.wrap, on line
9 we add a fact constraining the arguments of the predicate to the ones we have from
the heap chunk. Just after it, we encode the permission we hold to the chunk. The
PermFun.wrap function is a freshly-declared permission function, which we will de-
clare at the end of the model, as part of the gathered facts described in Section 3.7.8.

Finally, like we did for field chunks, we constrain the instances in the permission func-
tion to be the snapshots we know from the heap and state that a predicate instance
exists if and only if we have at least some permission to it (on line 14).

Quantified Field Chunks

To encode quantified field chunks we have to declare multiple facts. A quantified field
chunk expresses permissions to all fields specified by the original quantified permis-
sion assertions and no permission to all other locations. The heap for the program in
Listing 3.3, before exhaling permissions (i.e. on line 7), would contain the quantified
heap chunk

QA r :: r.val: FVF[Int] -> $t@7 # (inv@10(r) in nodes@3) ? W : Z

Which denotes full permission to field val for all references that are part of the set
nodes in the snippet (when inv@10(r) in nodes@3 is true) and no permission for all
other references.

37

Chapter 3 Translation to Alloy

Silicon expresses the amount of permission held from the point of view the references
on the heap, and introduces inverse functions on these references to refer back to the
objects that were used in the specification. Here, you can see that Silicon is using the
function inv@10(r) to relate them to the nodes we had in the specification. The idea
behind this mechanism is explained in Schwerhoff’s thesis [11, sec 4.2.1]. In this partic-
ular case, inv@10(r) = r, because we were quantifying over references in the original
specification, but in general this is not always the case. Silicon always introduces two
definitional axioms for the inverse functions. For our chunk, they are the following.

QA r@9 :: r@9 in nodes@3 ==> inv@10(r@9) == r@9
QA r :: inv@10(r) in nodes@3 ==> inv@10(r) == r

The first one relates quantified variables from the source quantifier to the result of the
inverse function, and the second does the same, but from the perspective of the domain
of the inverse function.

In the chunk we also see that the symbolic value is not just an Int, but a FVF[Int].
This is because the quantified field chunk represent access to a potentially unbounded
number of heap locations, so the value information is represented in a snapshot map
($t@7 in this case) that maps any receiver in the domain of the heap chunk to the value
of his field. Snapshot maps are used when expressing field lookups into quantified
chunks, as discussed in Section 3.1.9.

In the heap that we have from the running example in Listing 3.3, at the location of the
verification failure, we have the following quantified field chunk

QA r :: r.val: FVF[Int] -> $t@7
(inv@10(r) in nodes@3) ? W : Z - pTaken@12(r)

Here you can see that the permission expression is more complex, involving a
pTaken@12 function. Whenever we exhale permissions from an object involved in a
quantified field chunk, like in the example, Silicon introduces pTaken functions to
denote the amount of permission removed for a specific reference. In this case, the
newly added pTaken function makes sure that the permission value of the chunk
evaluates to W for all references in the set, except for n1, for which the permission value
should be zero. The definition of pTaken@12 is shown in the following snippet.

pTaken@12(r) :=
(r == n1@4) ? PermMin((inv@10(r) in nodes@3) ? W : Z, W)

: Z

The function evaluates to W only for reference n1@4. The PermMin operation computes
the minimum between the permission we hold in the chunk this function was defined
for and the permission we are trying to take away (both W in this example), to ensure
that we don’t take away more pemission than we actually hold. In case we had a frag-
mented heap it would be possible to take away the permission we are exhaling from
multiple chunks. The translation of these functions is described in Section 3.7.7.

38

3.7 Structure of the Model

The result of encoding the heap chunk from the running example is shown in List-
ing 3.8. The encoding proceeds as follows. First, we translate the axioms for the inverse
functions introduced by Silicon. Each one of them is a term, so we follow the proce-
dure described in Section 3.1. After that, we encode the chunk itself, by introducing a
PermFun.val relation, that maps references and snapshot maps to permission amounts.
We constrain PermFun.val[r, t_7] to be equal to the translation of the permission
amount from the quantified chunk. In this case, we need to introduce a signature to
hold fresh names because we are inside a quantification, as explained in Section 3.1.7.

1 fact { all r_9: Ref |
2 set_in[r_9, nodes_3] => (Fun.inv_10[r_9] = r_9) }
3 fact { all r: Ref |
4 set_in[Fun.inv_10[r], nodes_3] => (Fun.inv_10[r] = r) }
5
6 one sig t_7 in FVF_Integer {}
7 one sig fresh_quantifier_vars_0 {
8 temp_1’: Ref -> lone Perm
9 }

10 fact { all r: Ref |
11 perm_minus[(set_in[Fun.inv_10[r], nodes_3] => W else Z),
12 PTAKEN.pTaken_12[r],
13 fresh_quantifier_vars_0.temp_1’[r]] &&
14 fresh_quantifier_vars_0.temp_1’[r] = PermFun.val[r, t_7]
15 }
16 fact {
17 all r: Ref |
18 (some fvf: (t_7) |
19 one PermFun.val[r, fvf] and
20 perm_less[Z, PermFun.val[r, fvf]])
21 <=> (one r.val)
22 }
23 fact {
24 all r: Ref, fvf: (t_7) |
25 one PermFun.val[r, fvf] =>
26 (perm_at_most[PermFun.val[r, fvf], W])
27 }

Listing 3.8: Encoding of the heap chunks and permissions for the running example in
Listing 3.3

After having encoded the permission for the chunk, we add two more facts. The first
one, starting on line 16, constrains field val on any reference to exist only if there exists
a snapshot map, amongst the ones we know from the heap, for which we do have

39

Chapter 3 Translation to Alloy

permission in the quantified heap chunk. The second fact, starting on line 23, constrains
the permission for the chunk to be at most write.

Mixing Chunks and Other Types of Chunks

Of course, in general it is possible to require permissions to the same fields by mix-
ing both quantified field chunks and normal fields chunks, or to require permission in
“different steps” (e.g. acc(r.val, p1) && acc(r.val, p2)). In these cases, Silicon
performs a simplification of the chunks for us. For example, in the snippet

requires forall r: Ref :: r in nodes ==> acc(r.val)
requires n1 in nodes
requires acc(n2.val)

we would get two quantified heap chunks

QA r :: r.val: FVF[Int] -> $t@69 # (inv@72(r) in nodes@65) ? W : Z
QA r :: r.val: FVF[Int] -> sm@74() # (r == n2@67) ? W : Z

This makes it easier to work with them as we can translate both field chunks indepen-
dently and predicate the existence of the field on reference objects by considering all
snapshot maps:

fact {
all r: Ref |

(some fvf: (t_69 + sm_74) |
one PermFun.val[r, fvf] and
perm_less[Z, PermFun.val[r, fvf]])

<=> (one r.val)
}

There are other types of heap chunks: quantified predicates and magic wands, which
are not covered as part of the current translation technique. A discussion about them
can be found in Section 7.1.

3.7.5 Modeling Path Conditions

Each symbolic state contains a set of path conditions, which represent the facts known
to be true at that point in the verification of the program. Path conditions in the sym-
bolic execution trace are simply Silicon terms of sort Boolean and are translated directly
into Alloy facts, one fact per path condition.

The translation of terms is described in Section 3.1. Like for the encoding other parts of
the program, it is sometimes necessary to declare fresh names for objects (for example
results of operations), and to insert additional facts to constrain these fresh values. For

40

3.7 Structure of the Model

a path condition PC, the declaration resulting from its translation looks roughly like
this:

f reshName1

...
f reshNamen

fact { addFact1 && . . . && addFactn && translate(LogicalWrapper(PC)) }

The actual path condition PC is wrapped in a LogicalWrapper before being translated
in order to ensure that the final type of the translated value is PrimitiveBoolean. The
need for this wrapper is discussed in Section 3.5. Note that the additional facts, addFacti
could very well be declared at the top level, as stand-alone facts, but in the current
implementation we keep them in the same fact they were generated for. Declaring them
at the top level is certainly something to consider in future updates of this technique.

As an example, consider inspecting symbolic state 1 in the following snippet, just inside
the outmost if statement.

method example(s1: Set[Ref], s2: Set[Ref])
{
if (|s1| > 0) {
// Symbolic state (1)
if (|s1 union s2| > 0) {
// Symbolic state (2)

}
}

}

If we reach that location, we know that the cardinality of the set has to be greater than
zero, resulting in a single path condition: SetCardinality(s1@2) > 0. This path condi-
tion would be translated into the following Alloy facts

one sig temp_0’ in Integer {}
fact { set_cardinality[s1_10_01, temp_0’] }
one sig temp_1’ in Integer {}
fact { temp_1’.value = 0 }
fact { (temp_0’.value > temp_1’.value) }

The inspection of symbolic state 2 inside the next if statement gives us an additional
path condition: SetCardinality(s1@2 ∪ s2@3) > 0. This new condition requires a fresh
instance to represent the union, as well as fresh instances to represent all of the inte-
gers, like in the previous snippet. The constraint is translated into the following decla-
rations.

41

Chapter 3 Translation to Alloy

one sig temp_1’ in Set_Ref {}
fact { set_union[s1_10_01, s2_11_01, temp_1’] }
one sig temp_0’ in Integer {}
fact { set_cardinality[temp_1’, temp_0’] }
one sig temp_2’ in Integer {}
fact { temp_2’.value = 0 }
fact { (temp_0’.value > temp_2’.value) }

In both examples, since the resulting operation already had PrimitiveBoolean type,
the additional LogicalWrapper did not affect the translation.

3.7.6 Modeling Domain Axioms

Viper domains allow to define custom types and their behaviour. To ensure that coun-
terexamples involving user types are modeled correctly, all the axioms defined in a
domain need to be encoded in the Alloy model as well.

Domain axioms are Silicon terms, so they are translated following the procedure de-
scribed in Section 3.1 and declared as top level facts in the model.

As an example, translating the length axiom from the following (shortened) domain
definition for arrays

domain Array {
// ...
function len(a: Array): Int
axiom lenPositive {
forall a: Array :: len(a) >= 0

}
}

gives us the following fact:

fact { all a: Array | (Fun.len[a] >= 0) }

3.7.7 Ptaken Functions

As explained in Section 3.7.4, Silicon introduces pTaken functions when permissions
are removed from quantified heap chunks. These are functions with a parameter of
type Ref, and a result of type Perm, corresponding to the amount being removed.

In the symbolic execution trace, the pTaken functions are represented as pairs of Silicon
terms of the form (Application(name, r : Re f , Perm), body). Each pTaken function is
encoded as a relation of type Ref -> one Perm in the PTAKEN signature, with an ad-
ditional fact to restrict the elements in the relation to respect the logic of the function’s
body.

42

3.7 Structure of the Model

In case Silicon had generated n such functions, we would get a series of declarations
like

one sig PTAKEN {
pTaken1: (Ref -> one Perm)

...
...

pTakenn: (Ref -> one Perm)
}
fact { all r: Ref | translate(pTaken1(r) == body1) }

...
...

...
...

fact { all r: Ref | translate(pTakenn(r) == bodyn) }

In our running example from Listing 3.3, we exhale all permissions to field val on
reference n1 and, since the permissions were given in a quantified field chunk, Silicon
introduces a pTaken function to encode the fact that we have no permissions on n1
anymore. The pTaken function has the following definition:

pTaken@12(r) :=
(r == n1@4)

? PermMin((inv@10(r) in nodes@3) ? W : Z, W)
: Z

And is encoded into the following Alloy declarations

one sig PTAKEN {
pTaken_12: Ref -> one Perm

}
one sig fresh_quantifier_vars_1 {
temp_2’: Ref -> lone Perm

}
fact { all r: Ref |
perm_min[set_in[Fun.inv_10[r], nodes_3] implies W else Z, W,

fresh_quantifier_vars_1.temp_2’[r]] &&
perm_equals[
PTAKEN.pTaken_12[r],
(r = n1_4) => fresh_quantifier_vars_1.temp_2’[r] else Z

]
}

The first signature contains the declaration for the relation that represents the pTaken
function, and the last fact constrains the elements in the relation to be valid according
to the original body. The other fact and the additional signature are needed to declare
fresh names inside quantifier, as explained in Section 3.1.7.

43

Chapter 3 Translation to Alloy

3.7.8 Facts Gathered During the Translation

While translating the program, we may encounter some objects that need to be de-
clared. These are usually functions and sorts. In both cases they may come from user
declarations, from terms in the program, or they may even have been introduced in the
translation itself.

Permission Functions

First, we declare all the permission functions that we introduced when encoding the
heap. All functions are declared as relations in the PermFun signature, their type de-
pends on the type of heap chunks for which they have been defined. For example, if
we had a field chunk for field val, then we would get the following declaration, with a
permission function of type Ref -> lone Perm.

one sig PermFun {
val: (Ref -> lone Perm)

}

If we instead had a quantified field chunk for an integer field val, then the declaration
would also be parametrised by the snapshop map (of type FVF[Int]). For the running
example in Listing 3.3 we would get a declaration like this one.

one sig PermFun {
val: (Ref -> FVF_Integer -> lone Perm)

}

For predicates, instead, the permission function has an instance type Snap as its first
argument, so if we had a predicate called list, its permission function would look like
in the following snippet.

one sig PermFun {
list: (Snap -> lone Perm)

}

Functions

After permission functions, we encode regular functions (meaning functions from the
original program, not introduced during the translation) and their postcondition ax-
ioms.

Functions are declared as n-ary relations in the Fun signature. For example, A function
with two parameters of type Int and a return type of Ref would be translated into
a relation of type (Snap -> Integer -> Integer -> Ref), where the additional pa-
rameter of type Snap is added by Silicon during its axiomatization. A simple function
with postconditions, like in this snippet

44

3.7 Structure of the Model

function f(i: Int): Int
ensures result == i

method test1() {
var i: Int := f(0)
assert i == 0

}

is translated to the following two declarations, where the additional fact encodes the
postcondition of the function. Postcondition axioms always have the form of quanti-
fiers over the argument types of the function and contain a let expression as their body.
They are translated following the normal term translation procedure described in Sec-
tion 3.1.

one sig Fun {
f: (Snap -> Integer -> one Integer)

}
fact {
all s: Snap, i_16: Integer |

let result_17 = Fun.f[s, i_16] | (result_17 = i_16)
}

In the case of a heap-dependent function the axiom declaration would be slightly dif-
ferent. Consider the following heap-dependent function:

field val: Int
field next: Ref

function hdf(r: Ref)
requires acc(r.val) && acc(r.next)
ensures result == r.val

The postcondition of the function will be defined with respect to its snapshot, as fol-
lows:

QA s, r@2 :: let result = hdf2(s, r@2) in
(result == SortWrapper(First(s), Int))

Where snapshot s is expected to always be a pair (a Combine) and First denotes the ex-
traction of the first element. As explained in Section 3.1.6, this can be encoded without
additional functions in the model, by using the wrapped relation in the SortWrapper
and the left relation on signature Combine.

The small difference in the encoding of this postcondition is that we have to introduce
an additional “guard”: in our Alloy encoding only Combine instances have the left
and right relations, therefore considering all snapshots (which include, for example,

45

Chapter 3 Translation to Alloy

Unit) would falsify the quantifier’s body. We introduce the check ’s in Combine’
just inside the body of the quantifier, so that the result is constrained only for snapshot
pairs.

The function and post-condition are finally encoded as:

one sig Fun {
hdf: (Snap -> Integer -> Ref -> one Integer)

}
fact {
all s: Snap, r_2: Ref | s in Combine =>

let result_3 = Fun.hdf[s, r_2] |
result_3.value = s.left.wrapped.value

}

Lookups

Lookup functions are used in Silicon to encode field lookups in quantified field chunks.
Just like regular functions, lookups are encoded into Alloy as relations, but they are
always ternary, with the first element being the snapshot map of the chunk, the second
one the reference for which we are accessing the field, and the third for the value of the
field. A lookup function for field val would be encoded into a relation with the same
name, declared in the Lookup signature. Along with them, we add a fact to constrain
their result to be equal to the field on the actual Ref object. In our running example, the
field lookup function would be encoded as

one sig Lookup {
val: (FVF_Integer -> Ref -> lone Integer)

}
fact { all fvf: FVF_Integer, r: Ref |
(one PermFun.val[r, fvf] and perm_less[Z, PermFun.val[r, fvf]])

=> (Lookup.val[fvf, r] = r.val)
}

Sorts

Lastly, in the “gathered facts section”, we encode user-declared sorts and other addi-
tional sorts that we discovered during the translation. A user sort such as Array would
be simply translated into a signature sig User_Array’ {}, where the name is altered
to avoid collisions with other signature declarations. Amongst the “other sorts” we
have to declare we have the dynamic signatures generated for the Viper collections. In
the encoding of our running example we would have the following declarations for
Viper’s Set[Ref] and the field value function used in lookups.

46

3.7 Structure of the Model

sig Set_Ref extends Set {} {
set_elems in Ref

}
sig FVF_Integer {}

3.7.9 Failed SMT Query

Whenever verification fails because the SMT solver is not able to disprove a fact, this
failed assertion is reported to us in the symbolic execution trace, in the verifiable
(method, predicate or function) in which it occurred. This failed assertion encodes an
important property that distinguishes counterexamples to the verification from other
valid but non-failing instances of the program. This is discussed in more detail in
Chapter 2.

The failed SMT query is a normal Silicon term and it follows the same translation pro-
cedure as path conditions. The only additional step that we take before translating the
assertion is to negate it.

f reshNames . . .
fact { addFacts . . . && translate(LogicalWrapper(¬ f ailedAssertion)) }

Since Silicon failed to prove that this fact always holds, which lead to a verification
failure. We are interested precisely in modeling these problematic situations, where the
assertion is falsified, hence why we negate the term before encoding it.

3.7.10 Reachability and Signature Restrictions

When generating instances, we want to make sure that only meaningful references are
generated and that there are no “stray” ones, not being used in the rest of the program.
To achieve this, we add a special constraint for references, specifying that they are in the
store, that they are reachable from it (via fields of other references), or that they belong
to some collection (sets, sequences, multisets, but also sort-wrappers).

The constraint is defined in the following fact, stating that signature Ref corresponds
to the union of all the other relations, all resulting in some set of references. Here we
can see the refTypedVars’ and refTypedFields relations that were defined in the
encoding of the store and of the Ref relation.

fact { Ref = Store.refTypedVars’.*refTypedFields’ +
NULL +
(SortWrapper.wrapped <: Ref) +
Re f TypedSet.set_elems +
Re f TypedSeq.seq_rel[Integer] +
Re f TypedMultiset.ms_elems +
Re f TypedFunctions[SortSignatures] }

47

Chapter 3 Translation to Alloy

The last four members of this union may not be present or may represent multiple
relations. For example, in case our program uses both Set[Ref] and Set[Set[Ref]
variables, then the Set_Ref.set_elems and Set_Set_Ref.set_elems relations would
appear in the union.

The last member of the union represents function applications with a result of type Ref.
Here the relation representing a reference-typed function would be partially applied
with the signatures corresponding to the sort of its arguments. As an example, if a
Viper program uses a function with the signature function f1(i: Int, b: Bool):
Ref, then in the constraint we would have an element Fun.f1[Integer, Bool].

Note that Alloy does not have the concept of function application. When we write
something like Fun.f1[Integer, Bool] we are defining a join between a relation f1
of type f1: Integer -> Bool -> lone Ref and the elements in the two signatures
Integer and Bool. This practically corresponds to all possible combination of argu-
ments which could be used to call the function, therefore the expression represents all
possible results of the function.

We also add a constraint for all other signatures that represent a Viper type. This is done
to prevent Alloy from generating instances of signature which are not actually used in
the program. During the translation we keep track of all variables we encounter and
of their sort (including those that we introduced ourselves), so that at the end we can
restrict the sort signatures to contain exactly the variables we have recorded. For the
running example in Listing 3.3, the signature restrictions are the following.

fact { Set = Store.nodes’ }
fact { FVF_Integer = t_7_01 + sm_13_01 }
fact { Snap = t_6_01 + temp_0’ + temp_1’ + t_8_01 +

temp_2’ + Unit }
fact { Perm = PermFun.val[Ref, FVF_Integer] + temp_3’ +

temp_4’ + W + Z }
fact { Seq = none }
fact { Multiset = none }

We can clearly see that we have both symbolic values from the original program and
temporary variables that were declared to hold results of operations. Moreover, since
there are no sequences or multisets in the example, their signatures are constrained to
the empty set (none).

48

4
Architecture
In this section we discuss the architecture of the Viper IDE extension at the time the
project started, and how we changed it in order to both support the features of the new
debugger and to allow extending it in the future.

4.1 The Existing Infrastructure
The Viper IDE is implemented as an extension for the Visual Studio Code editor. Ar-
chitecturally, it comprises three main components: the language client, the language
server, and the debugger adapter. Additionally, the language server starts and com-
municates with ViperServer, an external component that manages the instantiation and
execution of the verification backends. ViperServer and the verification backends are
downloaded and setup by the extension automatically, but are not part of it.

The fist components, the language client and language server, are decoupled from each
other and communicate via the Viper Protocol and the Language Server Protocol1. They
implement the two parts needed by Visual Studio Code for a language server to work.
On the other hand, the code that constitutes the debugger exists both in the client and
the server components and is tightly coupled with them.

There are two problems with the modularity this design:

• Components that have orthogonal responsibilities are coupled together and de-
pend on each other to function.

• It is not possible to only install the components providing integration with the
verification backends (language client and server), but one must also install the
debugger, though it might not be needed.

If we envision integrating the verification environment with new tools in the future,
then this type of architecture is not ideal. Moreover, both the old debugger and the new
one only target the Silicon backend, therefore the design of the infrastructure should

1https://code.visualstudio.com/docs/extensions/example-language-server#
_a-brief-overview-of-language-server-and-language-server-protocol

49

https://code.visualstudio.com/docs/extensions/example-language-server#_a-brief-overview-of-language-server-and-language-server-protocol
https://code.visualstudio.com/docs/extensions/example-language-server#_a-brief-overview-of-language-server-and-language-server-protocol

Chapter 4 Architecture

accommodate the possibility of having multiple debugger extensions installed at the
same time, one for each of the verification backends. Moreover, the architecture should
allow not making the debugger an explicit dependency of tools that have nothing to do
with symbolic execution (e.g. the Carbon backend).

Another thing to note is that the infrastructure of the main extension has been partially
reworked after the completion of Kälin’s thesis, but the code for the debugger has not
been kept up to date, so the original debugging features are not active in the current
version of the extension.

In addition to that, the debugger also directly depends on external tools, in order to re-
trieve the symbolic execution trace. When silicon is run with the --ideModeAdvanced
flag, it writes the symbolic execution trace to a file in a temporary location. The debug-
ger then reads the trace from this file. Retrieving the symbolic execution trace this way
is less than ideal, because of I/O performance reasons. This problem can be solved
easily with the new architecture, where the backends and the IDE communicate via
message passing through ViperServer.

4.2 The New Infrastructure

The most important architectural change, with respect to the implementation of the
previous debugger, is that the new one “lives” in a completely separate extension. This
design choice was made to avoid forcing users to install the debugger extension if they
have no need for its features, especially since the debugger only targets the Silicon
backend and because it is currently in an experimental state. We will refer to the ex-
isting extension (which integrates VS Code with the verification backends) as the main
extension, and to the new one as the debugger extension.

The debugger depends on the main extension to work correctly, therefore lists it as
an explicit dependency in its extension manifest file. Visual Studio Code makes sure
that this dependency is satisfied by preventing the debugger to be installed if the main
extension is not present.

Since the debugger is separate from the main extension (but still requires information
about the verification process in order to function), we had to update the main exten-
sion to support communication with other extensions. In addition to that, the debugger
also needs to interact with a panel in the user interface, which is also a completely sep-
arate component. In the following sections, we will discuss how these separate parts of
the system communicate with each other.

A diagram of the infrastructure outlining the main components and the communication
channels between them can be seen in Figure 4.1.

50

4.2 The New Infrastructure

Language
Client

Viper IDE

Starts,
Queries

Reports

Viper Protocol +
Language Server Protocol

Language
Server

Debugger

Viper Debugger

Starts,
Notifies

Notifies

panel.postMessage() +
vscode.postMessage()

Webview
Panel

Viper API

Queries

Notifies

 V
S

 C
o

d
e

UpdatesUpdates

Notifies

UpdatesUpdates

Notifies

VS Code
Extensibility

Protocol

VS Code
Extensibility

Protocol

Viper Server

Reports

Queries

SiliconCarbon

Runs

Reports

Runs

Reports

ViperServer Protocol

Figure 4.1: The architecture of the system. The Viper IDE and Viper Debugger boxes denote,
respectively, the main Viper extension and the new debugger extension. They both in-
teract, independently, with Visual Studio Code. Viper Server is responsible for running
the verification backends.

4.2.1 Communication with the Main Extension

Visual Studio Code extensions can return an object from their activate2 method (the
main entry point of each extension). This object can be retrieved and used by other ex-
tensions at runtime. The main Viper extension has been updated to export a ViperApi
object that allows other extensions (in this case the debugger) to interact with the ver-
ification process. Though currently this API only provides functionalities specifically
needed by the debugger, this approach allows it to be easily extended to support other
extensions that can interact with Viper, without having to drastically modify the imple-
mentation of the main extension.

The Viper API provides some utility methods that allow the debugger to access the
last file that was verified or to retrieve the state of the backend. In addition to that,

2https://code.visualstudio.com/docs/extensions/example-hello-world#_generated-code

51

Chapter 4 Architecture

it also allows other extensions to register a notification handler that is called when a
verification terminates or when ViperServer sends messages that the main extension
does not know how to handle.

When the Silicon backend is configured with the --ideModeAdvanced flag (more de-
tails in appendix Appendix A), it will produce additional messages for the debugger,
that are delivered to the main extension via ViperServer. The main extension does not
know how to handle these additional messages, therefore it will notify all registered
handlers for them (if there are any). When the debugger is first started, it retrieves
the ViperApi object and registers a handler for verification completion events and for
additional server messages. Thus, it can receive messages containing debugging in-
formation from ViperServer via the main extension, and be notified with verification
completion events.

4.2.2 ViperServer and Silicon

The old debugger, as mentioned before, retrieved the symbolic execution trace from a
file. ViperServer (along with some other parts of the reporting infrastructure) has been
updated to serialize the Symbolic Execution Log to JSON, via the Spray JSON3library
(which was already used to for the rest of the communication with the backends). The
trace is now streamed via HTTP by ViperServer, and finally gets to the Debugger after
passing through the main extension and the ViperApi.

The Symbolic execution log has also been extended to contain more information,
needed by the debugger to operate. These additional pieces of information are the
postcondition axioms declared by Silicon for the functions in the program being
verified, the pTaken macros generated when permissions are removed from heap
chunks, and the last query that was performed to the SMT solver before the
verification failed (in case the SMT solver was not able to disprove an assertion).

4.2.3 The Webview Panel

The existing debugger provided a side-panel to display the debugger information. The
panel was implemented using the HTML preview feature of the editor. This feature was
originally intended to simply display static HTML documents in the editor, but soon
started being used by extension developers to implement complex interfaces, mainly
due to flexibility and ease of use of HTML. The HTML preview was not intended for
these type of use cases, consequently this approach had its downsides, the two most
important ones being the fact that only static contents could be displayed (requiring a
full refresh for each update) and that there was no way for the panel to interact with the
rest of the editor. When the first debugger was built, this was the only way of extending
Visual Studio Code’s interface.

3https://github.com/spray/spray-json

52

https://github.com/spray/spray-json

4.2 The New Infrastructure

Around the time this project started, the Webview API4 was being developed by Mi-
crosoft as a successor for the HTML preview panel, with the aim of providing a way
for extension developers to extend the editor’s interface, similar to what they were do-
ing with the HTML preview, but with an API designed from the beginning to do so.
The main feature of this new API is a way for the panel to communicate back with
extensions, making it possible to build interactive interfaces. The Webview API was
introduced in the April 2018 release of VS Code, and we decided to use it for imple-
menting the main panel of our debugger.

Note that, whereas the original debugger used VS Code’s native debugger API to inter-
face with the editor, we decided not to use it, as it would have provided little benefits.
The API was conceived to support more traditional debuggers, with features that are
not relevant for our project.

The debugger panel is a NodeJS5 module separate from the rest of the extension. When
the debugger extension needs to create a Webview panel for the debugger, it points to
the ‘debugger.html’ file (implementing the interface and logic of the panel) which is run
as a stand-alone process.

The debugger extension and the panel communicate by message-passing through the
Webview.postMessage method (for messages from the debugger extension to the
panel) and the VSCode.postMessage method (for messages from the panel to the
extension). These are simply wrappers around the window.postMessage() method
used to enable cross-origin communication between window objects in browsers.6The
debugger extension sends messages to the panel to notify a focus change on the
selected verification state, to provide a new heap graph to be displayed, or to provide
various diagnostic messages. The panel sends messages to the debugger extension
only when it needs to notify that a new verification state has been selected.

4https://code.visualstudio.com/docs/extensions/webview
5https://nodejs.org/
6https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

53

https://nodejs.org/
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

5
The Debugger
The debugger can be started via the command palette (which can be opened by typing
CTRL-p in Visual Studio Code). Only two new commands are provided: Start Debugger
and Stop Debugger. As soon as the debugger is started, it will trigger a new verification
of the currently selected Viper file (unless a verification is running already), so that
the debug information can be gathered. When the verification terminates and all of
the debugging information is received, the debugger panel is populated. When the
panel is closed or the Stop Debugger command is invoked, all resources acquired by the
debugger are disposed and the debugging session terminates.

For more information about the debugger’s configuration options, please refer to Ap-
pendix A.

5.1 The Panel
The debugger panel is divided into three sections. When it is started, only the topmost
two sections are visible, and the third one is collapsed. The sections, top to bottom,
present, respectively: the heap visualization graph, the symbolic execution informa-
tion for the currently selected state, and additional diagnostics information. The three
sections can be resized and even collapsed completely.

In addition to that, when the debugger is running, parts of the code are highlighted
to represent the position of symbolic execution states in the program. The currently
selected symbolic state is highlighted with a green background on the code. Children
states are highlighted with a light green underline. Siblings of the current state (pre-
decessors or successors in the symbolic execution order) are highlighted with a blue
underline. Top-level states, when not currently selected or not highlighted as siblings
of the current state, are shown with a dashed grey underline. Navigation through the
symbolic states is possible by clicking on the parts of code highlighted in the editor.
When multiple states correspond to the same location (for example, a variable declara-
tion and its assignment could have the same location in the code, but are represented
by distinct symbolic states), clicking on them will show a pop-up dialog that allows

55

Chapter 5 The Debugger

choosing which state to inspect. The colors used to highlight states can be configured
with the settings described in Appendix A.

A screenshot of a running debugging session is shown in Figure 5.1.

Figure 5.1: A running debugging session. The code being debugged is shown on the left-
hand side. Inspectable verification states are highlighted on the source with a blue
underline. The currently selected verification state is highlighted with a green back-
ground.

On the right-hand side, the debugger panel is visible. In the top half we can see the
heap graph visualization and the navigation controls at the very top. In the bottom
half we can partially see the information from the symbolic execution state.

5.1.1 Navigation Bar and Heap Visualization

The first section in the panel displays the navigation bar and the heap graph visualiza-
tion right below it.

The navigation bar contains a drop-down menu that allows to chose the verifiable (pred-
icate, function, or method) to inspect. Next to the drop-down menu are four buttons
that allow navigating the states in the symbolic execution trace. Finally, on the very
right of the navigation bar, the Mouse navigation checkbox allows to toggle navigation
by clicking on the code directly. Disabling the click event in the editor can be useful to
allow editing code without having to stop a debugging session.

The top-most section of the panel displays the graph generated from the current Alloy
instance. The graph can be moved in the viewport by clicking and dragging. It is

56

5.1 The Panel

possible to zoom in and out on the visualization by using the scroll-wheel. Whenever
a new state is selected, the graph is updated to reflect the new information.

The visualization in this section of the panel is built with the information from the
symbolic execution trace and the instance generated from the Alloy model. First, all the
atoms that are relevant for displaying the graph are extracted from the Alloy instance.
These atoms are those in the signatures for primitive types, collections and functions.
Then, the visualization is built starting from the information about the store provided
in the symbolic execution trace, and trying to map the variables known in the symbolic
state to the concrete values generated by Alloy. For each atom in the reference signature,
its fields are populated according to the values in the Alloy instance.

5.1.2 Symbolic State Information

The execution trace section provides information about the pre-state of the currently
selected program point and allows navigating through all the available states.

At the top, we have the partial execution tree. This is a list of all the top-level symbolic
execution actions performed by Silicon during the verification of the currently selected
verifiable. Each entry corresponds to either one of the basic symbolic execution actions
(produce, consume, evaluate, and execute)[12] or to other special types of entries that
appear in the symbolic execution trace (e.g. a global branch that splits the execution
inside a produce action). Each entry also shows the formula on which the action was
performed and the number of sub-entries. Clicking on any of the entries instructs the
debugger to show the symbolic state at the moment when the action was about to be
performed. What we see is always the pre-state of the currently selected action, i.e. the
symbolic state of the program on which the action was applied. Selecting an entry will
show its children (if there are any). The layout of the visualised information follows the
guidelines described by Kälin in his thesis [4, sec. 4.2].

Below that, the panel shows information about the symbolic pre-state of the currently
selected action. A symbolic execution state consists of a store, containing all local vari-
ables, a heap, and an old heap, which describe the locations to which we have permis-
sion, and a set of path conditions, which are facts known to be true about the objects in
the program in the current state[12].

The panel first lists all the heap chunks for which some permission is held, after that
it shows the store, containing all the local variables, and finally it displays a list of the
path conditions that have been collected during the verification of the program, in the
current execution trace. This information is part of what is used to encode a model of
the current state into the Alloy language (as described in sec. Chapter 3).

57

Chapter 5 The Debugger

Figure 5.2: A comparison between the schema of the navigation in the execution trace dis-
cussed by Kälin (picture from his thesis [4, sec. 4.2]), and the navigation section in the
panel of the new debugger. The numbers in the diagram indicate the order in which
the actions are completed.

5.1.3 Diagnostics

The diagnostics section is found at the bottom of the panel, but is collapsed by default.
It contains additional information that might be useful to investigate problems with the
debugger itself, or to inspect the intermediate results of the heap graph generation.

The section provides the following information:

• The raw Symbolic Execution Log received from ViperServer, containing the sym-
bolic state information about the last verification. The log is refreshed with each
new verification run.

• The Alloy model generated from the currently selected verification state, as well
as a button that allows to copy it into the clipboard, so that it may be run in the
Alloy analyser directly.

• The raw message from ViperServer containing the Alloy instance that was gener-
ated from the model (if an instance was generated at all).

• The DOT graph encoding the information displayed in the heap visualization.

58

6
Evaluation
6.1 A Case Study of the Modeling Technique

6.1.1 Showing Counterexamples

Through the use of our proof of concept implementation, we can already identify in-
stances where the debugger allows visualizing counterexamples that highlight a prob-
lem in the input program (either in the implementation or in the specification).

Imagine the user is trying to define a graph structure via quantified permissions. She
might write the following specification, but inadvertently introduce a bug by mistyping
the right-hand side of the implication that was supposed to ensure holding permission
to all reachable nodes. Such a specification is presented in Listing 6.1.

1 method remove(ns: Set[Ref], x: Ref)
2 requires forall n: Ref :: n in ns ==> acc(n.next)
3 requires forall n: Ref ::
4 n in ns && n.next != null ==>

:
n
::::
in

:::
ns

5 requires x in ns
6 {
7 // Encode state here
8 }

Listing 6.1: A wrongly specified graph, where references reachable via the next field are
not necessarily part of the set defining the structure, because of the typo highlighted
on line 4.

The visualizer will come up with an example highlighting the problem, like the one
in Figure 6.1. Here, we see that there are indeed 3 references in set ns, but there is an
additional reference, pointed to by one of the other objects, which has no fields and
does not belong to the set. This clearly shows that there is something wrong with our
specification and prompts us to check it. In doing that, we realize that in the right-
hand side of the implication, in the second precondition, we should have specified

59

Chapter 6 Evaluation

n.next in ns. Fixing the precondition produces the structures we expect. Note that,
in this situation, we were not inspecting a program where a verification failure occurred
(though the specification problem might have lead to such a problem later on), but
we were simply visualizing one of the instances of the current symbolic state. This
highlights the advantage of being able to model our program even when there is no
failure, as it could still lead to the discovery of problems with the specification or the
implementation.

Figure 6.1: An example of the visualization of the wrongly specified graph from List-
ing 6.1. We expect all reachable nodes to be part of set ns, but the last node does
not satisfy this property.

For an example with an actual verification failure, consider the method in Listing 6.2. A
user might be convinced, because of the fact that no node in the set nodes is unlinked,
that the elements form a ring and each node has to have a predecessor.

1 method ring(nodes: Set[Ref])
2 requires forall r: Ref :: r in nodes ==> acc(r.next)
3 requires forall r: Ref :: r in nodes ==> r.next != null &&
4 r.next in nodes &&
5 r.next != r
6 {
7 var n: Ref;
8 assume n in nodes
9

10 var hasPred: Bool := (exists r: Ref ::
11 r in nodes && r.next == n)
12 assert hasPred // Verification fails
13 ...
14 }

Listing 6.2: The user requires all elements of nodes to be linked, and expects them to form
a ring, but that’s not necessarily the case.

Inspecting the symbolic state on the verification failure shows the diagram in Figure 6.2,
where all nodes are linked, some of them do form a ring, and n is indeed linked to the

60

6.1 A Case Study of the Modeling Technique

rest of them, but no other node points to it. This is a counterexample to the assertion in
the original program, showing a situation, which is valid according to the specification,
but that may not have been considered by the user.

Figure 6.2: A diagram for the failing state in Listing 6.2, where node n is actually linked,
but has no predecessor since the nodes do not form a ring.

In Listing 6.3 we have another use case. In this snippet, we have a method with two
arguments: a set of references, for which we have permission to the val and next
fields, and a reference n belonging to that set. The method returns the sum of the value
at node n and the value of the next node, if it is not null, and at the same time exhales
permission from both val fields.

Verification of the method fails on line 16, as we may not have enough permission to
n.next.val. If we visualize the symbolic state at the failure we get the diagram in
Figure 6.3. Here, we can see that n.next is not null, but points to node n itself. Since
permission was exhaled for field val on n, we get the verification error. Adding a
precondition specifying that r.next is always different from r fixes the problem (it is
present, but commented-out in the snippet).

Now we will consider an example where no quantified permissions are involved that
highlights a fundamental difference between the new debugger and the old one. In
Listing 6.4 we have the predicate example from Section 3.1.5 that was used to explain
the importance of modeling combine operations. In the snippet, we have access to an
instance of predicate pair, and in the second precondition we learn that if the ref field
of the wrapped reference were null, then its val field would be equal to 3. In the body
of the method we unfold the predicate and try to assert that val is 3 (which is obviously
not the case).

Inspecting the symbolic state on the verification failure produces the visualization in
Figure 6.4. The important thing to notice here is that the counterexample correctly
presents a situation where x.next is not null, as a consequence of the information
learned in the precondition. What we learned in the unfolding expression happens

61

Chapter 6 Evaluation

1 field val: Int
2 field next: Ref
3 method thisPlusNext(nodes: Set[Ref], n: Ref) returns (sum: Int)
4 requires forall r: Ref :: r in nodes ==>
5 acc(r.next) && acc(r.val)
6 requires forall r: Ref :: r in nodes && r.next != null ==>
7 r.next in nodes
8 // requires forall r: Ref :: r in nodes && r.next != null ==>
9 // r.next != r

10 requires n in nodes
11 {
12 sum := n.val
13
14 exhale acc(n.val)
15 if (n.next != null) {
16 sum := sum + n.next.val // Verification fails here
17 exhale acc(n.next.val)
18 }
19 }

Listing 6.3: The method sums the values in field val of node n and its successor from the
set nodes, and exhales permissions for both fields. The verification fails because node
n might point to itself. Uncommenting the additional precondition fixes the problem.

1 field ref: Ref
2 field val: Int
3 predicate pair(x: Ref) { acc(x.ref) && acc(x.val) }
4
5 method test(x: Ref)
6 requires acc(pair(x))
7 requires unfolding acc(pair(x)) in
8 x.ref == null ==> x.val == 3
9 {

10 unfold acc(pair(x))
11 assert x.val == 3 // Verification fails
12 }

Listing 6.4: An example to show the importance of modeling snapshots. The relation
between x.ref and x.val is captured in different moments and the Alloy model
needs to correctly encode the relation between the snapshots to ensure generating
valid counterexamples.

62

6.1 A Case Study of the Modeling Technique

Figure 6.3: A diagram for the failing state in Listing 6.3, where n.next is not null, but
points to itself.

in a symbolic state where we have access to the values inside the predicate, and the im-
plication is recorded with respect to those symbolic values. These are then abstracted
in a snapshot (via a combine operation, see Section 3.1.5) when the predicate is folded
back. Then, inside the method, when we unfold the predicate again, we learn the rela-
tion between that same snapshot but two new symbolic values. Without modeling the
combine operations, there would be no way of relating the new symbolic values back to
the ones we had inside the unfolding expression. The old debugger ignored combines,
therefore it would be unable to deduce this information about the failing state. On the
other hand, in the new one, modeling snapshots allows us to learn facts about symbolic
values coming from different moments in the execution.

Figure 6.4: A counterexample for the snippet in Listing 3.1, where n.val is indeed different
from 3, and the instance correctly models the fact that x.ref cannot be null.

Finally, we will take a look at an example that uses a custom array domain. Consider
the snippet in Listing 6.5. Here, we define an Array domain, with function loc(a,
i).val denoting the i-th value in array a, and len(a) denoting its length. Method
swap in the snippet is supposed to swap the values at the i-th and j-th location in the
array, but is implemented incorrectly and fails to satisfy the assertion on line 31, stating

63

Chapter 6 Evaluation

that the location i holds the value that was previously at location j. Variables old_i and
old_j have been introduced to work around the lack of support for old expressions in
the current implementation of the debugger. The assertions are split over multiple lines
(the facts are first assigned to a Boolean-typed variable, then asserted) because of a lim-
itation on the information available in inspectable states, discussed in Section 6.3.5.

Figure 6.5: A counterexample for the swap method in Listing 6.5. Here we can see that
the value pointed-to by function loc(a, j) has been correctly updated with the new
value (2), but loc(a, i) still has the its old value because of the bug in the implemen-
tation.

Inspecting the symbolic state on the failing assertion, on line 31 of Listing 6.5, yields the
visualization in Figure 6.5. In the diagram, we can see that field val on the reference
at loc(a, i), pointed to by the concrete function call loc(Array_0, 2), holds value
2, which is the value originally at the i-th location (as witnessed by old_i). This is an
example where, both the specification and the failing assertion are correct, instead the
failure highlighted by the counterexample is in the implementation of the method.

64

6.1 A Case Study of the Modeling Technique

1 domain Array {
2 function len(a: Array): Int
3 function loc(a: Array, i: Int): Ref
4
5 function loc_to_arr(r: Ref): Array
6 function loc_to_idx(r: Ref): Int
7
8 axiom injectivity {
9 forall a: Array, i:Int ::

10 loc_to_arr(loc(a,i)) == a && loc_to_idx(loc(a,i)) == i
11 }
12 axiom lenPositive { forall a: Array :: len(a) >= 0 }
13 }
14
15 field val: Int
16
17 method swap(a: Array, i: Int, j: Int)
18 requires forall k: Int :: 0 <= k && k < len(a)
19 ==> acc(loc(a, k).val)
20 requires 0 <= i && i < len(a)
21 requires 0 <= j && j < len(a)
22 {
23 var old_i: Int := loc(a, i).val
24 var old_j: Int := loc(a, j).val
25
26 var tmp: Int := loc(a, i).val
27 loc(a, i).val := loc(a, i).val // Bug here
28 loc(a, j).val := tmp
29
30 var b1: Bool := loc(a, i).val == old_j
31 assert b1 // Verification error
32
33 var b2: Bool := loc(a, j).val == old_i
34 assert b2
35 }

Listing 6.5: A method for swapping the i-th and j-th values in an array. The typo on
line 27 leads the assertion on line 31 to fail, since the swap did not actually happen.
Variables old_i and old_j are used to work around the fact that old expressions are
not currently supported by the debugger.

65

Chapter 6 Evaluation

6.1.2 Soundness and Completeness

Consider the following snippet where we have a set of integers and we require that all
the integers it contains are 1.

method just_a_singleton(ints: Set[Int])
requires forall i: Int :: i in ints ==> i == 1
requires |ints| > 1

{
assert true // Encoding the state here

}

As a consequence of the first precondition, the set can either be empty or {1}, (since it
cannot contain any element other than 1). In addition to that, the second precondition
requires that the cardinality of the set be greater than 1, which is in contradiction with
the previous fact. This is an incompleteness in Silicon, as asserting false in the body
body of the method would result in a verification failure, but if we try inspecting any
state in the method’s body with the debugger, no instance can be found, because of the
contradicting constraints. After commenting out the second precondition or (changing
it to |ints| > 0) the debugger does generate valid instances of the symbolic state.

Spurious Verification Errors

We observed that, in some situations where we get spurious verification errors, the
debugger fails to generate counterexamples, effectively “detecting” contradiction be-
tween the error reported by the solver and the specification.

Due to incompleteness in the SMT solver (for example when dealing with
quantifiers)[13, 14] and of some of the axiomatisations used by Silicon (e.g. for sets), it
is possible that some of the errors being reported are actually spurious. In these
situations, the debugger would receive a symbolic execution trace containing a failing
assertion and would build a model for the state in which the failure occurred, in order
to generate a counterexample. Yet, there are no possible instances for this model,
exactly because the verification failure was spurious, and the counterexample
generation gives no results.

Such a situation occurs when inspecting the following snippet, presented in Schwer-
hoff’s thesis as an example of incompleteness in the axiomatisation of multisets [11,
app. B].

method test(ms1: Multiset[Ref], n: Int) {
inhale |ms1| == n
var ms2: Multiset[Ref] := ms1 intersection ms1
// assert ms2 == ms1
assert |ms2| == n // Fails without the preceding assertion

}

66

6.1 A Case Study of the Modeling Technique

When we inspect the symbolic state corresponding to the failure, we do not observe
instances of model we generate, even for large scopes. Running the model manually
in Alloy with the MiniSAT solver allows us to inspect its UNSAT core. In there we see
that several facts that are in contradiction, including the last SMT query. Removing
it from the program allows Alloy to generate instances of the model where the two
multisets indeed have the same cardinality. In this case, what allows Alloy to find the
contradiction is the fact that we model Viper collections concretely, which means that
their cardinality is known and all of their elements are part of the model.

This next example used to be another case where the debugger was able to identify a
problem in the case of spurious verification errors. This was true when we were still
encoding integers with Alloy’s Int signature directly. Now, since we use our custom
Integer signature, this situation is not detected anymore because of the problem with
approximating integers, discussed in Section 6.3.3. The example is still discussed be-
cause it clearly shows an interesting advantage of modelling all integers. This example
should be considered in the future when deciding if and how to implement approxi-
mations for integers. In the following Viper snippet:

function f(): Bool
ensures (exists n: Int :: n > 0) ==> result == true

method example()
{

var b: Bool := f()
assert b // Verification failure

}

Function f’s postcondition ensures that if there exists an integer greater than zero, then
the result is true. Due to incompleteness with existential quantifiers, Silicon is not able
to learn that the result of f is always true, therefore verification fails.

Again, inspecting the failing state did not generate a counterexample and analysing the
UNSAT core in Alloy highlighted problems with the axiom for f’s postcondition and
the implementation of isFalse, used in the encoding of the last failing SMT query:
isFalse[Fun.f1[Unit]]. Running the analysis after removing the non-proved SMT
query used to generate valid instances of the symbolic state.

The function’s postcondition were encoded by the following Alloy fact:

fact {
all s: Snap | let result_0 = Fun.f1[s] |
(some n: Int | n > 0) => (result_0 = True)

}

The existential quantifier was translated by Alloy’s some quantifier (and still is) which
has the same semantics. In this case, though, the quantification happened over a
bounded scope, the set Int, therefore the constraint is easily proved to be true for all

67

Chapter 6 Evaluation

objects in the universe (which contradicts the failing SMT query). Again, this is not the
case anymore, with the custom implementation of the Integer class, because there is
nothing ensuring that there exists an instance of Integer for each integer value
representable in the current scope.

Another example of spurious verification errors that are reported by Silicon, but that
do not occur in the debugger, is caused by the use of quantifier triggers which do not
have a matching term in the program. Triggers (or patterns) are terms associated with
a quantified formula (both in Viper and in the corresponding SMT quantifiers) that
solvers use to determine when to instantiate the body of the quantifier [13]. When a
term matching a quantifier pattern is found during the execution, then the body of the
quantifier is instantiated with the quantified variables replaced by the corresponding
values in the term that matched the trigger. Because the problem of testing whether
a certain expression is an instance of a trigger is NP-complete [13], SMT solvers are
incomplete when using triggers.

domain alwaysTrueDomain {
function alwaysTrue(i: Int): Bool
function dummyTrigger(i: Int): Bool

axiom alwaysTrueAxiom {
forall i: Int :: { dummyTrigger(i) } alwaysTrue(i)

}
}

method client() {
assert alwaysTrue(0) // Verification fails

}

In the previous snippet, verification fails because dummyTrigger does not appear con-
cretely in the program, therefore the axiom for function alwaysTrue is never instan-
tiated. Since triggers are not encoded in our model (Alloy does not need them), the
quantifiers they are defined for are always considered in the analysis and they cause a
contradiction with the failed SMT query that we got from Silicon.

6.2 Supported Subset of the Viper Language

At the moment, not all features of the Viper language are supported by the modeling
technique described in this report, and the debugger does not implement the whole
technique. In this section we discuss what features of the language are supported and
which are possible but not yet implemented.

68

6.2 Supported Subset of the Viper Language

6.2.1 Implemented Features

The current implementation of our technique supports the encoding of the primitive
types and the operations between objects of these types, as well as encoding the collec-
tions (sets, sequences and multisets) and their operations.

Integers are currently modeled by custom wrappers around Alloy’s built-in Int type,
and their operations are performed on the wrapped object directly. This approach suf-
fers from the limitations discussed in Section 6.3.3. In that section we also present alter-
native techniques to modeling integers that would solve these problems.

Permissions in the current implementation are modeled with explicit numerator and
denominator in the Int signature. This technique, again, suffers from the problems re-
lated to the boundedness of integers. In the future, this approach should be abandoned
and substituted with the relation-based encoding described in Section 3.4.

In general, the translation of all Silicon terms is supported: binary and unary opera-
tions, let and conditional expressions, quantifications, logical operations and applica-
tions. They are implemented as described in Section 3.1.

Field lookup operations can be encoded (which happens in the context of quantified
permissions with simple fields) can be encoded and are supported by the debugger.

The translation of heap-independent-functions and their application is supported. The
current implementation has limitations due to the increasing complexity of the model
caused by large relations, but we proposed an alternative modeling approach that
would solve this problem in Section 6.3.4.

The encoding of domains, domain functions, and domain axioms is supported. Again,
for domain functions, the current implementation has the complexity-related limitation
that regular heap-independent functions have, but the same solution can be applied to
solve the problem in this situation as well.

Inspection is possible in all symbolic states that are provided by the SymbolicExecu-
tionLogger, including those inside methods, functions, predicates, and while loops.

forperm expressions and inhale-exhale assertions are both “abstracted away” by Silicon:
we only see them as additional path conditions or heap chunks in the symbolic state,
therefore we can support them, as long as they do not make use of other features that
are currently unsupported.

6.2.2 Non-Implemented Features

The following features features of the Viper language are currently not supported by
our modeling technique.

old and labelled old expressions are currently not supported. An idea for tackling this
problem is discussed in Section 7.1.

69

Chapter 6 Evaluation

The current implementation of the debugger does not support heap-dependent func-
tions. This is because the additional “guard” described in Section 3.7.8 has not been
put in place yet. Therefore Alloy would try to satisfy the postcondition axiom with
all snapshots and fail. This is merely a limitation of the implementation, not of the
technique.

Nested quantifiers are not supported. The translation procedure should theoretically
allow translating them, but this has not been verified in practice.

Quantified predicate chunks are currently not supported, though we have the intuition
that the current encoding could be extended to model them by combining the approach
for predicates and for quantified field chunks.

Magic wands are not supported, therefore neither of the statements or expressions that
apply to them are (package, apply, packaging, and applying).

6.3 Limitations
In general, we do not see any fundamental limitation in our modeling technique that
would prevent it from working, but there are some more concrete problems that have
to be tackled.

6.3.1 Cardinalities

The scope for instance generation is set in Alloy by constraining cardinality of signa-
tures. The statement that instructs the analyser to search for an instance has the follow-
ing form:

run {} for baseCount but n sigName, . . .

Where baseCount is the maximum cardinality allowed for a signature, unless that spe-
cific signature is given a different cardinality in the constraints appearing after but. For
example, run {} for 5 but 2 Ref would allow any signature in the universe to con-
tain at most 5 atoms, except for the Ref signature which would be allowed to contain
at most 2 elements. In the presence of subtyping, like in the following snippet:

abstract sig A {}
sig B extends A {}
sig C extends A {}

run {} for 4

There could not be more than 4 atoms of each specific signature, but at the same time the
maximum number of atoms of A (including its subtypes) is also bounded by 4. Con-
cretely, {B1, B2, B3, C1} would be a valid configuration, while {B1, B2, B3, C1, C2} would
not be allowed because there are 5 atoms in signature A. In case A were not abstract,

70

6.3 Limitations

then there could be concrete atoms in it as well, but the total number of atoms would
still have to be at most 4. More details about carnalities are given in the Alloy language
reference[10, Appendix B.7.5].

Choosing optimal cardinalities is extremely important: specifying too restrictive car-
dinalities could lead to the model not being satisfiable, whereas specifying too large
ones quickly leads to an explosion in the complexity of the model and non-terminating
analysis.

Currently, we have no automatic technique for computing optimal cardinality bounds.
The optimal cardinality of a signature might depend on many factors, such as the the
number of fresh variables declared for it, whether it exists inside collections, whether
there is some expression in the path conditions that requires it to be higher than a cer-
tain bound, etc. Devising heuristics to at least give a rough approximation of the needed
cardinalities is left as future work. A manual solution is also possible, where the user is
asked to manually cardinalities before counterexample generation is started.

6.3.2 Increasing Complexity when Removing Permissions

Another source of complexity in the model is the removal of permissions from quanti-
fied chunks. Whenever some permissions is exhaled from a quantified chunk, Silicon
introduces pTaken functions to ensure that the right amount of permission is removed
for the right reference. Exhaling multiple times causes Silicon to introduce multiple
pTaken functions. Consider the following snippet:

method exhalingMultipleTimes(ns: Set[Ref], n1: Ref)
requires forall r: Ref :: r in ns ==> acc(r.val)
requires n1 in ns
requires |ns| == 4

{
var p1: Perm
var p2: Perm
var p3: Perm
var p4: Perm
var p5: Perm
assume p1 + p2 + p3 + p4 + p5 == write
assume p1 > none && p2 > none && p3 > none && p4 > none &&

p5 > none
exhale acc(n1.val, p1) // (1)
exhale acc(n1.val, p2) // (2)
exhale acc(n1.val, p3) // (3)
exhale acc(n1.val, p4) // (4)
exhale acc(n1.val, p5) // (5)
assert true // (6)

}

71

Chapter 6 Evaluation

Here we exhale symbolic permission amounts for the same field and receiver reference.
Silicon will add a pTaken function for each exhale and Alloy will have to compute the
result of these functions in order to determine if a reference has permission to a field or
not. We inspected the symbolic state at each location marked in the snippet.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6

A
ve

ra
ge

 R
un

tim
e

of
 3

 r
un

s
(s

)

Inspected State

Figure 6.6: The average analysis runtime in Alloy for each inspected symbolic state.

Figure 6.6 shows the time taken to generate an instance for each of the symbolic states
we analysed. We can clearly see that the runtime increases more and more for each new
pTaken term added, except for the last one. For each fraction of permission exhaled Al-
loy has to consider a more complicated formula to determine how much permission
is left, which increases the time taken to generate an instance. For the last inspection,
Alloy takes slightly less time than for the previous one. We speculate that this is be-
cause all the permission values have been exhaled and Alloy knows their sum already,
therefore it has less constraints to satisfy. When permission amounts are not known
precisely, the complexity of the analysis grows.

6.3.3 Limitations of Integers

There are two fundamental limitations with built-in Alloy integers:

1. They are all instantiated, i.e. there exists an instance of the Int signature for each
of the 2bitwidth integer values representable in the universe, which becomes prob-
lematic when using total, injective functions.

2. They are bounded, therefore the result of some operations on them cannot be
represented in the current universe.

72

6.3 Limitations

We will discuss both of these problems, some possible solutions for them, and what is
currently implemented in the debugger.

All Integers Are Instantiated

As explained in Chapter 3, Viper’s Int type is encoded using a custom Integer signa-
ture, but still relies on a wrapped Alloy Int type to implement operations. The reason
behind the introduction of this custom signature (rather than using Int directly) was to
mitigate the first problem with injective total functions that we just described.

Consider the the case where we have an injective total function in the program, for
example the loc function used in the integer domain (see Listing 6.5). Its injectivity
would be enforced by the following axiom:

axiom injectivity {
forall a: Array, i: Int ::

loc_to_arr(loc(a,i)) == a && loc_to_idx(loc(a,i)) == i
}

This axiom, because it quantifies over integers, would implicitly require having the
same number of references and integers in the universe, because for each array-index
combination in the arguments of loc, there would need to be a distinct resulting ref-
erence to ensure injectivity. This constraint would force us to have a large number of
Ref instances in the model (as many as the integers), increasing its complexity. More-
over, most of these reference might not be needed to encode the facts from the actual
program.

By declaring a custom Integer signature, we can control precisely the maximum num-
ber of instances that could exist in it. Using a custom signature means that the previous
axiom would not quantify over the built-in Int signature, but over Integer, removing
the need to have 2bitwidth Ref instances in the universe.

This approach to solving the problem also has limitations, for example the fact that
existential quantifiers cannot be modeled soundly in all cases. Consider the following
snippet, which may appear in the input program:

var b: Bool;
assume (exists i: Int :: i > 0) <==> b

The assumption would be registered as part of the path conditions, and finally encoded
in the Alloy model as a top-level fact.

one sig fresh_qvars {
temp0: Integer -> lone Integer

}
fact { (some i: Integer | fresh_qvars.temp0[i].value = 0 &&

i.value > fresh_qvars.temp0[i].value) <=> isTrue[b]
}

73

Chapter 6 Evaluation

In this situation there is no guarantee that there will actually be an integer greater than
zero in the universe, therefore it is possible for the quantifier to evaluate to false, which
means our approximation is unsound. If we were to ensure that we had an Integer
instance for each integer, then we would defeat their purpose. A solution to the un-
soundness problem would be to over-approximate these types of existential quantifiers
with true, to prevent us from generating invalid instances.

In order to implement this approximation, the translation procedure must be context-
aware because we want to over-approximate only the existential quantifiers appearing
in a positive context. Those appearing in a negative context should be approximated
by f alse or turned into universal quantifiers, if possible.

∃ i : Integer · i > 0 ∼ true
¬∃ i : Integer · i > 0 ∼ ∀ i : Integer · ¬(i > 0)

¬(p ∧ ∃ i : Integer · i > 0) ∼ ¬p ∨ ∀ i : Integer · ¬(i > 0)

An alternative approach for solving the problem of total functions would be to model
them as partial function in Alloy, but this would lead to complications in the rest of the
model because missing function results could falsify some constraints, which may lead
to unsoundness as well.

Bounded Scope

The second problem with integers in Alloy is that they are bounded. The scope for
valid integers when running an analysis is determined by declaring their maximum
bitwidth, e.g. by specifying 4 int in the run statement.

The fact that the bitwidth is limited means that the result of some operations may not
be expressible in the current constraints. For example, setting the bitwidth to 4 allows
expressing integers from -8 to +7, but this means that the result of plus[4, 6] cannot
be represented in the current bitwidth, because 10 > 7. Alloy gives us two options in
these situations: it could allow integers to wrap around in order to remain in the rep-
resentable bounds (i.e. plus[4, 6] = -6) or it could consider all the instances where
an overflow occurs as invalid. The first option could potentially lead to the generated
instance being inconsistent with the path conditions, making it invalid, therefore it is
not a viable solution for us. The second option allows us to keep the operations in the
model correct, but prevents us from expressing large integers, because increasing the
bitwidth quickly leads to performance degradation.

For example, encoding the snippet in Listing 6.6 and running the resulting model with
bitwidths 4, 5, 6, and 7, leads to an important increase in the runtime1, despite nothing
else in the model having changed. The results, shown in Figure 6.7, clearly exhibit an
exponential growth of the runtime. The number of expressible integers doubles with
each additional bit and Alloy generates atoms for each of them, therefore requires more
time to encode the model.

74

6.3 Limitations

1 field val: Int
2 method test(ns: Set[Ref])
3 requires forall r: Ref :: r in ns ==> acc(r.val) &&
4 (exists r2: Ref :: r2 != r && r2 in ns
5 && r.val == r2.val)
6 requires |ns| == 5
7 {
8 assert true
9 }

Listing 6.6: A snippet of code used to test the overhead of increasing the bitwidth when
generating executing the model.

0

2

4

6

8

10

12

14

4 5 6 7

A
ve

ra
ge

 R
un

tim
e

of
 5

 r
un

s
(s

)

Bitwidth

Figure 6.7: The average analysis runtime in Alloy with respect to the integer bitwidth.

An approach to solving this problem could be to completely abstract integers by treat-
ing them symbolically and encoding the facts we know about them in relations.

This might lead to the generation of spurious counterexamples, though, since concrete
values would need to be approximated. Spurious counterexamples could be filtered
out by encoding the resulting instance back into SMT2 and checking it for a verifica-
tion failure via Z3. The process could be repeated until an actual counterexample is
found. More details on this idea and the impact of approximations are discussed in
Chapter 2.

An important issue to consider, when approximating integers symbolically, is how to

1The benchmark was run via the Alloy API, outside of the IDE, therefore it does not consider the time
required to generate the model, which is generally negligible. The tests were run on a system running
Debian 9, with a quad-core CPU (Intel i5-3570K, 3.4 GHz) and 8 GB of RAM.

75

Chapter 6 Evaluation

1 abstract sig AbstractInteger {}
2
3 one sig IntegerTop extends AbstractInteger {}
4 one sig IntegerBot extends AbstractInteger {}
5 sig Integer extends AbstractInteger {
6 val: one Int
7 }
8
9 pred int_plus [i1, i2, i’: AbstractInteger] {

10 // Whenever Bottom is involved we get Bottom
11 (i1 = IntegerBot or i2 = IntegerBot)
12 => i’ = IntegerBot
13 else
14 // Whenever Top is involved, but not Bottom, we get Top
15 (i1 = IntegerTop or i2 = IntegerTop)
16 => i’ = IntegerTop
17 else
18 // Both operands are positive and the sum would overflow
19 (i1.val > 0 and i2.val > 0 and minus[max, i2.val] < i1.val)
20 => i’ = IntegerTop
21 else
22 // Both operands are negative and the sum would underflow
23 (i1.val < 0 and i2.val < 0 and minus[min, i2.val] > i1.val)
24 => i’ = IntegerBot
25 else
26 // The sum can be computed in the bounds
27 // i’ is an actual integer
28 i’ in Integer and i’.val = plus[i1.val, i2.val]
29 }

Listing 6.7: The implementation of a predicate that comnputes integer addition and
prevents overflows or underflows by mapping the result to a top (>) or bottom
(⊥) element respectively. In the snippet, min and max are helper (nullary) functions,
provided by the integer module, that denote, respectively the smallest and biggest
integer representable with the current bitwidth.

76

6.3 Limitations

express relations between symbolic integer values and concrete ones, such as the car-
dinality of a set. The approximation should ensure that when, for example, the cardi-
nality of a set is constrained with respect to some symbolical integer expression, the
number of objects that Alloy generates as elements of the set does not contradict other
constraints imposed on the symbolic integer value.

Another technique to consider for representing integer values, is to use a wrapper
around Alloy’s integers (much like in the current implementation), but to addition-
ally introduce top (>) and bottom (⊥) elements, that represent, respectively, integers
resulting from overflows and underflows. Operations between these objects can be im-
plemented with predicates that check if the operation would result in an overflow or
an underflow. This approach would allow not discarding instances where the result of
some arithmetic operation could not be represented precisely. An example implemen-
tation of the addition operation which considers overflows and underflows is shown in
Listing 6.7.

It is important to note that the introduction of the top and bottom elements requires
an approximation of comparison operations, in order to avoid getting unsound results.
For example, 4 < > is known to always be true, because all concrete values are smaller
than “overflowed ones”, but > < > does not have a clear answer, because we don’t
know which values the two different tops are approximating. In these situations the
comparison should be over-approximated to avoid excluding valid instances of our
counterexample space. Applying the approximation, once again, requires knowing if
the operation is being performed in a positive or negative context. This has to be de-
termined at translation time. Once the context of the operation is known, this can be
implemented by using two different predicates, that check whether both operands are
top or bottom and approximate according to the current context.

1 pred int_lt_pos [i1, i2: AbstractInteger] {
2 (i1 = IntegerTop and i2 = IntegerTop) or
3 (i1 = IntegerBot and i2 = IntegerBot) or
4 (i1 = IntegerBot and i2 = IntegerTop) or
5 (i1 in Integer and i2 in Integer and i1.val < i2.val)
6 }
7
8 pred int_lt_neg [i1, i2: AbstractInteger] {
9 not (i1 = IntegerTop and i2 = IntegerTop) and

10 not (i1 = IntegerBot and i2 = IntegerBot) and
11 ((i1 = IntegerBot and i2 = IntegerTop) or
12 (i1 in Integer and i2 in Integer and i1.val < i2.val))
13 }

Listing 6.8: Example implementation of predicates that over-approximate the less than
operation between integers with top and bottom elements.

77

Chapter 6 Evaluation

Listing 6.8 shows an example of two predicates that implement the less than opera-
tion between integers and correctly approximate the cases with top and bottom. Using
the two predicates, int_lt_pos[IntegerTop, IntegerTop] is true, because if we had
the that comparison in a positive context in the program we would like it to be ignored,
whereas int_lt_neg[IntegerTop, IntegerTop] is f alse, because in the negative con-
text we ignore values resulting in false.

The problem of bounded integers also affects permissions when using the technique
that explicitly models their numerator and denominator (used in the current imple-
mentation). With this implementation of the permission objects, operations between
them can quickly result in an integer overflow because the fractions are not simplified,
leading to large integer values in the numerator or denominator. We can work around
this problem by modeling permissions in a symbolic fashion and by keeping track of
some relations between them rather than their actual value. Again, this approach re-
quires approximating some values or operations, therefore would need an additional
filtering step to exclude spurious counterexamples.

Both for modeling integers and permissions, the approaches that depend on Alloy’s
built-in integers are more intuitive and easy to implement, but clearly pose strict limi-
tations on what can be modeled. The current implementation of the debugger employs
the techniques that depend on Alloy integers, because there is no filtering phase im-
plemented in our pipeline that would allow filtering-out spurious counterexamples.
Relation-based encoding of integers and permissions, where the concrete values are
completely abstracted-away, would clearly not suffer from the limitations of bounded
integers but would potentially result in the generation of spurious counterexamples.
For this reason, in future extension of this work, the modeling approaches that use con-
crete values should be abandoned, and the relation based modeling approach should
be used along with the oracle to distinguish spurious counterexamples.

6.3.4 Large relations

In our modeling technique, we represent functions as n-ary relations, where the first
n− 1 elements correspond to the parameters of the function and the n-th element is the
return value. These relations are declared as part of the Fun signature (see Section 3.7.8).
This approach works for functions with a small number of parameters, but becomes
problematic when the arity of the function starts to grow. For example, in the following
snippet, the debugger is not able to generate examples of the program’s state:

function f0(i: Int, j: Int, k: Int, l: Int): Int

method test() {
var i: Int := f0(1, 2, 3, 4)
// Encoding state here

}

78

6.3 Limitations

The generation fails in Alloy with the following error:

“Translation capacity exceeded.
In this scope, universe contains 33 atom and relations of arity 7 cannot be repre-
sented.”

A StackOverflow discussion2regarding this problem links to a paper where the reason
behind it is explained. Kodkod is a constraint solver for relations logic used internally
by Alloy. In order to represent a relation of arity k, Kodkod allocates a matrix of size nk,
where n is the number of atoms in the universe. This matrix is represented by a sequen-
tial array indexed by a Java integer. Therefore, when nk exceeds Integer.MAX_VALUE,
Kodkod is unable to represent our relation [15, sec. 5].

In our example, function f0 is encoded as a relation, which becomes a tuple (Fun,
Snap, Int, Int, Int, Int, Int), where the first element is the signature the rela-
tion is declared in (hence the “arity 7” in the error message). There is no simple refac-
toring that can be applied automatically to the model in order to solve the problem.
The only solution is to devise a different encoding, which does not make use of such
high-arity relations.

In our case, an alternative approach to modeling functions without using relations,
might be to encode them as signatures, with a field for each of the arguments and the
result, or to declare a signature for the parameters of each function. For example, a
function f : Snap → Int → Int → Re f , could be modeled with either of the following
encodings:

// One signature for each function
sig fun_f {

a1: one Snap,
a2: one Int,
a3: one Int,
res: one Ref

}

// One "global" Fun signature +
// one signature per arguments configuration
one sig Fun {
f: Args_f -> one Ref

}
sig Args_f {
a1: one Snap,
a2: one Int,
a3: one Int,

}

79

Chapter 6 Evaluation

The current implementation translates functions to relations, therefore it suffers from
the problem we just described. Implementing these alternative encodings is certainly
required to support a broader subset of Viper programs and should be considered as a
topic for future work.

6.3.5 States in the Symbolic Execution Trace

There are currently two limitations with the information provided by Silicon via the
symbolic execution trace. Both have to do with the amount of information reported
when a verification failure occurs, and both are “by design”.

The first limitation has to do with the way the information is gathered by the symbolic
execution logger, which is responsible for recording the symbolic execution trace. For
each fundamental action in the symbolic execution (evaluation, execution, production,
or consumption) [12], the state being recorded by the logger is the one to which the
action is being applied, effectively the pre-state. The effects of the current action will
be visible in the pre-state of the next action being executed. This means that whenever
a verification failure occurs, for example during the execution of an assert statement,
the facts discovered during the execution of the current statement will not be recorded,
as their effect would theoretically only be visible in the pre-state of the next statement
(which we will not visit since we found a verification failure). Consider the following
assert statement, where we compare the i-th value of an array with that of variable
old_j.

assert loc(a, i).val == old_j

If this assertion were to fail, the we would get a last failed SMT query of the form:

Lookup(val, sm@27(), loc(a@1, i@6)) = old_j@17

The problem, in this case, is that the snapshot map sm@27() does not exist in the pre-
state of the failed assertion because it would only show up in the pre-state of the next
statement, therefore it is not constrained with respect to known values and inspecting
the failed assertion would lead to a wrong counterexample. A workaround for this
problem is to evaluate the expression in a temporary variable before asserting it:

var b: Bool := loc(a, i).val == old_j
assert b

In this way, all the facts about the objects involved in the fact being asserted are already
recorded in the pre-state when the assertion fails. To solve this problem, the symbolic
execution trace should be enhanced to contain an additional field with the information
in the state currently being built.

2https://stackoverflow.com/questions/21387155/ (Type error has occurred: translation capacity ex-
ceeded)

80

https://stackoverflow.com/questions/21387155/

6.4 Implementation

The second limitation is more of a non-obvious design quirk than an actual problem.
It happens during the verification of programs with “global branches”, and results in
some possible verification paths not being reported in the symbolic execution trace.
Consider the recursive list implementation in the following snippet.

predicate list(this: Ref) {
acc(this.value) && acc(this.next) &&

(this.next != null ==> acc(list(this.next)))
}

The recursive call in the predicate is “guarded” by a check for this.next being null.
The symbolic execution of a program unfolding such a predicate causes Silicon to in-
troduce a so-called global branch when evaluating the implication. Here, the execution
splits to consider the two cases: when this.next is null, and when it is not. Silicon
would first check the correctness of the program in the then branch and then do the
same for the else branch, but, if a verification error is found while exploring the first
branch, then the symbolic execution stops and the else branch is not explored, result-
ing in the symbolic execution trace not including any state in the second verification
path.

6.4 Implementation

6.4.1 Performance

The debugger is not currently performant enough to be used on real-world examples.
This is due to a couple of reasons: it takes a long time to receive the symbolic execu-
tion information from the backend, and not having a good way of approximating the
cardinalities when generating the model (see Section 6.3.1) makes constraint solving in
Alloy much more complex and slow.

Delivery of the Symbolic Execution Trace

The delivery of the full symbolic execution trace takes a large amount of time.
Analysing the graph marking example3from the Viper example set yields the timings
in Table 6.1. We can see that most of the time is spent waiting for the symbolic
execution trace to be delivered to the debugger, after the verification has finished.
Further manual testing revealed that the time spent encoding of the path conditions
into a JSON object is almost instantaneous and what requires a long time is the actual
transfer of the trace to the client.

In the graph-marking example, there are thousands of symbolic states that need to be
reported, therefore the JSON message encoding the symbolic execution trace can be-
come quite big. It is yet to be determined whether the bottleneck is on the receiver’s

3http://viper.ethz.ch/examples/graph-marking.html

81

http://viper.ethz.ch/examples/graph-marking.html

Chapter 6 Evaluation

Event Time elapsed (s)
Verification terminated N/A
SymbExLog received by the IDE 68.925
SymbExLog parsed 0.001
SymbExLog logged to panel (diagnostics) 0.740
Internal representation built from SymbExLog 0.968
Model encoded 0.008
Alloy instance generated 1.931

Table 6.1: Duration of the different steps from when the verification has terminated until
a Alloy instance has been generated. The time elapsed column shows the time elapsed
since the previous event.

side (i.e. VS Code) or on the sender’s side (ViperServer). This is to be investigated, as it
could be problematic for debugging larger programs.

In general, we observed the time taken to build the model to be negligible with respect
to the time taken needed by the rest of the system to produce an instance. We observed
the encoding time to be the order of tens of milliseconds. On the other hand, the time
taken by Alloy to search for an instance satisfying the model varies largely, mainly
depending on the cardinalities set in the run command (see Section 6.3.1).

6.4.2 Extensibility

As discussed in Chapter 4, one of the main reasons behind the re-design of the system’s
architecture was to make it more easily extensible.

The current implementation, where the debugger is separate from the main extension,
allows other tools to coexist with it. One can envision adding an new debugger exten-
sion for the Carbon backend, that would access the functionalities of the main extension
via the ViperApi, just like the current debugger. The debugger itself can be extended
to export its own API, which could be used by other extensions to interact with the
debugging session.

The translation and other similar operations on terms are implemented via the visitor
pattern [16], which makes it easily extensible, such that it possible to add the missing
objects which are not supported by the current debugger.

The main extension has been updated to allow registering listeners for “unexpected
ViperServer messages” via the ViperApi. With this mechanism, other extensions can
be notified when the currently active backend needs to report some additional infor-
mation which is not destined to the main extension. This is used by the debugger
to retrive the symbolic execution trace, emitted by the reporting infrastructure of the
backend whenever the --ideModeAdvanced flag is set. The same approach could be
used by other extensions that require information from the backends or ViperServer

82

6.5 Comparison to Other Tools

itself. ViperServer just needs to be updated to be able to marshal a new message type
sent from the reporting infrastructure, and the new messages will be delivered by the
main extension to whoever is listening for them, without the need to update its source
code.

6.4.3 Modularity

As discussed in Section 6.3, one important factor in the performance, modeling power,
and correctness of the debugger depends on the representation we use for the funda-
mental Viper types.

Given that permissions and operations between them are encoded via the use of Alloy
predicates, the rest of the model does not depend on their internal implementation.
This makes it possible to change the way they store or approximate their value, without
having to update the rest of the system, because their interface can remain unchanged.
In fact, we do have two different implementations of fractional permissions (one with
explicit numerator / denominator values, and one which relies on relations) which can
used interchangeably, without the need to modify other parts of the model.

At the moment, changing the implementation used by one of the types is only possible
by modifying the source code to load a different file in the preamble, but this mecha-
nism could easily be made accessible via the debugger’s configuration options, to allow
loading different encodings in the preamble at runtime.

In the current implementation, integers are modeled by using Alloy’s Int signature, but
one could imagine abstracting the arithmetic and comparison operations via predicates
(like it is already done for permissions) in order to enable changing the encoding of
integers at runtime as well.

6.5 Comparison to Other Tools

6.5.1 Previous Debugger

The previous debugger is an obvious tool to compare the new debugger with, although
internally they work in completely different ways. The original debugger provided a
panel in which two verification states could be compared. For each of the two states, the
information from the symbolic execution trace was shown. A screenshot of a debugging
session in the original debugger is shown in Figure 6.8.

The original debugger provided two different modes: the simplified mode, where the
information displayed was filtered to only show a subset of the symbolic states, and an
advanced mode, where all verification states were visible.

Our debugger offers only one mode, similar to the advanced mode from the original
debugger. In both debuggers a list of the path conditions is shown, though the one

83

Chapter 6 Evaluation

Figure 6.8: A debugging session in the original debugger, running in advanced mode. The
two columns of the panel show the symbolic execution information of the two selected
states.

from the original debugger does not contain all path conditions, because some were
explicitly filtered out. The new debugger displays the information about the heap and
the store both in textual form, and in the graph. The original debugger shows that
information in the graph only. The partial execution tree is shown in both tools, but the
one from the original debugger is static, whereas the one in the new debugger can be
used to navigate the verification states.

Both debuggers provide a visualization of the store and the heap. The visualization
from the original debugger shows the information contained in the symbolic execution
trace and additionally tries to infer nullity of the references in the state by checking if
they are explicitly known to be null from the path conditions. The new debugger takes
a different approach, by encoding the information from the symbolic execution trace in
a model and displaying concrete instances generated from that model. This means that
the new debugger is able to learn more facts from the path conditions, and visualize
objects of which the old debugger was not aware.

One important difference between the diagrams generated by our debugger and those
generated by the old one, is that in our case we visualize concrete situations, where all
variables are assigned a value. In the original debugger, the variables in the program
would be shows as symbolic, unless there was a path condition which clearly assigned
a concrete value to them. For example, if you compare the screenshots in Figure 6.8
and Figure 6.9, you can see that the value field in the visualization from the original
debugger is simply reported to be present, whereas in the new visualization, the fields

84

6.5 Comparison to Other Tools

Figure 6.9: The debugger inspecting the recursive predicate example from Kälin’s thesis
on a failing state.

are actually assigned a concrete value.

The original debugger provided support to for the visualization of predicates (also re-
cursive) and fields. The new debugger also supports those language constructs and in
addition to that it allows visualizing structures defined via quantified permissions and
collections, including the elements inside them.

Figure 6.9 shows the example from the original debugger (the same shows in Figure 6.8)
in the new debugger. We are inspecting the failing state and the visualization shows
a counterexample to the specification: we are trying to fold a recursive predicate, but
head.next is not folded.

Figure 6.10 shows the same example being inspected in the same location (and fol-
lowing the same path through the program) after the code has been fixed by folding
the newly added list node in the then branch. In this case the diagram shows that
head.next is not null and is indeed folded in a list predicate.

6.5.2 VeriFast IDE

VeriFast[5] is a verifier for annotated C and Java programs. It is implemented via sym-
bolic execution and provides an IDE which allows inspecting the symbolic state of a
program when a failure is found. Figure 6.11 shows a screenshot of the VeriFast IDE
during a debugging session.

85

Chapter 6 Evaluation

Figure 6.10: The debugger inspecting the same state as in Figure 6.9, after having fixed the
method to correctly fold the newly added list node.

The IDE allows inspecting the execution tree up to the current state. For the current
state is displays the path conditions (listed as “Assumptions” in the screenshot), the
heap chunks and the local variables in the store (on the right-hand side). Just like for
our debugger, the VeriFast IDE displays the key information about a symbolic state
and allows navingating the execution tree, but does not try to provide any type of
visualization based on the information from the symbolic state.

6.5.3 SED

The Symbolic Execution Debugger (SED) [6] allows interactive debugging of programs via
symbolic execution. Debugging is performed by exploring the symbolic execution tree
of the program. The tool displays information about each verification state such as the
symbolic stack and path conditions. In cases the debugger detects multiple possible
memory layouts, it allows visualizing the different configurations for local variables
only. A screenshot of this feature can be seen in Figure 6.12

The visualization approach of the SED debugger is limited to aliasing between local
references, but it allows to visualize all possible combinations of them, a feature that
our debugger does not support, as currently it only visualizes one concrete example.

4Image from http://i12www.ira.uka.de/key/eclipse/SED/index.html

86

http://i12www.ira.uka.de/key/eclipse/SED/index.html

6.5 Comparison to Other Tools

Figure 6.11: Debugging a verification failure in the Verifast IDE

Figure 6.12: Inspecting the memory layouts caused by aliasing in SED. The scrollbar
changes which of the two visualizations in the red boxes is shown. Only one con-
crete aliasing configuration is visible at any time.4

87

7
Conclusion and Future Work
This project started out as a successor to the previous debugger project by Kälin. The
original goals were to expand on what had already been done by adding support for
quantified permissions, and then expand the editor with a series of features for more
easily debugging verification failures. After a while it became obvious that we would
have needed a different way of obtaining instances of our model in order to maintain
them manageable in size and to be able to quickly add new facts in order to focus on
more specific situations. Thus, we began exploring the idea of turning the information
we had about the failing symbolic state into an Alloy model, in order to be able to
generate instances of our program. After that, the project turned into feasibility study
on whether counterexamples could be easily obtained via Alloy and the objective of
building an actual usable tool was put aside.

In this thesis, we explored an approach for the creation of an advanced debugging tool
for symbolic execution and implemented it in a proof of concept integrated with the
existing Viper IDE.

Though the current implementation is just a proof of concept and not all ideas have
been implemented (see Section 6.3), we think it provides evidence that this approach is
worth investigating further, to fix its limitations.

The modeling approach we devised allows encoding the information from a symbolic
state in the symbolic execution trace into an Alloy model, which can be then run to
generate concrete instances of the program’s state. This allows the visualization of pro-
gram examples, but most importantly, the visualization of counterexamples, when the
verification has failed.

This modeling technique has been implemented in a tool, integrated with the Viper
IDE, which allows inspecting the information available to Silicon during the verifica-
tion of a Viper program, and to automatically generate a visualizations of the program’s
symbolic states, without leaving the editor. The current implementation allows visu-
alizing predicates and functions like the previous debugger, but is additionally able to
visualize objects defined via quantified permissions.

89

Chapter 7 Conclusion and Future Work

In order to enable the implementation of the new tool and at the same time maintain the
system extensible, we designed and implemented a new architecture which integrates
the already-existing Viper extension with the new tool. In this new architecture, the
debugger and the main extension are completely separate. The Viper IDE is unaware
of the internals of the debugger, and can support other extensions that interact with it
at the same time.

Moreover, we updated the backend to provide the additional information that is re-
quired for encoding all aspects of the programs symbolic state for the generation of
counterexamples. This information is made available along with symbolic execution
trace. The delivery mechanism of the trace itself has been completely changed, so that
now all the information is delivered via ViperServer as a JSON object.

7.1 Future Work
In this section we briefly discuss some topics which may be interesting to explore in
future work on the debugger. These include both extensions to the modeling technique
and to the implementation of the tool.

Addressing current limitations Of course, the most obvious and important topic for
future work would be to address the limitations of both the modeling approach
and of the current implementation discussed in Section 6.3.

Approximation Both in Chapter 2 and in Section 6.3 we discussed the need for approx-
imations and consequently for oracle in the pipeline, that could distinguish spuri-
ous counterexample candidates from actual counterexamples. One clear topic for
further work is therefore to add support for approximations both in the approach
and in the actual pipeline of the system.

Support for user-provided constraints As outlined in Chapter 2, our technique con-
ceptually allows for additional constraints to be added to the model. We think
an interesting idea to explore would be that of enabling the user to add new con-
straints for the purpose of narrowing the counterexample search space to a more
specific subset or to exclude situations that may not be of interest.

Modeling multiple states This report describes an approach for translating a single
verification state into an Alloy model. Viper allows using old and labelled old
expressions to refer to the value of heap-dependent expressions at previous point
in time. Silicon keeps track of the old heap and resolves labelled old expressions
to a symbolic value for us, but it’s not clear how multiple states could be modeled
together and at the same time kept consistent with each other. One problem is
certainly that, in the symbolic execution trace, we have no distinction between a
symbolic value from the current state and one that was “retrieved” from an old
state. An idea to support this could be to exploit the orderings module provided
by Alloy, which allows building dynamic models where multiple symbolic states

90

7.1 Future Work

are represented and related to each other. One important consideration to make
is, given that our end-goal is that of building small visual, is how to represent
the information from multiple verification states in an easy to understand and
compact way.

Exploration of counterexample space While the space explored by Alloy is bounded,
there still might be many instances that satisfy the constraints of a model. This
means that there might be different counterexamples to present to the user. The
alloy API that we use in the ViperServer backend allows searching for the “next”
instance, once a first one has been found. It would be interesting to investigate
ways to integrate this mechanism into the debugger. One important challenge to
solve, when researching this feature, is that of devising a way to prevent Alloy
from generating multiple instances which only differ slightly one from the other.

91

Bibliography
[1] P. Müller, M. Schwerhoff, and A. J. Summers. Automatic verification of iterated

separating conjunctions using symbolic execution. In S. Chaudhuri and A. Farzan,
editors, Computer Aided Verification (CAV), volume 9779 of LNCS, pages 405–425.
Springer-Verlag, 2016.

[2] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Veri-
fication, Model Checking, and Abstract Interpretation (VMCAI), volume 9583 of LNCS,
pages 41–62. Springer-Verlag, 2016.

[3] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfia-
bility modulo theories, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations, pages 825–885. 1 edition, 2009. ISBN 9781586039295. doi: 10.3233/
978-1-58603-929-5-825.

[4] Ruben Kälin. Advanced features for an integrated development environment.
Master’s thesis, ETH Zürich, 2015.

[5] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. Verifast: A powerful, sound, predictable, fast verifier for
c and java. In Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Ra-
jeev Joshi, editors, NASA Formal Methods, pages 41–55, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. ISBN 978-3-642-20398-5.

[6] Martin Hentschel, Richard Bubel, and Reiner Hähnle. The symbolic execution
debugger (sed): a platform for interactive symbolic execution, debugging, ver-
ification and more. International Journal on Software Tools for Technology Trans-
fer, Mar 2018. ISSN 1433-2787. doi: 10.1007/s10009-018-0490-9. URL https:
//doi.org/10.1007/s10009-018-0490-9.

[7] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond asser-
tions: Advanced specification and verification with jml and esc/java2. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, edi-
tors, Formal Methods for Components and Objects, pages 342–363, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg. ISBN 978-3-540-36750-5.

[8] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification - The KeY
Book - From Theory to Practice, volume 10001 of Lecture Notes in Computer Science.

93

https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1007/s10009-018-0490-9

Bibliography

Springer, 2016. ISBN 978-3-319-49811-9. doi: 10.1007/978-3-319-49812-6. URL
http://dx.doi.org/10.1007/978-3-319-49812-6.

[9] AlloyTools. alloytools.org, 2017. URL http://alloytools.org/.

[10] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2012. ISBN 0262017156, 9780262017152.

[11] Malte Schwerhoff. Advancing Automated, Permission-Bases Program Verification Us-
ing Symbolic Execution. PhD thesis, ETH Zürich, 2016.

[12] Bart Jacobs, Jan Smans, and Frank Piessens. Verification of imperative programs:
The verifast approach. a draft course text. Technical Report Technical Report CW-
578, Department of Computer Science, Katholieke Universiteit Leuven, Belgium,
2010.

[13] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. J. ACM, 52(3):365–473, May 2005. ISSN 0004-5411. doi: 10.
1145/1066100.1066102. URL http://doi.acm.org/10.1145/1066100.1066102.

[14] Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers. In
Frank Pfenning, editor, Automated Deduction – CADE-21, pages 183–198, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73595-3.

[15] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. Unify-
ing execution of imperative and declarative code, 2011.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1 edition, 1994. ISBN 0201633612. URL http://www.amazon.com/
Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/
ref=ntt_at_ep_dpi_1.

94

http://dx.doi.org/10.1007/978-3-319-49812-6
http://alloytools.org/
http://doi.acm.org/10.1145/1066100.1066102
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

A
Configuration
The following lists contains all the configuration options available in the debugger ex-
tension, their default value (in parentheses) and their description. Note that all these
options are part of the viperDebuggerSettings namespace, therefore they should be
prepended with it when used in the configuration.

For the debugger to be able to function correctly, the Silicon backend has to be
configured in the main extension with the additional "--ideModeAdvanced" and
"--numberOfParallelVerifiers 1" options.

debugImmediately (false)
If enabled, the debugger is started immediately, whenever a Viper file is opened.

logLevel ("INFO")
The minimum level of importance of the messages to log.
Valid values are DEBUG, INFO, WARNING, and ERROR.

alloySATSolver ("minisatprover(jni)")
The SAT solver Alloy should use to generate instances of the model.
Valid values are sat4j, minisat(jni), and minisatprover(jni)

integerBitWidth (4)
The bit-width Alloy should use in the constraints for the model.
Valid values are positive integers.

instancesBaseCount (6)
The base value to add to the instance count when generating the constraints for the
model.
Valid values are positive integers.

instancesBaseCount (6)
The base value to add to the instance count when generating the constraints for the
model.
Valid values are positive integers.

95

Appendix A Configuration

highlighting.currentStateBackgroundColor (#007701)
The background colour of the currently selected verification state.
Valid values are hexadecimal or RGB colours.

highlighting.currentStateForegroundColor (#EEEEEE)
The foreground colour of the currently selected verification state.
Valid values are hexadecimal or RGB colours.

highlighting.topLevelStateUnderlineColor (#707070)
The underline colour of top-level verification states.
Valid values are hexadecimal or RGB colours.

highlighting.childStateUnderlineColor (#2CAD30)
The underline colour for children of the selected verification state.
Valid values are hexadecimal or RGB colours.

highlighting.siblingStateUnderlineColor (#3668E8)
The underline colour for siblings of the selected verification state.
Valid values are hexadecimal or RGB colours.

96

B
Preamble source
The following snippet presents the complete static preamble, that is added at the the
beginning of each encoded model.

1 // ===== Preamble (resources/preamble.als) =====
2 open util/boolean
3 open util/ternary
4 open util/integer
5 open util/relation
6 abstract sig Snap {}
7 one sig Unit extends Snap {}
8 abstract sig SortWrapper extends Snap {
9 wrapped: one univ

10 }
11 pred sortwrapper_new [e: univ, sw: Snap] {
12 sw in SortWrapper
13 sw.wrapped = e
14 }
15 abstract sig Combine extends Snap {
16 left: one Snap,
17 right: one Snap
18 }
19 pred combine [l, r: Snap, c: Combine] {
20 c.left = l && c.right = r
21 c.left != c && c.right != c
22 c not in c.^left
23 c not in c.^right
24 }
25 abstract sig Integer {
26 value: one Int
27 }
28 fact { all i1, i2: Integer | i1 = i2 <=> i1.value = i2.value }

97

Appendix B Preamble source

29 // ===== Perms (resources/perms.als) =====
30 abstract sig Perm {
31 num: one Int,
32 denom: one Int
33 } {
34 num >= 0
35 denom > 0
36 }
37 one sig W in Perm {} {
38 num = 1
39 denom = 1
40 }
41 one sig Z in Perm {} {
42 num = 0
43 denom = 1
44 }
45 pred perm_new[n, d: Int, p’: Perm] {
46 p’.num = n
47 p’.denom = d
48 }
49 pred perm_less[p1, p2: Perm] {
50 mul[p1.num, p2.denom] < mul[p2.num, p1.denom]
51 }
52 pred perm_at_most[p1, p2: Perm] {
53 mul[p1.num, p2.denom] <= mul[p2.num, p1.denom]
54 }
55 pred perm_at_least[p1, p2: Perm] {
56 mul[p1.num, p2.denom] >= mul[p2.num, p1.denom]
57 }
58 pred perm_greater[p1, p2: Perm] {
59 mul[p1.num, p2.denom] > mul[p2.num, p1.denom]
60 }
61 pred perm_plus[p1, p2, p’: Perm] {
62 (p1.denom = p2.denom)
63 =>
64 (p’.num = plus[p1.num, p2.num] &&
65 p’.denom = p1.denom)
66 else
67 (p’.num = plus[mul[p1.num, p2.denom], mul[p2.num,

p1.denom]] &&
68 p’.denom = mul[p1.denom, p2.denom])
69 }
70 pred perm_minus[p1, p2, p’: Perm] {

98

71 perm_equals[p1, p2]
72 => p’ = Z
73 else (
74 p1.denom = p2.denom
75 => (
76 p’.num = minus[p1.num, p2.num] and
77 p’.denom = p1.denom
78) else (
79 p’.num = minus[mul[p1.num, p2.denom], mul[p2.num,

p1.denom]] and
80 p’.denom = mul[p1.denom, p2.denom]
81)
82)
83 }
84 pred int_perm_div[p: Perm, d: Int, p’: Perm] {
85 p’.num = p.num
86 p’.denom = mul[p.denom, d]
87 }
88 pred perm_mul[p1, p2, p’: Perm] {
89 p’.num = mul[p1.num, p2.num]
90 p’.denom = mul[p1.denom, p2.denom]
91 }
92 pred int_perm_mul[i: Int, p, p’: Perm] {
93 p’.num = mul[p.num, i]
94 p’.denom = p.denom
95 }
96 pred perm_min[p1, p2, p’: Perm] {
97 mul[p1.num, p2.denom] < mul[p2.num, p1.denom]
98 => (p’ = p1)
99 else (p’ = p2)

100 }
101 pred perm_equals [p1, p2: Perm] {
102 (p1.num = p2.num && p1.denom = p2.denom)
103 || (mul[p1.num, p2.denom] = mul[p1.denom, p2.num])
104 }
105 // ===== Sets (resources/set_fun.als) =====
106 abstract sig Set {
107 set_elems: set univ
108 }
109 pred empty_set [s’: Set] {
110 no s’.set_elems
111 }
112 pred set_singleton [e: univ, s’: Set] {

99

Appendix B Preamble source

113 s’.set_elems = e
114 one e
115 }
116 pred set_add [s1: Set, e: univ, s’: Set] {
117 s’.set_elems = s1.set_elems + e
118 one e
119 }
120 pred set_cardinality [s1: Set, i: Integer] {
121 #(s1.set_elems) = i.value
122 }
123 pred set_difference [s1, s2, s’: Set] {
124 s’.set_elems = s1.set_elems - s2.set_elems
125 }
126 pred set_intersection [s1, s2, s’: Set] {
127 s’.set_elems = s1.set_elems & s2.set_elems
128 }
129 pred set_union [s1, s2, s’: Set] {
130 s’.set_elems = s1.set_elems + s2.set_elems
131 }
132 pred set_in [e: univ, s1: Set] {
133 e in s1.set_elems
134 one e
135 some s1.set_elems
136 }
137 pred set_subset [s1, s2: Set] {
138 s1.set_elems in s2.set_elems
139 }
140 pred set_disjoint [s1, s2: Set] {
141 disjoint[s1.set_elems, s2.set_elems]
142 }
143 pred set_equals [s1, s2: Set] {
144 s1.set_elems = s2.set_elems
145 }
146 // ===== Seqs (resources/seq.als) =====
147 abstract sig Seq {
148 seq_rel: seq univ
149 } {
150 isSeq[seq_rel]
151 }
152 pred seq_ranged [from, to: Integer, s’: Seq] {
153 let ints = { i: Int, ci: Integer | ci.value = i and

from.value <= i and i < to.value } |
154 #ints = sub[to.value, from.value] and

100

155 s’.seq_rel = subseq[ints, from.value, sub[to.value, 1]]
156 }
157 pred seq_singleton [e: univ, s’: Seq] {
158 s’.seq_rel[0] = e
159 #(s’.seq_rel) = 1
160 }
161 pred seq_append [s1, s2, s’: Seq] {
162 s’.seq_rel = append[s1.seq_rel, s2.seq_rel]
163 }
164 pred seq_length [s: Seq, i: Integer] {
165 #(s.seq_rel) = i.value
166 }
167 fun seq_at [s: Seq, i: Integer]: one univ {
168 s.seq_rel[i.value]
169 }
170 pred seq_take [s: Seq, i: Integer, s’: Seq] {
171 let to = sub[i.value, 1] |
172 s’.seq_rel = subseq[s.seq_rel, 0, to]
173 }
174 pred seq_drop [s: Seq, i: Integer, s’: Seq] {
175 let to = sub[#s.seq_rel, 1] |
176 s’.seq_rel = subseq[s.seq_rel, i.value, to]
177 }
178 pred seq_in [s1: Seq, e: univ] {
179 e in elems[s1.seq_rel]
180 }
181 pred seq_update [s: Seq, i: Integer, e: univ, s’: Seq] {
182 s’.seq_rel = setAt[s.seq_rel, i.value, e]
183 }
184 // ===== Multiset (resources/multiset.als) =====
185 abstract sig Multiset {
186 ms_elems: univ -> lone Int
187 } {
188 all i: univ.ms_elems | gt[i, 0]
189 }
190 pred empty_multiset [ms’: Multiset] {
191 no ms’.ms_elems
192 }
193 pred multiset_singleton [e: univ, ms’: Multiset] {
194 ms’.ms_elems = (e -> 1)
195 }
196 pred multiset_add [ms1: Multiset, elem: univ, ms’: Multiset] {
197 ms’.ms_elems = { e: univ, v: Int | e in (elem -

101

Appendix B Preamble source

dom[ms1.ms_elems]) and v = 1 } +
198 { e: univ, v: Int | e in (dom[ms1.ms_elems] -

elem) and v = ms1.ms_elems[e] } +
199 { e: univ, v: Int | e in (dom[ms1.ms_elems] &

elem) and v = add[ms1.ms_elems[e], 1] }
200 }
201 pred multiset_cardinality [ms: Multiset, card: Integer] {
202 card.value = (let s = { c: Int, e: univ | (e -> c) in

ms.ms_elems } |
203 (sum i: (s).univ | mul[#(s[i]), i]))
204 card.value >= 0
205 }
206 pred multiset_difference [ms1, ms2, ms’: Multiset] {
207 ms’.ms_elems = { e: univ, v: Int | e in (dom[ms1.ms_elems]

- dom[ms2.ms_elems]) and v = ms1.ms_elems[e] } +
208 { e: univ, v: Int | e in (dom[ms1.ms_elems] &

dom[ms2.ms_elems]) and
209 e.(ms2.ms_elems) <

e.(ms1.ms_elems) and
210 v = minus[e.(ms1.ms_elems),

e.(ms2.ms_elems)] }
211 }
212 pred multiset_intersection [ms1, ms2, ms’: Multiset] {
213 ms’.ms_elems = { e: univ, v: Int | e in (dom[ms1.ms_elems]

& dom[ms2.ms_elems]) and v = min[e.(ms1.ms_elems) +
e.(ms2.ms_elems)] }

214 }
215 pred multiset_union [ms1, ms2, ms’: Multiset] {
216 ms’.ms_elems = { e: univ, v: Int | e in (dom[ms2.ms_elems]

- dom[ms1.ms_elems]) and v = ms2.ms_elems[e] } +
217 { e: univ, v: Int | e in (dom[ms1.ms_elems] -

dom[ms2.ms_elems]) and v = ms1.ms_elems[e] } +
218 { e: univ, v: Int | e in (dom[ms1.ms_elems] &

dom[ms2.ms_elems]) and v = add[ms1.ms_elems[e],
ms2.ms_elems[e]] }

219 }
220 pred multiset_subset [ms1, ms2: Multiset] {
221 dom[ms1.ms_elems] in dom[ms2.ms_elems]
222 { all e: dom[ms1.ms_elems] | ms1.ms_elems[e] <=

ms2.ms_elems[e] }
223 }
224 pred multiset_count [ms1: Multiset, e: univ, c: Integer] {
225 c.value = ms1.ms_elems[e]

102

226 }
227 pred multiset_equals [ms1, ms2: Multiset] {
228 ms1.ms_elems = ms2.ms_elems
229 }

103

C
Encoded Running Example
The following listing presents the complete Alloy model encoded from the running
example in Listing 3.3 from Chapter 3.

1 sig Ref {
2 val: lone Integer,
3 refTypedFields’: set Ref
4 } {
5 refTypedFields’ = none
6 }
7
8 one sig NULL extends Ref {}
9 fact { NULL.refTypedFields’ = none && no NULL.val }

10
11 one sig Store {
12 nodes’: one Set_Ref,
13 n1’: one Ref,
14 n2’: one Ref,
15 v’: one Integer,
16 refTypedVars’: set Ref
17 } {
18 refTypedVars’ = n1’ + n2’
19 }
20 one sig nodes_3_01 in Set_Ref {}
21 one sig n1_4_01 in Ref {}
22 one sig n2_5_01 in Ref {}
23 one sig v_12_01 in Integer {}
24 fact { Store.nodes’ = nodes_3_01 }
25 fact { Store.n1’ = n1_4_01 }
26 fact { Store.n2’ = n2_5_01 }
27 fact { Store.v’ = v_12_01 }
28

105

Appendix C Encoded Running Example

29 // Heap Chunks
30 // QA r@9@01 :: ((r@9@01 in nodes@3@01) ==> (inv@10@01(r@9@01)

== r@9@01))
31 fact { (all r_9_01: Ref | (set_in[r_9_01, nodes_3_01] =>

(Fun.inv_10_01[r_9_01] = r_9_01))) }
32 // QA r :: ((inv@10@01(r) in nodes@3@01) ==> (inv@10@01(r) ==

r))
33 fact { (all r: Ref | (set_in[Fun.inv_10_01[r], nodes_3_01] =>

(Fun.inv_10_01[r] = r))) }
34 one sig t_7_01 in FVF_Integer {}
35 one sig fresh_quantifier_vars_0 {
36 q_temp_0’: Ref -> lone Perm
37 }
38 fact { all r: Ref | perm_minus[(set_in[Fun.inv_10_01[r],

nodes_3_01] implies W else Z), PTAKEN.pTaken_13_01[r],
fresh_quantifier_vars_0.q_temp_0’[r]] &&

39 fresh_quantifier_vars_0.q_temp_0’[r] = PermFun.val[r,
t_7_01] }

40 fact { all r: Ref | (some fvf: (t_7_01) | one PermFun.val[r,
fvf] and perm_less[Z, PermFun.val[r, fvf]]) <=> (one r.val) }

41 fact { all r: Ref, fvf: (t_7_01) | one PermFun.val[r, fvf] =>
(perm_at_most[PermFun.val[r, fvf], W]) }

42 one sig Preds {}
43
44 // Path Conditions
45 // ($t@11@01 == Combine(_, _))
46 one sig t_11_01 in Snap {}
47 one sig temp_0’ in Snap {}
48 fact { combine[Unit, Unit, temp_0’] }
49 fact { (t_11_01 = temp_0’) }
50 // ($t@8@01 == Combine(_, $t@11@01))
51 one sig t_8_01 in Snap {}
52 one sig temp_1’ in Snap {}
53 fact { combine[Unit, t_11_01, temp_1’] }
54 fact { (t_8_01 = temp_1’) }
55 // (n2@5@01 in nodes@3@01)
56 fact { set_in[n2_5_01, nodes_3_01] }
57 // (n1@4@01 in nodes@3@01)
58 fact { set_in[n1_4_01, nodes_3_01] }
59 // ($t@6@01 == Combine(SortWrapper($t@7@01, Snap), $t@8@01))
60 one sig t_6_01 in Snap {}
61 one sig temp_2’ in Snap {}
62 one sig temp_3’ in Snap {}

106

63 fact { sortwrapper_new[t_7_01, temp_3’] }
64 fact { combine[temp_3’, t_8_01, temp_2’] }
65 fact { (t_6_01 = temp_2’) }
66 // QA r@9@01 :: ((r@9@01 in nodes@3@01) ==> !((r@9@01 == Null)))
67 fact { (all r_9_01: Ref | (set_in[r_9_01, nodes_3_01] =>

!((r_9_01 = NULL)))) }
68 // QA r@9@01 :: ((r@9@01 in nodes@3@01) ==> (inv@10@01(r@9@01)

== r@9@01))
69 fact { (all r_9_01: Ref | (set_in[r_9_01, nodes_3_01] =>

(Fun.inv_10_01[r_9_01] = r_9_01))) }
70 // (SetCardinality:(nodes@3@01) == 3)
71 one sig temp_4’ in Integer {}
72 one sig temp_5’ in Integer {}
73 fact { set_cardinality[nodes_3_01, temp_4’] }
74 fact { temp_5’.value = 3 }
75 fact { (temp_4’.value = temp_5’.value) }
76 // QA r :: ((inv@10@01(r) in nodes@3@01) ==> (inv@10@01(r) ==

r))
77 fact { (all r: Ref | (set_in[Fun.inv_10_01[r], nodes_3_01] =>

(Fun.inv_10_01[r] = r))) }
78 // ((inv@10@01(n1@4@01) in nodes@3@01) ==> (Lookup(val,

sm@14@01(), n1@4@01) == Lookup(val, $t@7@01, n1@4@01)))
79 one sig sm_14_01 in FVF_Integer {}
80 fact { (set_in[Fun.inv_10_01[n1_4_01], nodes_3_01] =>

(Lookup.val[sm_14_01, n1_4_01].value = Lookup.val[t_7_01,
n1_4_01].value)) }

81
82 // Permission functions
83 one sig PermFun {
84 val: (Ref -> FVF_Integer -> lone Perm)
85 }
86
87 // Functions
88 one sig Fun {
89 inv_10_01: (Ref -> one Ref)
90 }
91
92 // Lookup functions
93 one sig Lookup {
94 val: (FVF_Integer -> Ref -> one Integer)
95 }
96 fact { all fvf: FVF_Integer, r: Ref | (one PermFun.val[r, fvf]

and perm_less[Z, PermFun.val[r, fvf]]) => (Lookup.val[fvf,

107

Appendix C Encoded Running Example

r] = r.val) }
97 // Other sorts
98 sig Set_Ref extends Set {} {
99 set_elems in Ref

100 }
101 sig FVF_Integer {}
102
103 // Macros
104 // QA r :: (pTaken@13@01(r) == (r == n1@4@01) ? ((inv@10@01(r)

in nodes@3@01) ? W : Z PermMin W) : Z)
105 one sig fresh_quantifier_vars_1 {
106 q_temp_0’: Ref -> lone Perm
107 }
108 fact { (all r: Ref | perm_min[(set_in[Fun.inv_10_01[r],

nodes_3_01] implies W else Z), W,
fresh_quantifier_vars_1.q_temp_0’[r]]) }

109 fact { (all r: Ref | perm_equals[PTAKEN.pTaken_13_01[r], ((r =
n1_4_01) implies fresh_quantifier_vars_1.q_temp_0’[r] else
Z)]) }

110 one sig PTAKEN {
111 pTaken_13_01: Ref -> one Perm
112 }
113
114 // Constraint from last non-proved smt query
115 one sig temp_6’ in Perm {}
116 fact { perm_minus[(set_in[Fun.inv_10_01[n2_5_01], nodes_3_01]

implies W else Z), PTAKEN.pTaken_13_01[n2_5_01], temp_6’] &&
117 !(perm_less[Z, temp_6’]) }
118
119 // No object unreachable from the Store
120 fact { Ref = Store.refTypedVars’.*refTypedFields’ + NULL +

(SortWrapper.wrapped <: Ref) + Store.nodes’.set_elems }
121
122 // Signarure Restrictions
123 fact { Set = Store.nodes’ }
124 fact { FVF_Integer = t_7_01 + sm_14_01 }
125 fact { Snap = t_11_01 + temp_0’ + t_8_01 + temp_1’ + t_6_01 +

temp_2’ + temp_3’ + Unit }
126 fact { Perm = PermFun.val[Ref, FVF_Integer] + temp_6’ + W + Z }
127 fact { Seq = none }
128 fact { Multiset = none }
129
130 run {} for 11 but 4 int, 1 Set, 2 FVF_Integer, 4 Perm

108

	Introduction
	Motivation
	Previous Work
	Main Objective
	Updating the existing infrastructure
	Visualization of Quantified Permissions

	The Structure of this Report

	Approach
	Verification Failures
	Bounded Modeling

	Translation to Alloy
	Modeling Terms
	Binary Operations
	Unary Operations
	And, Or, Ite
	Let expressions
	Combines
	Sortwrappers, First, and Second
	Quantifiers
	Function Applications
	Field Lookups

	Built-in Collections
	Sorts
	Permissions
	Treatment of Booleans
	Required Information
	Structure of the Model
	Preamble
	Modeling References
	Modeling the Store
	Modeling Heap Chunks and Permissions
	Modeling Path Conditions
	Modeling Domain Axioms
	Ptaken Functions
	Facts Gathered During the Translation
	Failed SMT Query
	Reachability and Signature Restrictions

	Architecture
	The Existing Infrastructure
	The New Infrastructure
	Communication with the Main Extension
	ViperServer and Silicon
	The Webview Panel

	The Debugger
	The Panel
	Navigation Bar and Heap Visualization
	Symbolic State Information
	Diagnostics

	Evaluation
	A Case Study of the Modeling Technique
	Showing Counterexamples
	Soundness and Completeness

	Supported Subset of the Viper Language
	Implemented Features
	Non-Implemented Features

	Limitations
	Cardinalities
	Increasing Complexity when Removing Permissions
	Limitations of Integers
	Large relations
	States in the Symbolic Execution Trace

	Implementation
	Performance
	Extensibility
	Modularity

	Comparison to Other Tools
	Previous Debugger
	VeriFast IDE
	SED

	Conclusion and Future Work
	Future Work

	Bibliography
	Appendix Configuration
	Appendix Preamble source
	Appendix Encoded Running Example

