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Zürich, Switzerland

1E-mail: adima@student.ethz.ch



Contents

1 Introduction 1

2 Background 1
2.1 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Dafny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 General approach 3

4 Procedural Closures 5
4.1 Procedural Closure Type . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Procedural Closure Specifications . . . . . . . . . . . . . . . . . . 6
4.3 A basic procedural closure example . . . . . . . . . . . . . . . . . 6

4.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3.2 Boogie output . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 A counter factory example . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Delegation example . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Pure Closures 18
5.1 Pure Closure Type . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 A recursive while . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Conclusions 21
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Possible extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



2 BACKGROUND

1 Introduction

Closures represent a particularly useful language feature. They provide a means
to keep the functionality linked together with state, providing a source of ex-
pressiveness, conciseness and, when used correctly, give programmers a sense of
freedom that few other language features do.

Smalltalk’s standard control structures, including branches (if/then/else) and
loops (while and for) are very good examples of using closures, as closures de-
lay evaluation; the state they capture may be used as a private communication
channel between multiple closures closed over the same environment; closures
may be used for handling User Interface events; the possibilities are endless.

Although they have been used for decades, static verification has not yet tack-
led the problems which appear when trying to reason modularly about closures.
This project is a proof of concept of the methodology defined in [1], which
presents a modular specification and partial correctness verification methodol-
ogy for closures.

The work described in this report is the result of a Computer Science Research
Project at ETH Zurich, under the supervision of Dr. Ioannis Kassios and Prof.
Dr. Peter Müller.

2 Background

2.1 Closures

A closure is a first-class imperative procedure with free variables that are bound
in its lexical environment. It is defined within the scope of its free variables, and
the extent of those variables is at least as long as the lifetime of the closure itself.

One way to think of a closure is as a package of two items: a pointer to a func-
tion and a pointer to a state, a set of variables-values bindings. Closures can
be typically handled as any other programming language object, they can be
passed as parameters, they can be stored to variables, and so on.

Figure 1, written in JavaScript, shows a simple example of an adder factory.
The procedure createAdder will return a closure that will remember a, even
after the execution has left the body of createAdder. More specifically, as long
as a reference to x exists, a will also exist, and it will have the value with which
the outer procedure was called.
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2.2 Dafny 2 BACKGROUND

function createAdder(a) {

return function(b) {

return a + b;

}

}

x = createAdder(4);

y = createAdder(-1);

c = x(6); // c == 4 + 6 == 10

d = y(11); // d == -1 + 11 == 10

Figure 1: Example of JavaScript closures.

What is happening in this specific example is that a new scope object containing
all the local variables is being created every time createAdder is being executed
and it is initialized with any variables passed in as procedure parameters. When
createAdder finishes execution that scope is not destroyed because the returned
procedure still holds an implicit pointer to it.

This mechanism allows x to be called and it can run using a, even though exe-
cution has left the body of createAdder.

2.2 Dafny

Dafny[2] is an experimental language for dynamic-frames specification[3]. It
explores the dynamic frames style specifications in an object-based sequential
setting.

Frame conditions define which allocated objects a method is allowed to change
during its execution. They allow reasoning about the state of the heap after
a method executes, as objects not listed in the modifies clause of the method
remain unchanged.

The granularity of the Dafny frame conditions is restricted to objects. For ex-
ample, if an object o has two integer fields, o.i1 and o.i2, in order to change
o.i1, a method must list o in its modifies clause, because integers are basic types
and not objects. This means that even if the method only wants to change o.i1,
after the method call, unless ensured through an ensures clause that o.i2 is
unchanged, no assumptions can be made about the state of o.i2 relative to its
state before the call.

Dynamic Frames[3] allow to have framing without affecting data abstraction.
In Dafny, this allows the programmer to list in its modifies clause a reference
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3 GENERAL APPROACH

to a set of objects, set which may change from call to call, depending on the
overall state of the heap and the purposes the programmer has in mind.

Figure 2 outlines the process of verifying a program written in Dafny. First, the
Dafny program is parsed, an abstract syntax tree is built and resolved. Only
if both the parsing and the resolving finished successfully, the Dafny abstract
syntax tree is translated into a BoogiePL[4] abstract syntax tree. Then, if the
resulting Boogie representation is correct, it is further translated into Math For-
mulae which are passed on to a SMT Solver (such as Z3[5]).

The results from the SMT Solver are collected and the possible error traces are
translated back into Boogie tokens, which in turn are translated back into Dafny
tokens, in order to present Dafny programmers with reasonable error messages.

 

Dafny 

Program
 BoogiePL 

Program
 Math 

Formulae

 SMT 

Solver 

 

Result 

Figure 2: Dafny Verification Process

3 General approach

The implementation of closures in Dafny follows closely the methodology de-
scribed in [1]. Closures are separated in two distinct types: procedural closures
and pure closures. The differences and similarities between these two types are
almost the same as those between methods and functions in Dafny.

Pure closures may be viewed as a special case of procedural closures which are
guaranteed to have no side effects, which have a statically empty modifies clause.
They can just evaluate an expression on a heap without actually making any
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3 GENERAL APPROACH

changes to it. Therefore, the only operation one can do with a pure closure is to
evaluate it. Since they are closures and do capture their environment, we have
decided to make pure closures parameter free.

On the other hand, procedural closures may have side effects, meaning they may
modify objects on the heap, and in general have a lot more properties than pure
closures. They may have input parameters, output parameters, frame proper-
ties and an abstraction. The abstraction is used as a means to argue about the
captured state of the procedural closures.

Like in [1], a number of closure specification functions have been introduced to
the specification language. They are used to argue about closures and for a
procedural closures they are:

• pre(Heap,closure,inputs):boolean – evaluate if the precondition of a closure
holds on a given heap with given inputs.

• mod(closure,inputs):set<Object> – returns the static set of objects the
closure may modify – its frame property.

• abs(Heap,closure):AbstractionType – returns the abstraction of a closure.

• post(preHeap,postHeap,closure,inputs,outputs):boolean – evaluate if the post-
condition of a closure holds on a pre-heap and a post-heap, with the given
inputs and outputs.

• spec(preHeap,postHeap,closure,inputs,outputs):boolean – evaluate that the
closure acts like a method – given a pre-heap and a post-heap, the inputs
and the outputs evaluates: ”if the precondition holds on the pre-heap and
we call the closure, will the frame property and the postcondition hold on
the post-heap?”.

For pure closures:

• eval(Heap,closure):Type – evaluates the pure closure’s expression and re-
turns the result

These functions, as defined above in BoogiePL are made available to the Dafny
programmer. However, heaps may not be referred directly from Dafny, therefore
the heap parameters to the functions will be filled in based on the context they
are used from. The functions will be explained in greater depth in the following
sections. Another newly introduced language construct is:

• X frames Y, where X ’s type is set<Object> and Y usually is pre(..) or
abs(..) – it returns a boolean and evaluates: ”Is it true that if I change
anything but objects from X, Y will remain constant?”.

Another important change is in the semantics of the already existing Dafny lan-
guage construct, fresh(X), which until now evaluated ”Is it true that X was not
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allocated in the pre-heap?” and now evaluates ”Is it true that X is allocated in
the post-heap and was not allocated in the pre-heap?”.

The only difference from [1] is around working with a closure’s context (envi-
ronment). Our approach is to statically mark methods which define closures
and closure definitions which define inner closures and extract an environment
class for each one. This environment class will contain all the scope variables
of the method and all usage of the local variables inside the method’s body are
substituted with indirections through this environment class, where each local
variable has a corresponding field.

Another deviation is that the procedural closures bodies are being extracted
and verified outside the method where the closure definitions statically occured,
using again the environment class constructed for that method in order to in-
direct all references of scope variables.

In my opinion, the best way to understand how closures work in Dafny is to
follow the examples from the following sections.

4 Procedural Closures

One of the most important additions to Dafny are the procedural closures. They
resemble Dafny’s methods in the sense that they may have side-effects (i.e. ex-
ecuting a procedural closure may change the heap) and they enable the use of
statically unknown code in method calls.

Procedural closures, once created, may be passed around as parameters, re-
turned by methods and generally behave like usual objects. The most notable
difference to an object is that procedural closures may be called (in the same
manner a method can be called) and by using some newly added specification
functions, the programmer may use some characteristics of the closure to argue
about its behavior.

4.1 Procedural Closure Type

Procedural closures are type-safe. This means that their type is statically known
at compile-time, and type safety can be assumed by the Dafny programmer.
The declaration for a procedural closure type is similar to the declaration of
a method, because it lists the input types and the returned types. The only
conceptual difference is that procedural closures might define abstractions of
their captured state. The grammar for the type is:
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4.2 Procedural Closure Specifications 4 PROCEDURAL CLOSURES

( [ Type {, T ype} ] ) -> ( [ Type {, T ype} ] ) : ( [ Type ] )

Figure 3 shows examples of different procedural closure types. At this point, it
is not important to understand what the abstraction means, but rather that a
procedural closure may have one or more inputs, may have one or more outputs
and may or may not be abstracted by a type.

Type Explanation
() -> () : () procedural closure which takes no parameters,

doesn’t return anything and has no abstraction de-
fined.

(int) -> () : () procedural closure which takes an integer as an in-
put parameter, doesn’t return anything and has no
abstraction defined.

(int) -> (bool) : () procedural closure which takes an integer as an input
parameter, returns a boolean and has no abstraction
defined.

(int) -> (bool) : (int) procedural closure which takes an integer as an input
parameter, returns a boolean and is abstracted by an
integer.

Figure 3: Examples of procedural closure types.

4.2 Procedural Closure Specifications

When defining procedural closures, it is possible to specify the behavior of these
closures, in a similar manner to defining the behavior of methods. For a clo-
sure, these specifications include the precondition, the postcondition, the frame
property and its abstraction. Because procedural closures encapsulate state, the
abstraction is a means to expose state information.

4.3 A basic procedural closure example

Figure 4 shows a simple example of a procedural closure definition and usage.

4.3.1 Discussion

The closure f, which takes an integer, n, and returns the sum n+5, is declared like
any other program variable and is defined like a method. Line 7 shows how pro-
cedural closures can be passed around as a reference (similar to usual objects);
From lines 8 onwards, g will have the same state and the same behavior as f.
Line 9 shows how a procedural closure can be called (like usual Dafny methods).
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1. var f, g : (int)->(int):();

2. f := method (n:int)->(r:int):()

3. ensures r == n + 5;

4. {

5. r := n + 5;

6. };

7. g := f;

8. var y : int;

9. call y := g(5); // y := 5 + 5

10. assert y == 10;

11. assert (forall1 n:int:: pre(current(f),n));

12. assert (forall2 n,r:int::

post(current(f),n,r) ==> r == n + 5);

Figure 4: Basic usage of procedural closures.

Line 11 shows how it is possible to argue about a closure’s precondition. It
expresses that for all heaps and input parameters, the precondition of f holds.
The first newly-introduced language construct used is the forall1::X which ex-
presses that for all heaps, X holds. It also modifies the context of translation
for X, changing the current heap expression.

In the following sections it will be explained that, for this example, f resides on
the heap, therefore the change in the context will also influence f. Because our
intent is to argue about the current value of f, we must use yet another newly
introduced language construct, current(Y).

Line 12 expresses that calling the procedural closure f will result in the return
value being equal to the sum of the input parameter and 5. In this case, we use
forall2::Y, expressing that for all pre-heaps and post-heaps, Y holds. Again, we
need to use current() to reset the translation context to the current heap.

Also note how the built-in closure specification functions, pre and post are used.
pre takes the procedural closure as the first parameter and as subsequent param-
eters all the input parameters to the closure. Similarly, post takes the procedural
closure as first parameter, after which all the input parameters, and also all the
returned values of the closure. Moreover, post may only be used in the context
of arguing about two heaps (e.g. the forall2 construct).
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4.3.2 Boogie output

Although this is a basic and simple example, it is interesting to see and under-
stand how the newly introduced Dafny concepts are translated into BoogiePL.
Note that in this section, the machine-generated code has been modified to make
it human readable and that some parts of it have been left out for brevity. Also,
feel free to skip this section if you are only interested in understanding how
to use the new Dafny constructs and not in understanding how the underlying
Boogie code is generated.

Closure Type Class Figure 5 shows the generated class for the only closure
type that appears in the Dafny source code: (int)->(int):(). In this context, the
word class may be misleading because Boogie does not support classes, but the
closure type declaration in Boogie is similar to any other Dafny class declaration
translated to Boogie.

The closure type’s class is being generated and in this case it is Closure#1,
because it is the first closure type that appears in the source code. In general,
for each unique closure type, one such class is generated.

The most interesting generated Boogie constructs are the closure specification
functions. For our type, (int)->(int):(), which has one input parameter, an in-
teger, and returns an integer, the pre specification function takes a heap, the
closure instance and one integer and returns a boolean. In general, the pre
function takes a heap, the closure instance, and the list of input parameters.

The post specification function takes two heaps (the pre-heap and post-heap),
the closure instance, one integer, f0, corresponding to the input parameter and
one more integer, f1, corresponding to the return value and returns a boolean.
In general, the post function takes the pre-heap, the post-heap, the closure in-
stance, the list of input parameters and the list of returns.

The mod specification function does not depend on the heap, therefore it is
static (i.e. it is not possible to have a modifies clause which lists a variable set)
and depends on the closure instance and the input parameters. The reason it
depends on the input parameters is because of the possibility to pass closures
as parameters, and in order to execute them, the programmer must add their
modifies clause to his own. The function mod returns a set of objects, and in
general depends only on the closure instance and the input parameters.

The spec specification function corresponds to the one defined in [1] and it is
always defined with the axiom presented in Figure 5, adapted of course for the
variable input and output parameters. The function spec states that a given
closure acts as a method over two heaps, it expresses that if the preconditions
hold on the pre-heap, calling it will result in its postconditions and the frame
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4.3 A basic procedural closure example 4 PROCEDURAL CLOSURES

// class.Closure#1 refers to all closures of type

// (int)->(int):() -- both f and g in our example

const unique class.Closure#1: ClassName;

function Closure#1.pre(H: HeapType,

this: ref, f0: int) : bool;

function Closure#1.post(oldH: HeapType, H: HeapType,

this: ref, f0: int, f1: int) : bool;

function Closure#1.spec(oldH: HeapType, H: HeapType,

this: ref, f0: int, f1: int) : bool;

function Closure#1.mod(this: ref, f0: int) : Set BoxType;

axiom

(forall oldH:HeapType, H:HeapType, this:ref, f0:int, f1:int ::

Closure#1.spec(oldH, H, this, f0, f1)

<==>

Closure#1.pre(oldH, this, f0) ==>

Closure#1.post(oldH, H, this, f0, f1) &&

(forall<alpha> o: ref, f: Field alpha ::

o != null && oldH[o,alloc] ==>

H[o,f] == oldH[o,f] || Closure#1.mod(this, f0)[$Box(o)]

)

);

Figure 5: The generated closure type class for (int)->(int):().

property.

One missing specification function from this example is abs, because (int)-
>(int):() is not abstracted by anything. However, in general, the abs speci-
fication function depends on the heap and the closure instance and returns an
object of the same type it was declared as.

Environment Class Figure 6 shows the generated environment class. Once
again, it is not a Boogie class per se, but it is similar to how any Dafny class
gets translated into Boogie. The translator creates one environment class per
method containing at least one closure definition. In this example, the local
variables f, g and y have been extracted and are now available as fields of this
class.
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const unique class.Env#1: ClassName;

const unique Env#1.f: Field ref;

const unique Env#1.g: Field ref;

const unique Env#1.y: Field int;

Figure 6: The generated environment for the simple example.

Main program Figure 7 shows how the simple example is translated into
Boogie, line by line. In order to understand what is going on, it is required to
mention that the Dafny Heap is represented as a Boogie map with two indices
(a 2 dimensional array – the reference to an object and the fully-qualified name
of that field). The heap is always available as the global variable $Heap.

Also, this excerpt does not show the initialization of the environment variable,
$env, which is straightforward. Besides the environment, three new local vari-
ables have been generated, one to hold the heap during closure calls, $oldH,
one used when defining the closure, closure, and another one used to fetch the
return value of a closure call, k.

It is important to keep in mind that when translating the closure definition on
lines 2-6 from Figure 4, the translator only uses the information available in the
specification (i.e. not the body on lines 4-6). Also, the definition of the closure
is created upon the local variable closure, in order to allow the local variable f
to be reusable. If the definition would be created directly on f it would result
in a contradiction when assigning a different value to it.

Because f has no precondition, pre(f) is defined to be true for all heaps and all
input parameters. Also, because it does not modify anything, mod(f) is defined
to be the empty set. post(f) is straightforward as it is equivalent to the written
ensures clause on line 3. Finally, after these properties have been defined on the
non-reusable local variable closure, it is assigned to f. Please also note that all
the original variables, f, g and y are always indirected through the environment,
to their respective fields.

The closure call on line 9 is also relevant to our discussion. First, the current
heap is stored into $oldH, then the precondition of g is asserted with the input
value 5. Next, the current heap is havoced. Then, the postcondition of g is
assumed with the input value 5 and the output to the non-reusable local vari-
able k. The last operation is the assumption of the frame property, which, in
layman’s terms states that all the existing objects from the old heap have the
same state in the new heap or they belong to g ’s modifies clause. Finally, y is
assigned the value of k – this is once again to allow y to be reused.
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var $oldH: HeapType;

var $env: ref;

var closure: ref;

var k: int;

// --- Lines 2-6 --- f’s definition

assume (forall H:HeapType, n:int ::

Closure#1.pre(H, closure, n) <==> true);

assume (forall H:HeapType, n:int ::

Closure#1.mod(closure, n) == Set#Empty():Set BoxType);

assume (forall oldH:HeapType, H:HeapType, n:int, r:int ::

Closure#1.post(oldH, H, closure, n, r) <==> r == n + 5);

$Heap[$env, Env#1.f] := closure;

// --- Line 7 --- g := f;

$Heap[$env, Env#1.g] := $Heap[$env, Env#1.f];

// --- Line 9 --- call y := g(5);

$oldH := $Heap;

assert Closure#1.pre($oldH, $oldH[$env,Env#1.g], 5);

havoc $Heap;

assume Closure#1.post($oldH, $Heap, $oldH[$env,Env#1.g], 5, k);

assume (forall<alpha> o: ref, f: Field alpha ::

o != null && $oldH[o,alloc] ==> $Heap[o,f] == $oldH[o,f] ||

Closure#1.mod($oldH[$env, Env#1.g], 5)[$Box(o)]);

$Heap[$env, Env#1.y] := k;

// --- Line 10 --- assert y == 10;

assert $Heap[$env#6, Env#1.y] == 10;

// --- Line 11 ---

assert (forall n:int, H:HeapType ::

Closure#1.pre(H, $Heap[$env, Env#1.f], n));

// --- Line 12 ---

assert (forall n:int, r:int, oldH:HeapType, H:HeapType ::

Closure#1.post(oldH, H, $Heap[$env, Env#1.f], n, r) ==>

r == n + 5);

}

Figure 7: The generated main source.
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The translation of line 11 shows how the implicit heap is added to the forall1
language construct and how pre is invoked with that implicit heap. It also shows
how current(f) gets translated to $Heap[$env,Env#1.f]. If current() is not used,
f will be translated to H[$env,Env#1.f].

Finally, the translation of line 12 shows how the two implicit heaps are added
to the forall2 language construct and how post is invoked with them.

Closure’s implementation The last missing piece of the puzzle is shown in
Figure 8 and it is the closure’s implementation. This is verified in a different
procedure, showing the modularity of this approach. This procedure has an
additional parameter, the environment of the method the closure was defined
in and its specification is the same as the specification of the closure definition,
plus the requirement that the environment parameter is not null (in case the
closure would use an environmental variable), and the modifies clause for the
$Heap, in case the procedure would change the heap, together with the frame
property which in this case states that all objects in the pre-heap will remain
the same in the post-heap.

procedure Closure#1.impl#1(this: ref, $scope_env: ref, n: int)

returns (r: int)

requires $scope_env != null;

modifies $Heap;

ensures r == n + 5;

free ensures (forall<alpha> o: ref, f: Field alpha ::

o != null && old($Heap)[o, alloc] ==>

$Heap[o,f] == old($Heap)[o,f]);

{

var self: ref;

assume (forall H:HeapType, $n:int ::

Closure#1.pre(H, self, $n) <==> true);

assume (forall H:HeapType, $n:int ::

Closure#1.mod(self, $n) == Set#Empty():Set BoxType);

assume (forall oldH:HeapType, H:HeapType, $n:int, $r:int ::

Closure#1.post(oldH, H, self, $n, $r) <==> $r == $n + 5);

r := n + 5;

}

Figure 8: The generated closure’s implementation.
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The first part of the closure implementation is the definition of the self variable
which is the same as the definition of the actual closure itself from Figure 7.
This variable is defined in case the closure is recursive (i.e. it calls itself) and
in that case the call in the Boogie source is made to the self variable. The
assumption made by using this self variable is that a procedural closure does
not redefine itself inside its own implementation.

Finally, the actual body of the closure’s definition follows, which is a simple
assignment.

4.4 A counter factory example

This example is adapted from [1]. The closure counterF(x) is a counter factory,
it creates procedural closures which generate consecutive numbers starting at
the input parameter, x . The first time one of these counters is called, it will
return x , the second time, it will return x+1 , the third time, x+2 , and so on.

An important point in this example is that the created counter closures are
independent from one another, the creation of a counter closure does not inter-
fere with the existing closures and interleaving counter closures calls does not
interfere with their consecutive numbers generation. This is a strong cue that
in this example the counters are each created with their own private state.

In Figure 9 a procedural closure named counterF is declared on line 4. From
its type, we can see that it takes one input parameter, an integer, and returns
a procedural closure. The return type is a procedural closure with no input
parameters, which returns an integer and is abstracted by an integer.

The rule of thumb when writing procedural closures specifications is to imagine
that the body of the procedural closure is not visible to the clients (the places
where the closure is called from) and to think of the body merely as an imple-
mentation for the closure’s specification. In this case, even though the source
code reveals the closure’s implementation, we must realize that the lines 11
through 23 (counterF ’s implementation) are not visible to the lines 24 through
33 (counterF ’s client).

Therefore, we must rely completely on the specifications to verify a procedural
closure’s clients. This is the reason why the specification of counterF (lines 6
through 10) looks so bulky and expresses so many things. Let’s review each of
the ensures clauses and understand what they express and why they are needed
for this example:

a) ensures (forall1:: pre(c));

This ensures that for all possible heaps, the precondition of c (the returned
counter) will hold. In layman’s terms, it means that c may be called

13
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1. class IntWrapper {

2. var v : int;

3. }

4. var counterF : (int)->( ()->(int):(int) ):();

5. counterF := method (x:int)->( c:()->(int):(int) ):()

6. ensures (forall1:: pre(c));

7. ensures (forall2 r:int:: post(c,r) ==>

abs(c)==old(abs(c))+1 && r==old(abs(c)));

8. ensures mod(c) frames abs(c);

9. ensures abs(c) == x;

10. ensures fresh(mod(c));

11. {

12. var cnt := new IntWrapper;

13. cnt.v := x;

14. c := method ()->(result:int):(int)

15. requires cnt != null;

16. modifies cnt;

17. abstracts cnt.v;

18. ensures cnt.v==old(cnt.v)+1 && result==old(cnt.v);

19. {

20. result := cnt.v;

21. cnt.v := cnt.v + 1;

22. };

23. };

24. var f, g : ()->(int):(int);

25. call f := counterF(40); // abs(f) == 40

26. var n, m : int;

27. call n := f(); // n == 40 && abs(f) == 41

28. call n := f(); // n == 41 && abs(f) == 42

29. call g := counterF(99); // abs(g) == 99

30. call m := f(); // m == 42 && abs(f) == 43

31. call n := g(); // n == 99 && abs(g) == 100

32. n := n + m;

33. assert n == 141;

Figure 9: Example of a counter factory using procedural closures.

anytime without any restrictions after its creation. Note that in this case
the specification function pre is called with only one parameter, the closure
c, because of c’s type (c:()->(int):(int)), which takes no input parameters.
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b) ensures (forall2 r:int:: post(c,r) ==>

abs(c)==old(abs(c))+1 && r==old(abs(c)));

This ensures that for all possible pre-heaps and post-heaps, calling c and
assigning the returned value to r will result in c’s abstraction in the post-
heap being the sum of c’s abstraction in the pre-heap and 1 and that the
returned value r will be c’s abstraction in the pre-heap. This clause is
responsible for stating the closure’s behavior (i.e. what calling the closure
returns and how the abstraction of its state changes to reflect the call). In
this case it shows how calling this closure will return the state’s abstraction
and how the state’s abstraction will be incremented.

c) ensures mod(c) frames abs(c);

This clause states that the abstraction of c’s state depends only on objects
in it’s modifies clause. This means that unless the programmer modifies
the objects in c’s modifies clause, c’s abstraction will remain constant.
This is one of the properties needed to express that multiple closures do
not interfere with each other (another way to think of it is that their state
depends only on the objects they modify).

d) ensures abs(c) == x;

This expresses that after creation, the returned counter closure c will
be initialized in such a manner that its state’s abstraction is equal to
counterF ’s input parameter, x . This, combined with b) shows that when
first called, c will return x , and that the second call will return x+1, and
so on.

e) ensures fresh(mod(c));

The final missing piece of the puzzle and the second of the two properties
needed to prove that multiple closures do not interfere with each other
is that the newly created counter c will modify only newly introduced
objects in the heap, relative to the client’s perspective. Together with c)
which expresses that the counter’s state only depends on what it modifies,
stating that what it modifies is fresh, results in the property that multiple
counter closures do not interfere in any way with each other.

After understanding counterF ’s specification, we can now observe that it is
complete enough in order to allow the proving of the client on lines 24 to 33
without any knowledge of how counterF is implemented. Therefore, this is a
source of modularity, counterF ’s implementation may be verified independently
of its clients, a fact which has been addressed during the implementation of the
new Dafny features.

Let’s discuss counterF ’s client on lines 24 - 33. Keeping counterF ’s specification
in mind, we can go over the client line by line. On line 25, a counter closure is
created and assigned to local variable f , once again showing how closures may
be passed around as references. At this point, we should keep in mind that f
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may be called at any time without any constraints, that it is initialized at 40
and that it relies on objects newly allocated.

Calling f twice on lines 27 and 28 will result in predictable behavior, it will first
return 40, the value it was initialized with, and increment it’s abstraction to 41
and then return 41 and increment its abstraction to 42. On line 29, another
counter closure is created and assigned to local variable g , which is initialized at
99 and with a behavior that relies on objects once again newly allocated. This
means that g does not depend on objects that counter f does.

The last lines of the client are straightforward, because creating g did not change
any objects that f depends on (notice that counterF does not have any modifies
clause, meaning it does not modify any existing objects on the heap), f ’s state
is the same as before counterF was called and on line 30 it will set m to 42 and
increment its abstraction to 43. Calling g on line 31 will result in n having the
value 99. On line 32, n will become the sum of 42 and 99, which will obviously
yield a correct assertion on line 33.

Now that we have seen that the client can verify with counterF ’s specification,
let’s see how it has actually been implemented. A notable behavior in lines 12-
22 is that the definition of the returned closure c will capture the environment
in which it was declared (i.e. counterF ’s body). That is why it is possible for
both c’s specification and implementation to use the variable cnt introduced on
line 12. The environment and more specifically the variable cnt will survive on
the Heap even after execution leaves counterF ’s body and will be tied together
with c.

Variable cnt is allocated on line 12 which helps proving e) and is initialized with
x on line 13, which helps proving d). The specification of the returned closure
c is once again sufficient to prove closureF ’s body, even without using c’s body
on lines 19 - 22. c requires that the local variable cnt has been allocated, it
expresses that it modifies it and that it is abstracted by its value.

The trick around creating an IntWrapper class comes from Dafny’s intrinsic re-
quirements that a modifies statement is coarse-grained to the level of objects –
a programmer cannot use object’s fields of basic type in such a modifies clause
(i.e. in the modifies on line 16, one can write cnt, but not cnt.v because cnt.v
is an integer).

Line 17 shows how a closure can link an expression based on its state to its ab-
straction. In this case, it is almost a one to one mapping (c’s state is cnt, while
its abstraction is cnt.v). c’s specification ensures that when calling c, cnt.v will
be incremented and that the return value, result will be the old value of cnt.v.

Lines 16 and 17 help prove the specification c), because c is abstracted by cnt.v
and it modifies cnt and because it is obvious that cnt frames cnt.v (i.e. if cnt
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is not changed, cnt.v is also not changed).

Since c is abstracted by cnt.v, it is obvious how line 18 will help prove the
specification b). Since c only requires that cnt is allocated and since c captures
cnt immediately upon its definition and since cnt is allocated on line 12, this
precondition will hold for all heaps (cnt will be captured after c’s definition,
and as long as one can argue about c in any future heap, cnt will implicitly
exist). Therefore, a) will also hold.

Now that we have seen how counterF ’s body implements correctly its specifi-
cations, the only judgment left to be carried out is to verify that c’s body also
implements correctly its specifications. This is trivial, as it is obvious how lines
20-21 correctly implement c’s specification: result will be the old cnt.v and cnt.v
will be incremented.

4.5 Delegation example

This example is adapted from [1]. It shows the expressiveness of the newly intro-
duced language constructs in order to argue about completely unknown closures.

In Figure 10, a procedural closure f is defined. It is using its environment,
accessing the environmental variable y and calling the environmental closure h.
Also, it is using a procedural closure, g, given as an input parameter.

The example’s main point is to show what specifications a Dafny programmer
must write in order to be able to call the two closures and how to argue about
their frames and their interference.

The preconditions on lines 8 and 9 are straightforward as they express the fact
that both g and h must be callable once. (After calling, it is not necessary that
the precondition still holds). Similar to the example in Figure 9, we require that
the objects listed in the modifies clauses of g and h frame their preconditions
(lines 10 and 11).

What allows us to call g on line 22 after calling h on line 21 is the informa-
tion that calling h does not affect in any way the precondition of g. This is
assured with the requires on line 12, which states that their modifies sets are
disjoint, meaning that when we will call h, it may change objects in mod(h),
but it will definitely not change any objects in mod(g), which frames pre(g),
therefore pre(g) will still hold.

The last three preconditions (lines 13-15) refer to y, asking that y is not in the
modifies sets of the two closures, h and g. This will also imply that changing y
on line 20 will not influence the possibility to call the two closures (their pre-
conditions). The modifies clause on line 16 contains y and also the modifies
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1. class IntWrapper {

2. var v : int;

3. }

4. var y := new IntWrapper;

5. var h : ()->():();

6. var f : ( ()->():() )->():();

7. f := method ( g: ()->():() )->():()

8. requires pre(g);

9. requires pre(h);

10. requires mod(g) frames pre(g);

11. requires mod(h) frames pre(h);

12. requires mod(g) !! mod(h);

13. requires !(y in mod(g));

14. requires !(y in mod(h));

15. requires y != null;

16. modifies mod(g), mod(h), y;

17. {

18. var x : int;

19. x := 3;

20. y.v := 4;

21. call h();

22. call g();

23. };

Figure 10: Delegation example using procedural closures.

sets of the two closures which are being called from f. This is required because
if f would not list these as objects being modified, its specification would be
incorrect.

The actual body of the closure is straight-forward and its successful verification
proves that the reasoning was correct and that the calls are allowed.

5 Pure Closures

5.1 Pure Closure Type

Pure closures are also type-safe, their type is statically known at compile-time,
and type safety can be assumed by the Dafny programmer. The declaration for
a pure closure type is similar to the declaration of a variable, because it contains
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its type. The grammar for the type is:

< Type >

Figure 11 shows examples of different pure closure types.

Type Explanation
< bool > pure closure type which evaluates to a boolean.

< int > pure closure type which evaluates to an integer.

Figure 11: Examples of pure closure types.

5.2 A recursive while

This example is adapted from [1]. In Figure 12, an implementation for the famil-
iar while language construct is shown, using both procedural and pure closures.

1. var while : ( <bool>, ()->():(), <bool> )->():();

// c - condition, b - body, i - invariant

2. while := method ( c:<bool>, b:()->():(), i:<bool> )->():()

3. requires eval(i);

4. requires (forall2::

old(eval(c)&&eval(i)) && spec(b) ==> eval(i));

5. requires (forall1:: eval(c) && eval(i) ==> pre(b));

6. modifies mod(b);

7. ensures !eval(c) && eval(i);

8. {

9. if( eval(c) )

10. {

11. call b();

12. call while(c, b, i);

13. }

14. };

Figure 12: A recursive while using closures.

Our while closure, defined on line 2, takes a boolean pure closure representing
the continuation condition, a procedural closure which would represent the re-
peated body and another boolean pure closure representing the loop invariant,
which is used only in the specification (as a ghost parameter).
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Like usual while constructs, the procedural closure defined requires that the
invariant holds upon entry (line 3), that executing the body when the condition
holds, maintains the invariant (line 4) and that the body can be executed when
the condition holds (line 5).

The while closure modifies whatever the body b modifies when it is called (line
6) and it ensures that the condition will no longer hold and the invariant will
(line 7), just like an usual while construct.

The implementation for the while closure is a recursive one, which executes the
body and calls itself if the continuation condition holds and returns immediately
otherwise. It is straightforward to see and verify how the body implements the
specification.

1. var i := new IntWrapper;

2. var j := new IntWrapper;

3. var x := new IntWrapper;

4. i.v:=0; j.v:=5; x.v:=7;

5. var condition : <bool>;

6. condition := ‘ i.v < 5 ‘;

7. var invariant : <bool>;

8. invariant := ‘ i.v + j.v == 5 && i.v <= 5 ‘;

9. var body : ()->():();

10. body := method ()->():()

11. requires i != null && j != null && i != j;

12. modifies i, j;

13. ensures i.v == old(i.v) + 1;

14. ensures j.v == old(j.v) - 1;

15. {

16. i.v := i.v + 1;

17. j.v := j.v - 1;

18. };

19. call while ( condition, body, invariant);

20. assert i.v == 5 && j.v == 0 && x.v == 7;

Figure 13: Client example for the recursive while closure.

In Figure 13, we have a client implementation for the previously defined while
closure. In this case, a while loop would have been less verbose, but this exam-
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ple aims to prove the expressiveness of the new Dafny concepts.

It is easy to see how this client increments i from 0 to 5, while decrementing
j from 5 to 0, such that invariant holds at each iteration of the loop. Also,
the continuation condition is written to stop incrementing i after 5. The as-
sertion on line 20 will hold and proves once more how expressive this approach is.

6 Conclusions

6.1 Limitations

Due to time constraints (150 hrs in theory for the entire work) and the complex-
ity of the problem, we did not have enough time for testing. Therefore, besides
these known issues, some other problems may exist:

• this cannot be used from closures. However, it can probably be assigned
to a local variable before the closure definition – not tested, though;

• the decreases language construct hasn’t been implemented for closures.
This means that the Dafny programmer may define the precondition for a
closure f to depend on the precondition of another closure g, which might
depend on f ’s precondition, and so on..., without receiving a verification
error.

6.2 Possible extensions

We believe the work we did may be used as a base for adding closures to Dafny.
Of course, some features are missing and some bugs may arise, but we are fairly
confident in the overall quality of the code. Moreover, the code we added only
runs when closures are used, so it does not interfere with Dafny programs not
using closures.

The decreases language construct, the possibility of using this inside closure
definitions and dynamic frames would be good extensions.
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