
Declarative API for Defining Visualizations in
Envision

Bachelor’s Thesis Report

Andrea Helfenstein
Supervised by Dimitar Asenov, Prof. Peter Müller

May 5, 2013

Contents

1 Introduction 1
1.1 Motivation . 1

2 Standard Features and Properties of Visualizations in Envision 1
2.1 Static Visualizations . 1
2.2 Sequences of Visualizations . 2
2.3 Header and Body . 2
2.4 Layers and Background . 2
2.5 Visualizations in a Grid . 2
2.6 Conditional Layouts . 2
2.7 Visualizations with Size Depending on their Parent . 3

3 Layout Management in Other GUI Frameworks 3
3.1 Sequential Layouts . 3
3.2 Grid Layouts . 3
3.3 Anchor Layouts . 4

4 The Underlying Visualization Framework of Envision 4
4.1 The Class Visualization::Item . 5

5 The New Declarative API for Visualizations 5
5.1 Usage of the Declarative API . 6
5.2 Item Wrappers . 7
5.3 Layouts . 8

5.3.1 Sequential Layout . 8
5.3.2 Grid Layout . 9
5.3.3 Anchor Layout . 12
5.3.4 Position the Shape . 13

6 Implementation 14
6.1 Class Hierarchy of the Declarative Item . 14
6.2 Item Wrappers . 15
6.3 The class SequentialLayoutFormElement . 16
6.4 The class AnchorLayoutFormElement . 16

7 Discussion 17
7.1 Declarative Implementation of the Loop Statement Visualization - VLoopStatement . 17
7.2 Declarative Implementation of the Class Visualization - VClass 20
7.3 Declarative Implementation of the If-Statement Visualization 21

8 Conclusion and Future Work 23

Appendices 24

Appendix A The Anchor Layout as a Linear Programming Problem 24

i

List of Figures

1 A screenshot showing how code may be visualized by Envision 2
2 Visualization of the return statement . 7
3 Visualization of the loop statement . 10
4 Stretch factor example . 11
5 Merge cells in a grid layout . 12
6 Anchor layout explained . 13
7 Relative edge positioning in the anchor layout . 14
8 Declarative Item class hierarchy . 15
9 Form element class hierarchy . 15
10 Item Wrapper class hierarchy . 15
11 Types of anchoring problems . 16
12 Illustration of how two anchor specifications could be replaced by one 19
13 Visualization of the class . 20
14 Visualization of the if-statement . 22
15 The components of an anchor Ai = (Ei,1, ri,1, Ei,2, ri,2, oi) on the horizontal axis 24

Listings

1 Class Declaration using DeclarativeItem . 6
2 Method initializeForms() . 6
3 initializeForms method of the class VReturnStatement 7
4 Definition of the header form element in VLoopStatement::initializeForms 9
5 Definition of the header form element in VLoopStatement::initializeForms 10
6 Overview of VReturnStatement::initializeForms 12
7 Overview of VClass::determineChildren . 21
8 Overview of VIfStatement::initializeForms . 22

ii

1 Introduction

Envision is a visual programming environment for object-oriented languages, written in C++. Its de-
velopment has begun as the master thesis of Dimitar Asenov in 2010 [10], and is still being actively
developed.
Envision moves away from the classical text-editor based programming interface, towards an environ-
ment, where every piece of the code is visualized in a way that is not restricted to text only, but may
include symbols, images, visual indications for scope or control flow, and many other visual elements.
The human brain can process visual impressions much faster than it can process written words. Aug-
menting the code with visual elements shall help the programmer to understand the code more quickly
and more intuitively.

1.1 Motivation

In order to visualize every piece of code inside a developing environment, Envision needs to be able
to display thousands of visualizations at the same time. This is why we use a custom visualization
framework based on the Qt GUI module [5] directly, and not a standard GUI framework like Qt
Widgets [6]. Such a framework is designed for displaying only a few objects at a time, and does not
scale well.

However, using the current Envision approach, every visualization needs to implement fine-grained
control of the rendering process, which makes adding or modifying even trivial visualizations a tedious
task due to the need to write a lot of boilerplate code.

Our goal is to make it easy to add and modify visualizations for Envisions. The motivation behind
this is the following:

• We want to enable software developers to write their own visualizations for Envision. This would
allow them to create specific visualizations for embedded Domain Specific Languages or libraries,
potentially making their use much easier and more intuitive.

• Also, in order to improve the existing visualizations, we need to be able to determine which
visualizations work best for which visual components. To this end, we need to be able to quickly
adjust the visualizations and compare the different variants.

This thesis concentrates on the design and implementation of a visualization API on top of the already
existing framework, providing a higher level of abstraction. This abstraction will allow standard
visualization components (section 2) to be written and combined in a declarative way, with emphasis
on flexibility, good readability, and minimal amount of code. Nonetheless, it will still be possible to
implement non-standard visualizations, avoiding the higher level abstraction and using the underlying
framework, or even to mix the two approaches. We will take the design of other GUI frameworks into
consideration (section 3) when designing the API.

2 Standard Features and Properties of Visualizations in Envision

In this chapter we discuss what features and properties the visualizations in Envision currently have,
and what features we would like them to have in the future. This then gives us a list of what
functionality the new API needs to support.

2.1 Static Visualizations

In figure 1 there are a lot of visualizations that are static. Those are for example the icons and variable
type names (such as int, void, and float).

1

Figure 1: A screenshot showing how code may be visualized by Envision

2.2 Sequences of Visualizations

The most common way of displaying visualizations, is to show them one after another in a sequential
manner, either vertically or horizontally. Depending on the orientation, the visualizations can be
aligned horizontally to the left, the right, or the center, and similarly on the vertical axis to the top,
the bottom, or the center.
Examples for this type of laying out the visualizations are the list of arguments (horizontal sequence),
and the lines of code (vertical sequence).

2.3 Header and Body

Some visualizations, like those of classes, methods, and loops, contain other visualizations. Most of
these container visualizations have a header at the top, displaying some general information, and a
body below, where all the contained visualizations are shown.

2.4 Layers and Background

The container visualizations, mentioned in the last section, all have a background shape which does
not just encompass all the contained visualizations, but only a subset of them.

2.5 Visualizations in a Grid

In figure 1, some visualizations are arranged in a grid structure. E.g. in the body of the method, there
is a matrix. Also the parameters of the method (rightmost visual item of the method’s header) may
be arranged in a grid.
An important point to note here, is that the size of the grid might not be the same for all visualizations
of the same type. E.g. the matrix visualization may be a general one, and not just for 3× 3 matrices.
Also, methods may have an arbitrary number of arguments.

2.6 Conditional Layouts

When visualizing code it is often useful to support multiple possible layouts, and then dynamically
choose which one to use.
E.g. one might want to visualize a public field differently than a private one. When displaying an
if-statement one may want to alter the layout depending on the contents of the different branches. It
may even be desirable to display a series of if-statements like a switch statement, if they are used like
one.
Currently Envision does not have an easily usable mechanism to support dynamic choosing of a specific
layout based on user-defined conditions.

2

2.7 Visualizations with Size Depending on their Parent

Some visualizations may depend on their parent’s size. E.g. in the list of statements, separators in
the form of lines may need to be stretched to match the widest statement visualization in this list.

3 Layout Management in Other GUI Frameworks

There exist many other GUI frameworks, hence we analyzed how some of those enable the user to
define and manage layouts. This helped us determine, which layout types will, or will not be useful for
visualizations in Envision. Based on this knowledge, we can choose some layout types, and implement
them adapted to the specific needs of defining a visualization for Envision.

The GUI frameworks we looked at in detail were the following:

Qt Widgets [6] A GUI framework written in C++.

Tikz [7] A graphics package for Latex.

wxWidgets [9] A GUI framework written in C++.

Gtk Layout Containers [1] A GUI toolkit written in C.

Tkinter [8] A GUI package included in all Python distributions.

All of those frameworks have their own concepts of how to define where a widget should be drawn.
However, most of the concepts appear in more than one framework. We can divide those concepts
into Sequential Layouts, Grid Layouts, and Anchor Layouts.

3.1 Sequential Layouts

Almost every framework we analyzed has a sequential layout. Here, sequential means that one com-
ponent follows another, arranged either horizontally or vertically. In most of the frameworks it is
referred to as a Box Layout (Qt Widgets: QBoxLayout, wxWidgets: wxBoxSizer, gtk: HBox/VBox,
tkinter: pack1).

A sequential layout is the most basic layout. You can just add one component after the other, and
align them appropriately. More complex structures can be achieved by nesting. However, using a lot
of nesting comes at the cost of reduced readability.
The sequential layout is a good choice for visualizing simple sequences, but we need more intuitive
solutions for more complex constructs.

3.2 Grid Layouts

As the name suggests, in a grid layout the components are arranged in a grid. In most of the frame-
works supporting grids, one component can occupy more than one cell of the grid. Also, it is allowed
to leave some cells empty. In general, one can define minimum width and height for columns and
rows respectively. In addition, a row or column can be marked as stretchable. This means, if there is
more space available than needed by the whole layout, those stretchable columns and rows will grow.
In some frameworks a factor can be specified to indicate how the additional space will be distributed
among the stretchable rows/columns.

The grid layout is very powerful but also intuitive, even for more complex structures. It allows natural
alignment over two dimensions. Most GUI frameworks provide some form of grid layout (Qt Widgets:
QGridLayout, wxWidgets: wxFlexGridSizer, gtk: Table, tkinter: grid).
Although a grid layout can make the definition of particular layouts easy, it is not very flexible. If

1pack is not strictly a sequential layout, but it can easily be used as one.

3

a more flexible layout is needed, one will end up designing a very fine-grained grid, and then again
merging a lot of cells. This would not be readable anymore, and it also might affect the drawing
performance.

3.3 Anchor Layouts

In an anchor layout, the components’ positions are specified relative to each other. E.g. a component
can be specified to be left of or below another component. This approach of laying out components
seems not to be very common among GUI frameworks. Of the frameworks we looked at, only Qt
Widgets[6] and Tikz[7] support an anchoring system.

Anchoring System in Tikz In Tikz[7] components can be placed using an anchoring system. Each
component has north, north west, south, south east etc. properties, called anchors. Those anchors refer
to a specific point relative to the component. When placing the component, the specified position can
be a coordinate, or an anchor of an already placed component (which can be resolved to a coordinate).
Additionally to that, one can specify which of the component’s anchors should be put at this position.
Note, that you can only use the anchor for placing the components, and not for resizing them.

QAnchorLayout in Qt Widgets In the QAnchorLayout components are placed by aligning their
edges (like left, right, south, north, but also center) to the edges of other components, including the
containing layout.
Here, a single anchor only affects the position on either the x- or the y-axis of the concerned compo-
nents. Also it does not by itself place an component, it just constrains the components to have the
concerned edges at the same place on the affected axis.

The Tikz approach is not as flexible as the Qt approach, because in Tikz you can only relate the po-
sition of a component to an already fixed coordinate. Using the Qt Widgets, you have the possibility
to only fix the x or y coordinate of a component. Also, you do not place a component directly, but
only specify relationships between some component’s edges, which additionally allows you to specify
that components should have the same size. The latter is only possible in Tikz, by explicitly setting
the two components’ sizes to the same value.

We have now examined how some GUI frameworks enable the user to manage layouts in a convenient
way, and how powerful each of those layouts can be. We can use the principles of those layouts
as a guideline when designing our own declarative API, enhancing the already existing visualization
framework of Envision.

4 The Underlying Visualization Framework of Envision

In this section, we give an overview of the visualization framework in Envision. It is important to
know the basic principles behind this framework, in order to understand how our new declarative API
(section 5) can be used, and how the functionality behind the API is implemented (section 6).
Envision uses a Model View Controller (MVC) architecture. In this thesis we are mostly concerned
with the view part of this architecture. Although, since the view is visualizing the model, we also
need to know the basics about the model of Envision.

Model::Node The model of Envision is represented by a tree of nodes, the type Model::Node being
the base of all those nodes.

Visualization::Item The view of Envision is represented by a tree of items. The base class of all
these items is Visualization::Item. An item can be responsible for visualizing a model node,
but it could also be used to display e.g. an icon, which is not part of the model.

4

4.1 The Class Visualization::Item

Visualization::Item is the base class of all visualization items. All derived classes need to implement
those two main methods:

• void determineChildren()

• void updateGeometry(int availableWidth, int availableHeight)

Both of those methods are relevant when the visualization item needs to be rendered. The method
determineChildren is called first. The method is used by the visualization item to update, create,
or destroy contained visualization items, according to the possibly updated model.

In a second step, the method updateGeometry is called with availableWidth and availableHeight

of zero each. This indicates, that the visualization item’s minimum size should be computed. When
this method is being called, the minimum sizes of all the visualization items child items are already
available. The visualization item needs to set the positions of all its child items. It can also expand
the child items, if they support it. In the end, the visualization item has to set its own size.

If a visualization item is requested to expand, its method updateGeometry is called a second time,
with non-zero availableWidth and availableHeight. Those arguments need to be at least as large
as the visualization item’s minimum size. After this call of updateGeometry the visualization item’s
dimensions will be exactly the given availableWidth and availableHeight.

5 The New Declarative API for Visualizations

Envision uses the Qt framework, and we found the its API to be very intuitive in general. Therefore,
when designing the declarative API for visualization in Envision, we followed the design principles as
they are stated by the developers of the Qt framework in [4] and [2]:

Be minimal A minimal API has as few public members per class and as few classes as possible. This
makes it easier to understand, remember, debug, and change the API.

Be complete A complete API means the expected functionality should be there. This can conflict
with keeping it minimal. Also, if a member function is in the wrong class, many potential users
of the function won’t find it.

Have clear and simple semantics Common tasks should be easy to do. Rare tasks should be
possible but not the focus. Solve the specific problem; don’t make the solution overly general
when this is not needed.

Be intuitive An API is intuitive if a semi-experienced user gets away without reading the docu-
mentation, and if a programmer who doesn’t know the API can understand code written using
it.

Be easy to memorize To make the API easy to remember, choose a consistent and precise naming
convention. Use recognizable patterns and concepts, and avoid abbreviations.

Lead to readable code Code is written once, but read (and debugged and changed) many times.
Readable code may sometimes take longer to write, but saves time throughout the product’s life
cycle.

In other words, we want the user to be able to easily produce readable code that does what the user
expects.

5

5.1 Usage of the Declarative API

As discussed in section 4.1, the base class of all visualization items, Item, lets the user define
the layout and behavior of descendant classes, by overriding the methods determineChildren and
updateGeometry. We introduce a new visualization item, acting as the base class of all items using
the declarative API: DeclarativeItem. This class implements the two methods mentioned above,
and lets the user specify the layout and behavior of descendant visualization items in an alternative,
more declarative way.

The user specifies one or more forms, where a form represents one possible layout for this visualization
type. If the user specifies more than one form, he also needs to specify in what state of the visual-
ization which form to use. This mechanism can be used to switch between different layouts based on
user defined conditions, as described in section 2.6.

In this section we explain the basic structure of a visualization item that uses the declarative API.

1 class MyVisualizationItem : public DeclarativeItem <MyVisualizationItem > {

2 public:

3 static void initializeForms ();

4 int determineForm () override;

5 }

Listing 1: Class Declaration using DeclarativeItem

It is mandatory to implement a static method initializeForms. As the name suggests, this method
is used to initialize the forms mentioned above. These form definitions are then shared among all
instances of this particular visualization type.
The method determineForm needs to be overridden only if the user defines more than one form for
this visualization item type. It is used to decide which form to use when the item needs to be rendered.

1 void MyVisualizationItem :: initializeForms ()

2 {

3 /* form with index 0 */

4 addForm(/* define an element */);

5

6 /* form with index 1 */

7 addForm(/* define another element */);

8 }

Listing 2: Method initializeForms()

Inside the method initializeForms, there needs to be at least one call to the method addForm. The
added forms will be identified by increasing numbers in the order they were added, starting with 0 for
the first form.

If there are multiple forms defined, the method determineForm needs to decide which one of them
should be used. This decision method is called each time the visualization needs to be rendered. It
returns an integer, which is interpreted as an identifier of the form to use for rendering. The default
implementation of determineForm always returns 0, meaning the first form will be taken. This suffices
for the case, where there is only one form available.

What is a Form? In the method addForm, an object of type FormElement needs to be supplied.
This object is the root of a tree, describing a way to arrange the child items of the visualization item
we are defining.
We use the composite pattern, such that every form element can potentially contain other form
elements. There are multiple classes derived from FormElement, some used for wrapping visualization
items (section 5.2), and some used as layouts to arrange other form elements (section 5.3). The
following two sections will show how those form elements can be used to control the way a visualization
item is displayed.

6

5.2 Item Wrappers

An item wrapper is a form element that takes care of rendering a child item of the visualization item we
are defining. In a tree of form elements, most of the tree’s leafs are item wrappers, since visualization
items are the only objects to be rendered. The form element trees are just there to compute where
and how large those visualization items should be displayed.
There are three types of item wrappers:

(1) NodeItemWrapperFormElement

visualizes a model node using its default visualization

(2) NodeWithVisualizationItemWrapperFormElement

visualizes a model node using a specific visualization and style

(3) VisualizationItemWrapperFormElement

renders a specific visualization using a provided style (without any model node)

The names of those classes are very long and each of them is a template class with up to two template
arguments. Using these inside the form definition would reduce the readability by a lot. Therefore we
added three factory methods, that can be used by any class derived from DeclarativeItem. Each of
those methods corresponds to one of the three item wrapper types. Next we show how to use those
factory methods.

The first parameter to specify for any item wrapper, is a place to store the wrapped visualization
item. This needs to be a pointer-to-member to an item inside the visualization item we are defining.
In addition to that, (1) and (2) need to be able to get a model node to construct a new visualization
item if needed. Also, (2) and (3) need to know what type of visualization item should be created, and
what style to use for it.

In the following, we describe how exactly those three parameters need to be specified, using the
visualization for the return statement (VReturnStatement) as an example.

(a) Original visualization for the
return statement, created with
listing 3.

(b) Adapted visualization, to il-
lustrate what happens if the vi-
sualization of the return value is
rendered with the default style for
VList.

Figure 2: Visualization of the return statement

1 void VReturnStatement :: initializeForms ()

2 {

3 addForm ((new GridLayoutFormElement ())

4 ->setTopMargin (5) ->setBottomMargin (5) ->setHorizontalSpacing (5)

5 ->setVerticalAlignment(LayoutStyle :: Alignment :: Center)

6 ->put(0, 0, item <Static , I>(&I::symbol_ ,

7 [](I* v){return &v->style()->symbol ();}))

8 ->put(1, 0, item <VList ,I>(&I::values_ ,

9 [](I* v){return v->node()->values ();},

10 [](I* v){return &v->style()->values ();})));

11 }

Listing 3: initializeForms method of the class VReturnStatement

7

In listing 3, two kinds of item wrappers are used: One with visualization and style only (lines 6-7),
and another one with a model node and a style (lines 8-10).

The one on lines 6-7, with the style only (3) displays the icon:

item <Static , I>(&I::symbol_ , [](I* v){return &v->style()->symbol ();})

Static is the visualization type for the icon. It can be used for displaying images. I is an alias for
the class VReturnStatement.
The first argument, &I::symbol is a pointer to the private member symbol of the class VReturnStatement.
This member needs to be defined in the class declaration as Static* symbol .
Note that the base class DeclarativeItem of VReturnStatement takes care of destroying all items
used in any item wrapper upon destruction of the containing declarative visualization item. Since the
child items are the only fields of VReturnStatement, this class does not need any destructor.
The second argument is a lambda-function, taking an argument of type VReturnStatement*, and re-
turning a reference to a style. Note that the style is acquired by calling the visualization item’s style
method. In our case, the lambda-function returns the symbol style, holding e.g. the path to the icon
picture.

The item wrapper definition on lines 8-10, displays a list of return values. It renders a model node
with the given visualization type and style (2):

item <VList ,I>(&I::values_ , [](I* v){return v->node()->values ();},

[](I* v){return &v->style()->values ();})))

This time, VList is the visualization type used to create the wrapped visualization item. The differ-
ence of this call to the previous one, is the addition of the second argument. It is a lambda-function
taking an argument of type VReturnStatement*, and returning a pointer to a model node. Whenever
this node is different from the one returned previously, the item wrapper automatically creates a new
item out of the model node, with the given visualization type and style. Note that the item will be
nullptr, if no node is returned.

To look at the item wrapper with the model node only (1), we can change the element argument in
listing 3 on lines 8-10 to:

item <I>(&I::values_ , [](I* v){return v->node()->values ();})

Once we remove the style, the first template argument is no longer needed. Additionally, the definition
of member values needs to be changed from VList* values {} to Item* values {}. This is because
the model node will be rendered with the default visualization, of which the type is not known.
After those changes, the return values are no longer visualized as in figure 2a, but rather as in figure 2b.

5.3 Layouts

Layouts can be used to arrange a set of form elements in a specific way. In general those layouts
are implemented as form elements, holding a list of other form elements, and rules on how to arrange
them. The exception is the sequential layout, which on every redraw gets a list of visualization items
or model nodes to display.

5.3.1 Sequential Layout

The class SequentialLayoutFormElement lets us define sequences of elements as defined in section 2.2.
The sequential layout gets a list of visualization items to display on every redraw. There are three
ways to provide it with those items:

(1) Specify a lambda-function returning a list of visualization items.

(2) Specify a lambda-function returning a list of model nodes.

8

(3) Specify a lambda-function returning a model node of type Model::List.

Note that the layout can transform the node of type List into a list of nodes, and each node from the
list can be rendered with its default visualization, yielding a visualization item. Finally, those can be
accumulated to a list of visualization items.

Next, we describe how those methods can be specified, using the sequential layouts in the visualization
of the class (VClass) as an example.

1 auto fieldContainerElement = (new GridLayoutFormElement ())

2 ->setVerticalSpacing (3)

3 ->put(0, 0, (new SequentialLayoutFormElement ())->setVertical ()

4 ->setListOfNodes(

5 [](Item* i){return (static_cast <VClass*>(i))->publicFields_ ;}))

6 ->put(0, 1, (new SequentialLayoutFormElement ())->setVertical ()

7 ->setListOfNodes(

8 [](Item* i){return (static_cast <VClass*>(i))->privateFields_ ;}))

9 ->put(0, 2, (new SequentialLayoutFormElement ())->setVertical ()

10 ->setListOfNodes(

11 [](Item* i){return (static_cast <VClass*>(i))->protectedFields_ ;}))

12 ->put(0, 3, (new SequentialLayoutFormElement ())->setVertical ()

13 ->setListOfNodes(

14 [](Item* i){return (static_cast <VClass*>(i))->defaultFields_ ;}));

Listing 4: Definition of the header form element in VLoopStatement::initializeForms

In listing 4, four sequential layouts arranged using a grid layout. All those sequential layouts are of
type (2), as they specify a list of nodes:

(new SequentialLayoutFormElement ())->setVertical ()

->setListOfNodes ([](Item* i){return (static_cast <VClass*>(i))->

publicFields_ ;})

Here, the private member publicFields of VClass is of type QList<Model::Node*>.

Note, that in contrast to the item wrapper, in the sequential layout the lambda-functions take a gen-
eral Visualization::Item* as an argument, which needs to be casted to VClass* in order to get full
access to visualization object.

In a sequential layout of type (1), we need to supply the sequential layout with a list of rendered
visualization items. Let us assume, that VClass has a private member publicFieldItems of type
QList<Visualization::Item*>. Then we can supply this list to the sequential layout as follows:

(new SequentialLayoutFormElement ())->setVertical ()

->setListOfItems ([](Item* i){return (static_cast <VClass*>(i))->

publicFieldItems_ ;})

Lastly, in a sequential layout of type (3), we need to supply the layout with a model node of type
Model::List. Let us assume, that all the field nodes are accessible for an instance of VClass via
node()->fields(), and that this method returns an object of type Model::List*. Then we can
instantiate the sequential layout as follows:

(new SequentialLayoutFormElement ())->setVertical ()

->setListNode ([](Item* i){return (static_cast <VClass*>(i))->node()->

fields ();})

5.3.2 Grid Layout

The class GridLayoutFormElement allows arranging components inside a grid as described in sec-
tion 2.5, with one exception: The grid size is fixed for one instance of class GridLayoutFormElement.

9

A matrix as described in section 2.5 cannot be implemented with this layout. It can only be used for
statically-sized grids. But since the grid layout is designed for arranging a statically fixed number of
form elements, we do not need this additional flexibility.

In the following, we show how the grid layout can be used to arrange form elements through the
example of the loop statement (VLoopStatement).

Figure 3: Visualization of the loop statement

For our demonstration of the grid layout, let us consider the grid layout defining the header part of
the loop statement visualization shown in listing 5.

1 auto header = (new GridLayoutFormElement ())

2 ->setHorizontalSpacing (3) ->setColumnStretchFactor (3, 1)

3 ->setVerticalAlignment(LayoutStyle :: Alignment :: Center)

4 ->put(0, 0, item <Static , I>(&I::icon_ , [](I* v){return &v->style ()->icon();}))

5 ->put(1, 0, item <NodeWrapper , I>(&I::initStep_ ,

6 [](I* v){return v->node()->initStep ();},

7 [](I* v){return &v->style()->initStep ();}))

8 ->put(2, 0, item <NodeWrapper , I>(&I::condition_ ,

9 [](I* v){return v->node()->condition ();},

10 [](I* v){return &v->style()->condition ();}))

11 ->put(3, 0, item <NodeWrapper , I>(&I:: updateStep_ ,

12 [](I* v){return v->node()->updateStep ();},

13 [](I* v){return &v->style()->updateStep ();}));

Listing 5: Definition of the header form element in VLoopStatement::initializeForms

On the first line we create a new grid layout. On the following lines we call various methods on this
grid layout. The methods can be chained as shown, because every method modifying the grid layout
returns the pointer to this grid layout again. This technique called method chaining, can be found
throughout the declarative API. We use it to avoid repetition of arguments over several function calls.

Let us first consider the method put. This is the main method to define the grid. Every time it is
called, another form element gets added to the grid at the desired position. E.g. the second call (lines
5-7), adds the form element for the initialization step at column 1 and row 0. You may observe, that
we did not have to specify the size of the grid in the beginning. The size of the grid is automatically
adjusted as more form elements are added.

All the other methods can be used for fine-tuning the appearance of the grid. For setting most
properties, there are three kinds of methods available:

(1) Set the property for the whole grid.

(2) Set the property for one column or row.

(3) Set the property for one cell.

For methods of type (2), the column or row number must be specified before the parameter. However
for methods of type (3) the cell does not have to be specified. The cell on which this parameter will
be set is the last cell modified via the method put. This eliminates repeating the position of this cell
in the grid.

10

Space Between Columns and Rows The horizontal and vertical spacing can be set separately,
or as one. The following methods are available:

• setSpacing(int spacing)

• setSpacing(int spaceBetweenColumns, int spaceBetweenRows)

• setHorizontalSpacing(int spaceBetweenColumns)

• setVerticalSpacing(int spaceBetweenRows)

Alignment The horizontal and vertical alignment can be set for each cell. The default alignment
is top left. The following methods are available:

• setHorizontalAlignment(LayoutStyle::Alignment horizontalAlignment)

• setVerticalAlignment(LayoutStyle::Alignment verticalAlignment)

• setColumnHorizontalAlignment(int column, LayoutStyle::Alignment horizontalAlignment)

• setRowVerticalAlignment(int row, LayoutStyle::Alignment verticalAlignment)

• setCellHorizontalAlignment(LayoutStyle::Alignment horizontalAlignment)

• setCellVerticalAlignment(LayoutStyle::Alignment verticalAlignment)

• setCellAlignment(LayoutStyle::Alignment horizontalAlignment, LayoutStyle::Alignment

verticalAlignment)

Stretching Columns or Rows Stretch factors determine if and how additionally available space
should be distributed among the columns and rows respectively.

additional space

2 0 1

2/3 1/3

before stretching:

after stretching:

Figure 4: Stretch factor example

Consider figure 4. The upper row shows a grid layout with three columns. Their width currently
meets minimum space requirements. You can see their stretch factors written above the columns, and
there is some additional space available, marked on the right.
Columns with stretch factor 0 do not stretch, but each column with a higher stretch factor gets a
portion of the additional space, according to their stretch factor. In our case, the first and third
column have stretch factors 2 and 1 respectively. Summing them up we get a total stretch factor of
3, this means the first column gets 2/3 of the additional space, while the third column gets 1/3, as
shown in the lower row of figure 4.
The following methods for setting the stretch factors are available:

• setColumnStretchFactor(int column, float stretchFactor)

• setColumnStretchFactors(float stretchFactor)

• setRowStretchFactor(int row, float stretchFactor)

• setRowStretchFactors(float stretchFactor)

• setStretchFactors(float stretchFactor)

11

1, 1

3

2

Figure 5: Merge cells in a grid layout

Merging Cells can be achieved by specifying a cell spanning different from 1× 1.
Consider figure 5. Adding a form element to cell (1, 1) via put(1, 1, formElement) (marked in gray),
and then adding a spanning to this cell via setCellSpanning(3, 2) would result in the added form
element being handled relative to the merged cell, marked in blue. If this form element is stretchable,
it would be resized to be as large as the blue box.

5.3.3 Anchor Layout

The class AnchorLayoutFormElement allows arranging form elements by aligning their edges. It works
very similar to the QAnchorLayout from the Qt Widgets [6], with the exception that you cannot align
any component’s edge to an edge of the containing layout.

As an example, we will look at the loop statement (VLoopStatement) again. Consider lines (7-14) of
listing 6. Those lines arrange header, body and shape in such a way, that the end result looks like
figure 6c.

1 void VLoopStatement :: initializeForms ()

2 {

3 auto header = /* ... */;

4 auto body = /* ... */;

5 auto shapeElement = new ShapeFormElement ();

6

7 addForm ((new AnchorLayoutFormElement ())

8 ->put(TheTopOf , body , 10, FromBottomOf , header)

9 ->put(TheTopOf , shapeElement , AtCenterOf , header)

10 ->put(TheLeftOf , shapeElement , AtLeftOf , header)

11 ->put(TheLeftOf , shapeElement , 10, FromLeftOf , body)

12 ->put(TheRightOf , header , AtRightOf , body)

13 ->put(TheRightOf , shapeElement , 10, FromRightOf , header)

14 ->put(TheBottomOf , shapeElement , 10, FromBottomOf , body));

15 }

Listing 6: Overview of VReturnStatement::initializeForms

In figures 6a and 6b we used green to denote the header, red for the body, and blue for the shape.
The anchors marked in figure 6a affect the form elements’ widths and positions on the x-axis, while
the anchors marked in figure 6b affect their heights and positions on the y-axis.
On the horizontal axis, h1 aligns the left of the header and the shape (line 10), while h2 aligns the
left of the shape and the body with an offset (line 11). This means, the x-coordinate of header and
shape will be the same, whereas the body’s x-coordinate will be the previously mentioned one plus
the offset. h3 aligns the right of header and body (line 12). Together with h1 and h2, this means the
header’s width will always be longer by offset than the body’s. The anchor layout stretches either the
header or the body to satisfy this constraint. Note that no component will ever shrink. Similarly h4
aligns the right of header and shape with an offset (line 13).

On the vertical axis v1 aligns the top of the shape to the center of the header (line 9). v2 places the

12

h1

h2

h3
h4

(a) Horizontal alignments

v1

v2

v3

(b) Vertical alignments

(c) Visualization of the loop
statement

Figure 6: Anchor layout explained

body some offset below the shape (line 8), while v3 places the bottom of the body the shape within
some offset from each other (line 14). v3 forces the shape to stretch vertically, as discussed above, for
the horizontal case.

Note, that if a form element is not stretchable, but it needs to stretch in order to satisfy the anchor
constraints, the placement will fail, and a VisualizationException will be thrown.

The following methods for defining anchors are available:

(1) put(PlaceEdge placeEdge, FormElement* placeElement, AtEdge atEdge,

FormElement* fixedElement)

(2) put(PlaceEdge placeEdge, FormElement* placeElement, int offset, FromEdge fromEdge,

FormElement* fixedElement)

(3) put(PlaceEdge placeEdge, FormElement* placeElement, float relativeEdgePosition,

FormElement* fixedElement)

Methods (1) and (2) were explained using the example of the loop statement. The anchors h1, h3, and
v1 from the example are defined using method (1), while h2, h4, v2, and v3 are defined using method (2).

Method (3) is a more general version of method (1). Both do not have an offset, and relate two form
elements to each other, by specifying an edge for each element. However, in method (3) we specify the
edge of the second form element as a relative edge position, which allows the user to specify arbitrary
edges relative to this element.
In figure 7 you can see a form element. The dashed lines mark different relative edge positions. On
each ones top, the value of this relative edge position is marked, while the corresponding atEdge for
the horizontal case can be found at the bottom, if such a correspondence exists.

5.3.4 Position the Shape

Every visualization item may define a shape property in its style. This shape is displayed as the
background of the visualization. By default, this shape encompasses the whole visualization, but this
behavior can be changed.

13

AtLeft

0

AtRight

1

AtCenter

0.50.2−0.2 1.2

Figure 7: Relative edge positioning in the anchor layout

In the declarative API, we use the class ShapeFormElement to do this.

We use the loop statement as example again. In figure 6c, the shape of the loop visualization is visible
as a light blue background. Let us consider lines 5-14 of listing 6:

auto shapeElement = new ShapeFormElement ();

addForm ((new AnchorLayoutElement ())

->put(TheTopOf , body , 10, FromBottomOf , header)

->put(TheTopOf , shapeElement , AtCenterOf , header)

->put(TheLeftOf , shapeElement , AtLeftOf , header)

->put(TheLeftOf , shapeElement , 10, FromLeftOf , body)

->put(TheRightOf , header , AtRightOf , body)

->put(TheRightOf , shapeElement , 10, FromRightOf , header)

->put(TheBottomOf , shapeElement , 10, FromBottomOf , body));

The ShapeFormElement is a placeholder. It has minimum width and height of 0, respectively, but it
will stretch to fill up any space that is available. In the example, the ShapeFormElement is inserted
into an anchor layout. All its edges (left, right, top, bottom) need to be fixed in order for it to be
stretched correctly. If one of those fixing anchors were missing, the shape would collapse to a line.
It is also possible to add a ShapeFormElement to a grid layout, where the shape would occupy the
specified cell, or multiple merged cells.

6 Implementation

In this section we explain the reasons behind some of our design decisions, also in the context of the
implementation.

6.1 Class Hierarchy of the Declarative Item

An important point for us to keep in mind was performance and memory efficiency. We didn’t want
to have to store the layout in each instance of a visualization type (e.g. VClass), but we wanted this
information to be available in one place, for all the instances of this visualization type. The list of
available forms (section 5.1) should be the same for objects of the same type, but different for each
visualization type.
As Envision is written in C++, we implemented this behavior using templates together with static
methods and fields. In figure 8 we can see that the class DeclarativeItemBase is directly inheriting
from Item. DeclarativeItemBase which is not a template class, implements the basic functionality
of any declarative item. The class DeclarativeItem however is a template class, such that for each
visualization item it gets compiled once, and therefore its static fields are different for each type. In

14

Item

DeclarativeItemBase

DeclarativeItem<T>

VClassVMethod . . .

Figure 8: Declarative Item class hierarchy

this way, we ensure that each visualization type has its own static list of available forms.

Note that the use of templates and static methods and fields is the reason, why the method initializeForms

has to be static, and implemented by each visualization type separately.

The method determineForm is an instance method. It can be executed by any object of the same
visualization type, and decide which form to use for this instance, based on the status of the object.

FormElement

LayoutFormElementItemWrapperFormElement ShapeFormElement

GridLayoutFormElementSequentialLayoutFormElement AnchorLayoutFormElement

Figure 9: Form element class hierarchy

6.2 Item Wrappers

The item wrappers are implemented as a hierarchy of four template classes.

ItemWrapperFormElement

NodeWithVisualizationItemWrapperFormElement

VisualizationItemWrapperFormElement NodeItemWrapperFormElement

Figure 10: Item Wrapper class hierarchy

The base class (ItemWrapperFormElement) handles placement, resizing, and destruction of the wrapped
item. For this reason, the item wrapper needs to have read and write to the private member of its
containing visualization type, where the wrapped item is going to be stored. Since the item wrapper,
as every other form element, is defined statically, this is not a trivial task. Supplying the item wrapper
with a pointer-to-member solves this problem. If the item wrapper is now supplied with an instance
of the containing visualization type, it can resolve the pointer-to-member and access the wrapped
visualization item. But in order for the pointer-to-member object to be stored and accessed correctly,

15

the item wrapper needs to be a template with the containing visualization type and the wrapped
visualization type as template arguments.

The three derived classes (see figure 10) are responsible for creating and updating the wrapped visual-
ization item. Visualization items displaying a node have different constructors from those that don’t
visualize a node. Therefore, we need the three different template classes, or the code would not even
compile.

As we cannot expect the user to cope with those three final classes to choose from, we added a factory
method for each of those three types to the class DeclarativeItemBase. Now every declarative item
already includes those item wrappers and can directly use the factory methods to create item wrappers,
instead of the constructors of the different types. This makes the code more readable for the user,
and also shroter.

6.3 The class SequentialLayoutFormElement

The SequentialLayoutFormElement is very similar to the Visualization::SequentialLayout, that
is already part of the visualization framework of Envision.

The SequentialLayout is a visualization type, which can take a list of visualization items upon every
redraw, and visualize them. The SequentialLayoutFormElement is a functionally enhanced version
of the SequentialLayout inside the declarative API. The list of visualizations it renders, can not only
be specified as a list of visualization items, but also as a list of model nodes, or even a node of type
Model::List. This makes it easier to display lists of nodes with their default visualization, since they
can be rendered automatically by the SequentialLayoutFormElement, instead of by the user.

Another advantage of the SequentialLayoutFormElement over the SequentialLayout is the reduced
nesting of visualization items, since the SequentialLayoutFormElement is used as part of a form, and
not a visualization item itself.

6.4 The class AnchorLayoutFormElement

The anchor layout is the most flexible layout we decided to implement, but this flexibility also makes
it the most complex layout. In general we do not know in advance in which order we should compute
the positions and sizes of the contained form elements.

(a) Non-trivial anchoring problem

(b) Trivial anchoring problem

Figure 11: Types of anchoring problems

Consider three form elements that have their left and right edges aligned (see figure 11a). Here, the
positioning depends on the current size of each one of the form elements. In general we do not know
which form element will be the largest, and therefore we cannot fix an order on them, in which we
could compute their positions and sizes.

16

This general re-sizing and positioning problem can be formulated as a linear programming problem
(see appendix A). In our implementation, we use the library lpsolve [3] to compute a solution for this
problem.
However it is not always necessary to use this library, as in some cases, one can find an order for
positioning the form elements, that works in every case.
Our implementation detects whether we are in such a simple case, like in figure 11b. There we can
always place the form elements besides one another, and no re-sizing is needed. If we are in a simple
case like this, we can compute the order in which to determine the form elements’ positions just after
the form was defined, i.e. statically.

Our approach of detecting, whether we are in a simple case or a complex one, and using a linear
programming solver, is very similar to the approach Qt uses for QAnchorLayout [6], although there
the separation of simple and complex problems is different, and they can also dock elements to the
sides of the layout, which makes QAnchorLayout’s linear programming problem more involved.

7 Discussion

In this section we evaluate the new declarative API based on criteria we have given earlier. We focus
on the qualities of code using the API. We will compare visualization items in Envision, with and
without the use of the new API.

When inspecting the code, we will judge it based on a set of criteria defined as follows.

• In section 1.1 the following important qualities were stated:

(1) Visualizations need to be easy to add and modify.

(2) The usage of the API should lead to readable code.

(3) The code using the API should be as short as possible.

(4) It should still be possible to use the underlying framework, avoiding the new API. 4)

• In addition to those, we looked at the design principles of the Qt developers [4] and [2] in
section 5. The ones concerning the resulting code, and differing from the previously stated ones
are:

(5) A developer not knowing the API should understand code written using it.

(6) Common tasks should be easy to do, rare tasks should be possible, but not the focus.

In the following, we discuss those criteria on the basis of the new declarative implementation of three
visualizations, namely VLoopStatement, VClass, and VIfStatement.

7.1 Declarative Implementation of the Loop Statement Visualization - VLoopStatement

In this section, we will discuss the new declarative implementation of the class VLoopStatement with
emphasis on the length of the code (criterion 3), ease of modification (criterion 1), how readable and
intuitive the code appears (criteria 2 and 5), and possible issues of the declarative implementation.

Code Length The size of the implementation of the loop statement could be reduced from 782

Source Lines of Code (SLOC)3 to 652 SLOC in the header file, and from 1152 to 712 in the source file.
In total, the implementation of the loop statement using the declarative API is about 30% shorter
than the implementation using the original framework.
This reduced code length can be explained with the following reasons:

2Counted by the SLOC counter used by gitHub (https://github.com/).
3http://en.wikipedia.org/wiki/Source_lines_of_code

17

https://github.com/
http://en.wikipedia.org/wiki/Source_lines_of_code

• In the version with the new API, we do not need a destructor anymore, because all the fields of
the class are visualization items, and their destruction is managed by item wrappers.

• Using the new API, the constructor only calls the parent constructor, the body is empty. This
is also because all the fields are visualization items, and there construction is managed by item
wrappers.

• Using the new API, the method determineChildren does not longer need to be implemented
by the user, as it is already implemented by the parent class.

• Using the new API, the new method initializeForms needs to be implemented by the user.
Though in the case of VLoopStatement those new lines of code are much less, than the ones we
do no longer need.

• In the version with the new API, we could remove some visualization items, that were only
there, to wrap other visualizations, for the only purpose of giving them a background. Parallel
to the declarative API we implemented an NodeWrapper item, which we can use here to replace
the use of two visualization items by a single one.
In the case of VLoopStatement, this was used three times.

Ease of Modification To estimate how easy it is to modify a given visualization, we count the
areas of code, where of one visualization item inside VLoopStatement appear. We assume, that even
for a simple modification, one has to change code in most of those areas, or at least visit them, to
see if a modification is needed. Therefore it makes sense to consider, that if each visualization item
appears in only a few areas in the code, the code will be easier to modify, than if the visualizations
appear in several areas of the code.

For the purpose of this discussion, we only check the number of appearances of one visualization item
in the loop statement, since the situation of the other visualization items is similar.
For the condition visualization item we counted seven areas for the implementation without using the
declarative API, while for the implementation using the declarative API the condition only appears
twice: once when the private member is defined, and once when it is placed inside the header form
element. This is a great reduction of areas to modify, even more so if you take into consideration, that
the member declaration is rarely changed. This leaves the user with a single area, where the behavior
of the condition visualization can be changed.

Readability and Intuitive Use In this paragraph we analyze how each of the types of form ele-
ments is used and how readable they may appear to someone who is not familiar with Envision.

Let us first consider the anchor layout (listing 6, lines 7-14):

addForm ((new AnchorLayoutElement ())

->put(TheTopOf , body , 10, FromBottomOf , header)

->put(TheTopOf , shapeElement , AtCenterOf , header)

->put(TheLeftOf , shapeElement , AtLeftOf , header)

->put(TheLeftOf , shapeElement , 10, FromLeftOf , body)

->put(TheRightOf , header , AtRightOf , body)

->put(TheRightOf , shapeElement , 10, FromRightOf , header)

->put(TheBottomOf , shapeElement , 10, FromBottomOf , body));

This usage of the anchor layout may not be intuitive on first sight, but when reading out the single
put statements one can understand the relations between the contained form elements. With the help
of a piece of paper and a pencil one should be able to quickly understand the basic layout of the form
elements.
A way to improve this understanding, would be to define more put methods, acting as shorthands for
two or more of the already existing put methods. One such method would e.g. allow you to specify,
that two form elements should have the same width. This would be a shortcut for aligning first their

18

left edges, and then their right edges. Another method could allow you to set a relation between
two corners of the form elements. This would be a shorthand for aligning the two elements on some
horizontal edges, and additionally on some vertical edges.

Figure 12: Illustration of how two anchor specifications could be replaced by one

Such shorthands for writing two anchor constraints in one line of code are also implemented in Qt’s
QAnchorLayout [6].

Next, we analyze the usage of the grid layout (listing 5):

auto header = (new GridLayoutElement ())

->setHorizontalSpacing (3) ->setColumnStretchFactor (3, 1)

->setVerticalAlignment(LayoutStyle :: Alignment :: Center)

->put(0, 0, /* icon visualization */))

->put(1, 0, /* init step visualization */))

->put(2, 0, /* condition visualization */))

->put(3, 0, /* update step visualization */));

The grid layout is much more intuitive than the anchor layout. The user can immediately see at which
position of the grid any contained form element is placed. The additional settings like spacing and
alignment should be clear to anyone. The only function, which might not be clear from the start, is
the use of the stretch factor, as this is a more advanced concept inside a grid layout. But as a first
impression, the user can see, how this grid layout arranges its components.

The last type of form element we can analyze from the perspective of the VLoopStatement, is the item
wrapper :

item <NodeWrapper , I>(&I::condition_ , [](I* v){return v->node()->condition ();},

[](I* v){return &v->style()->condition ();})

The understanding of the item wrapper requires knowledge of the visualization framework underlying
the API, but also knowledge of the C++ language constructs template, pointer to member, and lambda-
functions.
As explained in section 5.2, item wrappers are the leafs of the tree, defined by any form. Those leafs
normally don’t change upon modifying the layout. They stand for the visualization items that are
visualized by the containing visualization, and only need to be changed if the implementation of the
model, which this item is visualizing, changes.
A user, who only wants to make changes to the layout, does not need to understand how the item
wrapper works, only what it stands for.
Nonetheless it would be desirable, to make the item wrappers more intuitive, though this will be a
hard task. As the item wrapper is the link to the underlying framework, it cannot be avoided, that
understanding the item wrapper will require some basic knowledge about that framework.

19

Issues In this paragraph, we discuss a limitation of the anchor layout, which may force the user to
wrap certain form elements inside a grid layout.
The anchor layout creates the constraints for the library lpsolve [3] in a way (see appendix A), such
that elements, that are not marked as stretchable, will never be stretched.
In the visualization of the loop statement, we want the shape, to have its right edge right of the header,
and right of the body. We can only know where to put the right edge of the shape, if the right edges
of header and body are at the same place, so we align header and body at their left and right, such
that header and body will be resized to have the same width. The problem is, that the body is not
stretchable in every case, resulting in the placement algorithm to fail.
The only solution to this problem so far, is to wrap the body inside a grid layout, which we can force
to be stretchable, by adding a stretch factor to its only column.

There may be multiple possible solutions to this problem. One of them would be to retry the compu-
tation of the anchor layout, but this time handling all the contained form elements as stretchable. In
this case it is not clear though, if the desired solution would be computed.
Another solution would be to give item wrappers an option to be stretchable regardless of the wrapped
visualization item. In case the wrapped item were not stretchable, the item wrapper would still en-
compass all the available space. The wrapped visualization item could then be placed inside this
space, according to some alignment options.

The second solution seems to more suitable, since it mimics the behavior of the wrapping grid layout:
It tells the anchor layout, that this form element is stretchable, and aligns the wrapped visualization
inside the available space.

7.2 Declarative Implementation of the Class Visualization - VClass

In this section, we will discuss the new declarative implementation of the class VClass. The points
already discussed for the class VLoopStatement (section 7.1) are also valid here. We will therefore
concentrate on different aspects here.
We will continue the discussion of how readable and intuitive the code appears (criteria 2 and 5), this
time we will analyze the sequential layout. Then we will also discuss, how one can use the declarative
API, but still access of the lower level mechanisms of the underlying framework (criterion 4).

Figure 13: Visualization of the class

Readability and Intuitive Use In this paragraph, we discuss the usage of the sequential layout.
Like the item wrapper, the sequential layout is a link to the underlying framework, and therefore
requires some knowledge of it. But unlike the item wrapper, the sequential layout does not require

20

such a deep knowledge of C++ code constructs, only lambda functions are used. But when defining
the lambda function, instead of getting a visualization item of type VClass as an argument, we get a
more general pointer to an instance of class Item. In order to have access to the full functionality of
VClass, we need to cast it.
It is not optimal for readability or intuitiveness, to force the user to do this cast. But in order to
avoid it, we would need to introduce templates, and it is not clear which of the two options is more
comfortable to use.

(new SequentialLayoutFormElement ())

->setVertical ()

->setListOfNodes ([](Item* i){return (static_cast <VClass*>(i))->publicFields_ ;})

Like for the item wrapper, the sequential layout will only have to be changed, once the implemen-
tation of the model it is visualizing has changed. A user only changing the layout of the containing
visualization item, will not have to touch the definition of the sequential layout.

Mixing the Declarative API and the Underlying Visualization Framework The visualiza-
tion of the body of the class uses a special visualization item, that can not be updated in the standard
way from the model it visualizes. This means, that using just an item wrapper, will not result in the
desired behavior of this item.
However, we can still use the declarative API to arrange the layout, and only treat the visualization
of the body differently.

First, we need to define an item wrapper for the body. This allows us position the body inside a form,
just like any other visualization. In addition to that, it also sets the style of the body automatically,
and we do not need to destroy the body visualization in the destructor.

item <PositionLayout , I>(&I::body_ , [](I* v){return &v->style ()->body();}))

We need to initialize the visualization in the constructor:

body_ = new PositionLayout(this , &style ->body());

Note, that the item wrapper will never attempt to create the body visualization itself, because it is
already initialized.
In contrast to a traditional visualization using the declarative API, we still need to override the
determineChildren method. In there, we can call the required non-standard update procedures, and
call the DeclarativeItem’s determineChildren method afterwards, since this method may rely on
the state of the body visualization item.

1 void VClass :: determineChildren ()

2 {

3 // manually update the body item

4 if (body_ ->needsUpdate () == FullUpdate) body_ ->clear(true);

5 QList <Model ::Node*> bodyItems = node()->classes ()->nodes ().toList ();

6 bodyItems << node()->methods ()->nodes().toList ();

7 body_ ->synchronizeWithNodes(bodyItems , renderer ());;

8

9 // call determineChildren of super class

10 BaseItemType :: determineChildren ();

11

12 /* ... */

13 }

Listing 7: Overview of VClass::determineChildren

7.3 Declarative Implementation of the If-Statement Visualization

In this section, we will discuss the new declarative implementation of the class VIfStatement. The
points discussed for the classes VLoopStatement (section 7.1) and VClass (section 7.2) are also valid

21

for the if-statement. In this section we will concentrate on an issue with code repetition.

Figure 14: Visualization of the if-statement

Issues The visualization of the if-statement has two forms: the first where the then- and the else-
branch are besides each other, and the second where one branch is below the other.

1 /* Define form elements */

2

3 // Form 0: then and else branch arranged horizontally

4 auto contentElement = (new GridLayoutFormElement ())/* ... */

5 ->put(0, 0, thenBranch)->put(1, 0, elseBranch);

6

7 addForm ((new AnchorLayoutFormElement ())

8 ->put(TheLeftOf , header , AtLeftOf , contentElement)

9 ->put(TheLeftOf , shapeElement , 2, FromLeftOf , contentElement)

10 ->put(TheRightOf , header , AtRightOf , contentElement)

11 ->put(TheRightOf , shapeElement , 2, FromRightOf , contentElement)

12 ->put(TheBottomOf , header , 3, FromTopOf , contentElement)

13 ->put(TheTopOf , shapeElement , AtCenterOf , header)

14 ->put(TheBottomOf , shapeElement , 2, FromBottomOf , contentElement));

15

16 // Form 1: then and else branch arranged vertically

17 contentElement = (new GridLayoutFormElement ())/* ... */

18 ->put(0, 0, thenBranch)->put(0, 1, elseBranch);

19

20 addForm ((new AnchorLayoutFormElement ())

21 ->put(TheLeftOf , header , AtLeftOf , contentElement)

22 ->put(TheLeftOf , shapeElement , 2, FromLeftOf , contentElement)

23 ->put(TheRightOf , header , AtRightOf , contentElement)

24 ->put(TheRightOf , shapeElement , 2, FromRightOf , contentElement)

25 ->put(TheBottomOf , header , 3, FromTopOf , contentElement)

26 ->put(TheTopOf , shapeElement , AtCenterOf , header)

27 ->put(TheBottomOf , shapeElement , 2, FromBottomOf , contentElement));

Listing 8: Overview of VIfStatement::initializeForms

The calls to the two addForm methods are almost the same. The difference is that in one case the
contentElement points to a grid, where then and else branch are arranged horizontally, while in the
other it points to a grid, where the branches are arranged vertically.
There is no mechanism in the declarative API, allowing the reuse of fully specified form elements, with
just some of the contained form elements replaced by others.

This problem could be solved, by adding two new methods to the anchor layout. The first would be a
second constructor, that takes an already existing anchor layout and copies its definition into a new
anchor layout. The second method would allow the user to replace a form element inside an anchor
layout by a different one.
Using this solution, the second definition of the anchor layout could be replaced by copying the first
anchor layout, and then replacing the old content element with the new one, and thus avoiding the
repetition.

22

8 Conclusion and Future Work

We have discussed how our new declarative API for visualizations in Envision can simplify the addi-
tion an modification of visualizations.
We have shown that with the declarative API, the code to define visualizations can be considerably
shorter, than the code resulting in the same visual representation, but using the underlying framework
directly.
We have also taken care, that code written using the declarative API is readable. A developer not
knowing the API will be able to understand how the components of the visualization item will be
arranged. Although to understand what exactly those components are, and how they are defined,
requires more knowledge of the underlying visualization framework.
We have also demonstrated, that one can take advantage of the new declarative API, and still have
low level control over the contained items. This allows the implementation of very complex visualiza-
tions, where one can still take advantage of the declarative API for all the easier and more traditional
aspects of the visualization.

Still, there remains some work to be done on the declarative API for visualizations in Envision. We
discussed the following issues in section 7:

• Handling of non-stretchable visualization items inside the anchor layout

• Avoid repetitions when defining two very similar forms

• Add shorthands the combination of multiple put methods in the anchor layout

• Improve the readability of the item wrappers

Nonetheless, using the declarative API for visualizations, we can now experiment more easily with the
layout of visualizations. Also, with the existence of the new declarative API, we are much nearer goal
of letting software developers write their own visualizations for Envision, and letting them visualize
their own libraries and DSLs.

23

Appendix A The Anchor Layout as a Linear Programming Problem

In this section we discuss how to translate the positioning problem in the anchor layout into a linear
programming problem. This translation allows us to use a linear programming solver to do the
positioning of the elements. For our implementation we use the library lpsolve [3].

A Linear Programming Problem consists of a series of in-equations, a linear objective function
to find an optimal solution, and a lower bound. It can be mathematically expressed as

maximize cTx
subject to Ax ≤ b
and x ≥ 0,

where x represents the vector of variables, c and b are vectors of known coefficients, and A is a matrix
of known coefficients.

Let E1, E2, . . . , En be the elements that are to be arranged. We consider the horizontal and verti-
cal axes separately. Let therefore A1, A2, . . . , Am be the anchors for the axis we are currently con-
sidering. An anchor Ai consists of two elements, two relative axis positions, and an offset. See
figure 15 for a graphical clarification of what those components mean. We write the anchor as
Ai = (Ei,1, ri,1, Ei,2, ri,2, oi).

Ei,1

ri,1

Ei,2

ri,2

oi

Figure 15: The components of an anchor Ai = (Ei,1, ri,1, Ei,2, ri,2, oi) on the horizontal axis

Variables We define two variables for each element Ei, namely Vi,start and Vi,end, where start means
the left/top edge position of the element and end the right/bottom edge position respectively. There-
fore we have 2n variables in our linear programming problem.

Objective Function The objective function is defined to maximize a linear function, but we will
define our objective function in terms of minimizing. Translating a minimizing problem to a maxi-
mizing problem is just a matter of flipping the sign.
We want to minimize the sizes of all our elements E1, E2, . . . , En, so our objective function is:

min

(
n∑

i=1

Vi,end − Vi,start

)

Constraints Our linear programming problem contains two sets of constraints. The first one con-
sists of all the constraints imposing bounds on the sizes of the elements E1, E2, . . . , En, while the
second contains constraints for each anchor A1, A2, . . . , Am.

Similar to the objective function, the constraints are normally formulated in the form of Ax ≤ b,
but we can also use ≥, which can be obtained from ≤ by flipping the signs on one side. Additionally
we can also define equalities, which can be obtained by adding two inequalities to the set of constraints.

24

Element Constraints For each element E1, E2, . . . , En we add a lower bound for their sizes to the
set of constraint. We assume that the minimum size of every element is known at this point in the
computation. If an element Ei is not stretchable, we additionally add the same value as upper bound
on it’s size.
For every element E1, E2, . . . , En we add a constraint

Vi,end − Vi,start ≥ minimum size(Ei),

but if the element is not stretchable, we instead add the constraint

Vi,end − Vi,start = minimum size(Ei).

Anchor Constraints For each anchor A1, A2, . . . , Am we add an equality to the set of constraints.
If we consider figure 15 again, we get the following for an anchor Ai = (Ei,1, ri,1, Ei,2, ri,2, oi).

VEi,1,start + ri,1 · size(Ei,1) = VEi,2,start + ri,2 · size(Ei,2) + oi

VEi,1,start + ri,1 · (VEi,1,end − VEi,1,start) = VEi,2,start + ri,2 · (VEi,2,end − VEi,2,start) + oi

(1− ri,1) · VEi,1,start + ri,1VEi,1,end = (1− ri,2) · VEi,2,start + ri,2 · VEi,2,end + oi

⇐⇒ (1− ri,1) · VEi,1,start + ri,1VEi,1,end − (1− ri,2) · VEi,2,start − ri,2 · VEi,2,end = oi

We can now give those O(m+ n) constraints and the objective function to the solver and retrieve the
values 2n variables, representing the start and end points of the elements.

References

[1] gtk layout containers. http://developer.gnome.org/gtk3/stable/LayoutContainers.html.

[2] The little manual of api design. http://www4.in.tum.de/~blanchet/api-design.pdf.

[3] lpsolve mixed integer linear programming solver. http://lpsolve.sourceforge.net/5.5/.

[4] Qt api design principles. http://qt-project.org/wiki/API-Design-Principles.

[5] The Qt GUI module. http://qt-project.org/doc/qt-4.8/qtgui.html.

[6] Qt Widgets. http://doc.qt.digia.com/qt/widgets-and-layouts.html.

[7] Tikz manual. http://paws.wcu.edu/tsfoguel/tikzpgfmanual.pdf.

[8] Tkinter geometry managers. http://effbot.org/zone/tkinter-geometry.htm.

[9] wxWidgets’ sizers. http://docs.wxwidgets.org/2.8/wx_sizeroverview.html.

[10] Dimitar Asenov. Design and implementation of Envision - a visual programming system. Master’s
thesis, ETH Zürich, 2010.

25

http://developer.gnome.org/gtk3/stable/LayoutContainers.html
http://www4.in.tum.de/~blanchet/api-design.pdf
http://lpsolve.sourceforge.net/5.5/
http://qt-project.org/wiki/API-Design-Principles
http://qt-project.org/doc/qt-4.8/qtgui.html
http://doc.qt.digia.com/qt/widgets-and-layouts.html
http://paws.wcu.edu/tsfoguel/tikzpgfmanual.pdf
http://effbot.org/zone/tkinter-geometry.htm
http://docs.wxwidgets.org/2.8/wx_sizeroverview.html

	Introduction
	Motivation
	Standard Features and Properties of Visualizations in Envision
	Static Visualizations
	Sequences of Visualizations
	Header and Body
	Layers and Background
	Visualizations in a Grid
	Conditional Layouts
	Visualizations with Size Depending on their Parent
	Layout Management in Other GUI Frameworks
	Sequential Layouts
	Grid Layouts
	Anchor Layouts

	The Underlying Visualization Framework of Envision
	The Class Visualization::Item
	The New Declarative API for Visualizations
	Usage of the Declarative API
	Item Wrappers
	Layouts
	Sequential Layout
	Grid Layout
	Anchor Layout
	Position the Shape

	Implementation
	Class Hierarchy of the Declarative Item
	Item Wrappers
	The class SequentialLayoutFormElement
	The class AnchorLayoutFormElement

	Discussion
	Declarative Implementation of the Loop Statement Visualization - VLoopStatement
	Declarative Implementation of the Class Visualization - VClass
	Declarative Implementation of the If-Statement Visualization

	Conclusion and Future Work

	Appendices
	Appendix The Anchor Layout as a Linear Programming Problem

