
Master Thesis

From Viper to Grasshopper

Andrea Helfenstein

2016-04-07

1 Background

The Viper project[1], developed at ETH Zürich, provides a number of tools
for verifying programs written in the intermediate language Silver. Verifi-
cation problems of higher level concurrent programming languages can be
encoded in Silver. Currently there are two backend verifiers available to
check these encoded programs. Both verifiers use the SMT solver Z3 to
prove the relevant properties.

The GRASShopper tool[2][3][4], developed at New York University (NYU),
can verify programs at a similar level of abstraction, but only for a subset
of the logic that is supported by the Viper tools. This restricted logic is
decidable and its use requires fewer annotations in the source program.

The goal of this project is to investigate the use of GRASShopper as an al-
ternative backend verifier for Viper. The main goal will be to automatically
translate a subset of Silver to the GRASShopper input language. While
Viper supports arguing about heap state and permissions in a general way,
GRASShopper supports only a subset of these problems using a very spe-
cialized logic. Because of this restriction, GRASShopper needs less direc-
tion from the user in the form of annotations than Viper. Additionally, the
GRASS logic is decidable, and the GRASShopper tool can generate coun-
terexamples for failing verifications. It will be interesting to see, if the use
of the GRASShopper tool as a backend for Viper could reduce the number
of annotations needed in Silver, and if using GRASShopper instead of the
current Viper backends would be more efficient for the supported subset of
problems.

2 Core Tasks

• Identify which subset of problems supported by Viper correspond to
the set of problems supported by GRASShopper. In order to get an

1



understanding of this subset and the relationship between Viper and
GRASShopper, it will be useful to create some examples of analogous
programs by hand.

• Define a mapping from problems in Viper to directly analogous prob-
lems in GRASShopper. By “directly analogous” we mean that the
problems don’t need complex rewriting, e.g. the representation of a
linked list in Viper will be translated to the corresponding encoding
of linked lists in GRASShopper.

• Implement the mapping from Viper to GRASShopper, and map the
results back to Viper. This includes mapping back error messages,
indicating the failing expression and corresponding line number from
the original Silver program.

• Evaluate limitations and performance of the new backend. The limita-
tions of the backend can be measured in the number of Viper testcases
it is able to solve. When evaluating performance, it is not only inter-
esting to see the difference in timings between the backends, but also
the difference between the solution approaches without the translation
overhead.

3 Extensions

The following list describes possible extensions to the core tasks. In the
course of the thesis we will choose which of them to explore, it is beyond
the scope of this thesis to explore all of them.

• Translate problems in GRASShopper to problems in Viper. The com-
position of the two translations then allows for an analysis of the dif-
ferences of the original program and the program after the two trans-
lations.

• GRASShopper is able to produce counterexamples for programs that
fail to verify. Mapping those counterexamples back into the Viper tool
could simplify the debugging of such programs.

• For problems in Viper that are not supported by GRASShopper, split
the problem into parts that are supported by GRASShopper and parts
that are not supported. Use GRASShopper on the supported parts,
and another backend tool on the remaining parts, then combine the
results.

• Extend the mapping from Viper to GRASShopper, by allowing more
complicated translations and rewriting, e.g. mapping recursive defini-
tions to point-wise definitions.

2



References

[1] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract In-
terpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-
Verlag, 2016.

[2] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating sepa-
ration logic with trees and data, volume 8559 LNCS of Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), pages 711–728. Springer
Verlag, 2014.

[3] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separa-
tion logic using SMT, volume 8044 LNCS of Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 773–789. 2013.

[4] Ruzica Piskac, Thomas Wies, and Damien Zufferey. GRASShopper:
Complete heap verification with mixed specifications, volume 8413 LNCS
of Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), pages
124–139. Springer Verlag, 2014.

3


