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1 Introduction

The Viper project [1], developed at ETH Zurich, provides a number of tools for verifying
programs written in the intermediate verification language Viper. Verification problems of
higher level concurrent programming languages can be encoded in Viper. Currently there
are two backend verifiers available to check Viper programs. One backend is based on veri-
fication condition generation, while the other is based on symbolic execution.

The GRASShopper tool [2], developed at New York University (NYU), can verify programs
at a similar level of abstraction. It is based on their own GRASS logic [3, 4], which is a logic
based on reachability in graphs.

In this report we demonstrate how a subset of the Viper language can be translated to the
GRASShopper input language'. This is particularly interesting because although both tools
are based on the ideas of separation logic and can verify programs operating on a heap, their
approaches for how to describe recursive data structures, such as linked lists, are funda-
mentally different. In Viper, such data structures are traditionally described using recursive
predicates. Recently, support for point-wise definitions has been added to Viper [5]. This
allows data structures such as doubly-linked lists or general graphs to be described more
easily. In GRASShopper, recursive data structures are defined using reachability predicates,
expressing e.g. that a node in a linked list can be reached from the head of the list.

Our new tool Natrix is an alternative backend verifier for Viper, that uses the translation
discussed in this report to verify a subset of the Viper language using the GRASShopper
tool.

1We refer to this language simply as GRASShopper from now on.



2 Background

In this section we describe the language features of both Viper and GRASShopper that are
relevant to this report. Although both Viper and GRASShopper are based on separation
logic, the languages have several differences that are important when translating one language
to the other.

2.1 Viper

Here we explain the features of the Viper language relevant to this report. More detailed
information on Viper can be found in [1].

Reference Types Viper has a single reference type Ref. The available fields are the same
for all objects. Fields are defined as top-level members of the program: a field £ of type Int
would be defined as field f: Int. Viper manages permissions to each pair of reference
and field separately.

Permissions In Viper, a field access x.f only succeeds if we have permission to field f of
reference x. Viper distinguishes between read and write permissions. Permission amounts
are modeled as fractional amounts ranging from 0 to 1, where 0 represents no permission
(also referred to as none), 1 represents full permission (write), and amount in between is
a read permission. In assertions, the accessibility predicate acc (x.f,p) is used to check that
we have permission amount p for field f of reference z. acc (z.f) is used as a shorthand for
acc (x.f, write ). Assertions that contain no accessibility predicates are called pure.
Viper also supports so-called quantified permission assertions, written as

forallx : T ::b(x)==> acc (e(x).f,p(x)),

where b(z) is a Boolean expression, e(z) is an expression referring to a reference, and p(x)
is a permission amount. The assertion means that for each x where b(z) holds we have p(x)
amount of permission to field f of e(x).

Checking Permissions In Viper, assert statements and contracts check that the per-
missions they require are a subset of the permissions that are available at this point in the
program. Assume we have full permissions to x.f and y.f at some point in a program. A
statement assert acc(x.f) will succeed at this position in the program, since we have
full permission to x. f.

Predicates and Recursive Data Structures In Viper, a predicate is specified as
predicate p(args){el,

where args is a list of typed parameters, and e a potentially recursive assertion in terms of
the parameters. Predicates are used to describe properties of their arguments. They may be
held like permissions. We use unfold and fold statements to exchange the predicate for
its body. There is also an unfolding expression, that temporarily unfolds a predicate.
Recursive data structures such as linked lists can be specified using recursive predicates in
Viper. See listing 1 for an example definition of a linked list segment using a recursive
predicate. This example also illustrates the behavior of unfold and fold statements.
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field data: Int
field next: Ref

predicate lseg(this: Ref, end: Ref)

{
this != end ==
acc(this.data) && this.data >= 0 && acc(this.next) &&
acc(lseg(this.next, end))
}
method m1(1l: Ref)
requires acc(lseg(l, null)) && 1 != null
ensures acc(lseg(l, null)) && 1 != null
{
assert l.data >= 0 // fails
}
method m2(1l: Ref)
requires acc(lseg(l, null)) && 1 != null
ensures acc(lseg(l, null)) && 1 != null
{
unfold acc(lseg(l, null))
assert l.data >= 0 // succeeds
fold acc(lseg(l, null))
}
method m3(1l: Ref)
requires acc(lseg(l, null)) && 1 != null
ensures acc(lseg(l, null)) && 1 != null
{
assert unfolding acc(lseg(l, null)) in l.data >= 0 // succeeds
}

Listing 1: Recursive definition of a linked list in Viper with positive data elements. The
methods try to access the first element of the list, illustrating the use of fold and unfold
statements.




function sum(x: Ref): Int
requires acc(x.f) && acc(x.g)
ensures result == x.g + x.f
{
x.f + x.g

}

Listing 2: A Viper function computing the sum of two fields

Functions Viper distinguishes between heap-dependent and heap-independent functions.
Functions that appear as top-level members of the program are potentially heap-dependent.
Those functions have assertions as preconditions and as the body. The postconditions must
be pure expressions, i.e. they cannot contain accessibility predicates. See listing 2 for an
example of a heap-dependent function.

Methods A method has formal parameters and return parameters, pre- and postconditions
that may contain accessibility predicates, and an optional body consisting of a sequence of
statements. Examples of Viper methods can be found in listing 1.

Domains A domain in Viper can be used to encode mathematical theories. FEach do-
main defines a potentially generic data type. The domain contains functions and axioms
describing the theory. In contrast to functions outside a domain, domain functions are heap-
independent. They only consist of a name, formal parameters and a type. Their behavior
can be described using axioms. Note that axioms can only mention domain functions and not
heap-dependent functions. They can however mention domain functions from any domain,
not just their own. Like domain functions, axioms can only appear inside domains.

Inhale and Exhale A statement inhale e adds all the permissions in the assertion e,
and assumes all pure parts of e. Analogously a statement exhale e asserts all pure parts
of the assertion e and removes all the permissions in e. Viper also supports an inhale-exhale
assertion [A, B, that is interpreted as A in all inhaling positions (e.g. the postconditions of
a method seen by the caller), and as B in all exhaling positions (e.g. the postconditions of a
method seen by the method itself).

Conjunction The assertion a && b corresponds to the separating conjunction * used in
separation logic. It means a and b both hold and the permissions in a and the permissions
in b do not overlap.

Magic Wand A magic wand A --* B describes a promise that if combined with a state
satisfying assertion A, the combination can be exchanged for assertion B. Magic wands
can be used to reduce the number of fold and unfold statements when manipulating data
structures, since they provide a way to track partial versions of those data structures.

Permission Expressions The Viper expression perm (z.f) yields the permission amount
held for field f of reference z. The expression forperm [f] r :: e(r) checks that for every
reference r for which we have non-zero permission to the field f, e(r) holds.

Triggers In Viper, forall assertions can have triggers:

forallaxy :Th,...,xn Tyt {t1a, . s tim)- - {ti1, - tim} €




where {t;1,...,tim} is one trigger. Those triggers are given to the underlying SMT solver,
where they are used for e-matching [6]. Viper generates default triggers if there are no
user-defined triggers.

Natively Supported Types Viper supports the simple types integer, Boolean, permis-
sion, and reference. It also natively supports sets, sequences, and multisets.

2.2 GRASShopper

In the following paragraphs we explain the GRASShopper language features relevant to this
report. Most of those features are described in more detail in [2], although the tool has
changed since that paper was written. We describe some of those changes in this section,
namely changes to predicates and functions.

Reference Types In GRASShopper, a reference type is defined as a struct with a list of
fields. Getting permission to a location of some struct type, means getting access to all of
its fields.

Permissions In contrast to Viper, GRASShopper permissions are not fractional, i.e. it
only distinguishes between no permission and write permission. We use the accessibility
predicate acc (x) to check that we have permission to reference x. If we have permission to
a reference x, we are allowed to access all its fields.

Consider the following assertion:

acc(x) &*& (x.f > 0) &*& acc(y) &*& (z.f < 0)

We call the set {x,y} the footprint of this assertion. The footprint of an assertion contains
all references the assertion checks permission to. The accessibility predicate acc (S) can
also be used to check permission to a set of references S.

Checking Permissions In GRASShopper, assert statements, assume statements, and
postconditions are checked in such a way that their footprint needs to correspond precisely
to the currently held permissions. This means that in a context where we have permission
to references x and y, the statement assert acc(x) will fail. The footprint of a loop
invariant can be a subset of the current permissions at loop entry, but needs to correspond
precisely to the permissions we hold at the end of the loop body.

Inside Assertion This binary assertion checks if the footprint of its left hand side is a
subset the footprint of its right hand side. To check that e is inside E, we write e —** E.2

Set Comprehension GRASShopper supports a set comprehension expression
{x:T::b(x)},

where b(z) is a Boolean expression. An z is in the set iff b(x) holds.

2Not to be confused with the magic wand symbol --* used in Viper.
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struct Node {
var next: Node;

}

predicate lseg(x: Node, y: Node) {
acc({ z: Node :: Btwn(next, x, z, y) && z != y }) &*& Reach(next, x, y)
}

procedure traverse(lst: Node)
requires lseg(lst, null)
ensures lseg(lst, null)

{
var curr := 1lst;
while (curr != null)
invariant lseg(lst, curr)
invariant lseg(curr, null)
{
curr := curr.next;
}
}

Listing 3: Definition of a linked list in GRASShopper using reachability predicates.

Predicates and Recursive Data Structures Instead of using recursive predicates, in
GRASShopper one uses reachability predicates to describe recursive data structures such
as linked lists. The predicate Btwn (f,a,b,c) expresses that node b lies between nodes a
and ¢ on a direct path always using field f to advance. Reach (f,a,b) is a shorthand for
Btwn (f,a,b,b).

GRASShopper’s reachability predicates can be used to describe linked list data structures
as well as tree data structures. See listing 3 for an example of how to define a linked list
segment in GRASShopper. Note that in comparison to the examples in [2] we do not need
an extra function to define the footprint of the predicate anymore, instead we can specify
the footprint directly inside the predicate using an accessibility predicate over a set compre-
hension. This is due to the recent changes in the GRASShopper tool.

In contrast to Viper, GRASShopper predicates do not need to be unfolded and folded us-
ing dedicated statements, because recursive predicates are not intended to be given to the
internal GRASShopper verifier. There is no need to control the unfolding behavior of non-
recursive predicates. As described in [2], in an earlier version of the GRASShopper tool
there was an automatic translation of recursive predicates to non-recursive predicates that
used reachability predicates instead. This translation was designed to work for definitions
of linked lists. This functionality has been since removed from the tool. There are plans to
implement a more general translation of recursive predicates to non-recursive predicates in
the future. The current version of the GRASShopper tool has limited support for recursive
predicates via axiomatization.

Functions GRASShopper functions may depend on the heap. In a recent version of the
tool, support for specifying pre- and postconditions for functions was added, however those
contracts are not checked yet.

Procedures GRASShopper procedures correspond to methods in Viper. An example of a
procedure can be found in listing 3.




Axioms In contrast to Viper, axioms in GRASShopper can appear as top-level members
of the program. GRASShopper axioms can mention heap-dependent functions, although one
needs to explicitly quantify over the heap-dependent fields in the axiom.

Conjunction GRASShopper supports different kinds of conjunctions. a &*& b corresponds
to the separating conjunction * in separation logic. a && b corresponds to the logical con-
junction A in separation logic. It means that the footprints of a and b have to be exactly
the same. The conjunction a &+& b allows the footprints of @ and b to overlap. If a and b are
both pure, they need to be conjoined by && .

Triggers In GRASShopper, triggers can be attached to forall expressions and set compre-
hensions. The triggers are divided into matching triggers, and pattern triggers. Matching
triggers @ (matchingty,...,t, yieldse) work similarly to e-matching triggers. Both
kinds of triggers are handled by GRASShopper directly, not the underlying SMT solver.
Default triggers are always generated, user-defined triggers are added to the default triggers.

Natively Supported Types GRASShopper supports the simple types integer, Boolean,
and byte3. It also natively supports sets, arrays, and uninterpreted data types.

3Needs to be enabled with a special flag.



3 Translating Viper to GRASShopper

In this section we demonstrate how to translate Viper language constructs to GRASShopper.
In particular, we show how to translate constructs that do not have a direct correspondence
in the GRASShopper language, such as inhale and exhale statements and quantified permis-
sions. We also show how to handle language constructs that appear in both languages, but
do not have exactly the same meaning in Viper and GRASShopper. An example for this
category is our encoding of Viper fields that checks permissions per field, despite the fact
that GRASShopper checks permissions per reference.

Notation We write the translation of some Viper assertion e as [e]. The notation ele’/z]
denotes the capture-avoiding replacement of all occurrences of  in the expression e with ¢’.

3.1 Folding and Unfolding Predicates

As discussed in section 2.2, GRASShopper does not have folding and unfolding operations. In
our translation we simply drop fold and unfold statements. We translate an expression
unfoldingpine to [e], essentially also dropping the unfolding operation.

3.2 Well-Formed Assertions

We say an assertion is self-framing, if it only accesses locations that it explicitly requires
permission to, e.g. the assertion acc(x.f) && x.f == 4 is self-framing, while the ex-
pression x.f == 4 is not. An assertion is well-formed, if it only accesses locations that it
has permission to, and is mathematically well-formed (e.g. no division by zero).

In Viper, checks need to be performed to make sure all assertions are well-formed, no matter
where in the code they occur. GRASShopper only checks well-formedness for assertions that
appear in assert statements, assignments and procedure calls. Since this behavior may
change in the future, i.e. GRASShopper may implement well-formedness checks on all asser-
tions, our translation does not add any such tests, which means that for contracts, predicate
and function bodies, and axioms that are not well-formed, our tool will fail to report a cor-
responding error.

In our translation we often have to encapsulate assertions inside new GRASShopper predi-
cates, functions, or procedures. Those encapsulated assertions again need to be well-formed
(assuming the original assertions were well-formed), to make sure our translation still works
once GRASShopper adds well-formedness checks.

3.3 Restrictions on Boolean Operators

Due to the internal handling of expressions in GRASShopper, Boolean operators are not
allowed to appear in the following places:

e Arguments of predicates, functions, and procedures
e Right hand side of an assignment
e Triggers
In the category of Boolean operators, there are the following GRASShopper operators:
e General comparison operators ==, !=

e Boolean operators !, ||, &&, &*&, &+&, ==>



e Integer comparisons <, <=, >, >=

In triggers, Viper does not allow Boolean operators either. Arguments and the right hand
side of assignments are required to be pure expression in Viper. This lets us solve the prob-
lem by wrapping the Boolean operator inside an extra predicate. We can then replace the
Boolean operator by an application of this predicate.

function t(j: Int): Int function t(j: Int) returns (res: Int) |o
method m(i: Int, s: Set[Int], procedure m(i: Int, s: Set<Int>, 2
b: Bool) b: Bool)
returns (res: Bool) returns (res: Bool)
{ {
res := (b || t(i) < 0) && res := bool_exp(b, t(i), s); 6
forall x: Int :: x in s ==> x > 0
s|} } 8

predicate bool_exp(b: Bool, v: Int, 10
s: Set<Int>)

{ 12
(b Il v < 0) &&
forall x: Int :: x in s ==> x > 0 |14
}
Viper GRASShopper

Translation 1: Encapsulation of Boolean operators

We explain our approach using translation 1 as an example. As arguments of the predi-
cate application we take all subexpressions of the Boolean operator expression that are not
Boolean operators themselves and that refer to a local variable available in the context where
the Boolean operator expression appears. In our example those subexpressions are b, t (i),
and s. This excludes the local variable x of the forall expression inside the Boolean oper-
ator expression. We define the parameters of the new predicate according to the types of
the extracted arguments. The body of the predicate becomes the translation of the original
Boolean operator expression, but with the previously collected subexpressions replaced by
the corresponding parameter names. This approach makes sure that the predicate body is
self-framing, as long as the original expression itself was well-formed.

3.4 Conditional Assertions

A Viper conditional assertion has the following form:

€cond 7 €then * €elses
where e.,,q is a pure Boolean expression, and ey, and e, are assertions of type 7.

GRASShopper does not support conditional assertions.

For cases where T is Boolean, we can translate the assertion to (€condg = €then) N
(m€cond = €eise)- If the whole conditional assertion is pure, this translates to

([[econd]] ==> [[ethen]]) && ( ! [[econd]] ==> Heelse]])~

In the general case we introduce an additional function condr, that takes parameters c :
Bool, a: [T], and b : [T] and returns x : [T]. The function has no body and a single
postcondition:

(c==>(a==2))&& (' c==>(b==1x))

10



Now, we can translate the conditional assertion as an application of condr with arguments
[[econd]]v [[ethen]]v and [[eelse]]-

In both cases, if the assertion is non-pure, the && needs to be replaced by &*& (see sec-
tion 3.5).

3.5 Distinguishing between Assertions and Pure Expressions

As discussed in section 2.2 GRASShopper checks permissions precisely for assert state-
ments, assume statements, postconditions, and loop invariants*. Assume we want to assert
the pure expression x.f == 5 in a context where we have permission to x. With pre-
cise permission checking we would have to write assert x.f == 5 &*x& acc(x) to
check this expression. To simplify checking of pure expressions, GRASShopper supports
pure versions of all the checks, e.g. pure assert, pure requires, pure ensures,
pure invariant. This simplifies our example to pure assert x.f == b.
Whenever we translate a contract, inhale statement, or exhale statement, we check if
the contained expression is pure. If it is indeed pure, we use the pure version of the check
(e.g. pure assert for exhale, pure assume for inhale). The translation of the
non-pure checks is usually more complicated. See sections 3.8, 3.9, and 3.12.

3.5.1 Boolean Conjunction

When translating a Boolean conjunction A && B we have to distinguish whether the con-
junction is pure or not, since GRASShopper distinguishes between separating conjunctions
and logical conjunctions. If the conjunction is pure, we translate it to [A] && [B], if the
conjunction is not pure, we translate it to a separating conjunction [A] &*& [B].

3.6 Fields

In Viper, permissions are handled for each individual field of an object, while in GRASShop-
per, getting permission to an object includes permission to all its fields, i.e. GRASShopper
does not support per-field permissions.

Consider the naive encoding of Viper fields illustrated in translation 2. In this encoding
we translate the Viper fields by putting them into a single GRASShopper struct, a field
access x.f is translated to [z].f, while an accessibility predicate acc (z.f) is translated to

acc ([z]).

This naive encoding has two problems:

e The encoding is not precise enough: acc (x.f) translates to acc (x), which gives
access to both x. f and x . g (see lines 6 and 8 of translation 2).

e The encoding is unsound: acc(x.f) && acc(x.g) translates to
acc(x) &*& acc(x), which evaluates to false, since the footprints of acc (x)
and acc (x) overlap (see line 14 of translation 2).

With a more complex encoding of Viper fields in GRASShopper we can avoid those problems.
The encoding is based on the idea that if we have a separate struct for each field, we can
manage access to each original Viper field separately.

For this encoding we add a level of indirection:

e We use a struct R with no fields to represent the object itself.

4Loop invariants are checked precisely at the end of the loop, but their footprint can be a subset of the
current permissions when entering the loop.

11



struct Node {
field f£f: Int var f: Int;
field g: Int var g: Int;
}
method ml(x: Ref) procedure ml(x: Node) returns ()
requires acc(x.f) requires acc(x)
{ {
x.g := 5 // should fail x.g := 5; // succeeds
} }
method m2(x: Ref) procedure m2(x: Node) returns ()
requires acc(x.f) && acc(x.g) requires acc(x) &*& acc(x)
{ {
assert false // should fail pure assert false; // succeeds
} }
Viper GRASShopper

Translation 2: Naive encoding of fields

e For each field f: T

— we create a separate struct structy with only a single field f : [T7],

— we add a function map;: R — structy, mapping objects of type R to objects
of type structy.

Using this encoding, we can translate each field access e.f to map([e]).f, and each acces-
sibility predicate acc ([e].f) to acc (map¢([e])).

For this mapping to be correct, the mapping functions need to return a distinct reference for
each pair of field f and input reference r. We already know that functions map; and map,
return distinct sets of references, since they return objects of different types. All we need in
addition is that every function map; is injective. For assuming the injectivity of a function
map ¢, we have two possibilities:

Fither we add an axiom

Ve € R:x#y = maps(x) # maps(z),

or we add another function invy : struct; — R together with axioms stating that invy is the
inverse of map
Vo € R:invg(mapg(r)) =,

Vy € structy : map (invs(y)) = y.

In our implementation we use the second approach, since for the first approach the axiom
needs to be instantiated for each pair of references, while for the second approach the axioms
only need to be instantiated once for each reference. Another reason for using the second
approach is that we need the inverse of map for the translation of quantified permissions
(see section 3.12).

In listing 4 you can see the complete encoding for a single field f: Int. Note that the
axioms have matching triggers to make sure that whenever map; appears in the program,
the prover learns about inv; and vice versa. See section 3.10 for more detailed information
on GRASShopper triggers.
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struct R {}

struct struct_f {
var f: Int;

}

function map_f(ref: R) returns (field: struct_f)
function inv_f (field: struct_f) returns (ref: R)

axiom forall x: R :: x == inv_f (map_f (x))
@(matching map_f (y) yields known(inv_f (map_£f(y))));

axiom forall z: struct_f :: z == map_f (inv_£f(z))
@(matching inv_f (z) yields known(map_f (inv_val(z))));

Listing 4: Encoding of field f

3.7 Domains

Our translation only supports domains without type parameters. We translate the type D
defined by a domain domain D { ...} to an uninterpreted data type in GRASShopper.
Domain functions and axioms of the domain are translated to GRASShopper functions and
axioms. See translation 3 for an example.

domain Pair { type Pair;
function pair(a: Int, b: Int): Pair ||function pair(a: Int, b: Int)
returns (result: Pair)
function first(p: Pair): Int function first(p: Pair)
returns (result: Int)
function second(p: Pair): Int function second(p: Pair)

returns (result: Int)

axiom access_first { axiom forall a: Int, b: Int
forall a: Int, b: Int :: (first(pair(a, b)) == a);
first(pair(a, b)) == a
}
axiom access_second { axiom forall a: Int, b: Int
forall a: Int, b: Int :: (second(pair(a, b)) == b);
second (pair(a, b)) == b
}
}
Viper GRASShopper

Translation 3: Translation of a domain defining a pair of integers.

3.8 Precise Permission Checks

In Viper, a statement assert acc(x.f) checks that the specified permissions are in the
current set of permissions, but in GRASShopper a statement assert acc (x) checks that
the specified permissions correspond precisely to the current set of permissions. Similar re-
strictions also apply to postconditions, assumptions, and loop invariants.

Assume at some point in a Viper program we have permissions to x.f and y.f. A state-
ment assert acc(x.f) would succeed in Viper. A naive translation to GRASShopper,
such as the statement assert acc (map;(x)) would fail in the GRASShopper tool, since

13
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the footprint acc (map;(x)) does not correspond precisely to the current permissions.

In order to check an assertion in such a way that the assertion’s footprint is allowed to
correspond to a subset of the current permissions, we first need to obtain the current per-
missions, then we can use GRASShopper’s inside assertion to express that the footprint of
the translated expression should be a subset of the current permissions.

Getting the Current Set of Permissions Let’s assume there are structs A and B in
some GRASShopper program. In a first step, we define a fresh set variable for each struct:

var perms, : Set<A>, permsg: Set<B> ;

In the next step we bind those sets to the set of references we currently have permission to.
Since assumptions in GRASShopper are checked against the current permissions precisely,
we can just assume that sets perms, and permsg contain exactly the objects we currently
have permission to:

assume acc (perms,) &*& acc (permsg) ;

In the following we define Perms to be the set of all the required set variables to con-
tain the permissions for some program. In our example above this would be {perms, :
Set<A>,permsp : Set < B>}. Perms(s) denotes the single variable in Perms that is of
struct type s. In our example Perms(A) would be perms,. By acc(Perms) we denote the
separating conjunction over accessibility predicates over the set variables, e.g.

acc (perms,) &*& acc (permsg).

In the following, we discuss how to use the current set of permissions for translating Viper
assertions, postconditions, and loop invariants in such a way that their permissions are
allowed to be a subset of the current permissions.

Assert Statements The translation of an assert statement first gets the current permis-
sions Perms, as discussed above. Now we can translate assert e to

assert [e] —** acc(Perms).

The inside assertion used here checks that [e] holds and its footprint is a subset of acc(Perms).
The footprint of [e] —** acc(Perms) corresponds exactly to the current permissions, meaning
GRASShopper’s precise permission checking won’t reject it.

Postconditions If there is a non-pure postcondition in the method, we check all the post-
conditions manually. First, we conjoin all the postconditions using separating conjunction.
Then we exhale® the conjunction (see section 3.9.2). Our exhale translation takes care of
checking the permissions to be inside the current set of permissions. To keep the interface
to the procedure unchanged, we translate the actual postconditions of the method directly.
To make sure the GRASShopper tool can prove those postconditions, we assume false at
the end of the procedure body.

Loop Invariants GRASShopper checks that the footprint of an invariant corresponds to
a subset of the current permissions at loop entry, but checks that the invariant’s footprint
corresponds precisely to the current permissions at the end of the loop body. Therefore, if
there is a non-pure loop invariant in the definition of a loop, we translate the loop without

5Actually, we only perform phases 1 and 2 of the exhale. This only checks if we could do the exhale,
without actually giving the permissions away. See section 3.9.2 for details.
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any invariants, but add manual checks instead. We exhale the invariants before the loop and
inhale them after the loop. At the beginning of the loop body we inhale the invariants, at
the end of the loop body we exhale the invariants again. See section 3.9.3 for details.

3.9 Inhale and Exhale

GRASShopper does not support inhale or exhale statements, but we can simulate removing
and adding permissions by calling a procedure that only has a postcondition or precondition,
respectively. See translation 4 for an example.

method m(x: Ref) procedure m(x: R)
{ {
inhale acc(x.f) inhale (x);
exhale acc(x.f) exhale (x);
} }

procedure inhale(x: R)
ensures acc(map_f (x))

procedure exhale(x: R)
requires acc(map_f (x))

Viper GRASShopper
Translation 4: Adding and removing permissions in GRASShopper

3.9.1 Inhale

A naive translation of the inhale statement to a single procedure call would be incorrect,
consider the following example:

Assume that we have an inhale statement with a mixture of pure expressions and assertions
such as this one:

inhale x.f == 4 && acc(x.g)

Using the assertion x.f == 4 && acc(x.g) as a postcondition of an extra GRASShop-
per procedure would be incorrect, since the postcondition would access x . f, but does not
have permission to it. Figuring out which permissions we would need to add as precondition
would require a detailed analysis of assertions. Instead we break up the assertion parameter
to the inhale into subexpressions that can each be inhaled separately. In appendix A we
describe how to break apart the assertion. In the following we describe how to handle the
base cases.

e A pure expression e is translated into an assertion statement: pure assert [e]

e acc(e.f) is translated to a procedure call mynq([€e]), where the new procedure
Minhale has a single parameter a : T corresponding to [e], and a single postcondition

acc (mapy(a)).

e acc (p(e,...,en)) is translated to a procedure call mnaie([e1], .-, [en]), has param-
eters a; : T1,...,ayn : T, corresponding to [e1],..., [en] and the single postcondition
acc (p(a,...,an)).

e We discuss how to handle quantified permissions in inhale statements in section 3.12.2.
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3.9.2 Exhale
There are the following constraints on how the exhale statement needs to behave:

e Pure expressions need to be checked against the permissions from before the exhale
statement.

e Assertions need to be checked against the current permissions as they are modified by
the exhale.

One possibility to satisfy these constraints would be to reorder the checks inside the exhale,
so that the pure expressions are checked first and the permissions are exhaled in the end.
Using this approach however, we may not report the expected errors, because some errors
may be shadowed by others. By reordering the checks we change this shadowing behavior.
In our implementation, we use a more complex approach, that preserves the order of the
checks. We check pure expressions against the unchanged permissions, and assertions against
sets representing the permissions as they are affected by the exhale. Only at the end of the
exhale we give away the permissions. This approach is structured into three phases:

Phase 1 Get the current permissions Permscy., this will represent the permissions as they
are modified by the exhale. Initialize empty sets Perms.; to gather permissions that
need to be exhaled.

Phase 2 Assert pure parts of the assertion, check non-pure parts of the assertion against
Perms ey, remove permissions from Perms .+ and add them to Perms,,.

Phase 3 Remove all the permissions in Permse,.

We will now discuss phases 2 and 3 in more detail. For phase 1 see section 3.5 on how to
get the current permissions.

In phase 2, the assertion is broken up into multiple statements as discussed in appendix A.
For the non-pure base cases, we assert that their footprint is in Permscy~, remove their
footprint from Perms . and add it to Permse;:

e acc (e.f): The footprint of this assertion is map ¢([e] ). We check if this is in Perms cy:

pure assert map([e]) in Permscyr(structy) ;
Then we remove it from Perms .~ and add it to Permsg:

Perms cupr(structy) = Perms cyrr(structy) == map([e]) ;
Perms e, (structy) : = Permseg(structy) ++ map ¢([e]) ;

Note that -- and ++ are GRASShopper’s set minus and set union, respectively.

e acc (p(eq,...,en): The footprint of a predicate is not known at translation time. First
we get the actual current permissions Permsbeforeﬁ, since we will have to write some
assert and assume statements for which we need to know the current permissions.
The permissions saved in Perms.y» may not correspond to the current permissions
anymore, since Perms . may have been modified when handling earlier parts of the
exhale assertion. In the next step, we define a set of fresh variables Perms,, which will
hold the footprint of the predicate. Then we assert that the footprint of the predicate
is inside the current permissions:

assert [p(er,...,en)] —** acc(Permspefore) ;

5The current permissions are still the same as from before the exhale statement.
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// Field translations

procedure m(x: R)

{
// Phase 1
var Perms_struct_f: Set<struct_f>, Perms_R: Set<R>;
assume (acc(Perms_struct_f) &*& acc(Perms_R));
var Perms_struct_f_1: Set<struct_f>, Perms_R_1: Set<R>;
assume (acc(Perms_struct_f_1) &*& acc(Perms_R_1));
var ex_Perms_struct_f: Set<struct_f>, ex_Perms_R: Set<R>;
ex_Perms_struct_f := Set<struct_£f>();
ex_Perms_R := Set<R>();

// Phase 2

// Phase 3
pExhale (ex_Perms_struct_f, ex_Perms_R);

procedure pExhale(Perms_struct_f: Set<struct_f>, Perms_R: Set<R>)
requires (acc(Perms_struct_f) &*& acc(Perms_R))

Listing 5: Phases 1 and 3 of an exhale in a program with a single field f

Now, we can write

assume ([p(e1, ..., en)] && acc(Perms,)) —** acc(Permspefore) ;

Here, the conjunction [p(er, ..., e,)] && acc(Permsy) sets the footprint of acc(Perms,)
to be equal to the footprint of the predicate application, the inside assertion makes
sure that the footprint of the whole assertion corresponds exactly to the current per-
missions. This means, after the assume statement Perms, contains the footprint of
[p(er, ..., en)]-

Since we don’t know of what type the footprint of [p(eq, ..., e,)] is, we need to handle
each struct s individually. For every struct s in the program we check that Perms,(s)
is in Perms .y (s), remove it from there, and add it to Perms,,(s):

pure assert Perms,(s) subsetof Permscyrr(S) ;
Perms cyrr(s) 1= Permscyrr(s) == Perms,(s) ;
Permseg(s) 1= Permse,(s) ++ Permsy(s) ;

e We discuss how to handle quantified permissions in exhale statements in section 3.12.3.

The handling of a pure expression e is much simpler. We first assert [e] and then assume it:

pure assert [e] ;
pure assune [e] ;

Using a pair of assert and assume statements emulates the behavior of Viper in case of mul-
tiple errors in a single method.

In phase 3, we need to exhale all the permissions that are now stored in Permsg,. For this
we introduce an extra procedure mz,.e. With the variables in Perms., as parameters and
the single precondition acc(Perms.;). To exhale the permissions in Permse; we call mezpqie
with the variables of Perms.; as arguments. See listing 5 for an example on how phases 1
and 3 of the exhale are encoded.
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3.9.3 Inhale-Exhale Assertion

A Viper inhale-exhale assertion [A, B] is considered non-pure, and may not appear in po-
sitions where only pure expressions are allowed (e.g. conditions of if statements). In the
following, we discuss how to handle the inhale-exhale assertion, depending on where it ap-
pears.

Assert Statement assert [A, B]is equivalent to assert B.
Inhale inhale [A, B]is equivalent to inhale A.

Exhale exhale [A, B]is equivalent to exhale B.

Whenever we encounter one of the above three statements, we can transform the original
assertion to an assertion with the inhaling-exhaling assertions replaced by the correct subex-
pression. Then we can translate it as we would any such statement.

Method Pre- and Postconditions Preconditions get exhaled by the caller, and inhaled
by the callee, while postconditions get inhaled by the caller, and exhaled by the callee.

In order to keep the interface to the method the same, we translate a Viper precondition
requires [pre;,, pre,,] to a GRASShopper precondition requires [pre,,] and a Viper
postcondition ensures [post,,, post,,] to a GRASShopper postcondition ensures [post;,].
Now we need to adapt the method body such that the correct checks are performed. The
body needs to start in a state where [pre;,] holds, after the body we need to check [post,,]
holds, but the GRASShopper tool needs to be able to prove the postcondition [post,,].

To achieve this behavior we exhale [pre,,] and inhale [pre;,] before the actual method body
using the techniques discussed previously. We can drop the exhale if pre,, is a pure expres-
sion, since exhaling it would be equivalent to asserting it, which would be redundant.

After the method body, we perform phases 1 and 2 of an exhale on post,,, and then we
assume false. This lets us prove the postcondition [post,,]. We don’t need phase 3 of the
exhale, since we don’t really need to give away the permissions, we only need to check if we
could give them away. See section 3.9.2 for a definition of the exhale phases.

In translation 5 you can see an example of how inhale-exhale assertions in method pre- and
postconditions are handled.

Loop Invariant If any loop invariant contains an inhale-exhale assertion, we generate
code to check the invariants ourselves and do not supply the GRASShopper loop with any
invariants. The statements we generate are slightly different depending on whether the loop
condition depends on the heap or not. We first discuss how to solve the problem if the
condition is not heap-dependent, and then explain how to modify this solution such that it
works for heap-dependent conditions.

Suppose this is our while statement: while (b) invariant [A, B]{ body }
If we assume that b is not heap-dependent, then the whole while statement is translated as
follows:

e Before the translation of the while statement, exhale B.
e Inside the loop body, before the translation of the actual body, inhale A.

e Inside the loop body, after the translation of the actual body, exhale B.
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method m(a: Ref, b: Ref)

requires [acc(a.f),
ensures [acc(b.f),

// body

acc(a.g)]
acc(b.g)]

procedure m(a: R, b: R)
requires acc(map_g(a))
ensures acc(map_f (b))

{
// exhale acc(map_g(a))
// phase 1
var Pm_f: Set<struct_f>, ...;
assume acc(Pm_f) &*x& ...;
var ex_Pm_f: Set<struct_£f>, ...;
ex_Pm_f := Set<struct_£f>();
// phase 2
pure assert map_g(a) in Pm_g;
Pm_g := Pm_g -- {map_g(a)l};
ex_Pm_g := ex_Pm_g ++ {map_g(a)};
// phase 3
exhale(ex_Pm_f, ex_Pm_g, ex_Pm_R);
// inhale acc(map_f(a))
inhale (a);
// body
// "exhale" acc(map_g(b))
// phase 1
var Pm_f2: Set<struct_£f>, ...;
assume acc(Pm_£f2) &*x& ...;
var ex_Pm_f1l: Set<struct_£f>, ...;
ex_Pm_f1 := Set<struct_£f>();
// phase 2
pure assert map_g(b) in Pm_g2;
Pm_g2 := Pm_g2 -- {map_g(b)};
ex_Pm_gl := ex_Pm_gl ++ {map_g(b)};
// kill branch
assume false;

}

procedure exhale(Pm_struct_f: Set...)
requires acc(Pm_struct_£f) &*&

procedure inhale(a: R)
ensures acc(map_f(a))

Viper

GRASShopper

Translation 5: Inhale-exhale assertions in method pre- and postconditions.
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e After the while statement, inhale A.

e The translation of the while statement has no invariant.
If b is heap-dependent we need to make the following changes:
e Before the translation of the while statement (and before our exhale), introduce an
additional variable ¢ : Bool and assign [b] to it: ¢ :=[b]

e Use c as the condition of the while statement instead of [b]

e Inside the loop body, before the translation of the actual body, additionally assume
==[b].
e Inside the loop body, after the translation of the actual body, assign [b] to ¢ again,
before exhaling B.

e After the while statement, additionally assume ¢ == [b].

Others We don’t support inhale-exhale assertions in function pre- and postconditions, or
in predicate bodies.

3.10 Pure Quantified Expressions

Existentially quantified expressions are trivial to translate from Viper to GRASShopper:
existsay:Th,...xn Tyt e(x1,. .., 2p)

is translated to
exists [z1:Th], ... [on : Tn] ¢ [e(ze, ... 20)].

Translating universally quantified pure expressions is a little bit more complex, since those
expressions can have triggers. GRASShopper generates its own default triggers, therefore
we don’t have to generate triggers when translating a Viper forall expressions without user-
defined triggers:

forallay :Th,...xn: Tyt e(z1,...,2p)
is translated to

forall [zy : Th],... [xn : Tn] : ¢ [e(z1, ..., z0)]-
A forall expression with triggers has the following form:

forallay :Th,...,xn Ty i {ti1, . s tim} - Ati1, - timbe(Tr, ..o, 2n).

A triggering expression t; ; is given in terms of the variables in x1,...,2,. The triggering
expressions are only allowed to be function applications, or expressions that are translated
to function applications internally, e.g. set operators.

We translate the Viper triggers to matching triggers in GRASShopper, since these work
similarly to the e-matching triggers used by the other backends of Viper. Matching triggers
have the following form:

@(matchingmy,...,m,yieldse)
Expressions my, ..., my, ¢ may not contain Boolean operators (see section 3.3). Matching
known expressions myq, . .., m, adds €’ to the set of known expressions, but ¢’ itself is not used

in the instantiation of new known expressions, unless it is specified as known (¢’). Using
triggers with a known expression in the yield position emulates the behavior of e-matching,
where every generated term can itself be used for triggering again.
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Trigger Translation We collect all subexpressions E of e that are valid Viper triggers.
For each pair of subexpression €/ € E and Viper trigger {t;1,...,t;n} we add a matching
trigger to the translation of the forall expression.

@(matching [{ti1,...,tin}] yields known([e¢]))

3.11 Permission Expressions

Viper supports fractional permissions, while in GRASShopper we can only distinguish be-
tween write permission, and no permission at all. Therefore in our translation, we do not
support fractional permissions. However, there are some permission expressions that are
useful, even without fractional permissions. The conditional expression as discussed in sec-
tion 3.4 is also applicable for expressions of type Perm: b ? Diren : Delse-

Algorithm 1 Generate condition under which we have full permission from permission
expression
1: function FULLPERMISSIONCONDITION(p)
2: switch p do
case write
return true
case none
return false
case cond ? Pipen * Pelse
return ([econqd] && FULLPERMISSIONCONDITION (Dien,))
Il (! [econd] && FULLPERMISSIONCONDITION (Pejse )

Our translation supports such conditional permission expressions, together with the full
permission write, and the expression denoting no permission none, but only inside field
access predicates acc (e.f,p). We translate the permission expression p into a condition
under which the access predicate requires full permission as shown in algorithm 1. Let’s call
the result of this algorithm c,.

We translate the field access predicate as follows: If ¢, is the literal true we translate
the access predicate to acc (maps([e])); this represents the full permission. If ¢, is the
literal false we translate the access predicate to true, representing no permission. If
cp is a more complex expression, we translate it to ¢, ==> acc (mapy([e])), representing a
permission under the condition c,,.

When translating inhale and exhale statements, every field access predicate is translated to
a procedure call as discussed in section 3.9. In this context, a more complex ¢, needs to be
translated to an if statement rather than an implication, to make sure that the postcondi-
tions of our extra inhale procedures stay well-formed:

if (ep)
// inhale acc (maps([e]))
}

3.12 Quantified Permissions

Viper allows only one type of non-pure forall assertion at the moment. This so-called quan-
tified permission assertion needs to have the following form:

forallaxw : T ::b(x)==> acc (e(x).f, p(x)),
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where b(z) is a pure Boolean expression, e(z) is an expression evaluating to a reference, f is
some field, and p(z) is a permission expression. We cannot directly translate this assertion
to GRASShopper, since GRASShopper only supports pure forall expressions.

P. Miiller, M. Schwerhoff, and A. J. Summers describe in [5] how we can translate quanti-
fied permissions from a forall assertion over T into a forall assertion in terms of Ref. Our
translation uses a modified approach based on their idea, in order to translate the quantified
permission assertion to a set comprehension over structy, containing all locations the quan-
tified permission assertion requires access to.

Viper expects that the expression e is asserted to be injective as part of the well-formedness
checks. We check if e is injective, under the assumptions that b holds and we are given
enough permissions:

Vy,z:T =
y # z Ably/z| Nblz/x] A ply/x] > none Ap[z/x] > none = ely/x]| # e[z/x]
Since we do not support fractional permissions in our translation, this expression can be
simplified to:
Vy,z:T =
y # 2z Ably/z] Nblz/x] ANply/x] = write Aplz/x] = write = ely/x] # elz/x].
Under the assumption that e is injective, we can define an inverse function inv. for the ex-
pression e:
(Vz:T b = inve(e) =) A (Yw: Ref ::blinve(w)/z] = elinve(w)/z] = w)
Now we can write the quantified permission assertion as a forall assertion in terms of refer-
ences:

Vr: Ref :blinve(r)/z] A (plinve(r)/z] = write ) = acc (inve(r).f)

We will now show how those conditions and assumptions can be expressed in GRASShopper.
Using the condition under which we have full permission ¢, (see section 3.11), the translation
of the injectivity test is straightforward:

forally:[T],z:[T] ::
y '=z & [b]ly/[=]] && [b][z/[x]] && cply/[2]] && cplz/[x]] ==> [e][y/[]] * = [e][z/[=]]
Next, we introduce a new function inv, : T' — R and add assumptions stating that inv, is
the inverse of e:

forall [z :T] :: [b] ==>inv.([e]) == [«]

forallw: R :: [b][inve(w)/[z]] ==> [e][inve(w)/[z]] == w
The forall expression from above is in terms of Ref (which would be translated to type R
as defined in section 3.6), but we need the set comprehension to be in terms of structy. So
we replace r: Ref by invs(ry) : R, where rf : structy. Now we can define the set compre-
hension as follows:

acc ({ry: structy : : [b][inve(invy(ry))/[x]] && cplinve(invg(ry))/[=]] )

In the case where e is just the expression z, we don’t need the injectivity test or the definition
of the inverse function, since x is trivially injective, i.e. the inverse function is the identity.
This simplifies the set comprehension as follows:

ace ({ry : structy [blinog(ry)/[2]) && ¢, [invy (rp)/ 2] 1)

This is an optimization that is not yet implemented in the other Viper backends. Using this
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optimization would simplify the generated verifier code and make it more readable, which is
already the case in our translation.

In the upcoming part of this section we discuss how to use the injectivity test, inverse
assumptions, and set comprehension to translate a quantified permission assertion occurring
in different positions. In all those cases we concentrate on the case where e is not the
expression z. In the case where e is the expression x we translate a quantified permission
assertion to an accessibility predicate over the simplified set comprehension, regardless of
the location.

3.12.1 Assert Statement

Since we need to assert that e is injective, but assume that inv, is the inverse of e, we
cannot translate a Viper assert statement containing a quantified permission assertion to a
single GRASShopper assert statement. Therefore, we break up the assertion of the assert
statement into subexpressions, as we do e.g. with the inhale statement in section 3.9.1 (see
more details in appendix A), but with a small change: the criterion for whether to break the
assertion up further is whether the assertion contains a quantified permission assertion. The
base cases are the quantified permission assertions themselves, and subexpressions without
any quantified permissions.

The quantified permission assertions are translated to a sequence of statements. First we
get the current permissions Perms as described in section 3.8, then we assert that e is in-
jective and assume the existence of an inverse function. Then we can add the actual assert
statement using the set comprehension from above.

// get current permissions
pure assert forally:[T],z:[T]::
y '=z & [b]ly/[x]] && [b][2/[2]] && cply/[2]] && cplz/[]]
==> [e]ly/l=]] ' = [e][z/[]] ;
pure assume forall Jx:T] :: [b] ==>inv.([e])==[] ;
pure assume forallw:R :: [b][inve(w)/[z]] ==> [e][inve(w)/[z]] == w ;
assert ac(cP({ rf): structy = @ [b] [inve(inv(ry))/[x]] && cplinve(invs(ry))/[z]] })

3.12.2 Inhale

Since the quantified permission assertion is non-pure, an inhale containing a quantified per-
mission assertion is already being broken up into multiple statements (see section 3.9.1). Here
we discuss how to handle the quantified permission assertion as a base case when breaking
up the inhale statement. As with the assert statement, we first assert that e is injective.
To add the permissions in the quantified permission assertion we create another procedure
Minhale, With the assumption that inv. is the inverse of e and the accessibility predicate over
the set comprehension as its postconditions. As the arguments of the procedure we use all
the local variables mentioned, but not defined in the quantified permission assertion.

This approach only guarantees that the postconditions are well-formed if the quantified per-
mission assertion was self-framing. Consider the following quantified permission assertion:

forall x: T :: y.g ==> acc(fun(x, y).f),

where y is some reference we have permission to in the local context, and fun is some
function. Our postcondition would need permission to y . g and potentially more fields of y
to satisfy the precondition of fun. Computing exactly which permissions would be needed
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is subject to future work. Definition 10 in [7] defines when a set of permissions is enough so
that an assertion is well-formed. This notion could be used to write an algorithm that finds
the smallest set of permissions, such that a given assertion is well-formed.

3.12.3 Exhale

For handling an exhale statement containing a quantified permission assertion we add an-
other base case to phase 2 of the exhale (see section 3.9.2). We add an assert statement for
checking the injectivity and assume statements for the inverse function. Then we remove
the set of permissions from Perms . (current permissions) and add them to Perms., (per-
missions to exhale):

Perms cyrr(structy) : = Perms cyrr(struct )

-= {ry:structy : 2 [b][inve(invy(ry))/[=]] && cplinve(inve(ry))/[x]] };

Perms g (structy) : = Permseg(structy)
++ {ryp:structy 22 [b][inve(invs(ry))/[2]] && cplinve(inve(ry))/[x]] 35

3.12.4 Method Postcondition

If a method postcondition contains a quantified permission assertion, then all the postcon-
ditions are conjoined and handled like an exhale statement at the end of the method. This
is done because GRASShopper checks that the footprint of the postconditions corresponds
exactly to the permission at the end of the procedure body, while in Viper the footprint of
the postconditions is allowed to be a subset of the permissions at the and of the method
body (see section 3.8). The checking of the postcondition is therefore handled like in an
exhale (see section 3.12.3) of the quantified permission assertion.

The postcondition a method call gets to assume (i.e. the actual postcondition of the trans-
lated method) is the separating conjunction of the assumptions for the inverse function and
the accessibility predicate over the set comprehension. This means, injectivity of e gets as-
sumed, rather than tested at caller site. This is a different behavior than expected in Viper,
where injectivity also needs to be checked when inhaling method postconditions.

3.12.5 Method Precondition

If a method precondition contains a quantified permission, we need to check the preconditions
at call site. This is because the preconditions are handled as assertions at call site, but we
need to assume that there exists an inverse function, but only after we checked injectivity.
We solve this problem by omitting the method call entirely; instead we exhale the translated
preconditions of the method and inhale its postconditions, using the techniques discussed in
section 3.9. How quantified permissions are handled in exhales is described in section 3.12.3.
In the actual method precondition, we translate the quantified permission assertion into the
separating conjunction of the inverse assumption and the accessibility predicate of the set
comprehension. As with the method postconditions, this is a different behavior than expected
in Viper, where injectivity also needs to be checked when inhaling method preconditions.

3.12.6 Loop Invariant

If a loop invariant contains a quantified permission assertion it is a non-pure invariant. If any
invariant of a loop is non-pure, we add manual checks for the loop invariant, and don’t supply
the GRASShopper loop with any invariants (see section 3.8). This means, the loop invariant
containing the quantified permission will be only used in positions where it will either be
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handled like an inhale or an exhale statement. How to handle the quantified permission
assertion in those situations we already discussed in sections 3.12.2 and 3.12.3.

3.12.7 Others

In any other positions our translation defaults to a separating conjunction of inverse assump-
tions and the accessibility predicate over the set comprehension. Those positions include
function preconditions, function bodies, and predicate bodies. This default handling does
not correspond to the expected Viper behavior of the affected functions and predicates.
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4 Translating GRASShopper to Viper

In addition to our translation from Viper to GRASShopper we have laid the foundations
of a translation from GRASShopper to Viper. Our translation assumes that the supplied
GRASShopper program is syntactically correct and properly typed, i.e. the program is ac-
cepted by the GRASShopper tool’s type checker. We can run the GRASShopper tool such
that it stops after type checking by specifying the option -typeonly. Our translation tool
does not implement type inference, but assumes that no type inference has to be performed
on the input program. Running the GRASShopper tool with the option -simplify’ will
print out a version of the original GRASShopper program augmented with the inferred type
information. In this new version of the GRASShopper program an expression {1, 2, 3}
will be replaced by Set<Int>(1, 2, 3) and a statement var b := false; will be
replaced by statements var b: Bool; b := false;.

Our simple translation from GRASShopper to Viper supports all the language features of
GRASShopper that we use in our translation from Viper to GRASShopper. However, for
the translation of some of those language features we make simplifying assumptions that do
not necessarily hold in every GRASShopper program. In the following, we describe which
language features of GRASShopper our translation supports, how those language features
are translated, and what the simplifying assumptions are.

Structs We translate all GRASShopper struct types to the Ref type in Viper, and trans-
late each struct definition to a sequence of field definitions. Since GRASShopper manages
permissions per reference, but Viper manages permissions per pair of field and reference,
we translate an accessibility predicate acc (x) of a single reference x to the conjunction
of accessibility predicates for all the fields corresponding to the type of z. Similarly, we
translate creating a new object to creating a new reference with permissions to the fields
corresponding to the struct’s fields. See translation 6 for an example.

struct A {
var f: Int; field f£f: Int
var g: A; field g: Ref
}
procedure m(a: A) method m(a: Ref)
requires acc(a) requires acc(a.f) && acc(a.g)
{ {
var b: A; var b: Ref
b := new A; b := new(f, g)
} }
GRASShopper Viper

Translation 6: Translation of GRASShopper structs

We translate an accessibility predicate acc (S) over aset S: Set<T > to the conjunction
of quantified permission assertions for each field f of struct 7"

forallz: Ref nzinS==> acc(z.f)

Checking Assertions As discussed in section 3.8, permissions occurring in assertions, as-
sumptions, loop invariants, and postconditions are checked differently in GRASShopper than

"This feature is under development at the time of writing this report.
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in Viper. Viper checks that the mentioned permissions are a subset of the currently held per-
missions, while GRASShopper checks that the mentioned permissions correspond precisely
to the currently held permissions. Our translation currently ignores that fact and translates
assertions, loop invariants, and postconditions to Viper without modification. This means
we effectively weaken all the permission checks.

As described in section 3.5, GRASShopper supports pure versions of all checks. By di-
rectly translating those pure checks to the corresponding checks in Viper, we do not weaken
the checks, since the pure checks can only mention pure expressions. The pure assert
statement is translated to an inhale statement in Viper.

Assume Statement and Inside Expression In our translation from Viper to GRASShop-
per, the use of assume statements and inside assertions is connected to circumventing
GRASShopper’s precise permission checking. In our translation from GRASShopper to
Viper we drop assume statements and translate inside assertions A -** B to the transla-
tion of just A.

We justify this approach with the following example: Assume we translate assert C from
Viper to GRASShopper. According to section 3.8, this statement is translated to first ob-
taining the current permissions Perms using an assume statement over acc(Perms), and then
asserting [C] —** acc(Perms). Our translation back to GRASShopper will then drop the
assumption, and only translate back the definitions of the variables in Perms and an assert
statement of [C]. After being translated to GRASShopper and then back to Viper again,
this assertion will verify in the same way as the original Viper assertion.

However, we also generate assume statements in our translation of Viper exhale state-
ments (see section 3.9.2). Here, the obtained current permissions Perms are modified using
set operations which influence the behavior of the exhale. For each of the exhale’s subex-
pressions that mention permissions, we check if the corresponding object is in Perms using
a set inclusion operation. This operation will fail in our translation from GRASShopper to
Viper, since we dropped the assumption that Perms contains the currently held permissions.
To solve this problem, the translation from GRASShopper to Viper could be improved in
the following way: Instead of dropping all assume statements, we would translate those
assume statements that obtain the set of current permissions using Viper’s forperm ex-
pression. Consider the following assume statement:

assume acc (S1) &*& acc (S2),

where 57 and Sy are sets of different struct types 77 and T>. The fields of all structs in
GRASShopper are distinct, therefore we can write the following assume statements for sets
S1 and So:

inhale forperm[f]r:7inS;
inhale forallr: Ref ::7inS;==> perm(r.f) > none

where f is any field of the struct 7;. These inhale statements set the contents of S;
to be the references we currently have permission to and that were of type T; in the origi-
nal GRASShopper program. Using this improved encoding of such GRASShopper assume
statements, our encoding of an exhale statement in GRASShopper that is translated back
to Viper would now operate on properly initialized sets.

Conjunctions GRASShopper supports three types of conjunctions: &*&, &+&, and &&.
Viper only supports the separating conjunction &&. Therefore we translate &*& to &&
in Viper. Our translation currently also translates the GRASShopper conjunction && to
Viper’s separating conjunction &&, which is correct if either the left or right hand side of
the conjunction is a pure expression. If they are non-pure however GRASShopper expects
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the permissions mentioned on both sides to be the same, which our translation does not
reflect. The conjunction &+& is not supported by our translation, since it is not clear how to
express the fact that the permissions mentioned on both sides of the conjunction can overlap
in Viper. Note that &+& is never generated in our translation from Viper to GRASShopper,
while &&, where both sides are non-pure, is generated by our translation of an exhale
statement containing a predicate application (see section 3.9.2).

Functions Viper distinguishes between heap-independent domain functions and poten-
tially heap-dependent functions outside of domains. GRASShopper does not make this
distinction explicitly. In our translation, we translate all GRASShopper functions that have
neither preconditions, postconditions, nor a body to domain functions. We create one do-
main for all the domain functions. All the functions that do not meet those requirements
are translated to Viper functions outside of domains.

Predicates If we were to translate GRASShopper predicates to predicates in Viper, we
would have to add appropriate unfold and fold statements to the translated code for
every predicate application. Instead our translation assumes that all the predicates in the
supplied GRASShopper program are not recursive. This assumption lets us replace all
predicate applications in the translation by the predicate body itself.

Axioms In GRASShopper, axioms appear as top-level constructs, in Viper axioms need to
be nested into domains. Axioms in Viper may mention domain functions from any domain,
not just their own. In our translation we create one domain that contains the translations of
all the axioms in the GRASShopper program. Note that we do not support the translation
of axioms that mention GRASShopper functions which are translated to functions outside
of domains.

Triggers We translate a matching trigger @(matchingt;,...,t;n yieldse) to an
e-matching trigger {[t;1],...,[tin] } in Viper. This translation only approximates the
behavior of triggers in GRASShopper since it ignores the expression e, in particular it ignores
whether e has the form known (€’) or not. Our translation does not support pattern triggers.

Set Comprehension We translate a set comprehension {z : T :: b} to a function ap-
plication in Viper. First, we gather all subexpressions eq,...,e, of b that reference local
variables, which are defined in the context where the set comprehension expression is lo-
cated. This is the same technique we use in section 3.3, except that we do not restrict
subexpressions to be of a specific type here. From the gathered subexpressions we construct
parameters for the new Viper function fsetcomp. This function has return type Set [ [T7] ]
and postconditions that make sure the result of the function contains the same elements as
the set specified by the set comprehension:

ensures forallxz:[T]:: b ==>zin result
ensures forallz:[T]::xin result ==>1¥,

where b’ corresponds to the translation of b, but with the expressions eq,...,e, replaced
by the corresponding parameter names. Any matching triggers that were attached to the
set comprehension, we translate according to the previous paragraph and attach to both of
the forall expressions in the postconditions. The set comprehension expression can now be
translated to fsetcomp(€1,---,€n)-
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Uninterpreted Types We translate an uninterpreted type type 7" in GRASShopper to
an empty Viper domain domain T {}.

Unsupported Features Our translation does not support reachability predicates such as
Btwn and Reach. We also do not support GRASShopper’s built-in array syntax.
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5 Evaluation

Our tool Natrix implements the translation from Viper to GRASShopper described in sec-
tion 3. In this section we evaluate Natrix, both in terms of how many test cases of the
Viper test suite we can verify correctly, and how fast the tool is compared to the other
Viper backends. We also discuss the general limitations of our translation from Viper to
GRASShopper.

5.1 Limitations

In this section we discuss the limitations of our translation from Viper to GRASShopper and
describe how the translation could be improved; both in terms of supporting more features
of the Viper language, and enhancing existing encodings.

Unsupported Features Because of the differences between the Viper and GRASShopper
languages, our tool only translates a subset of Viper to GRASShopper. The following list
gives an overview of features which are not supported:

Magic Wands GRASShopper does not support magic wands and it does not seem pos-
sible at the moment to express them in GRASShopper.

Fractional Permissions GRASShopper does not support fractional permissions. Our
translation is restricted to programs using only write and none permissions.

Permission Expressions Although GRASShopper does not natively support permis-
sion expressions, our translation could be improved to support perm and forperm
expressions. Since we do not support fractional permissions, a permission amount could
be modeled by Bool. The translation of perm (x.f) would first obtain the current
permissions Perms as described in section 3.8, and then check whether map ¢ (x) is in
Perms(structy). Similarly, the translation of forperm [f] 7 :: e(r) would check [e(r)]
for every element r in Perms(structy).

Sequences and Multisets are not supported by GRASShopper.
Set Cardinality is not supported by GRASShopper.
Unique Functions Such functions are not supported in GRASShopper.

Generic Domains As described in section 3.7, our translation only supports domains
without type parameters. Generic domains could be supported by instanciating copies
of the domains for all the relevant type parameters. A similar approach is already
implemented in the symbolic execution backend of Viper.

Inhale-exhale Assertion in Functions and Predicates See section 3.9.3
Goto GRASShopper does not support goto statements.

Labels Labeled o1d expressions are not supported in GRASShopper.

Folding and Unfolding Predicates During our translation all folding and unfolding
operations are dropped. This simplifies programs containing predicate applications, since in
Viper we can only assert the body of a predicate once it is unfolded. However by dropping
folding and unfolding operations we give up the ability to report any failures that may
happen due to such an operation. In Viper, a fold statement can fail for two main reasons:
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Either the predicate instance is in a state such that it cannot be folded, or the predicate
body cannot be verified. To report the second kind of problem, we could translate fold
statements to assert statements in GRASShopper in the future.

Quantified Permissions Our translation of quantified permissions relies on the triggering
of forall expressions and set comprehensions (see section 3.12). The forall expressions have
triggers attached as follows:

forall [z :T] :: [b] ==> inv.([e]) == [2]
@(matching [e] yields known (inv.([e])))
forallw: R :: [b][inve(w)/[z]] ==> [e][inve(w)/[z]] == w
@(matching inv.(w) yields [e][inve(w)/[z]])

Our translation does not specify triggers for the set comprehension at the moment:

acc ({ry: structy : : [b][inve(invs(ry))/[x]] && cplinve(inve(ry))/[z]] )
In some scenarios we can therefore not properly verify the program. Finding the specific
triggers to properly verify quantified permissions remains subject to future work.

Recursive Predicates We translate predicates directly from Viper to GRASShopper, in-
cluding any recursive predicates. Many GRASShopper programs containing recursive predi-
cates do not terminate at the moment. However, the authors of GRASShopper are planning
to implement an automatic translation of recursive predicates to predicates using reachability
predicates instead.

Error Reporting In cases where we check loop invariants manually (see sections 3.9.3,
3.12.6, and 3.8), it can happen that we report both that the loop invariant was not established
and also that it was not maintained, instead of just reporting the first error. To prevent this
from happening, the tool would need to filter error messages.

method test () procedure test ()
{ {
var i: Int := 1 var i: Int := 1;
var j: Int := 2 var j: Int := 2;
while (true) while (true)
{ {
assert i == 1 // should succeed pure assert i == 1; // fails
pure assume i == 1;
assert j == 2 // should fail pure assert j == 2; // fails
pure assume j == 2;
j o= j+1 j o= j+1;
} }
} }
Viper GRASShopper

Translation 7: Unchanged variable inside a loop.

Checking Unchanged Variable Inside Loop Consider translation 7. The assertion
on line 7 should succeed, but does not in the GRASShopper translation. In the other
Viper backends this problem is solved by injecting so-called free invariants that guarantee
that variables that are unaffected by the loop remain unchanged. In our case this free
invariant would be invariant i == 1. However, finding the correct invariant is not
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always as trivial, in particular if the variable is modified before the loop. Supporting those
free invariants in our translation is subject to future work.

field f: Int ... // Field translation
method m(x: Ref) procedure m(x: R)

requires acc(x.f) requires acc(map_f (x))
{ {

assert x != null // should succeed pure assert (x != null); // fails

pure assume (x != null);
} }
Viper GRASShopper

Translation 8: Asserting non-null on a reference.

Field Encoding Our encoding of fields as discussed in section 3.6 has the issue that we
never obtain permission to objects of type R. Since those objects directly represent Viper
references, checking if a reference is non-null will always fail. See translation 8 for an example.
We could improve the field encoding by translating acc (x.f) to

acc (maps(r)) &*& x '= null instead of acc (map()).

Using this improved encoding we could verify that a reference is non-null, whenever we have
permission to one of its fields. However, if we are in a state where we have permission to
none of the fields of a reference x, and we write an assertion assert acc (z.f) our tool
would now report both an error that we do not have permission to z.f but also an error that
x may be null.

Error Reasons Viper and GRASShopper both distinguish between a failure that hap-
pened because we don’t have permission to some field, and because the assertion cannot be
satisfied. In some cases however GRASShopper reports the wrong kind of error.

Predicate Flattening Due to a bug in GRASShopper predicates are not always flattened
properly. This means assuming some predicate p (x,y), does not guarantee that you can
later assert a different predicate with the same body. This bug affects our translation, since
we wrap Boolean operators in predicates, in places where GRASShopper does not allow any
Boolean operators (see section 3.3). See translation 9 for an example of this issue.

Triggers Viper only generates default triggers if there are no user-defined triggers, while in
GRASShopper default triggers are always generated, in addition to any user-defined triggers.
Therefore our tool reports fewer errors than the other backends, when there is a user-defined
trigger that does not trigger all the facts needed to prove some assertion.

Function Pre- and Postconditions GRASShopper only recently added support for spec-
ifying function pre- and postconditions. We directly translate Viper function pre- and post-
conditions to their corresponding GRASShopper representation. However the GRASShopper
tool does not actually check function pre- and postconditions yet, so our tool fails to report
violated function pre- and postconditions.

New Statement The GRASShopper new statement does not assume inequality of the

new reference and references we currently don’t have permission to. See translation 10 for
an example.
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function f(b: Bool): Bool function f(b: Bool)
returns (res: Bool)
method test(x: Int, y: Int) procedure test(x: Int, y: Int)
{ {
inhale f(x != y); pure assume f(b_op(x,y));
assert f(x != y); // should succeed pure assert f(b_opl(x,y)); // fails
pure assume f(b_opl(x,y));
} }
predicate b_op(x: Int, y: Int)
{
x !'=y
}
predicate b_opl(x: Int, y: Int)
{
x =y
}
Viper GRASShopper
Translation 9: Failing Boolean operator encoding.
field f: Int // Field translation

method m3(x:

{

Ref, y: Ref)

requires acc(x.f)

var z: Ref
z := new (*)
assert x != z // should succeed
assert y != z // should succeed

procedure m3(x: R, y: R)
requires acc(map_f (x))

{
var z: R;
z := new R;
pInhale(2);
pure assert (x != z); // succeeds
pure assume (x != z);
pure assert (y != z); // fails
pure assume (y != z);
}

procedure pInhale(new_var: R)
ensures acc(map_f (new_var))

Viper

GRASShopper

Translation 10: New statement does not assume inequality for all references.
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Well-Formed Assertions As discussed in section 3.2, Viper checks if expressions are
well-formed in all positions where expressions can occur. GRASShopper only checks well-
formedness for expressions that appear in assertions, assignments and procedure calls. Since
our tool does not check well-formedness on its own, it fails to report well-formedness prob-
lems that GRASShopper does not find, i.e. not well-formed contracts, function bodies, and
predicate bodies.

5.2 Viper Test Suite

We evaluated our new Viper backend Natrix using the test cases in the Viper test suite. We
included the test cases from the all and quantifiedpermissions folders, but excluded the
test cases from the wands folder, since those test cases are concerned with Viper magic wands,
which our translation does not support. For the evaluation we ran the GRASShopper tool
with the z3 SMT solver, since cvc4 rejects all test cases containing non-linear arithmetic,
such as multiplication and division. The results are listed in table 1.

Success 132
Unsupported 315
Wands 9
Sequences 149
Fractional permissions and permission expressions 119
Unique functions 15
Generic domains 8
Inhale-exhale expression in function or predicate 4
Multisets 3
Set cardinality 3
Goto statement 3
Labels 2
Failures 58
Well-formedness 19
Folding and unfolding expressions are dropped 12
Function pre- and postconditions not checked 13
GRASShopper does not flatten predicates properly 7
Assert false instead of insufficient permission 3
Triggering of quantified permissions 2
Recursive predicates in GRASShopper 2
Testing non-null on reference fails 2
New statement does not assume inequality 1
Checking unchanged variable inside loop 1
Report invariant not established and invariant not maintained 1
GRASShopper always generates default triggers 1
Insufficient permission instead of assert false 1
Viper internal issues 6
Ignored 24
Recursive predicates in GRASShoppers not terminating 10
Viper internal issues 14

Table 1: Results in the Viper test suite

Of the 529 test cases in the suite 132 succeeded. 315 of the test cases contain at least one
unsupported feature. Note that for each test case we counted only the first occurrence of an
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unsupported feature. 58 test cases failed, which can be due to reporting unexpected errors,
or failing to report an expected error. In each test case multiple errors can happen. For each
type of error mentioned in the table we counted how many files it appears in.

Of the unsupported features, sequences appear to be the most frequent reason that a test
case fails. Sequences could be supported by our translation by adding axioms that describe
the behavior of sequences. Those axioms would be very similar to the axioms the other
Viper backends use. But sequences are not the only feature that could be supported by
adding appropriate axioms: multisets, set cardinality, and unique functions also fall into
this category. As described in section 5.1, support for the permission expressions perm and
forperm could also be added to the translation.

The number of test cases that fail because folding and unfolding operations are dropped
could be reduced as discussed previously, but there will always be such errors, as we drop
those operations is by design. The field encoding could be improved, such that testing
whether a reference is non-null verifies properly. Most of the other failing test cases are due
to bugs in the GRASShopper tool, or features that GRASShopper does not support yet.
Some of those issues could be handled by our translation, such as the well-formedness checks
and the checking of function pre- and postconditions. But once the GRASShopper tool
supports those features itself, this work would be redundant. The problems arising because
of the differences between the triggers in Viper and GRASShopper need to be analyzed more
deeply.

5.3 Performance

We measured the performance of Natrix and both existing Viper backends on the setup
shown in table 3. We measured timings for Natrix, with both z3 and cvc4 as the backend
SMT solvers for GRASShopper®. We ran the performance tests on the test cases described
in section 5.2, with a timeout of 120 seconds and 5 repetitions. For the comparison we
only consider test cases, in which all configurations finished before the timeout, and did
The results of the performance test can be found in table 2. We
can see that our new backend is not much slower on average than the backend of Viper
using symbolic execution (SE), but can be as slow or even slower than the backend using
verification condition generation (VCG). Using both SMT solvers in parallel seems to improve
the performance of GRASShopper and therefore Natrix slightly.

not return an error.

Natrix z3 Natrix Natrix Viper SE Viper VCG
cvcéd z3+cvcéd
Average Runtime 1.80s 1.84s 1.77s 1.76s 3.91s
Maximum Runtime | 6.59s 8.81s 6.94 2.79s 6.83s

Table 2: Results of performance tests

8When using cvc4, we ran GRASShopper with -smtsolver cvcémf.
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CPU Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz

Memory 16GB

0S Ubuntu 14.04.5 LTS

JVM Java(TM) SE Runtime Environment (build 1.8.0-101-b13)
GRASShopper | commit 122172e8b7f05049778755484584018be2bd5904
z3 version 4.4.0

cvcéd version 1.5-prerelease

Silver changeset 2202:7c482b3066e7

Silicon changeset 1467:53a4£89e0b11

Carbon changeset 839:63e01a20b4f5

Natrix commit ea6e00843£d914ec5751bb849e9dc208e2b2c76d

Table 3: Setup used for testing.
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6 Conclusion and Future Work

We have presented a translation from a substantial subset of the Viper language to the
GRASShopper input language. We have implemented this translation as a new backend ver-
ifier for Viper. Possible improvements of this translation include adding support for generic
domains and sequences. We also have laid the foundations of a translation from GRASShop-
per back to Viper. Main improvements on this translation include support for reachability
predicates, encoding of precise permission checking and inside expressions.

A translation of recursive predicates to non-recursive predicates using GRASS reachability
predicates instead would be interesting from both the GRASShopper and the Viper perspec-
tive. Using our translation from Viper to GRASShopper and the translation of the recursive
predicates, we would be able to better understand the connections between recursive and
point-wise definitions of data structures.
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Appendices

A Breaking up an Assertion into a Sequence of Statements

As described in sections 3.9.1, 3.9.2, and 3.12.1, it is often nessecary to break up an as-
sertion into subexpressions that can be handled sequentially. Because pure and non-pure
subexpressions often have to be handled differently, we want to distinguish between pure
subexpressions, predicate accessibility predicates, field accessibility predicates, and quanti-
fied permissions. In this appendix, we describe how to break up assertions into subexpres-
sions. These subexpressions are then translated into sequences of statements, according to
the descriptions in the sections mentioned above.

We break up the assertion recursively. Since pure expressions are not broken up further,
we only need to recurse when we encounter a subexpression that can join two assertions.
There are only three of those, namely conjunction, implication, and conditional assertion.
We translate those assertions into the corresponding control flow statements, while recursing
on their subexpressions.

This approach is illustrated in algorithm 2.

Algorithm 2 Breaking up a Viper assertion into statements

1: function BREAKUP(e)

2 switch e do

3 case e is pure

4 return list of statements corresponding pure expression e

5: case acc (p(e1,...,en))

6 return list of statements corresponding to predicate access e

7 case acc (¢.f)

8 return list of statements corresponding to field access e

9 case forallux:T ::b(x)==> acc (¢/(x).f,p(x))
10: return list of statements corresponding to quantified permission expression e
11: case €t && Crighy
12: return BREAKUP(ejefr) ; BREAKUP(eright)
13: Case €left ==> Eright
14: return if ([esn]) { BREAKUP(€epight) ¥
15: CaSEe €cond 7 Cthen : Celse
16: return if ([econg]) { BREAKUP(espen) Felse{ BREAKUP(egse)
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