
Adding Debugging Functionality to Viper
Practical Work Description

Andrea Keusch
Supervised by Prof. Dr. Peter Müller, Dr. Marco Eilers, Lea Salome Brugger

September 22, 2023

1 Introduction

Viper [4] is an intermediate language for program verification, the process of
formally proving the correctness of programs with respect to a given specifi-
cation. Viper has two backends: a Symbolic Execution backend (Silicon) and
a Verification Condition Generation backend (Carbon). We will work on the
Silicon backend.

Silicon. The input to Silicon [5] is a Viper program whose parts are then
verified individually using Symbolic Execution [2]. This verification technique
steps through the program as during program execution but keeps a so-called
symbolic state (instead of a concrete state). Each variable is assigned a con-
crete value, if it is known, or a symbolic expression otherwise. Additionally, it
stores a path constraint, which is the collection of all preconditions, assump-
tions, branch conditions and other constraints that are known to hold. Every
concrete execution of the program satisfies this path constraint. Therefore, if
one can prove that a statement is implied by the path condition, then it is
proven that the statement holds for every execution. Whenever an assertion (or
invariant or postcondition) is encountered, Silicon tries to prove it under the
assumption of the path condition. In order to do so it invokes an SMT solver
(Z3 [3] by default). The output of Silicon is either “verified”, meaning that all
assertions have been proven successfully, an error for each failed assertion or a
timeout.

Debugging Viper. If not all assertions can be proven, the user has to
find the bug and resolve it somehow. To do so efficiently, information about
the error and tools that enable analysis are needed. So far, there exist only a
handful of debugging techniques. First, the user gets some hints about the error,
for example, it states at which point an invariant might not hold (before the
loop, after each iteration or after the loop). Additionally, Silicon can provide a
concrete counterexample, which can be helpful. But there is nothing else, such
that users have to resort to some tricks in order to analyze parts of the code,

1

for example by adding additional assumptions and assertions, or commenting
out parts of the code.

However, there are several issues with these techniques. First of all, the
user does not get enough information to analyze the error properly. The only
way to get more information is to apply the aforementioned techniques through
trial and error. After each modification of the code, the verification has to be
rerun, which can take several minutes for very large programs. This debugging
process can be frustrating and slow. Another big issue is that the modifications
have to be undone before doing the full proof. Otherwise, the verification might
succeed, but the proven statement is not the desired one. For all these reasons,
it is essential to provide proper debugging tools that do not modify the Viper
code and enable the user to get all information about the error with little effort.

2 Project Goals

2.1 Main Goals

The goal of this project is to simplify debugging of a Viper program when using
the Silicon backend. We approach this in two steps. First, we modify the Silicon
backend such that the errors contain as much relevant information as possible.
Then, we add new tools that enable the user to interact with this information.

Providing debugging information in a user-readable format. The
most important step is to provide as much information as possible to the user.
This includes the program state (e.g. variables, their (symbolic) values and
information about the heap) and the path constraint. We will attach this infor-
mation to the error object of each failed assertion and make it possible to display
it in a user-readable format. This means that all information must be provided
in a format that can be understood on the Viper level. Internally, Silicon uses
a different representation that refers to functions, values and concepts that do
not exist on the Viper level. Hence, we have to modify Silicon such that it also
stores the Viper representation.

An issue will be that some constraints are a result of the Viper-internal en-
coding, such as properties of datastructures or artifacts of folding and unfolding
predicates. Such constraints are most likely not of any help to the user and
would just blow up the provided debugging information. Hence, hiding such
artifacts would ease the analysis. An idea is to store the constraints in a hier-
archical structure, such as a tree. For example, on the top level could be the
constraint “unfold(p)”, the next lower level would then be (more or less) equal
to the predicate definition. Recursively, there might be more levels.

Basic user interaction. Even with all the provided information the user
likely has to experiment with additional assumptions and assertions. Instead of
doing this by modifying the code, we want provide a tool that enables the user
to interact directly with the symbolic state. The interactions include modifying

2

the path constraint by adding and removing assumptions and modifying the to-
be-proven assertion. As the symbolic state is attached to the error, verification
does not have to be rerun. Instead the prover can be invoked directly, which
will be faster and more convenient. This technique can also help to circumvent
timeouts because the path constraint and assertion can be simplified in a way
that speeds up the proof. Through these interactions the user gains valuable
insights about the error and how to resolve the issue.

2.2 Possible Extensions

Once we have all the debugging information and the basic user interaction tool,
there are a lot of extensions one can think of. These are not the main goals of
the project but will be added if time allows for it. Otherwise they are left for
future projects.

Choosing an SMT solver. Implications are proven by sending the path
constraint and assertion to an SMT solver. By default Silicon uses the Z3
solver [3]. However, SMT solvers are not complete and hence, there might be
statements that cannot be proven even though they hold. Every SMT solver
works differently. It is possible that a statement can be proven by some solvers
but not by others. Therefore, adding the possibility to choose an SMT solver
(for example, Z3 [3] and CVC5 [1]) will be beneficial.

Proof rules. If a complex assertion cannot be proven, it might be useful to
have a manual process to split it into smaller assertions, for example by splitting
conjunctions and proving each part individually. Being able to apply such rules
would be convenient to users.

References

[1] Haniel Barbosa et al. “CVC5: A Versatile and Industrial-Strength SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022. Ed. by Dana Fis-
man and Grigore Rosu. Vol. 13243. Springer, 2022, pp. 415–442. doi: 10.
1007/978-3-030-99524-9_24.

[2] James C. King. “Symbolic Execution and Program Testing”. In: Commun.
ACM 19.7 (1976), pp. 385–394. doi: 10.1145/360248.360252.

[3] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. “Z3: An Efficient
SMT Solver”. In: Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008. Ed. by C. R.
Ramakrishnan and Jakob Rehof. Vol. 4963. Springer, 2008, pp. 337–340.
doi: 10.1007/978-3-540-78800-3_24.

3

[4] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A Ver-
ification Infrastructure for Permission-Based Reasoning”. In: Verification,
Model Checking, and Abstract Interpretation - 17th International Confer-
ence, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Pro-
ceedings. Ed. by Barbara Jobstmann and K. Rustan M. Leino. Vol. 9583.
Lecture Notes in Computer Science. Springer, 2016, pp. 41–62. doi: 10.
1007/978-3-662-49122-5_2.

[5] Malte Schwerhoff. “Advancing Automated, Permission-Based Program Ver-
ification Using Symbolic Execution”. PhD thesis. ETH Zurich, Zürich,
Switzerland, 2016. doi: 10.3929/ethz-a-010835519.

4

