
Supporting subclassing and traits in Syxc
Master’s thesis description

Andres Bühlmann

August 28, 2012

Overview

Today, permission-logics such as separation logic [11] and implicit dynamic
frames [14] are the basis of many modular program verifiers. For instance,
VeriFast [5] and jStar [4] are program verifiers relying on separation logic,
whereas VeriCool [15], Chalice [7] and Syxc [12] are program verifiers rely-
ing on implicit dynamic frames. With the development of abstract predicate
families [8,9] in separation logic, support for behavioural subtyping has be-
come feasible and is supported by both VeriFast and jStar. Due to the
similarity of separation logic and implicit dynamic frames [10], it was pos-
sible to adapt the idea of predicate families to the implicit dynamic frame
approach. VeriCool is an example thereof. Until now, Chalice and Syxc have
not taken this step and therefore do not support behavioural subtyping.

In addition to the well understood concept of subtyping, the less known
concept of traits has gained popularity recently. Traits are in particular pro-
moted by the programming language Scala which is itself gaining more and
more attention. While traits have been accepted in the Scala community
and are also investigated in the research community, there is no program
verifier supporting traits so far. One reason may simply be that traits are
not yet used in main stream languages and therefore lack attention. An-
other reason may be the novel aspects arising from the verification of traits.
Most importantly, it is not yet clear how to deal with super-calls in traits
which can not always be statically bound due to the unknown linearization
order of mixin components. A possible but only theoretical solution has
been provided by Schwerhoff [13]. However, how the mentioned solution
can be automated using an approach based on implicit dynamic frames and
predicate families is still an open question.

The first goal of this master’s thesis is to add support for behavioural
subtyping to Syxc according to the idea of predicate families as demon-
strated for instance by VeriCool. Beside adding this support, it shall also be

1



investigated how this addition affects existing programming concepts such
as for instance monitor invariants. In case issues with other programming
concepts are discovered, solutions to the found issues shall be developed and
implemented as part of the first goal.

The second goal is to add support for traits. As traits are to some degree
similar to subtyping it shall be investigated whether there are new language
concepts allowing the verification of traits and at the same time could be
useful for subtyping.

These two goals are in line with Syxc’s long-term goal of verification
support for the Scala programming language.

Chalice

Chalice [7] is the name of an experimental programming language and also
of a static program verifier based on verification condition generation.

The programming language Chalice was designed having specification
and verification of concurrent programs in mind. It is object based, sup-
ports fork-join concurrency, predicates, fine-grained locking, fractional per-
missions, monitors, pure functions as well as the annotation of pre- and post
conditions. However, it currently lacks support for standard and well estab-
lished programming language features such as subtyping and inheritance.

The program verifier Chalice encodes a given Chalice program in the
Boogie [1] programming language. The Boogie verifier then generates veri-
fication conditions which get discharged by the theorem prover Z3 [3].

Syxc

Syxc [12] is a program verifier for a subset of the Chalice programming
language. In contrast to the verifier Chalice which is based on verification
condition generation, Syxc is based on symbolic execution [15].

The motivation to use a symbolic execution approach rather than an
approach based on verification condition generation has two sources. Firstly,
despite symbolic execution having in theory a worst-case runtime which is
exponential in the number of branches, it is claimed that for reasonable
examples from the literature symbolic execution is roughly twice as fast
as verification condition generation [6]. Secondly, the symbolic execution
approach seems to be more programmer-friendly as failing proof obligation
are much smaller than in verification condition generation based approaches
and therefore can be inspected more easily by a programmer.

2



Goals of this master’s thesis

The goal of this master’s thesis is to add support for additional language
concepts to Syxc. For each added language concept, the verification support
has to be implemented eventually.

The language concepts to be added are given by the following list:

• Abstract base-classes

• Interfaces/Contracts

• Subtyping

• Code/Specification-inheritance

• Traits (in the sense of Scala)

The following code examples serve as a motivation for the goals and ex-
tensions that are associated with the examples. Please note that many of
Scala’s language features, in particular generics and inner classes, are not
supported by Syxc at this time. Therefore, the selection of examples is heav-
ily limited by that and we restrict us to design patterns and reasonable code
examples used in the literature.

Part 1: Supporting behavioural subtyping

• Cell-family example [4, 9]
Challenge: Verification of behavioural subtyping
Tested goals: Behavioural subtyping, code/specification-inheritance

• Set interface/contract and conforming implementations based on a list
and a tree respectively
Challenge: Interfaces are required to specify permissions. But the
required permissions depend on the implementation. Thus, some sort
of mapping is required.
Tested goals: Interfaces/Contracts, mapping of permissions

• Subtyping-diamond with interfaces (Person, Student, Employee, Em-
ployeeStudent)
Challenge: The diamond itself and the mapping of specified permis-
sions in the interface to permissions of the implementation. In partic-
ular the case where the interface permission of two interfaces map to
the same implementation permission.
Tested goals: Interfaces, mapping of permissions

3



Part 2: Supporting traits

• Rich interfaces using traits
Description: Class List providing basic list functionality. Trait Richlist
provides convenience methods based on methods of class List.
Challenge: Verification of trait usage where the trait inherits from a
super-class.
Tested goals: Traits

• Subject/Observer pattern [4] (trait and abstract base-class version)
Challenge: Verification of traits where the trait has state, implemen-
tation and abstract methods. The interesting question is how to deal
with the permissions corresponding to the state of the trait. Further-
more, the observers monitor invariant depends on state of the subject
which complicates the handling of the permissions and monitor invari-
ants.
Tested goals: Abstract base-classes, traits, monitor invariants

• Stackable example [13]
Challenge: Due to potentially unknown linearization order of mixin
components, super-calls can not be statically bound in general and
the contracts are therefore unknown at verification time.
Tested goals: Traits, contracts

Extensions

• Channel example
Challenge: Can we support behavioural subtyping for channels as well?
Tested goals: Behavioural subtyping for channels

• Cell-family example (DCell in particular) [4, 9]
Challenge: Allow non-behavioural subtyping
Tested goals: Non-behavioural subtyping, code/specification-inheritance

• Concurrent cell-family example
Description: The concurrent cell-family is an extension of the cell-
family example [4,9] in which the instances are shared and additional
interfaces are provided. Thus, a client needs to use the acquire and
release statements and can make use of the monitor invariants.
Challenge: If clients can use acquire and release/share statements on
the same instance but with different static type, soundness problems
may arise as the monitor invariants of the static types could, if al-
lowed, differ. The challenge is to specify how monitor invariants can
be changed in subtypes and if required to redefine the semantics of ac-
quire, release and share statements such that soundness is preserved.
Tested goals: Behavioural subtyping, monitor invariants

4



• Visitor pattern [4] (Abstract base class and interface version)
Challenge: Verification of a double-dispatch scenario, postcondition
referencing and chaining of referenced postconditions. With chaining
of referenced postconditions a kind of meta postcondition is meant
that is able to express, for instance, that a certain method is called
twice in succession.
Tested goals: Subtyping, Interfaces, abstract base classes, condition
referencing, postcondition chaining

• Solution to the expression problem
Challenge: Verification of abstract types and explicitly typed self ref-
erences, inner classes

Related work

We give a brief summary of automated verifiers based on permission-logics
supporting object oriented concepts and in particular inheritance. All of the
discussed verifiers VeriCool, VeriFast and jStar support behavioural subtyp-
ing and have in common that their approach for handling subtyping is based
on abstract predicate families [8, 9].

VeriFast [5] is a program verifier supporting the C and Java [16] pro-
gramming languages. The program is annotated with the help of separation
logic. The concept of abstract predicate families has been incorporated by
dynamically bound instance predicates (predicate families with an implicit
this- and type-parameter). The verification is based on symbolic execution.

VeriCool [15] is a program verifier supporting the Java programming
language. It makes use of implicit dynamic frames and therefore has many
similarities to Chalice. Concerning verification, verification condition gen-
eration and symbolic execution are supported.

jStar [4] is a program verifier supporting the Java programming lan-
guage. The program is annotated with the help of separation logic in a
similar way to VeriFast. jStar is built on top of coreStar [2] which is a verifi-
cation framework for separation logic. The verification is based on symbolic
execution.

5



Bibliography

[1] Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Jacobs, and
K. Rustanm. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Formal Methods for Components and Objects:
4th International Symposium, FMCO 2005, volume 4111 of Lecture
Notes in Computer Science, pages 364–387. Springer, 2006.

[2] Matko Botinčan, Dino Distefano, Mike Dodds, Radu Grigore, and
Matthew J. Parkinson. corestar: The core of jstar. In In Boogie, pages
65–77, 2011.

[3] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[4] Dino Distefano and Matthew J. Parkinson J. jstar: towards practi-
cal verification for java. In Proceedings of the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and ap-
plications, OOPSLA ’08, pages 213–226, New York, NY, USA, 2008.
ACM.

[5] Bart Jacobs and Frank Piessens. The verifast program verifier, 2008.

[6] Ioannis T. Kassios, Peter Müller, and Malte Schwerhoff. Comparing
verification condition generation with symbolic execution: an experi-
ence report. In Proceedings of the 4th international conference on Ver-
ified Software: theories, tools, experiments, VSTTE’12, pages 196–208,
Berlin, Heidelberg, 2012. Springer-Verlag.

[7] K. Leino, Peter Müller, and Jan Smans. Verification of concurrent pro-
grams with chalice. In Alessandro Aldini, Gilles Barthe, and Roberto
Gorrieri, editors, Foundations of Security Analysis and Design V,
volume 5705 of Lecture Notes in Computer Science, pages 195–222.
Springer Berlin / Heidelberg, 2009.

[8] Matthew Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’05, pages 247–258,
New York, NY, USA, 2005. ACM.

[9] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, ab-
straction and inheritance. In Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’08, pages 75–86, New York, NY, USA, 2008. ACM.

6



[10] Matthew J. Parkinson and Alexander J. Summers. The relationship
between separation logic and implicit dynamic frames. In Proceedings
of the 20th European conference on Programming languages and sys-
tems: part of the joint European conferences on theory and practice
of software, ESOP’11/ETAPS’11, pages 439–458, Berlin, Heidelberg,
2011. Springer-Verlag.

[11] John Reynolds. Separation logic: A logic for shared mutable data
structures. pages 55–74. IEEE Computer Society, 2002.

[12] Malte Schwerhoff. Symbolic execution for chalice. Master’s thesis, ETH
Zürich, 2010.

[13] Malte Schwerhoff. Verifying scala traits. Semester project report, ETH
Zürich, 2010.

[14] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. In Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented Pro-
gramming, Genoa, pages 148–172, Berlin, Heidelberg, 2009. Springer-
Verlag.

[15] Jan Smans, Bart Jacobs, and Frank Piessens. Symbolic execution for
implicit dynamic frames, 2009.

[16] Jan Smans, Bart Jacobs, Frank Piessens, Willem Penninckx, Frédéric
Vogels, and Pieter Philippaerts. Verifying java programs with verifast.

7


