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Abstract

The Universe type system uses ownership to structure the object store and to control aliasing and
modification of objects. In former work ownership transfer - which allows objects to migrate from
one owner to another - was integrated in the Universe type system. It is based on the concepts of
external uniqueness and alias burying. This report presents different extensions to the Universe
type system with ownership transfer. The main extension concerns the inference of the ownership
modifier for local variables. Further we apply the concept of subclass separation to the object
store. We additionally introduce a solution for array handling that is derived from field access. As
a last extension we weaken the external uniqueness invariant to allow passing multiple references
on one transferred cluster via method invocation.
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Chapter 1

Introduction

1.1 Background

1.1.1 Ownership Type Systems

Ownership type systems allow the programmer to control aliasing and dependencies by structuring
the object store hierarchically into contexts. Each object is owned by at most one other object,
called its owner. The ownership relation constitutes a tree order. The set of all objects with the
same owner is named context. Objects without an owner are in the root context. The set of
objects owned by an object is called its representation.

Most ownership models follow the owner-as-dominator property. This means that all reference
chains from an object in the root context to an object x in a different context go through x’s
owner. Less restrictive is the owner-as-modifier property. An object x can be referenced by any
other object, but reference chains that do not pass through x’s owner must not be used to modify
x. This allows the owner to control modifications of owned objects.

1.1.2 Universe Type System

The Universe type system [4] is a lightweight ownership type system which has been implemented in
the JML compiler. It enforces the owner-as-modifier property which means that it differs between
read-write and read-only references. Owners can control the modification of owned objects, but
not the read access.

Ownership Modifiers. The classification of references is done by using an extended type sys-
tem. The three keywords peer, rep, and any, called ownership modifiers, can be used in front of
the standard Java types. They express the object ownership relative to this.

• peer denotes a reference to an object in the same context.

• rep denotes a reference from an object into its context.

• any1 denotes a reference that might point to objects in any context.

A type in the Universe type system consists of both, the ownership modifier and the Java type.
The modifier peer is used as default value. rep and peer types are subtypes of any types with
the same Java type.

any references are read-only. They can only be used for field read and calls to pure (side-
effect free) methods, not for field update or calls to non-pure methods. Therefore, side-effect
free methods are required to be annotated with the keyword pure. peer and rep references are
read-write and thus can be used for write access and calls to non-pure methods too.

1In earlier descriptions and in currently implemented tools, any is called readonly

9



10 1 Introduction

Type Combinator. The type combinator shown in table 1.1 is used to determine the type of
transitive access like field access, method parameters, method results, and array element access.
For instance if you want to access the field x. f you have to combine the modifier of x with the
modifier of f to yield the modifier of x. f from the caller’s point of view.

BU peer rep any
peer peer any any
rep rep any any
any any any any

Table 1.1: Universe type combinator. The left-most cell of the rows means the first argument, the
top-most cell of the columns means the second argument.

Runtime System. During runtime each object stores a reference to its owner which is de-
termined by the creation expression. This runtime information is needed for downcasts and to
evaluate instanceof expressions.

Example. As an example, figure 1.1 and 1.2 illustrate a double-linked list with an iterator.
Class Iterator shows the power of the owner-as-modifier property. An iterator can have an any
reference to the nodes of the list and iterate the elements over this read-only reference. Otherwise
the LinkedList object has full control over the modification on the Node objects.

1.1.3 External Uniqueness

Unique variables is a concept for alias management in object-oriented programming. The unique-
ness invariant requires that a unique variable, also called unique reference, is either null or else
its value is the sole reference to an object.

External uniqueness [2] weakens the constraint of unique references. An externally unique
reference is the only reference into an aggregate from outside of the aggregate. Internal aliasing
to an object from its owner representation is permitted. In combination with ownership types,
an externally unique reference is the only reference that passes the context boundary of an object
aggregate. If we have a data structure referred by an externally unique reference we can safely
transfer it because we can be sure that there is no other external reference into the data structure.

1.1.4 Alias Burying

Alias burying [1] is an approach to maintain the uniqueness invariant. The idea is that aliases of
a unique variable do no harm if they are not used anymore to access the referenced object at the
moment the unique variable is read again. If a unique reference is read all aliases to the object
are marked as unusable and cannot be used to access the object anymore.

1.2 Universe Types with Transfer

To be practical, ownership systems must allow objects to migrate from one owner to another.
This ownership transfer is, for instance, desirable in the Abstract Factory pattern or in the case
of merging data structures.

Universe types with transfer or UTT for short [11, 12] is an extension of Universe types that
supports such ownership transfer. It combines the ideas of external uniqueness and alias burying
with the Universe type system. It guarantees statically that a cluster of objects is externally
unique when it is transferred and therefore, that ownership transfer is type safe. It provides the
same encapsulation as Universe types and requires only negligible annotation overhead.
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class LinkedList {
rep Node header;

}

class Node {
any Object element;
peer Node next, prev;

}

class Iterator {
peer LinkedList list ;
any Node current;

}

Figure 1.1: Implementation of a linked list with iterator in the Universe type system

Figure 1.2: Ownership structure of a linked list with iterator in the Universe type system. The
nodes h and ni are owned by the list object l. The iterator has a read-only reference to the nodes.
Squares symbolize objects, solid arrows represent read-write references (peer or rep), dashed
arrows denote read-only references (any), and the solid rectangles are contexts.
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1.2.1 Cluster Transfer

Clusters. To support that only a part of the object’s representation is transferred, the ownership
context is divided into so-called clusters. These clusters act as the units of an ownership transfer
and can therefore only be transferred as a whole. The special this cluster may not be transferred.
Clusters correspond to externally unique aggregates. Multiple read-write references into a cluster
are allowed, as long as it is guaranteed that at the moment of a transfer there is indeed only a single
reference pointing into the transferred cluster. Since any references are not used for modifications,
they do not have to be considered to maintain the uniqueness invariant.

An object is owned by a pair consisting of an owner and a cluster name. Two types rep [f ]
and rep [g] are only assignable to each other iff f = g.

Cluster Declaration. The ownership modifiers uniq and rep [f ] are used to handle clusters.
The definitions of the rep and the peer modifier have to be adapted to the concept of clusters:

• uniq denotes a reference that points into a newly defined transferable cluster. It can only
be used for fields.

• rep[f ] denotes a reference that points into the cluster defined by field f. f must be declared
uniq in the enclosing class. It may only be used in field declarations and method signatures.

• rep

– for fields and in method signatures: denotes a reference that points into the this cluster.

– for local variables: reference pointing into a ”wildcard” cluster. This is explained below.

• peer denotes a reference that points into the same cluster.

Local variables that point into the representation of this are to be declared solely with a plain
rep modifier. That can be seen as pointing into an existing cluster which does not have to be
specified further. The actual cluster which the variable may point into is statically inferred.

Ownership Transfer. The ownership transfer of a cluster happens in two steps: First, the
cluster is released by the current owner, and then it may be captured into an ownership context
to complete the ownership transfer. Both operations will take place implicitly, but the additional
ownership modifier free is needed:

• free denotes the only read-write, not unusable reference to a released cluster. It may only
be used in method signatures.

The Universe type combinator for the modifier free is defined as follows:

x BU free := free
free BU x := any, x 6= free

Cluster Alias Controlling. To control external references, analogous to the concept of alias
burying, a set of unusable variables that must not be read is used. There are some rules to handle
this set:

• Whenever a possible release operation is inferred, all variables that point into the released
cluster are marked as unusable.

• Before a non-pure method call on a peer receiver, all local variables pointing into a non-free
cluster are marked as unusable.

• Reading a free variable marks it as unusable.

• Assigning to a variable marks it as not unusable anymore.
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1.2.2 Data Flow Analysis

A static, intra-procedural data flow analysis tracks which variables refer into which cluster and
which variables are unusable. This is computed for each program step in the method.

Each statement of the language is translated with the so called analysis value transition rules
to one or more analysis statements. They represent the modifications this language statement has
on the cluster which each variable belongs to.

Flow Graph. The data flow analysis operates on a graph representation of a given analysis
statement. This flow graph represents all possible control flow transitions from one elementary
analysis statement to another.

Ternary Logic. Due to control structures it is not always possible to allocate one variable to
one single cluster as you will see in the following example:

uniq T f;
uniq T g;
void m() {

rep T x;
if (...)

x = f; // x is of type rep[ f ]
else

x = g; // x is of type rep[g]
}

At the end of the method, x can be either of type rep [f ] or rep [g]. Due to these conflict a ternary
logic is used for the analysis. This means that the answer to if a variable points into a cluster
can be either ”YES”, ”NO” or ”DONT KNOW” which means that the variable may point into this
cluster or not.

Analysis Checks. The data flow analysis is employed to check the alias constraints. It performs
the following checks:

• No unusable variable must be read.

• No fields must be unusable before a non-pure peer method call and upon method termina-
tion.

1.2.3 Example

As example figure 1.3 shows the implementation of merging two double-linked lists annotated
with the Universe type system. The different steps are illustrated in figures 1.4, 1.5, 1.6, and 1.7.
Interesting is the ownership transfer of the list. The first step happens in line 6 in the method
getHeader. The cluster of field header (including all nodes) is released as you can see in figure
1.5. This means that header is unusable after this line. Thus, a new Node is assigned to header
in the next line which makes header not unusable anymore (see figure 1.6). The second part of
the ownership transfer happens in line 20, where the released cluster is implicitly captured (see
1.7) by assigning the externally unique reference to a local variable.

In line 6 the special method release is needed to release the header node. Otherwise the
header field would be unusable after the return statement, because header and result point into
the same cluster [12, p.128].

For further understanding we list in the code in figure 1.3 additionally the result for the data
flow analysis which shows which cluster the rep variables header and otherHeader in the method
merge as well as the variables header and result in the method getHeader belong to at different
points in the methods. For instance in line 21 it means that header points into the cluster Clheader
while otherHeader points to a separate cluster.
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1 class LinkedList {
2 uniq Node header = new rep Node();
3
4 free Node getHeader() {
5 // {Cl header header | unusable}
6 rep Node result = release(header); // {Cl header | result | unusable header}
7
8 header = new rep Node();
9 // {Cl header header | result | unusable}

10
11 return result;
12 }
13
14 pure free Node release(free Node x) {
15 return x;
16 }
17
18 void merge(peer LinkedList other) {
19 // {Cl header header}
20 rep Node otherHeader = other.getHeader();
21 // {Cl header header | otherHeader}
22
23 header.prev.next = otherHeader.next;
24 // {Cl header header otherHeader}
25 otherHeader.prev.next = header;
26 otherHeader.next.prev = header.prev;
27 header.prev = otherHeader.prev;
28 }
29 }
30
31 class Node {
32 any Object element;
33 peer Node next, prev;
34
35 Node() {
36 next = this;
37 prev = this;
38 }
39 }

Figure 1.3: Implementation of list merging
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Figure 1.4: Ownership structure of list merging, step 1. This is the initial position. In this and the
following figures, squares symbolize objects, solid arrows represent read-write references, dashed
arrows denote read-only references, dotted arrows represent unusable references, solid rectangles
are contexts, and dashed rectangles denote clusters.

Figure 1.5: Ownership structure of list merging, step 2. The cluster is now released. Thus, the
reference from object l2 to object h2 become unusable.
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Figure 1.6: Ownership structure of list merging, step 3. We assigned a new node object h3 to the
unusable reference l2. Thus it is not unusable anymore.

Figure 1.7: Ownership structure of list merging, step 4. Now the free cluster is captured by the
list l1. At the end the object h2 will be garbage collected because it is not reachable anymore.
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1.3 JML and MultiJava

The Universe type system as well as the extensions for ownership transfer have been integrated
into the MultiJava compiler and the JML tools. Beside the static type checking it provides runtime
and byte code generation support.

1.3.1 JML

JML [10], which stands for ”Java Modelling Language”, is a behavioral interface specification
language designed to specify Java classes and interfaces. It is used to specify the behavior and the
syntactic interface of Java code.

JML builds on top of the MultiJava compiler and its utility classes. Thus, most of the unique-
ness and ownership transfer extensions are related to the MultiJava code, as JML automatically
benefits from them.

1.3.2 MultiJava

MultiJava [3] is a backwards-compatible extension to Java. It retains Java’s existing class-based
encapsulation properties, type checking, and compilation model. It allows compilation units to be
statically type checked modularly and safely, ruling out any link-time or run-time type errors.

1.4 Project Goals

The object of this project is to extend the Universe type system on the presence of ownership
transfer. It relies on a recent master’s thesis [12] and contains different parts that should be
improved.

Local variables are now annotated with an ownership modifier. In case of a rep variable the
cluster should not be declared because it is inferred statically. In this report we will introduce a
possibility to omit any ownership modifier for local variables. Instead we will statically infer the
ownership type related with a local variable.

The existing solution uses one cluster (called this cluster) for fields annotated with a plain
rep modifier regardless in which class they are declared. For modular verification it would be
nicer if the clusters of a subclass are separated from the clusters of its superclass. Our aim is to
introduce an own, non-transferable cluster for each class to hold the subclass separation property.

In [12] the support for arrays is not implemented. Thus, our aim is to find a flexible solution
for arrays. Our goal is to handle array element access like field access and thus derive array rules
from our field rules. Limitations are given by the restricted information we have about arrays at
static time.

In the existing solution it is not possible to specify two formal parameters pointing into the
same free cluster. For more flexible ownership transfer this would be a nice extension. Therefore,
our intent is to support passing of multiple references on a cluster via method invocation.

1.5 Overview

In the next chapters we will spend time on our extensions. In chapter 2 we first care about the
type inference for local variables. Chapter 3 will present our solution to separate the cluster of a
subclass from the clusters of its superclass. Our result for array handling is given in chapter 4.
In the following chapter 5 we illustrate how to pass multiple references on a cluster via method
invocation. In chapter 6 we list the formalization of our new type system including all our ex-
tensions. The subsequent chapter 7 handles how the data flow analysis works considering all our
modifications. Chapter 8 on the one hand shows how the Universe type system with ownership
transfer is implemented and on the other hand it documents our changes on this implementation.
The final chapter 9 is about conclusion and future work.



18 1 Introduction

All class diagrams in the following chapters are published as UML diagrams. For object
diagrams we use a graphic rendition presented in [7].



Chapter 2

Type Inference for Local Variables

2.1 Introduction

In the old solution [12] local variables have to be annotated with one of the three modifiers peer,
rep or any, whereas the plain rep modifier means that the local variable points into an arbitrary
cluster of this. The exact cluster is inferred by the analyzer. This solution unburdens the
user from declaring cluster details with local variables. Is also gives a higher expressiveness, as
demonstrated by this short code fragment:

uniq T f;
uniq T g;
void m() {

rep T x;
if (...)

x = f; // x is really of type rep[ f ]
else

x = g; // x is really of type rep[g]
}

Static Data Flow Analysis. The inference is effectively done during the static data flow
analysis. This data flow analysis is intra-procedural and each run of the analysis is handling
one fixed method. Since only clusters of this can be transferred, only local variables and fields1

declared as rep can become unusable. Therefore, the analysis needs only to consider rep variables
and can leave out the ones declared as peer or any.

If a cluster is transferred in the existing solution, all variables that point into this cluster -
excepting the free reference - become unusable which means that they must not be read anymore.
During the analysis these variables are in an additional cluster marked with unusable.

Goal. We will present in this project the solution that all local variables do not need a declared
Universe modifier anymore. The Universe type a local variable has will be inferred during the
data flow analysis.

1We use the term ”fields” for instance variables declared within a class and outside a method whereas ”local
variables” are declared inside a method. ”Variables” includes both fields and local variables.
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2.2 Solution

2.2.1 Local Variables

In our solution we omit every ownership modifier with local variables at the declaration time as
well as in combination with the new operation. This means that each local variable can have any
type2 except uniq and free and will never become unusable. Further local variables have not
only one type, but they can change their type. An example of this type switching is shown in the
following code snipped3:

rep T f,g;
peer T h,i;
void m() {

T x; // { Cl this f g | Cl peer h i | x }
x = f; // x has at this point type rep[ this ]: { Cl this f g x | Cl peer h i }
g = x; // is a correct assignment
x = h; // x has now type peer: { Cl this f g | Cl peer h i x }
i = x; // is a correct assignment

}

The data flow analysis computes for each local variable to which cluster it belongs at each
elementary analysis statement. Thus we have to look up the actual type a local variable has at a
certain point in the result of the analysis.

2.2.2 Fields

Moreover we allow input parameters and fields of type rep to change their type from rep 〈g〉
to rep 〈f〉. This leads us to a more powerful type system as you can see in the example in
section 2.2.11. On the other hand input parameters and fields of type peer and any cannot
change their type. Thus, we distinguish between transferable clusters and non-transferable clusters.
Transferable clusters are clusters declared by a field like the cluster declared by uniq f. Non-
transferable clusters are all other clusters - the this clusters as well as the clusters peer, any and
unusable. We allow input parameters and fields to change their type from transferable rep to an
arbitrary rep.

Therefore, we know statically which type - peer, rep, or any - a field has, but the current
cluster of rep fields and input parameters should be inferred by looking up in the result of the
analysis instead of taking the declared cluster. Furthermore before calling a method on a peer
receiver or on this we have to restore the object’s invariant. This invariant says that fields of
different types refer to different clusters and that the type inferred by the data flow analysis is
assignable to the declared type.

This short example shows the type switching of fields from one rep cluster to another rep
cluster:

uniq T f;
uniq T g;
void m() {

T x; // { Cl f f | Cl g g | x }
x = f; // x has at this point type rep[ f ]: { Cl f f x | Cl g g }
g = x; // g temporary change the type to rep[ f ]: { Cl f f x g | Cl g }
...
// restore object ’s invariant : reassign g
g = new T(); // { Cl f f x | Cl g | g }

2We use the term ”type” as short for ownership type. If we mean Java types we explicitly write this term out.
3For understandability we list any and peer fields in the cluster sets in all following examples although they are

not really held in the sets. Also we mention the markers for all clusters although in the developed type system we
do not use markers for transferable clusters. In addition we leave out not used sets.
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this.n();
}

Not allowed is the type switching for fields from rep to peer as shown in the following code
section:

peer T f;
uniq T g;
void m() {

T x; // { Cl peer f | Cl g g | x }
x = f; // x has at this point type peer: { Cl peer f x | Cl g g }
g = x; // not allowed since fields of type rep cannot change their type to peer

}

2.2.3 Cluster Transfer

The type switching of local variables means that they cannot become unusable. If we now transfer
a cluster containing local variables and fields, the local variables change their type while the fields
(as long as it is not a transfer from one rep cluster to another rep cluster) become unusable. This
is demonstrated in the following example:

uniq T f;
rep[f ] T g;
peer h;
void m() {

T x, y;
// { Cl f f g | Cl peer h | unusable | x | y }
x = f; // { Cl f f g x | Cl peer h | unusable | y }
y = f; // { Cl f f g x y | Cl peer h | unusable}
h = x // merge of the two clusters of h and x
// the two local variables x and y are transferred to peer
// while the two fields f and g become unusable
// { Cl f | Cl peer h x y | unusable f g}
...

}

2.2.4 Cluster of New Variables

If we create a new object with the new operator we put the corresponding variable in a newly
created cluster. This means that it has type rep of a transferable cluster (rep 〈Cltr〉). This is
problematic if we want to create a peer variable or a variable of a non-transferable rep cluster
((rep 〈ClnonTr〉)). The following example illustrates these circumstances (we here use for the first
time the modifier notation rep<Cl> instead of rep[Cl]; the difference between the two is explained
in section 6.3):

class T {
peer T p1, p2;
void m() {

T x = new T(); // {Cl peer p1 p2 | x}
x.p1 = p2; // assignment from peer to rep<Cl tr>

}
}
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If we handle x like a peer variable the assignment on the second line would be correct. But
since x is in a newly created rep cluster the assignment would mean an assignment from peer to
rep 〈Cltr〉 which is not allowed. The same problem exists with method calls:

class T {
peer T p;

void m() {
T x = new T(); // {Cl peer p | x}
x.n(p); // expected parameter type is rep<Cl tr> |> peer = rep<Cl tr>

// actual parameter has type peer
}

void n(peer T param) {}
}

If x would be a peer variable the method call would be correct. But since x is of type rep 〈Cltr〉
the expected parameter type is rep 〈Cltr〉 too while the actual parameter type is peer.

New non-transferable rep Objects. The same issue occurs if we want to have a new created
object of type rep of a non-transferable cluster:

class T {
rep T r;
peer T p;

void m() {
T x = new T(); // {Cl this r | Cl peer p | x}
x.p = r; // assignment from rep<Cl this> to rep<Cl tr>

}
}

and for method invocation:

class T {
rep T r;

void m() {
T x = new T(); // {Cl this r | x}
x.n(r ); // expected parameter type is rep<Cl tr> |> peer = rep<Cl tr>

// actual parameter has type rep<Cl this>
}

void n(peer T param) {}
}

Solution. To solve this conflict we have to allow field writing y.f = x if

y = rep 〈Cltr〉 ∧ f = peer ∧ (x = peer ∨ x = rep 〈ClnonTr〉)

even if it is not correct according to the assignable-to relation. This means that we handle y like a
variable of type peer or rep 〈ClnonTr〉 instead of the inferred type rep 〈Cltr〉. This is completely
correct because the cluster of y can make this ownership transfer since it is a transferable cluster.
The transfer is really done in the merge statement of field writing which makes sure that after
this point we handle y definitely like a variable of type peer or rep 〈ClnonTr〉.
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The same holds for a method invocation y.mt(z) with formal parameter type mtp. The pa-
rameter is correct beside the assignable-to relation if

y = rep 〈Cltr〉 ∧ mtp = peer ∧ (z = peer ∨ z = rep 〈ClnonTr〉)

The correctness is similar to field writing since a method invocation performs a merge between
the cluster of the expected parameter and the actual parameter cluster.

These conditions flow into the type rules presented in section 6.10.

2.2.5 Cast

In contrast to new expression we have to allow and to consider modifiers in connection with a
cast between two local variables. For instance a cast between two local variables can be generated
during the flattening and is really needed as you can see in the following example

any T f;
peer T g;
peer T h;
void m() {

f = h;

// the following is the flattened code of g = (peer T) f
T x,y;
y = this.f // y is in the any cluster
x = (peer T) y; // x should be explicitly moved to the cluster of peer
this.g = x;

}

If we do not consider the modifier during the cast expression x would be in the any cluster and
the assignment to g in the next line would not be allowed. Since the original code g = (peer T ) f
causes no problems we have to consider modifiers in combination with casts. Anyhow this modifier
should only be optional.

if a modifier before a cast is missing in the existing Universe type system the ownership modifier
of the static type of the right hand side is taken. This is a good solution for local variables in the
new version too. But instead of the static type of the right hand side we have to take the current
type calculated by the analyzer.

With the expression x = (rep[z] T ) y it is possible to cast to the cluster the local variable z
belongs to at cast time. The precondition is that z is of type rep at this point. Similar is the cast
to the cluster a field f belongs to with the expression x = (rep[f ] T ) y. It is important to see
that rep[f ] does not mean the cluster declared by uniq f , but the cluster where a field f is at cast
time. It is therefore not needed that f is declared uniq. f can be any arbitrary field, but must be
declared of type rep. It is explicitly possible that f is not in the same cluster as it was declared.
We will illustrate this slightly confusing situation with an example:

any T f;
uniq T g, h;
rep[g] T g2;
rep[h] T h2;

void m() {
// {Cl any f | Cl g g g2 | Cl h h h2}
f = g; // {Cl any f | Cl g g g2 | Cl h h h2}
h2 = g; // {Cl any f | Cl g g g2 h2 | Cl h h}
g2 = (rep[h2] T) f; // {Cl any f | Cl g g g2 h2 | Cl h h}
...

}
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The cast to the cluster of h2 is a cast to the cluster Clg which h2 temporary belongs to and not
to the cluster Clh like h2 is declared.

2.2.6 Input Parameters

Input parameters are treated like fields in case of declaration and type switching as explained in
section 2.2.2. The only difference between the handling of fields and input parameters is that in
the object invariant only fields have to be checked.

To treat parameters like fields we have to insert the keyword this before each occurrence of
input parameters such that writing and reading from and to input parameters are handled like
field reading and writing:

void m(peer T p1, rep T p2) {
T x, y;
...
// before x = p1;
x = this.p1;
// before p2 = y;
this.p2 = y;

}

2.2.7 Return Values

For declaration we handle return values like fields. In the old version a return statement return x
was handled like a method call this.m(x) where the formal parameter of m has the same type as
the declared return type. Since the treatment of parameters is similar to the treatment of return
values we can handle the return statement like a method call further on.

2.2.8 Static Methods

In the original Universe type system for static methods no rep types are allowed in the signature
as well as for local variables because there is no receiver object [5]. We extend this restriction
and allow free parameters (including multiple references to a free cluster as introduced later in
chapter 5) and return values. Since local variables have no declared type there are no restrictions
for local variables anymore.

2.2.9 Purity Checking

We would also improve purity checking. In the old version in a pure method only assignment to
a local variable, field reading and call to pure methods is allowed. We will improve this to allow
field writing and call to non-pure methods in some cases.

We can allow field writing x.f = y and invocation of a non-pure method y = x.mt(z) if no
fields of the current object are modified. We prevent this by the precondition that x has to be
rep 〈Cltr〉. Thus, no call back to the current object and modification of it is possible since the
reference to the current object is any. In addition there should be no field in the same cluster as
x. This means that x has no read-write reference to a field of this.

In addition for a method invocation we have to be sure that x is still of type rep 〈Cltr〉 after call
because as mentioned in section 2.2.4 x can change the type to peer or rep 〈ClnonTr〉. This can be
shown by the condition that z should be assignable to x combined with the formal parameter (for
further understanding we refer to section 2.2.4). Furthermore we have to ensure that no field of
the current object can be accessed through a read-write reference by the actual parameter z. All
these restrictions lead us to the following precondition for field writing x.f = y (Lx is the cluster
which x belongs to; f ′ means a field of the current object):
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x = rep 〈Cltr〉 ∧

@f ′ : f ′ ∈ Lx

and for call of a non-pure method y = x.mt(z):

x = rep 〈Cltr〉 ∧

@f ′ : f ′ ∈ Lx ∧

z ≤A x �U mtp ∧

mtp = any ∨ (z = rep 〈Cltr〉 ∧ @f ′ : f ′ ∈ Lz)

Thus, this and all its fields are only accessible over an any reference from x and cannot be
modified. We illustrate it by the following example:

1 class T{
2 peer T g, f ;
3 rep T r;
4
5 void m() {
6 g = new T();
7 }
8
9 pure void n() {

10 T x,y;
11 x = new T();
12 y = x;
13 // {Cl peer g f | x y | Cl this r}
14 x.m(); // {Cl peer g f | x y | Cl this r}
15 x.g = f; // {Cl peer g f | x y | Cl this r}
16 }
17
18 pure T() {}
19 }

The method call in line 14 and the field writing in the subsequent line can be without any problems
since they cannot modify the fields of the current object.

In figure 2.1 you can find another example. Inside of the pure function find at line 10 and
16 we call the non-pure method getNext() on the parameter it. it is of type rep and since there
is no field of the current object in the same cluster, we allow this method invocation. The whole
code example is listed in A.1.

Purity Definition We use in our type system a weaken purity. We define purity in that way
that no modifications on objects which are not transitively owned by the current object is allowed.
Thus, modification of all objects inside the representation context of the current object is allowed.

2.2.10 free Variables

Parameters and return values can be of type free. This needs some special kind of handling.
When we have a method call y.m(z) we normally merge the cluster the actual parameter z has
with the cluster of the expected type computed by the type combinator between y and mtp, the
formal parameter type: merge(z, y �U mtp). In other words we merge the cluster where the
parameter is now with the cluster where the parameter would be at the beginning of the method
call. As long as the formal parameter type is of a type with a defined cluster this merge leads to
no problems.
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1 class LinkedList {
2 uniq Node header;
3
4 pure free LinkedList findAll(any Element obj){
5 Iterator it = new Iterator(this);
6 return find(it , obj);
7 }
8
9 pure free LinkedList find(free Iterator it , any Element obj) {

10 Node curNode = it.getNext();
11 LinkedList found = new LinkedList();
12 while (curNode != header) {
13 if (curNode.element.equals(obj)) {
14 found.addLast(curNode.element);
15 }
16 curNode = it.getNext();
17 }
18 return found;
19 }
20 }
21
22 class Iterator {
23 peer LinkedList list ;
24 any Node current;
25
26 any Node getNext() {
27 current = current.next;
28 return current;
29 }
30
31 pure Iterator(peer LinkedList l) {
32 list = l;
33 current = l.header;
34 }
35 }
36
37 class Element {
38 int value;
39
40 pure boolean equals (any Element other) {
41 if (value == other.value)
42 return true;
43 else
44 return false;
45 }
46 }

Figure 2.1: Implementation of iterator function which utilizes the enhanced purity.
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If the formal parameter type is free this means that at the beginning of the method the
parameter is in a new cluster, it would then be transferred to an unknown cluster. Thus, since we
do not know what kind of transfer is done inside of m we have - by checking the method modular -
no knowledge about the type of field f and all other variables in the same cluster after the method
call. This conflict is illustrated by the following example:

class T {
peer T g;
uniq T f;

void n() {
g.m1(f); // f is peer at the end of the call
...
g.m2(f); // f is rep at the end of the call

}

void m1(free T p) {
g = p; // p becomes peer

}
void m2(free T p) {

f = p; // p becomes rep
}

}

Both methods m1 and m2 have the same signature but in m1 parameter p has type peer at
the end of the method while in m2 the parameter p has type rep. This shows that if we call a
method with a parameter of type free we have no knowledge about the cluster of this parameter
at the end of the method call.

Solution. To prevent access to this parameter and all variables in the same cluster, we merge
the cluster of f with the any cluster. This means that all fields in the cluster of f become unusable
and all local variables in this cluster change their type to any.

Thus, in the following example we do not allow the assignment inside of n since f becomes
unusable after the method call:

peer T g;
uniq T f;
rep[f ] T h;

void n() {
g.m(f);
h = f; // type error since f is unusable

}

void m(free p) {}

Free Return Values. We have a similar situation if we are inside a method and return a free
variable:

free n() {
return x;

}
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We handle a return statement like a method call. Thus, we have to merge the cluster of x with
the cluster of the expected return type. By the same token as for free parameters we do a merge
of x with any if the expected return type is free.

2.2.11 Releasing Problem

In the old version there exists a problem that sometimes a special release function was needed to
release a reference [12, p. 128]. This fact is shown in the following example deduced from the list
merging example:

uniq Node header;

pure free Node release(free Node x) {
return x;

}

free Node getHeader() {
// {Cl header header | unusable}
rep Node result = release(header);
// {Cl header | result | unusable header}
header = new rep Node(null, null, null);
// {Cl header header | result | unusable}
return result;

}

The reason for the need of the additional method release was that the type system enforced a
one-to-one correspondence between static clusters (a set of fields) and dynamic clusters (a set of
objects). This means that if we would use a direct assignment statement:

uniq Node header;

free Node getHeader() {
// {Cl header header | unusable}
rep Node result = header;
// {Cl header header result | unusable}
header = new rep Node(null, null, null);
// {Cl header header result | unusable}
return result;

}

header would be in the same cluster as result before the return statement and would therefore
become unusable since the result type should be free. Thus, we needed the release method
mentioned above.

With our solution and the local variable inference we have solved this minor hitch. Since the
newly created header object is in a new cluster instead of the declared cluster, result and header
are not in the same cluster at the end of the method:

uniq Node header;

free Node getHeader() {
// {Cl header header | unusable}
Node result = header;
// {Cl header header result | unusable}
header = new Node(null, null, null);
// {Cl header result | header | unusable}
return result;
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}

This example shows that with our solution we have a more flexible handling of clusters which
allows easier handling of some examples as shown above. The disadvantage of this flexible handling
is, that each newly declared cluster needs at least one field that is declared as pointing into it.
This condition is satisfied by our type system since the only way to declare a new cluster by using
the keyword uniq.

2.2.12 Summary

Subsumed we can say that:

• Local variables have no fixed type and can therefore change their type freely after each
statement.

• Local variables can never become unusable.

• Input parameters and fields of type peer and any cannot change their type.

• Input parameters and fields of type rep 〈Cltr〉 can change the type on rep[ ] or on unusable.

• Before a method call on a peer receiver or on this, fields of different statically types should
be in different clusters.

• For all local variables we need to look up the current types in the result of the analysis.

• For peer and any fields and input parameters we can take the statically declared types since
they cannot change their type. Thus, we can leave out these fields and input parameters for
the data flow analysis since we know which cluster they belong to.

• For fields and input parameters of type rep we need to look up the current cluster in the
result of the analysis.

• We can allow field writing and call to non-pure methods inside of pure methods if the receiver
object has type rep and there is no field in the same cluster as the receiver object.
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Chapter 3

Subclass Separation

3.1 Introduction

In the old version a class and its subclass share the clusters. In the following code example the
fields f and g are both in the same this cluster:

class A {
rep A f;

}

class B extends A {
rep A g;

}

It is correct to handle the this cluster in such a way, but it would be better if we separated
the clusters of a class from the clusters of its subclass. Motivation for this subclass separation is
for instance the static verification process in Spec# [9]. Each object in Spec# has to fulfill the
invariants of all its superclasses. For example an object x of type B which is a subtype of A should
hold both invariants invA ∧ invB . During the verification process it is sometimes desirable that
we check only the invariant invB without touching the fields that x inherits from A. Thus, Spec#
needs the separation of subclasses.

Goal. In our solution we want to separate the cluster of one class from the clusters of its subclass.

3.2 Solution

3.2.1 Subclass Separation

To allow modular checking a method should be sure that no fields of subclasses can belong to the
clusters it analyzes. In other words fields of a subclass may not be declared of clusters used in the
analysis of the superclass.

Since we include only rep fields in our analysis, the peer and any cluster can only be used by
local variables and thus only by the class where the method is declared. The rep clusters declared
by a uniq field can only be accessed by the rep variables of the class where the field - and thus
the cluster - is declared. Thus, the only two clusters that are shared by a class and its subclasses
are the this cluster and the unusable cluster. If we have subclass separation this means that
the fields of a subclass cannot be in the cluster used by the superclass. Therefore no field of the
subclass can become unusable. This means that we only need to separate the this cluster.
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To separate the clusters our solution does not work with one this cluster but with one single
this cluster per class. All this clusters are marked with a corresponding marker and thus are
non-transferable. This avoids the merging of two this clusters.

3.2.2 Notation

The notation will stay as in the old version. For fields, parameters and result types rep means
that the variable belongs to the this cluster of the class where the variable is declared. Due to
the absence of the possibility to declare explicitly to which this cluster a variable belongs there
is no additional check needed to ensure that variables use only the this cluster of the class they
were declared in.

3.2.3 Cluster for the Analysis

In the analysis we have - beside the peer cluster, the any cluster, the unusable cluster and the
clusters declared by fields of the current class and all its superclasses - one this cluster for the
current class and one this cluster for each superclass of this class. The this cluster of the
superclasses as well as the clusters declared by fields of the superclasses are only needed in the
analysis and cannot be used for variable declaration in the current class.

3.2.4 Changes in the Semantic

Due to these changes to achieve the subclass separation some examples that work smoothly in the
old version are not correct anymore. The following example illustrates this problem:

1 class A {
2 rep A g;
3 void n(rep A param) {
4 }
5 }
6
7 class B extends A {
8 rep A f;
9 void m() {

10 n(f );
11 }
12 }

The method invocation at line 10 requires the merging of the clusters of the actual parameter
f and the formal parameter param. Without subclass separation f and param are in the same
this cluster while they are in the presented solution in two different this clusters. Since all this
clusters are non-transferable, the method invocation enforces a merging of two non-transferable
clusters which is not allowed. In other words according to the new solution this example is not
well-typed which it was in the old solution.

Another example which was correct in the existing system and is not well-type anymore by
using subclass separation is the following:

class A{
rep Node head1;

}

class B extends A{
rep Node head2;

void SubclassSeparationViolation(){
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// {Cl A head1 | Cl B head2}
if (head1 == null || head2 == null)

return;
Node cur = head1;
// {Cl A head1 cur | Cl B head2}
while (cur.next != null)

cur = cur.next;
// {Cl A head1 cur | Cl B head2}
Node end1 = cur;
// {Cl A head1 cur end1 | Cl B head2}
cur = head2;
// {Cl A head1 end1 | Cl B head2 cur}
while (cur.next != null)

cur = cur.next;
// {Cl A head1 end1 | Cl B head2 cur}
end1.next = cur; // violation : cur is not assignable to end1.next

}
}

class Node {
any Object element;
peer Node next;

}

Class A and class B both have a list in their this cluster referred to by the fields head1 and
head2. At the last line of the method SubclassSeparationV iolation we try to create a reference
from the end of the first list to the end of the second list. This fails since one list is in the cluster
ClA and the other in the cluster ClB and both clusters are non-transferable

Overloading and Overriding. A third example shows the changes in connection with method
overriding and overloading:

class A {
void n(rep A param) {
}

}

class B extends A {
void n(rep A param) {
}

}

Class B tries to override a method of class A with a plain rep parameter. Since both methods
have semantically not the same signature - in class A the parameter has type rep 〈ClA〉 and in
class B rep 〈ClB〉 - this is not handled like a case of overriding but like a case of overloading. Due
to the Universe type system rules [5] overloading of methods is forbidden if the signatures only
differ in their ownership modifier. Thus, our example is not allowed. This means that the rule
about overloading prevents us from critical situations in connection with the subclass separation
since rep in one class is handled as a different type than rep in another class.

3.2.5 Summary

We can subsume the subclass separation as follows:

• We create one this cluster for each class.
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• All this clusters are non-transferable.

• A variable of type rep points always into the this cluster of the class where it was declared.

• Two rep types of two different classes A and B are handled like different types rep 〈ClA〉
and rep 〈ClB〉.



Chapter 4

Arrays

4.1 Introduction

In the existing system there was no solution to handle arrays with ownership transfer. Thus we
give here a little introduction to the handling of arrays in the normal universe type system [5].

Arrays of reference types need two ownership modifiers: one for the array object and one for
the type of the reference they store. If only one modifier is present it is taken for the element type
and the array object type is by default peer. The modifier of the elements has to be peer or any.
rep is not allowed. Arrays of primitive types need only the modifier for the array object.

Access to arrays is basically interpreted like field access, this means that the type combinator
is used to determine the type of the access expression. For write access we need runtime check.

We have covariant array subtyping. The type hierarchy can be seen in figure 4.1.

Figure 4.1: Type hierarchy for arrays in the Universe type system.

Goal. Our aim is to find a solution which allows a flexible handling of arrays. It is limited by
the information we have about arrays at static time.

4.2 Solution

4.2.1 Idea

For arrays we have to look at the array object as well as the array elements. There is a strong
parallelism between field access and array access which we will demonstrate by the following
example:
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1 class T {
2 peer T a0, a1, a2;
3 }
4
5 class A {
6 uniq T g;
7 rep[g] peer A[] array;
8
9 void m() {

10 T x = new A();
11
12 // array object access
13 array = x; // similar to g = x
14 x = array; // similar to x = g
15
16 // array element access
17 array [0] = x; // similar to g.a0 = x
18 x = array[1]; // similar to x = g.a1
19 }
20 }

The variable array can be compared with the field g. Both are of type rep[g] and syntactically
there is no difference between array = x and g = x as you can see in line 13 and 14. For array
element access in lines 17 and 18 you find a similar situation. The expression array[0] = x is
comparable with the expression g.a0 = x. In both expressions we access through a rep object an
element that is peer to the prefix. Clearly the syntax is diverse in both cases. Beside the different
syntax the only difference between array and field access is that in the case of fields we know the
number of ”elements” at static time while we do not know this about the array. By the same token
we know statically always which field we access, but we do not always have the cognition which
array element is accessed. Due to the parallelism between fields and arrays we try to derivate the
solution for arrays from our handling of fields.

We will call arrays declared directly in a class ”field arrays”, array declared in a method ”local
variable arrays” and arrays used as parameter ”parameter arrays”.

4.2.2 Array Declaration

The use of the ownership types at declaration is similar to the other variables. A field array and a
parameter array can be declared with two types, one for the array object and one for the elements
as explained in section 4.1.

Otherwise the type of a local array object is inferred and thus needs no declaration. The
modifier for the elements - which can only be peer and any, but never rep - can be declared. If
it is not declared, peer is taken as default value. Notice that the modifier for local variable array
elements is the only case where it is allowed to declare local variables with an ownership modifier.

4.2.3 Assignable-to Relation

The assignable-to relation for array types is listed in figure 4.2. Since we can transfer the cluster we
allow assignment from an array object of type rep 〈Cltr〉 to an array object of type rep 〈ClnonTr〉
as long as the elements are assignable too.

4.2.4 Array Object

As we have listed above, array objects can be handled like normal fields, parameters or local
variables. The only difference is that we have to consider the assignable-to relation for arrays.
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Figure 4.2: Assignable-to relation for arrays. Cltr means a transferable cluster whereas ClnonTr

is a non-transferable cluster.

Analysis Variable. We create for each array object of a local variable array as well as for each
field array and parameter array of type rep an analysis variable to observe the cluster the reference
belongs to.

4.2.5 Array Elements

Statically we have not always information about the length of the array as well as which array
element is accessed. If we want to handle each array element separately, different problems appear
as we explain by the example below:

uniq f, g;
rep[f ] peer T[] ar;

void m(int i) {
// {Cl f f ar ar[0] ... ar[n] | Cl g g}
ar[ i ] = g;
// {Cl f f ar ar[0] ... ar[ i ] ar[ i+2] ... ar[n] | Cl g g ar[ i+1]}
...
ar[ i ] = f;
// {Cl f f ar ar[0] ... ar[ i ] ar[ i+1] ar[i+2] ... ar[n] | Cl g g}

}

First we do not know the length of the array and thus cannot determine how many array elements
should be handled in the analysis. The method m get an integer i as parameter. Since we statically
do not know the value of i we cannot decide which array element is moved to cluster Clg. Thus,
when we want to restore the object’s invariant we do not really know which array element should
be moved from cluster Clg back to cluster Clf . All this missing information is marked in the
example with the variables i and n. As long as we do not know the values of these two variables it
is not possible to handle each element of an array separately in the analysis. This means that we
have to handle all elements like one single object. Consequently all elements of an array always
have to be in the same cluster.

This means that we have to care about one element object for each array which we will call
below the array element object. Thus, array[0] and array[1] will have the same effect.

Types. The Java type of the array element object is always the type of the array elements. The
ownership type of the array element object is computed by the combination of the array object
type and the array element type. This means that an array declared as peer peer has an array
element object of type peer and an array declared as rep peer has an array element object of
type rep.
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Analysis Variable. In the same way as the fields of a field are not integrated in the analysis
it is not needed to observe the type of array elements separately. Because we know statically the
type of the elements relative to the array object we can get the cluster which the elements belongs
to without problems. If the elements are declared any they are in the cluster any. Otherwise if
they are declared as peer they are always in the same cluster as the array object whose cluster
we can determine by the corresponding analysis variable. Because elements cannot be declared as
rep there are no more cases. This means that we need no analysis variable to observe the cluster
the array elements belong to.

The example introduced above will now look as follows:

uniq f, g;
rep[f ] peer T[] array;

void m(int i) {
// {Cl f f array | Cl g g}
array[ i ] = g;
// {Cl f f | Cl g g array}
...
array = new T[array.length];
// {Cl f f array | Cl g g}

}

At the assignment array[i] = g we move the array object - and thus all array elements too - to
cluster Clg. To restore the object’s invariant we have to move the whole array back e.g. by a new
expression.

4.2.6 Flattening

During flattening an expression is split into some basic statements by using temporary variables.
The flattening of array element access works like the flattening of field access. In the following
example:

peer T p1, p2;
peer peer T a, b;
int i , j ;

void m() {
T x;
x = p1.a [1].p2;
a [1] = b[3];
x = a[i + j ];

}

x = p1.a[1].p2 is flattened to:

tmp0 = this.p1;
tmp1 = tmp0.a;
tmp2 = tmp1[1];
x = tmp2.p2;

a[1] = b[3] is flattened to:

tmp3 = this.a;
tmp4 = this.b;
tmp5 = tmp4[3];
tmp3[1] = tmp5;
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and x = a[i + j] is flattened to:

tmp6 = this.a;
tmp7 = this.i;
tmp8 = this.j;
tmp9 = tmp7 + tmp8;
x = tmp6[tmp9];

In general the flattening which was already supported by the old version is done as follows:

flatten(prefix[accessor]):
(s prefix, v prefix) = flatten(prefix)

(s accessor, v accessor) = flatten(accessor)
return ([s prefix; s accessor;], v prefix[v accessor])

The first result value of the method flatten means the flattening - the basic statements - and
the second result value means the flattened expression. This is the local variable that represents
the result after executing the flattening. This means that we only have to look how to handle
array reading of the form:

x = y[z];

and array writing of the form:
y[z] = x;

4.2.7 Array Reading

For each basic language statement we declare so called transition rules. They point the change
that happens on the state of the clusters when we execute the corresponding statement while L
means the cluster state before and L′ the cluster state after the execution. The transition rules
for all basic statements as well as the used formalization can be found in section 6.9.

Array reading of the form x = y[z] can be seen like field reading x = y.f where f has the same
type as the array elements. Thus, we move x to the cluster of the array elements. This cluster is
either the cluster of y - if the element type is peer - or the any cluster if the elements are declared
as any. This leads us to this simple transition rule:

if(myElem = peer) then move(L, x, y)
else move(L, x, Clany)

Γ;L `L x = y[z];L′ [L-ARR-RD]

The so called type rules check whether a language statement is well typed according to our
type system or not. Again L represents the cluster state before the execution of the statement.
The whole formalization and all type rules are shown in section 6.10. In the type rules there is no
check needed. Array reading should always be allowed.

4.2.8 Array Writing

Array writing of the form y[z] = x can be compared with field writing y.f = x where f has
the same type as the array elements. If we adapt the field writing transition rule we achieve the
following rule for array writing:

if(myElem 6= any) merge(L, x, y) else L

Γ;L `L y[z] = x;L′ [L-ARR-WR]

We have to keep the condition that peer elements stay in the same cluster as the array object.
Since we never move the array object but only merge it we hold this condition. The array field
writing type rule would look as follows:
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y 6= any
(x ≤A y �U myElem) ∨

(y = rep 〈Cltr〉 ∧ myElem = peer ∧ (x = peer ∨ x = rep 〈ClnonTr〉))
Γ;L ` y[z] = x

[T-ARR-WR]

4.2.9 Unusable Arrays

Although we do not observe which cluster the array elements belong to, access to unusable array
elements is prevented by the type rules. If the array elements are of type any they can never
become unusable. Otherwise if we have peer elements they are in the same cluster as the array
object. This means that if the array elements are unusable, the array object is in the case of a
field or parameter array unusable too or it is any in the case of a local variable array. If the array
object is unusable, the access to its elements is forbidden by the type rules. On the other hand if
the local array object is of type any, array element writing is not allowed too. But according to
the type rules we allow array reading if the local array object is any and thus the elements could
be unusable:

1 class T {
2 void m() {
3 T y;
4 peer T[] x; // {Cl any | x | y}
5 x = new T[3];// {Cl any | x | y}
6 n(x); // {Cl any x | y}
7 y = x[1];
8 }
9

10 void n(free T[] param) {}
11 }

In line 7 we allow array reading, but if we would have observed a single analysis variable for the
array elements this would be unusable.

It corresponds to the following field reading situation:

1 class T {
2 peer T p;
3
4 void m() {
5 T x,y; // {Cl peer p | Cl any | x | y}
6 x = new T();// {Cl peer p | Cl any | x | y}
7 n(x); // {Cl peer p | Cl any x | y}
8 y = x.p;
9 }

10
11 void n(free peer T param) {}
12 }

The field reading in line 89 is allowed although if we had an individual analysis variable for x.p it
would have become unusable in line 7. Since in the field reading as well as in the array reading
situation the access is only possible through an any reference, only reading is allowed. Reading of
an unusable reference should be no problem according to the owner-as-modifier property.

A second critical situation could occur if the array elements become unusable. Since we have
no control about which element is accessed we do not have the possibility - expecting with complex
methods - to observe whether we assigned a new value to each element of the array. This would
be necessary to make the array element object not unusable anymore. Fortunately we do not have
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to care about this. As mentioned above only peer elements can become unusable and when they
are unusable their array object is any or unusable too. If we want to make the array elements
not unusable anymore while their array object stays any or unusable we extract no additional
functionality since the access to the elements stays restricted by the array object. Therefore, we
have no reason to try making array elements not unusable anymore without touching the array
object itself.

Otherwise if the array object changes its cluster - because a new value is assigned - the newly
assigned array has its own elements which cannot be unusable as long as the array object is neither
any nor unusable. This means that we achieve to receive array elements that are not unusable
anymore by assigning another array to their array object. We demonstrate this constitution by a
little example:

1 class T {
2 rep peer T[] a;
3 void m() {
4 T y;
5 // {Cl T a | Cl any | y | unusable}
6 n(x); // {Cl T | Cl any | y | unusable a}
7 a = new T[3]; // {Cl T | Cl any | a | y | unusable}
8 }
9

10 void n(free T[] param) {}
11 }

After line 6 the array object a and its array elements are unusable. With the new array expression
in line 7 a becomes not unusable anymore. Since the new array has new elements the elements
are not unusable too.

4.2.10 Array Creation Expression

An array can be created by an array creation expression like T [] x = new T [i]. Like for new
object creation we do not expect modifiers in combination with the new expression. If there are
modifiers, they are omitted and a warning is raised.

Flattening. In an array creation expression, first the dimension expressions are evaluated, left-
to-right [8, p. 432]. After that, the space for the new array is allocated. This means that for the
flattening we first have to handle the dimension expression and then the array creation itself.

The basic form of an array creation expression is:

new T [y1]...[yi];

To achieve this form we first have to flatten each dimension expression and create a new array
creation expression with the flattened expression:

x = new T[g.i][getInt(i)]

is flattened to:

tmp0 = this.g;
tmp1 = tmp0.i;

tmp2 = getInt(i);
x = new T[tmp1][tmp2];

Then we create a new assignment from the new array creation expression to a new temporary
variable:

x = new T[tmp1][tmp2];
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is flattened father to:

tmp3 = new T[tmp1][tmp2];
x = tmp3;

More formally the flattening rules looks as follows:

flatten(new T[expr1] ... [exprk]):
(si, vi) = flatten(expri)

return ([si; ...; sk; tmp = new T[v1] ... [vk]], tmp)

In the example above the flattening is:

tmp0 = this.g;
tmp1 = tmp0.i;

tmp2 = getInt(i);
tmp3 = new T[tmp1][tmp2];

while the flattened expression is the temporary local variable tmp3.

Transition Rules. The transition rule for array creation expression is derived from the new
object creation rule:

L′ = new(L, x)
Γ;L `L x = new T [x1]...[xi];L′ [L-NEW-ARR]

Notice that we do not have to care about the dimension expression in this basic form because
they are handled in their statements of the flattening.

Type Rules. The type rule for array creation is simple since we do not have to do any type
check:

Γ;L ` x = new T [x1]...[xi];
[T-NEW-ARR]

Like for the transition rules we can ignore the dimension expressions at this point since they
are type checked in the statements of the flattening.

4.2.11 Array Initializer

The second possibility to create an array is the array initializer of the form T [] x = {y, z} or for
the two dimensional array T [][] u = {{x, y, z}, {a, b, c}}. It is a combination of array creation and
array writing. Thus we can handle the following array initializer:

T[] x = {a, b, c};

like:

T[] x = new T[3];
x [0] = a;
x[1] = b;
x[2] = c;



4.2 Solution 43

Flattening. The expressions in an array initializer are executed from left to right in the textual
order they occur in the source code [8, p.291]. We can thus flatten an array initializer expression
into an array creation expression and some array writing expressions:

flatten({x0, ..., xk}):
(si, vi) = flatten(xi)

return ([tmp = new T[k]; s0; ...; sk; tmp[0] = v0; ...; tmp[k] = vk]; tmp)

The rule is shown for a one-dimensional array. For multi-dimensional arrays the rule will recursively
go on since flatten(x[i]) will flatten the next inner array initializer.

By splitting one array initializer expression into one array creation expression and some array
writing expression we achieve that no array initializer expression occurs in the flattened tree. Thus,
no transition rules and type checking rules for array initializers are needed.

4.2.12 Array Transfer

Since we handle arrays similar to fields it causes no problems to transfer arrays from one cluster
to another. As an example, in figure 4.3 the merging of two hash tables - represented by arrays -
is shown. In line 12 we release the array table of otherTable by an explicit release function. This
released array is passed to method merge which expects a free array as parameter. The whole
code of this example is listed in section A.2.

4.2.13 Summary

Although we do not have all information about an array at static time we reach a good solution
for the handling of arrays without radical restrictions. Subsumed we can say that:

• The array object can be handled like a normal variable, only the assignable-to relation is
different.

• The modifier of the array elements should always be known at declaration time.

• Array reading and writing are similar to field access.

• All elements of one array must always be in the same cluster.
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1 class HashTable {
2 uniq peer LinkedList[] hashTable;
3 static int size = 5;
4
5 void merge(free peer LinkedList[] otherTable) {
6 for (int i = 0; i < hashTable.length; i++) {
7 hashTable[i ]. concatenate(otherTable[i ]);
8 }
9 }

10
11 void merge(peer HashTable otherTable) {
12 merge(otherTable.getHashTable());
13 }
14
15 private static pure int getHashValue(readonly Element e) {
16 return ((e.value \% size));
17 }
18
19 public free peer LinkedList[] getHashTable() {
20 peer LinkedList[] res = hashTable;
21 hashTable = new LinkedList[size];
22 for (int i = 0; i < hashTable.length; i++) {
23 hashTable[i] = new LinkedList();
24 }
25 return res;
26 }
27
28 public static void main( String [ ] args ) {
29 HashTable t1 = new HashTable();
30 HashTable t2 = new HashTable();
31 t1.merge(t2);
32 }
33 }

Figure 4.3: Implementation of merging of two arrays.



Chapter 5

Passing Multiple References on a
Free Cluster

5.1 Introduction

In the introduction chapter we have shown that the Universe type system with ownership transfer
can handle the merging of two lists in a simple way. This slightly modified method illustrates the
concatenation of two list where the second list is given by a free reference to the first node of the
list:

void concatenate(free Node otherHeader) {
header.prev.next = otherHeader.next;
otherHeader.prev.next = header;
otherHeader.next.prev = header.prev;
header.prev = otherHeader.prev;

}

If instead of merging both whole lists we want to ass only a part of the second list given by
the first and the last element, the method would look as follows:

void concatenate(free Node first, free Node last) {
header.prev.next = first ;
last .next = header;
first .prev = header.prev;
header.prev = last;

}

We really do not want that first and last point to different free clusters but to the same
free cluster because if we now want to pass two references to the same list we get the problem
that after passing of the first parameter the second gets any:

LinkedList l1 = new LinkedList(); // {l1 | Cl any}
LinkedList l2 = new LinkedList(); // {l1 | l2 | Cl any}
...
Node header = l2.getHeader(); // {l1 | header | Cl any | l2}
l1 .concatenate(header.next, header.prev);
// after passing first argument: {l1 | l2 | Cl any header}

This means that we have no possibility to declare that we want to have more than one reference
to the same free cluster as parameter for a method.

45
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Goal. Our goal is to allow the passing of multiple references on the same free cluster via method
invocation.

5.2 Solution

5.2.1 Declaration Syntax

free references can only be used for parameters and return values. Since there is always only one
return value the multiple references problem can only occur with parameters. To declare that two
parameters point into the same free cluster we use the following syntax:

1. One of the references that point into the same cluster - we call it param - is normally declared
as free.

2. All other references that point into the same cluster are declared as rep[param].

This means that for the example above we have to change the declaration of the method
concatenate as follows:

void concatenate(free Node first, rep[ first ] Node last)

It can be smoothly used for more than one free cluster too:

void concatenate(free Node firstList1, rep[ firstList1 ] Node lastList1,
free Node firstList2 , rep[ firstList2 ] Node lastList2)

The order of the parameter does not matter:

void concatenate(rep[firstList1 ] Node lastList1, rep[ firstList2 ] Node lastList2,
free Node firstList1 , free Node firstList2)

And there can be clearly more than two references that point into the same cluster:

void m(free T p1, rep[p1] T p2, rep[p1] T p3)

We use the same syntax for declaring that a parameter points into a free cluster declared by
another parameter as well as that a parameter points into the cluster defined by a field. Thus we
use the following order to discover the cluster of a parameter p declared as rep[x]:

• If a parameter in the same method is called x and this parameter is declared as free then
p points into the same cluster as x.

• Else (this includes the cases when there exists a parameter x but it is not declared as free)
we search for a field x that is declared uniq in the same class as the method is defined. If
there exists such a field p points into the cluster defined by this field and thus stays of type
rep[x].

• Else we get a type error.

5.2.2 Semantic

If we have multiple references to one free cluster the reference declared as free is not really
externally unique anymore. We handle all these references that point into the free cluster like
free references, but they are coupled together. This means that at the beginning of the method
all these references are in one cluster. We illustrate this in the following example:
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uniq T f;
peer T g;

void m(free T p1, free T p2) {
// {p1 | p2 | f | Cl peer g}
g = p1;
// {p2 | f | Cl peer g | unusable p1}
f = p2;
// {p2 f | Cl peer g | unusable p1}

}

void n(free T p1, rep[p1] T p2) {
// {p1 p2 | f | Cl peer g}
g = p1;
// {f | Cl peer g | unusable p1 p2}
f = p2; // not allowed since p2 is unusable

}

Both parameters of the method m are of type free and could be handled independently of each
other. In the case of n the two parameters are free references too, but they are coupled since
they are in the same cluster at the beginning of the method. Thus, reading p1 makes not only p1
unusable but p2 too. Therefore, the second field writing in n is not allowed since p2 is unusable.

If two formal parameters are declared of the same free cluster it is not needed that the actual
parameters are in the same cluster at time of method call too. Since only transferable clusters are
assignable to a free reference we could, without problem, merge the clusters of the two parameters.

5.2.3 Order of Type Checking and Transition Rules

For each parameter of a method call we create - if the formal parameter type is not any - one
merge operation. In addition we have to check for each parameter whether the actual parameter
is assignable to the formal parameter. Since we get no operation for any parameters we first
concentrate on all parameters and discuss the different handling of any parameters later.

Since the merge operation of a parameter can change the type of the later actual parameters
it is important that the assignable-to check has to be done at the point in the analysis directly
before the merge operation of this parameter. Thus, the order will be type checking for the
first parameter, then transition rule for the first parameter, then type checking for the second
parameter, then transition rule for the second parameter and so on. Therefore, in the following
example the method call m(x, y) is not well typed since y becomes any after passing x as first
parameter.

void m(free T p1, free T p2) {}

void n() {
T x,y;
x = new T();
y = x;
// {x y}
m(x,y);

}

If we apply this rule to a method with multiple references to one free parameter and pass as
arguments two variables pointing into the same cluster we get troubles:

void m(free T p1, peer T p2, rep[p1] T p3) {}
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void n() {
T x,y,z;
x = new T();
y = x;
z = new T();
// {x y | z}
m(x, z, y);

}

After passing x we merge the cluster of x with any and thus, y gets any too. But since we want to
allow it in this special case we have to do the assignable-to check for y at the same point as for x. On
the other hand we should consider that there possibly is a dependency between z and y too. This
leads us to the necessity to change the order of the parameters (clearly the formal as well as the ac-
tual parameters). If we modify the order to m(x, y, z) and m(free T p1, rep[p1] T p3, peer T p2)
we can type check y at the same point as x and the dependency between z and y is considered
since when we check the assignability for z we consider the merge operation of y.

The reordering has to be done that each group of multiple references to the same free cluster
should be handled successively and the assignable-to check for all of them has to be done directly
before the first merge operation of this group of parameters is executed. In other words we first do
all assignable-to checks for a group and then all merge operations of this group before we continue
with the next group.

We do this reordering only for the analysis statements. In the original abstract syntax tree we
do not change the order. We will show in a later section why the reordering of the parameters
does not change the correctness of a program.

any Parameters. Since no merge operation is created for formal any parameters we only have
to look at their assignability check. The closest solution would be to check the assignability for
these parameters in the order we get by our reordering like for all other parameters that do not
point into a free cluster. Since for any parameters the order of the parameters matters this is
not the best solution. We illustrate these circumstances by the following example:

class T {
peer T p;
uniq T f;

void m1(any T r, peer T r2) {}

void n(){
// {peer p | Cl f f | unusable}
f .m1(f, f .p);
// after passing the first parameter: {Cl peer p | Cl f f | unusable}
// after passing the second parameter: {Cl peer p | Cl f | unusable f}
f = new T();
// {Cl peer p | Cl f | unusable | f}

}
}

class A {
peer A p;
uniq A f;

void m2(peer A r, any A r2) {}

void n(){
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// {peer p | Cl f f | unusable}
f .m2(f.p, f );
// after passing the first parameter: {Cl peer p | Cl f | unusable f}
// assignability check for second parameter fails

}
}

The method call f.m1(f, f.p) in class T is well typed while quite the same method call in class A -
we only change the order of the parameters - fails. The problem there is that f becomes unusable
after passing the first parameter and thus f is not assignable to any anymore. According to the
owner-as-modifier property it would not be a problem if we allow passing a read-only reference to
an unusable variable. Thus, we want to allow the method call in the second class.

To be more flexible we check for each any parameter if the actual parameter is assignable to
the formal parameter at the beginning of the method call before the first merge operation of the
first parameter. In the case of our example above we see that f is before the method call of type
rep[f ] and therefore assignable to any.

Example. We use the following method to visualize the reordering:
m(free T f, peer T p, rep[f] T f2, free T g, rep[f ] T f3, rep T r, rep[g] T g2, any T a)
In figure 5.1 you see which order the analysis statements of these eight parameters have. Note

that we use Merge(f) as short for the merge statement created in correspondence with the formal
parameter f . We first have the analysis statements of the parameters p, r, and a which do not
point into a free cluster. After we have the analysis statements for each free cluster for all
parameters pointing into it. This means first the analysis statements for f , f2, and f3 and after
these for g and g2.

In contrast figure 5.2 shows for each parameter before which analysis statement it should be
checked whether the actual parameter is assignable to the formal parameter or not. As mentioned
above we do this check for the any parameter a at a dummy skip analysis statement at the
beginning. The two parameters p and r are checked before its own merge operation. The multiple
references to one free cluster like f , f2, and f3 are all checked together before the analysis
statement of f .

Impact of Reordering of Parameters. To show that the reordering of the parameters has
no impact on the semantic of the program we have to prove that:

1. we can omit all formal parameters of type any

2. the reordering of the merge statements does not change the property space at the end of the
method call

3. the different order of the assignability checks raises in the same cases an error as if we would
check it in the declared order (except for multiple references on a free cluster where the
assignability check in the old order would lead to unintentional type errors)

We can omit all parameters of type any since on the one hand they have no impact on the anal-
ysis values because they create no merge operation. On the other hand we check the assignability
of these parameters always at the beginning of the method call and thus, the order does not matter.

We now show that the reordering of the merge statements does not matter for the property
space or more formally that in both orders the resulting analysis value L′ is the same (where Mi

stands for a merge statement and L is the analysis value):

L `L M1; . . . ;Mi;Mi+1; . . . ;Mk;L′

L `L M1; . . . ;Mi+1;Mi; . . . ;Mk;L′
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Figure 5.1: Reordering of analysis statements of parameters.

Figure 5.2: Analysis statements before which each parameter should be type checked.
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Or in other words that in the following both cases L′ is the same (while Cli represents the
cluster the corresponding variable belongs to):

. . . ;L `L Merge(Cl1, Cl2);Merge(Cl3, Cl4);L′ . . . ;

. . . ;L `L Merge(Cl3, Cl4);Merge(Cl1, Cl2);L′ . . . ;

We now look at different cases. If Cl1 = Cl2 or Cl3 = Cl4 the corresponding merge operation has
no impact. Else if all four clusters are different, the order of the merge operations does not matter
too. The most interesting cases occurs if two clusters in both merge operations are the same like
Cl1 = Cl3. Then we get the following situation:

L `L Merge(Cl1, Cl2);Merge(Cl1, Cl4);L′

L `L Merge(Cl1, Cl4);Merge(Cl1, Cl2);L′

We divide this once again in different subcases:

• If all clusters Cli are rep clusters then their merge operations perform only union on sets.
Since the union operation is commutative the order of the merge operations does not matter.

• If Cl2 is the peer or any cluster we have to consider that beside of the union operation rep
fields become unusable. In the first merge operation all fields of cluster Cl1 become unusable.
In the second operation all fields of cluster Cl4 become unusable too. In the reverse order
during the first operation no field becomes unusable. When we perform the second merge
operation, all fields in cluster Cl1 - and those in cluster Cl4 too since Cl1 = Cl4 after the
first merge operation - becomes unusable. Since in both cases the same fields get unusable
we have the same analysis value after the two operations.

• If Cl1 is the peer or any cluster in the first order, all fields of cluster Cl2 and Cl4 become
unusable. In the second order all fields of cluster Cl4 and Cl2 becomes unusable too, only in
reverse order. Once again the order of the merge statements has no effect on final analysis
value.

This semi-formally prove shows that the order of the merge statements has no impact on the
property space after the last merge statement.

As a last point we have to show that the reordering has no impact whether a method call is
well typed or not. For easier proving we omit the any parameters since they are always checked
at the beginning. In addition we include for each group of references into the same free cluster
only the first reference because we have shown above why all other references of the same group
have to be checked at the same point. If we look at two different parameters x and y the type
check and the merging operations have the following order:

check(x)

merge(x,Cl1)

check(y)

merge(y, Cl2)

We now want to prove that this method call m(x, y) will only be accepted iff in the reverse order:

check(y)

merge(y, Cl2)

check(x)

merge(x, Cl1)

m(y, x) is accepted too. If x and y are not in the same cluster at the beginning, the first merge
statement has no impact on the result of the second check. Thus, we have to concentrate on the
case where x and y are in the same cluster at the beginning. The only reordering we do is moving
the free parameters. If we handle x as free parameter we get the following situation:
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{x y | any}

check(x)

merge(x, any)

{any x y}

check(y)

merge(y, Cl2)

{any x y}
and reordered:

{x y | any}

check(y)

merge(y, Cl2)

{x y | any}

check(x)

merge(x, any)

{x y any}
As mentioned above all parameters with formal parameter any are handled separated. Thus,

in the first order check(y) will fail since the actual parameter is any and it would not be assignable
to a formal parameter that is not any. The second order is a little bit more complicated. We have
to distinguish two different cases:

• If Cl2 is a transferable cluster or in other words the formal parameter of y is rep 〈Cltr〉, both
assignable checks will run without problems. But according to our type rules if the formal
parameter is rep the receiver of the method call should be this and thus we have to perform
InvTest after the method call. Since Cl2 is defined by a field it contains at beginning of the
method call at least this field. With the second merge operation the cluster Cl2 is merged
with the any cluster and thus the defining field becomes unusable. Hence the invariant test
will fail.

• If Cl2 is a non-transferable cluster or in other words the formal parameter of y is rep 〈ClnonTr〉
or peer, x will be in a non-transferable cluster before its check. Thus, the assignable-to check
will fail.

This means that we accept with reordering the same programs as we would with the original
order. Note that the only difference is that the given error message can vary.

We now have shown that for the change of two subsequent parameters the reordering has no
impact on the property space as well as whether the method call is well typed. Since we get each
arbitrary permutation by a sequence of such changes between two parameters the same property
holds for any order of the parameters.

5.2.4 Summary

Summarized passing multiple references to one cluster via method invocation is handled as follows:

• If a parameter p is declared as rep[param] where param is a free parameter in the same
method, this means that p points into the same free cluster as param at beginning of the
method.

• It is not needed that the corresponding two actual parameters are in the same cluster before
the method call, they should only point both into a transferable cluster.

• For checking the type rules the order of the parameters is changed.



Chapter 6

Formalization

This chapter presents the formalization of the shown type system for a simplistic toy language.
The static data flow analysis used in this chapter is fully covered in the subsequent chapter.

This chapter relies on the corresponding chapter ”Formalization” in [12]. To make understand-
ing easier we use the same syntax to describe the formalization. The parts of the formalization,
which do not have changed in comparison to the old version, are only mentioned shortly. For
further reading we refer to [12].

6.1 Toy Language Syntax

We use a simply, minimalistic toy language to give the formalization of the type system. We will
describe it with the following syntactic categories:

P ∈ TProg programs

CDecl ∈ TCDecl class declarations

MDecl ∈ TMDecl method declarations

W ∈ TPure purity modifiers

S ∈ TStmt statements

Tf , Tp, Tr, Tl, Tn, Tc, Ta ∈ TType field types, formal parameter types, return value
types, local variable types, object creation types,
types in cast statements, and array element types

mf ,mp,mr,mc,ma ∈ TMod Universe modifiers for field types, formal param-
eter types, return value types, types in cast state-
ments, and array element types

Note that - in contrary to the old version - we do not have modifiers for local variable types
and object creation types. Another difference to the old version is that we add types and modifiers
for array elements to the language.

Further, we make use of the following meta variables and shortcuts as in [12]:

53
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C,D ∈ TClass class names (including Object)

mt ∈ TMethod method names

f ∈ TField field names (including result and formal parameter names)

p ∈ TParam ⊆ TField formal parameter names

x, y, z ∈ TLoc local variable names (including this)

X is a shortcut for X1 · · · Xk where X stands for CDecl or MDecl

XY is a shortcut for X1Y1; · · · ; XkYk; where X ∈ TType and Y ∈ (TField ∪ TLoc)

[x] is a shortcut for [x1] · · · [xk] where x ∈ TLoc

Note that we handle parameters and result values like fields and not like local variables as it
was done in the existing system. The syntax of the toy language is given in table 6.1. Let us
comment some aspects that differ from the old solution:

• For local variable declaration and new expression we expect only a class declaration but no
ownership modifier.

• For array handling we allow array reading, array writing as well as array creation expression.

• We allow casting to the cluster a local variable belongs to. It should be checked that the
variable is of type rep at the point of the casting.

The allowed usage of Universe modifiers is summarized in the following table (where f repre-
sents a field declared uniq in the enclosing class, x is a local variable with inferred type rep, and
p is a parameter declared uniq in the enclosing method):

no modifier any peer rep rep[f] rep[x] rep[p] uniq free
Field declaration - yes yes yes yes - - yes -
Formal parameters - yes yes yes yes - yes - yes
Return values - yes yes yes yes - - - yes
Local variable declarations yes - - - - - - - -
New statements yes - - - - - - - -
Cast statements - yes yes yes yes yes - - -
Array element - yes yes - - - - - -

6.2 Clusters

The set TClust represent the domain for possible cluster names to identify clusters. In addition
to the clusters declared by the keyword uniq and the this Cluster Clthis - which is now called
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P ::= CDecl

CDecl ::= class C extends D {Tf f ; MDecl}

MDecl ::= W Tr mt(Tp p) {Tl y S}

W ::= pure
| nonpure

S ::= x = y
| x = null
| x = new Tn

| x = new Tn[x]
| x = y.f
| x.f = y
| x = y[z]
| x[z] = y
| x = y.mt(z)
| x = (Tc) y
| S1;S2

Tf ::= mf C | mf Ta

Tl ::= C | Ta

Ta ::= ma C[]

Tn ::= C

Ti ::= mi C , for i ∈ {p, r, c}

mf ::= any | peer | rep [f ] | uniq | rep

mp ::= any | peer | rep [f ] | free | rep

mr ::= mp

mc ::= any | peer | rep | rep [x] | rep [f ]

ma ::= any | peer

Table 6.1: Syntax of the toy language.
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ClC for class C - we insert new cluster names for each superclass of the current class. This is a
conclusion from the subclass separation.

The function transCls: TClass → 2TClust yields the transferable clusters defined by the class
C (where definedCl: TField → TCluster returns the name of the cluster defined by a given field
name and the symbol denotes a ”don’t care” placeholder):

transCls(Object) = ∅

class C extends D { ...; uniq f ; ... }
transCls(C) = {definedCl(f)} ∪ transCls(D)

While the functions nonTransCls: TClass → 2TClust yields the non-transferable clusters de-
fined by the class C:

nonTransCls(Object) = {ClObject, Clany, Clpeer}

class C extends D {...}
nonTransCls(C) = {ClC} ∪ nonTransCls(D)

All clusters defined by the class C are yield by definedCls: TClass → 2TClust:

definedCls(C) = transCls(C) ∪ nonTransCls(C)

Note that we rename the cluster Clthis to ClC where C is the current class. We assume that
TClust is disjoint from each of TClass, TMethod, TField, and TLoc so that globally unique
identifiers are guaranteed.

We distinguish between transferable and non-transferable clusters. All clusters derived from
a class - as ClObject and ClC - are non-transferable whereas the clusters derived from a field like
Clf are transferable. Subsequently we use Cltr to denote a transferable cluster and ClnonTr to
mark a non-transferable cluster:

Cltr ∈ transCls(C)

ClnonTr ∈ nonTransCls(C)

6.3 Universe Modifier Translation

In the toy language we use the following Universe modifiers:

TMod = {this, any, peer, rep, uniq, free} ∪ {rep [f ] : f ∈ TField} ∪ {rep [x] : x ∈ TLoc}

with this as Universe modifier for the this reference. Remember that parameters are included
in the set TField.

These modifiers correspond to the declared types. For further handling we have to use another
set of modifiers since for example a rep[param] parameter should be handled like a free reference
and a uniq field is treat like rep. Thus, we do a translation for each Universe modifier in TMod
to one in the following set:

CMod = {this, any, peer, free} ∪ {rep 〈Cl〉 : Cl ∈ TClust} ∪
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{rep 〈x〉 : x ∈ TLoc} ∪ {rep 〈f〉 : f ∈ TField} ∪ {free 〈p〉 : p ∈ TParam}

this 7→ this
any 7→ any
peer 7→ peer
rep 7→ rep 〈ClC〉, where C is the enclosing class
uniq 7→ rep 〈definedCl(f)〉, where f is the declared field
free 7→ free
rep [f ] 6= mc 7→ rep 〈definedCl(f)〉, where f must be declared uniq in the enclosing class
rep [f ] = mc 7→ rep 〈f〉, where f must be declared rep in the enclosing class
rep [p] 7→ free 〈p〉 , where p must be declared free in the enclosing method
rep [x] 7→ rep 〈x〉 , where x must be a declared local variable in the enclosing method

We call these modifiers the core Universe modifiers. To distinguish these two modifier type we
use in combination with rep ’[]’-brackets for declaration modifiers and ’<>’-brackets for the core
modifiers. Subsequently we will always use the core modifiers. In addition we use the following
shortcut:

rep = rep 〈Cl〉 , for any arbitrary cluster Cl ∈ TClust

Whenever only free is mentioned we include all variables with core modifier free 〈p〉 too.
Notice that there are no translations for local variables since they have no declared modifier.

6.4 Lookup Functions

The lookup functions for static information can be taken from the old version. These are:

• The function
fields : TClass → 2TField

yields the identifiers declared in or inherited by a given class.

• The function
fType : TClass×TField → TType

yields the type of a field as declared in the given class.

• The function

mType : TClass×TMethod → TPure×TType×TType

yields the signature of a given method as declared in the specified class.

• The function
mLoc : TClass×TMethod → 2TLoc

yields the names of the local variables of a method.

• The function
∆ : TClass×TMethod → (TLoc → TType)

yields the static declaration environment for a given method in the specified class.

We need one more function for handling arrays:
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• The function
elemType : TClass×TMethod×TLoc → TType

yields the declared modifier of array elements.

class C extends { . . . mt( ) {. . . Ta ar . . .} . . . }
elemType(C,mt, ar) = Ta

6.4.1 Type Projection Functions

We use two projection functions to access the modifier an class name of a type T = m C:

• The function
mod : TType → CMod

yields the core modifier of a given type.

• The function
class : TType → CClass

yields the class name of a given type.

6.5 Type Combinator

We define the type combinator which is used to determine the type of transitive access for the
core modifiers as follows:

BU any peer rep<Cl> free
this any peer rep 〈Cl〉 free
any any any any free
peer any peer any free
rep 〈Cl〉 any rep 〈Cl〉 any free

Table 6.2: Core Universe modifier combinator. The left-most cell of the rows means the first
argument, the top-most cell of the columns means the second argument.

Inside of a method we handle the parameters declared as free like rep 〈Cltr〉. Thus, we never
have free on the left hand side of an transitive access and can therefore omit the corresponding
line in the table.

6.6 Assignable-To Relations

In our type system the subtype relation and the assignable-to relation differs. Because of ownership
transfer we can assign more than only subtypes. The subtype relation outlined in figure 6.1 follows
by a being-less-specific-than point.

One type m1 C1 is assignable to another type m2 C2 iff C1 is the same class as C2 or is a
subclass of C2 (like in Java) and if modifier m1 is assignable to modifier m2 according to the
assignable-to-relation shown in figure 6.2.

We should additionally mention that two non-transferable rep clusters are not assignable to
each other if they are not the same. In other words the following condition holds:

rep 〈ClnonTr1〉 ≤A rep 〈ClnonTr2〉 iff ClnonTr1 = ClnonTr2

All other types are always assignable to the same type:

rep 〈Cltr1〉 ≤A rep 〈Cltr2〉
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Figure 6.1: Subtype relation.

Figure 6.2: Assignable-to relation. Cltr means a transferable cluster whereas ClnonTr is a non-
transferable cluster.
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The assignable-to relation for arrays is illustrated in figure 4.2. In general the assignable-to
relation should only be used if there is a field or a parameter on the left hand side of the assignment
since an assignment to a local variable is always correct regardless of which type is on the right
hand side.

6.7 Ternary Logic

For the static data flow analysis we use a ternary logic with the value set

T := {0,
1
2
, 1}

.
When we query the data flow analysis it deliver an answer a ∈ T with the following interpre-

tation:

a = 0 ⇒ The property definitely does not hold in all possible executions of the program.
a = 1 ⇒ The property definitely holds in all possible executions of the program.
a = 1

2 ⇒ The property can hold in some executions, but it also cannot hold in other
executions of the program. We do not know it.

6.8 Static Data Flow Analysis - Introduction

6.8.1 Analysis Values and Queries

An analysis value represents which variable points into in which cluster at a specific program point.
L means the property space or the analysis universe which is formed by all analysis values.

The special analysis value ı ∈ L symbolizes the initial value that stands at the beginning of
the program. Informally it can be described as follows:

• Each field points into its declared cluster.

• Each local variable points into a new own cluster.

• The parameters of type free 〈p〉 as well as the parameter p itself point into the same cluster.
All other parameters point to their declared cluster.

Like in the old version we offer the following two query functions to the analysis values:

isUnusable : L × fields(C) → T

returns whether a analysis variable is unusable. Consider that local variables cannot become
unusable hence the function is not used for local variables.

The second function is:

pointsInto : L × (mLoc(C,mt) ∪ fields(C)) × definedCls(C) → T

checks whether an analysis variable points into a given cluster.
We introduce some more queries to receive type information about local variables and fields

from analysis values. Since we work with ternary logic a simple type modifier query is not possible
because the answer can be ”possibly peer” and ”possibly any”. Thus we have to implement queries
for the three types peer, rep, and any.

The function
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isPeer : L × mLoc(C,mt) ∪ fields(C) → T

checks whether a given field, parameter value or a local variable is of type peer at this program
point. In case of fields and parameter values this query takes the information from the static
declared types. For local variables the answer is taken from the analysis values.

Analogously, the function

isAny : L × mLoc(C,mt) ∪ fields(C) → T

returns whether a given field, parameter value or a local variable is of type any at this program
point. For fields and parameter values the static declared type is taken while for local variable we
use the current type in the analysis value.

Furthermore, the function

isRep : L × mLoc(C,mt) ∪ fields(C) → T

tests whether a given field, parameter value or a local variable is of type rep at this program
point. We check this with a pointsInto-query for local variables as well as for fields and parameter
variables.

6.8.2 Analysis Transition Functions

The analysis transition operates on the property space L and represents the effect a certain entity
has on an analysis value L ∈ L. We use the following transition functions:

• Merge(L, x, y): x and all variables in the same cluster as x are marked as pointing in the
same cluster as y.

• Merge(L, x, Cl): x and all variables in the same cluster as x are marked as pointing in the
cluster Cl.

• Move(L, x, y): x is marked as pointing into the same cluster as y.

• Move(L, x, Cl): x is marked as pointing into the cluster Cl.

• New(L, x): x is marked as pointing into a new cluster. x is the sole variable that points into
this new cluster.

• InvRestore(L, x): if x is of type peer, all local variables pointing into the same trans-
ferable cluster as a fields are marked as pointing into the cluster Clany and the function
RestoreF ields(L) is executed.

• RestoreF ields(L): if two fields of same declared type are in different clusters they are marked
as pointing into the same cluster.

These transition function will be defined formally in chapter 7. Note that we do not need the
functions Consume and ConsumeLocals introduced in the old version anymore.
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6.9 Analysis Value Transition Rules

The analysis value transition rules describe the effect that each statement of the toy language has
in terms of the analysis values. The rules have the following structure:

Γ;L ` e;L′

which means that in a declaration environment Γ partition change from L to L′ after evaluation
expression e. The analysis value transition rules are listed in figure 6.3 and 6.4.

We use some shortcuts for easier understandability:

• mf - declared type modifier of field f :

mf = mod(fType(C, f))

where C is the class where f is declared

• myElem - declared type modifier of the elements of array y:

myElem = mod(elemType(C,mt, y))

where y is declared in the method mt of class C

• mtp - type modifier of method’s mt input parameter:

mtp = mod(Tp) and (W,Tp, Tr) = mType(C,mt)

where C is the class where mt is declared

• mtres - type modifier of method’s mt result:

mtres = mod(Tr) and (W,Tp, Tr) = mType(C,mt)

where C is the class where mt is declared

• mix - the inferred type modifier of x

Further we use sometimes a modifier m instead of an analysis variable as argument of the
move or merge operations like merge(L, x, m). To get the corresponding analysis variable we
replace m by the cluster marker if it specifies a non-transferable cluster. Otherwise if m specifies
a transferable cluster, we replace m with the defining field of this cluster.

Moreover sometimes the type combinator is used inside a move or merge operation like
merge(L, x, y �U mf ). How the combinator and its result is mapped to an analysis variable
is shown in section 8.3.4.

new Expression. Parameters of a new expression x = new T (p1, p2) are handled like parameters
of a method call x.T (p1, p2).

return Statement. The return statement return x is handled like a method call this.m(x)
where the formal parameter of the imaginary method m has the same type as the return type of
the current method. Additionally we have to add an exit statement at the end considering that
we exit the method.

Method Invocation with many Parameters. If we have a method call with more than one
parameter in the rule [L-PRE-INVK] we first have one RestoreF ields operation and after we create
for each parameter - if the formal parameter is not any - its merge operation. These operations
should be in such an order that the operations of the formal parameters which point into the same
free cluster are one after the other.
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L′ = move(L, x, y)
Γ;L `L x = y;L′ [L-ASSIGN]

L′ = if(y = this ∧mf = rep) then move(L, x, f)
else move(L, x, y �U mf )

Γ;L `L x = y.f ;L′ [L-FD-RD]

L′ = if(y = this ∧mf = rep 〈Cltr〉) then move(L, f, x)
else if(mf 6= any) merge(L, x, y �U mf ) else L

Γ;L `L y.f = x;L′ [L-FD-WR]

if(myElem = peer) then move(L, x, y)
else move(L, x, Clany)

Γ;L `L x = y[z];L′ [L-ARR-RD]

if(myElem 6= any) merge(L, x, y) else L

Γ;L `L y[z] = x;L′ [L-ARR-WR]

RestoreF ields()
L′ = if(mtp = any) then L

else if(mtp = free) then merge(L, z, Clany)
else merge(L, z, y �U mtp)

Γ;L `L y.mt(z);L′ [L-PRE-INVK]

Γ;L ` y.mt(z);L0

L′ = InvRestore(L0, y)
L′′ = if(mtres = free) then new(L′, x)

else move(L′, x, y �U mtres)
Γ;L `L x = y.mt(z);L′′ [L-INVK]

L′ = new(L, x)
Γ;L `L x = new T ();L′ [L-NEW]

Figure 6.3: Analysis Value Transition Rules, part 1.
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L′ = new(L, x)

Γ;L `L x = new T [y];L′
[L-NEW-ARR]

L′ = new(L, x)
Γ;L `L x = null ;L′ [L-NULL]

L′ = if(T = (m C)) then merge(L, y, m)
else if(T = (rep 〈z〉 C)) then merge(L, y, z)
else if(T = (rep 〈f〉 C)) then merge(L, y, f)

else L
L′′ = if(T = (m C)) then move(L′, x,m)

else if(T = (rep 〈z〉 C)) then move(L′, x, z)
else if(T = (rep 〈f〉 C)) then move(L′, x, f)

else move(L′, x, y)
Γ;L `L x = (T )y ;L′′ [L-CAST]

RestoreF ields()
L′ = if(mtr = any) then L

else if(mtr = free) then merge(L, z, Clany)
else merge(L, z,mtr)
Γ;L `L return z;L′ [L-RETURN]

Γ;L ` S1 ;L′ Γ;L′ ` S2 ;L′′

Γ;L `L S1;S2 ;L′′ [L-SEQ]

Figure 6.4: Analysis Value Transition Rules, part 2.
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6.10 Type Rules

Type rules has the next structure:

Γ;L ` e

It means that in a declaration environment Γ and partition L expression e is well-typed. We
assume that the Java types are correct and expression is well-typed according to the standard
Java type rules. In addition we do not allow assignment to this.

The type rules for the different statements are given in figure 6.5 and 6.6, while the type rules
for method and class declaration as well as for programs are presented in figure 6.7. ı means the
initial analysis value.

Method Invocation with many Parameters. If we have a method call with more than one
parameter the assignability check in the rule [T-INVK] has for the free and free 〈p〉 parameters
to be done before the first merge operation of all parameters pointing into the same free cluster.
All other parameters have to be checked before its own merge operation.
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Γ;L ` x = y
[T-ASSIGN]

y = this⇒ isUnusable(L, f) = 0
Γ;L ` x = y.f

[T-FD-RD]

miy 6= any
mf = rep 〈 〉 ⇒ y = this
(mix ≤A miy �U mf ) ∨

(miy = rep 〈Cltr〉 ∧ mf = peer ∧ (mix = peer ∨mix = rep 〈ClnonTr〉))
Γ;L ` y.f = x

[T-FD-WR]

Γ;L ` x = y[z]
[T-ARR-RD]

miy 6= any
(mix ≤A miy �U myElem) ∨

(miy = rep 〈Cltr〉 ∧ myElem = peer ∧ (mix = peer ∨mix = rep 〈ClnonTr〉))
Γ;L ` y[z] = x

[T-ARR-WR]

(miz ≤A miy �U mtp) ∨
(miy = rep 〈Cltr〉 ∧ mtp = peer ∧ (miz = peer ∨miz = rep 〈ClnonTr〉))

mtp = rep⇒ y = this ∨miz = rep
Γ;L ` y.mt(z);L′

miy ∈ {peer, this} ⇒ InvTest(L′)
Γ;L ` x = y.mt(z)

[T-INVK]

Γ;L ` x = new T ()
[T-NEW]

Γ;L ` x = new T [y];
[T-NEW-ARR]

Figure 6.5: Type Rules for statements, part 1.
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Γ;L ` x = null
[T-NULL]

miy = any ∨ miy ≤A T
T = (rep 〈z〉 C) ⇒ miz = rep

T = (rep 〈f〉 C) ⇒ (mf = rep ∧ isUnusable(L, f) = 0)
Γ;L ` x = (T )y ;L′ [T-CAST]

miz ≤A mtr
Γ;L ` return z;L′

InvTest(L′)
Γ;L ` return z;

[T-RETURN]

Γ;L ` S1; Γ; L `L S1 ;L′ Γ;L′ ` S2

Γ;L ` S1;S2
[T-SEQ]

Figure 6.6: Type Rules for statements, part 2.

if(W = pure) then Tr and Tp ∈ {any, free}
∆(C,m); i ` S

∆(C,m); i `L S;L
InvTest(L)

isUnusable(L, result) = 0

C `M W Tr m(Tp x){Tl y S}
[T-MDECL]

C `M M1; . . . C `M Mk;

`C class C extends D {Tf f M}
[T-CDECL]

`C CDecl1; . . . `C CDeclk;

`P {CDecl}
[T-PROGRAMM]

Figure 6.7: Type Rules for method declaration, class declaration and programs.
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Chapter 7

Data Flow Analysis

This chapter describes the techniques used for the static data flow analysis. It relies on the
corresponding chapter ”Data Flow Analysis”’ in [12]. In this chapter we will only list some few
points that change in comparison with the old solution. For further understanding we refer to [12].

7.1 Syntax of the Analysis Language

The static data flow analysis does neither operate directly on the Java source, nor on the presented
toy language. Its target language is an additional abstract language called the ”analysis language”.
All operations which are not relevant for the analysis are removed from the analysis language. Thus
we get a reduced amount of code.

There is only one syntactic category describing the analysis statements:

S ∈ AStmt : analysis statements

We use in addition a set of variables AVar and a set of label ALab for labeled statements:

x, y ∈ AVar : analysis variable names

l ∈ ALab : analysis statement labels

The syntax of the analysis language stays almost like presented in the corresponding section
in [12]. First, there are elementary statements which perform a certain operation on the analysis
values. They correspond to the operations used in the transition function.

S ::= skip

| merge(x, y)
| new(x)
| move(x, y)
| restoreF ields

| invRestore(x)
| . . .

Note that the two statements consume(x) and consumeLocals of the existing type system
are not needed anymore. Instead we use the two new analysis statements restoreF ields and
invRestore(x).

All following statements are taken from the existing system. Thus, we only present them
shortly. For deeper understanding we refer to [12]. There exist some elementary statements which
represent a change in the control flow:
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S ::= . . .

| break | break l

| continue | continue l

| exit

| . . .

Finally we have some composite statements which have other statements as children:

S ::= . . .

| S1;S2

| if S1 then S2 else S3

| while S1 do S2

| do S1 while S2

| l : S

| switch S1 case S2 . . . case Sk

| try S1 catch S2 . . . catch Sk finally Sk+1

There is no notation of an expression in the analysis language. Thus, in the condition for an
if statement stands the analysis statement generated by the condition expression.

7.2 Flow Graph

The flow graph is a graphical representation of a given analysis statement on which the data
flow analysis operates. The nodes of the graph are the elementary analysis statement. The
edges represent possible control flow transitions from one node to another. Since in comparison
to the existing system we only have introduced two new analysis statements restoreF ields and
invRestore(x) the creation of the flow graph stays like mentioned in the corresponding section
in [12]. Thus, we only note here how to handle the two analysis statements restoreF ields and
invRestore(x).

Each elementary statement is labeled by an index i. We use the notation [S]i to denote an
elementary statement S with index i. The function nodes yields the indexes of the set of nodes of
an analysis statement. Additionally init returns the index of the first node and final the index of
the last node. For restoreF ields and invRestore(x) these three functions are defined as follows:

nodes([restoreF ields]i) := i

nodes([invRestore(x)]i) := i

init([restoreF ields]i) := i

init([invRestore(x)]i) := i

final([restoreF ields]i) := i

final([invRestore(x)]i) := i

The function edges defines the directed edges between node indexes in the flow graph corre-
sponding to an analysis statement. Since restoreF ields and invRestore(x) consists only of one
node there are no additional edges between the nodes of these statements. Thus, edges is defined
as follows:

edges([restoreF ields]i) := ∅
edges([invRestore(x)]i) := ∅
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7.3 Analysis Variables of Interest

For each method we define a set of variables which we are interested in during the data flow
analysis. These so called variables of interest are the following:

AVar = ALoc ∪ AFd ∪ AMark

where:

• ALoc - is the set of local variables

• AFd - is the set of visible fields, parameters and result of type rep

• AFd0 - is the set of fields of type rep

• AMark = {Clany, Clpeer, unusable, nonTransCls(C)} - set of markers

In contrary to the old solution we only have markers for all non-transferable clusters. For all
transferable clusters, this means all clusters defined by a uniq field, we omit the markers. This
allows us to easily distinguish between transferable and non-transferable clusters as only the latter
have a marker.

7.4 Partition Sets and Analysis Definition

7.4.1 Set Partitions

One of the possibilities to denote analysis values are partition sets. You will find a deeper intro-
duction to partition sets in the corresponding section in [12]. Each analysis value is represented
by a set of partitions. Each partition stays for one possible constellation. The different sets inside
a partition are called blocks. If two analysis variables are in one block this means that they point
into the same cluster at this program point.

We denote Lx the block of the partition L that contains x. It follows from the partition
definition that there is always exactly one such block. With the blocks we can determine the
actual type of a variable. This means that if a variable is in the same block as the marker Clpeer

it is of type peer. If a variable x has no marker in the same block AMark ∩Lx = ∅ this means
that the variable is of type rep 〈Cltr〉 for a transferable cluster Cltr.

Since only non-transferable clusters have a marker, we can never have two markers in the same
block:

∀m1, m2 ∈ AMark : m1 6= m2 ⇒ L[m1] 6= L[m2]

We check this property explicitly as a postcondition of the merge operation.
There are three operations on partitions: new, merge and move.

Move. The move operation removes a variable x from its block and adds it to the block of y
(where A is a set, L ∈ Partition(A) is a partition and x, y ∈ A are elements):

move(L, x, y) :=

{
L, if Lx = Ly;
L− Lx − Ly + Lx \ {x}+ Ly ∪ {x}, otherwise.

After the move operation x has the same type as y.

New. The new operation removes a variable x from its block and moves it to a new singleton
block:

new(L, x) := L− Lx + Lx \ {x}+ {x}.
After the new operation the type of x changes on rep 〈Cltr〉.
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Merge. The merge operation unifies two blocks x and y:

merge(L, x, y) := L− Lx − Ly + Lx ∪ Ly.

After the merge operation all variables from Lx change to the type of y. We have to ensure
that we do not merge two non-transferable clusters. Thus, we have to check the precondition that
the two blocks contain no more than one marker:

|(Lx ∪ Ly) ∩AMark| ≤ 1

If the precondition is violated we treat it as a type error.
Additionally we have to guarantee that no rep field or parameter changes the type to peer or

any. Thus, if we have a merge where x or y is of type peer or any all fields of type rep in Lx or
Ly become unusable:

∃m ∈ ((Lx ∪ Ly) ∩ {Clany, Clpeer}) ⇒ ∀f ∈ (Lx ∪ Ly) ∩ Fd : mf 6= m ⇒ move(L, f, unusable)

In addition we have three functions for maintaining the object invariant:

InvTest. With the predicate InvTest we test an object’s invariant. This means that two fields
in the same block have to be declared of the same type and for each field the type inferred by the
analysis should be assignable to the declared type:

1. ∀f1, f2 ∈ Fd0 Lf1 = Lf2 ⇒ mf1 = mf2

2. ∀f ∈ Fd0 Lf ≤A mf

We check explicitly that this predicate is true before method invocation on a receiver of type
peer or this as well as before return from a method.

InvRestore(x). The operation InvRestore(x) calls InvRestore if x is peer:

1. isPeer(x) ! = 0 ⇒ InvRestore

InvRestore. With the operation InvRestore we can restore the object’s invariant:

1. ∀v ∈ Loc (∃f ∈ Fd0 : Lv = Lf ∧ mf = rep 〈Cltr〉) ⇒ move(L, v, Clany)

2. RestoreF ields

First we change type of a variable to any if it belongs to a block which contain a field that
refer on a transferable cluster. This avoids having a writable reference into a transferable cluster
from the middle of a program stack. Second the operation RestoreF ields restores the clusters of
the fields.

RestoreFields. With the operation RestoreF ields we can restore the clusters of the fields:

1. ∀f1, f2 mf1 = mf2 ⇒ merge(L, f1, f2)

If two fields of same declared type are in different blocks we merge these two blocks. We restore
the object’s invariant before each method invocation.
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7.4.2 Analysis Values

The analysis computes for each node in the flow graph the analysis value that holds at the entry
to the node and one that holds at the exit of the node. The analysis value at the exit of a node
can be computed by applying the transition function of this node to its analysis value at the entry.
The entry analysis value of a node is worked out by joining the exit values of its predecessor nodes.

To distinguish the transferable clusters from the non-transferable clusters all non-transferable
clusters contain a marker analysis variable m ∈ AMark.

7.4.3 Queries

As in the existing system we use the basic predicate areInSameBlock : 2Part(A) ×A×A → T to
check whether two variables x, y ∈ PVar are in the same block of partitions contained in a given
partition set Φ. The query functions isUnusable - which yields whether a variable is unusable -
and pointsInto - which returns whether a variable point into a given cluster - are used in the same
way as in the existing system. We additionally make use of the three functions isPeer, isAny, and
isRep to determine the inferred type of a local variable. These functions are defined as follows:

isPeer(Φ, x) := areInSameBlock(Φ, x, Clpeer)

isAny(Φ, x) := areInSameBlock(Φ, x, Clany)

isRep(Φ, x) :=


0, isPeer(Φ, x) = 1 ∨ isAny(Φ, x) = 1 ∨ isUnusable(Φ, x) = 1
1, isPeer(Φ, x) = 0 ∧ isAny(Φ, x) = 0 ∧ isUnusable(Φ, x) = 0
1
2 , else

7.4.4 Partition Set Invariants

We have the partition invariant that a block can never contain more than one marker. For a
partition set Φ this means:

∀m1,m2 ∈ AMark : m1 6= m2 ⇒ areInSameBlock(Φ,m1,m2) = 0

We check the maintaining of this invariant explicitly at the end of the merge operation.

7.4.5 Transition Functions

As described in [12] all transition functions can be expressed using Merge and New as build-
ing blocks. This holds for the newly introduced functions InvRestore, InvRestore(x), and
RestoreF ields too (where cluster(f) yields the declared cluster of f):

InvRestore(Φ, x) := areInSameBlock(Φ, x, Clpeer) ! = 0 ⇒ InvRestore(Φ)
InvRestore(Φ) := {∀v ∈ ALoc(∃f ∈ AFd0 : (areInSameBlock(Φ, v, f) = 0 ∧

@m ∈ AMark : areInSameBlock(Φ,m, f) = 1)) : Move(Φ, v, any)}
∪RestoreF ields(Φ)

RestoreF ields(Φ) := {∀f1 ∈ AFd0, f2 ∈ AFd0(cluster(f1) = cluster(f2)) : Merge(Φ, f1, f2)}

by remembering that Move can be expressed using Merge and New.

7.4.6 Preconditions

To maintain the partition invariants we have to check the following preconditions before using the
transition function Merge(x, y):
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∀Cl1, Cl2 ∈ AMark : pointsInto(Φ, x, Cl1) 6= 0 ∧ pointsInto(Φ, y, Cl2) 6= 0 ⇒ Cl1 = Cl2

7.5 Analysis Values

In the existing type system there are different possibilities to represent the analysis values: par-
tition sets, alias matrices and minimized partition sets. Since we change nothing about them, we
refer for further reading to the corresponding chapter in [12].



Chapter 8

Implementation

8.1 Existing Universe Type System with Ownership Trans-
fer

In this section we give an introduction how MultiJava and the Universe uniqueness extensions
are implemented. Beginning with section 8.2 we show some implementation details about the
extension presented in this report.

8.1.1 Packages

The most important package of the MultiJava is the package ’org.multijava.mjc’ which contains
the files for the MultiJava compiler. The files of this package can be basically divided into four
groups [6]:

• The JPhylum hierarchy contains all classes representing abstract syntax tree (AST) nodes.
Instances of these classes are the output of the parser. All these classes are marked with
a ’J’ as first letter of the class name. Examples are JFieldDeclaration, JIfStatement or
JLocalV ariable.

• The CType hierarchy contains classes that represent types. For instance is CArrayType
used for the type of an array or CClassType represents a class type.

• The CContext hierarchy is used for control flow analysis and variable scoping during type
checking.

• The classes of the CMember hierarchy represent the signatures of classes, interfaces, fields,
and methods. CField, CMethod, and CClass belong to this group of files.

Further we need the classes related to the universe type system with ownership transfer like for
the data flow analysis. They can be found in packages beginning with ”org.multijava.universes.uniqueness’.

8.1.2 Passes

The MultiJava compiler uses different separate passes to process the AST. The relevant passes for
uniqueness type checking are illustrated in figure 8.1. For further reading we refer to [12].

Universe Modifier Translation. During this process - called InitUniverseUniquenessTask
- the translation from surface Universe modifiers to core modifiers as explained in section 6.3 is
done. This task is implemented in the initUniverseUniqueness methods of the relevant Java
AST classes.
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Figure 8.1: Type checking process for the uniqueness type checking. The angled rectangles repre-
sent the data while the rounded rectangles are used for operations.
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Figure 8.2: The object structure of an if statement in surface and core AST.

Java Type Checking and Expression Flattening. First of all the basic Java type checking
is performed. At the same time some type checks for the Universe type system - the basic system
without ownership transfer - is done. Both is related to the method typecheck of the relevant AST
classes.

Additionally the expression flattening is performed. This means that the Java expressions
are transformed into statements of toy language by using new temporary variables. The original
Java expressions are not modified since the flattening is stored in association with the original
expression. This step happens in the method flatten of the relevant subclasses of JExpression.

Checking Uniqueness The data flow analysis and the remaining uniqueness type checks are
performed in a new compiler pass called CheckUniverseUniquenessTask. The corresponding
functionality is implemented in the method checkUniverseUniqueness of the class JMethod-
Declaration. This pass is divided into three operations. At first the flow graph is created. Then
we run the analysis and compute the solution of the data flow analysis. At the end the uniqueness
type checking is performed using the computed analysis values. It is performed on the flattened
AST, not on the original Java AST.

Translation to Analysis AST and to Flow Graph. For each method declaration, its body
is translated into corresponding statements of the analysis language according to the transition
rules. This happens in the methods getAnalysisStmt and createAnalysisStmtNoF lattening of
the corresponding AST classes.

Uniqueness Type Checking. If the analysis could successfully be solved, the uniqueness type
checking according to the type checking rules is performed using the analysis values computed
by the solver. This type checking is implemented in the method checkUniverseUniquenessNo-
Flattening of the corresponding AST classes.

8.1.3 Object Structure

In this section we want to show how the data between the different operations shown in figure 8.1
are represented. We clearly include only the most important objects and references.

Surface and Core AST The surface AST is the output of the parser. The difference of surface
and core AST are only little changes according to the universe modifiers. Thus, the whole object
structure stays quite the same. In figure 8.2 you find the object structure of an if statement.
In figure 8.3 the object structure of a field declaration is illustrated. On the one hand you see
that the universe types are linked by the field universe of the class CClassType which represents
a Java class type. On the other hand each local variable has a reference to an object of type
LocalAnanlysisV ar which is used in the data flow analysis to represent this variable.
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Figure 8.3: The object structure of a field declaration in surface and core AST.

Analysis AST The analysis AST is the representation of the program in terms of analysis
statements which is used to create the flow graph. Each statement and expression of the core
AST holds a reference to its analysis statement. The analysis language consists of the analysis
statements introduced in section 7.1 and the analysis variables explained in section 7.3. A possible
object structure of the analysis AST is presented in figure 8.4. We differ between the analysis
statement which are marked yellow and green (yellow are the elementary analysis statements and
green the composite analysis statements) and the blue analysis variables. You can see that the
objects of type MergeStmt and MoveStmt have references to their analysis variables. These
analysis variable objects are the same as the LocalAnalysisV ar object shown in figure 8.3. Each
analysis node has three references initNode, innerNode, and finalNode as mentioned in section
7.1. Notice that these references point only to elementary analysis statements which can be
seen like the leafs of the analysis statement tree and are marked yellow in our example. In
figure 8.3 we show only these three references for the top sequence statement to not worsen the
understandability.

FlowGraph The flow graph connects the elementary analysis statements from the analysis AST
according to the program control flow. Since the elementary statements implement the interface
FlowGraphNode all elementary statement objects are of type FlowGraphNode too. Thus, the
terms flow graph node and elementary analysis statement can be used as synonyms.

An example for a flow graph is shown in figure 8.5. Each flow graph node has a reference to all
its outgoing edged. Objects of type FlowGraphEdge represent an directed connection between
two flow graph nodes.

If you compare the figures 8.5 and 8.4 you remark that for creating the flow graph all elementary
analysis statement objects - marked as yellow - are taken and connected with each other through
flow graph edges. Thus, we have not one analysis AST and one flow graph for each method, but
both are strongly overlapped.

How the object of type FlowGraph which represents the flow graph of one method is rep-
resented is illustrated in figure 8.6. We leave away the connection between the objects referred
by the flow graph object since we have shown them already in the last figures. For instance
the flow graph edges and the flow graph nodes are connected. As mentioned above the ob-
ject of type AnalysisStmt has references to the elementary analysis statements represented by
FlowGraphNode objects. These nodes have additional links to the different analysis variables of
type AnalysisV ar.

Solver After the creation of the flow graph we can run the analysis. The result of the analysis
is the analysis values. Each analysis value represents the state of the clusters and analysis vari-
ables at one point of the program. The existing system can use three different solvers. In the
figure 8.7 the object structure of the alias matrix solver is shown. You see in the middle of the
figure the array of AliasMatrix objects. These are the analysis values that hold which variables
point into which cluster. Due to conditional constructs more than one cluster state is possible at
one program point. These different possible states are stored in the array referred by the field
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Figure 8.4: An object structure of the analysis AST. The rectangles represent arrays.

Figure 8.5: A part of the flow graph. The flow graph nodes are the same objects as the elementary
analysis statements in the analysis AST in figure 8.4.
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Figure 8.6: Object structure of one flow graph.

aliasSet. The access to the analysis values during uniqueness type checking occurs over the object
CUniverseUniqContext.

8.2 General

Our implementation extensions affect only the MultiJava code since JML automatically benefits
from them. We used Java version 5 (generics and autoboxing) while the existing files were written
for Java 1.4.

8.3 Local Variable Inference

8.3.1 Universe Modifier Translation

Modifiers before a local variable during the declaration or in combination with the new operator
are not needed anymore. For backward compatibility they should be accepted, but ignored. The
user will be warned that the modifier is omitted. We implement this in the method typecheck
of the class JVariableDeclarationStatement corresponding to the way the correct use of modifiers
before local variables is checked in the old version. In the same way we can check for new operation
in the method typecheck in JNewObjectExpression if there is a modifier for local variable object
creation.

All variables are linked with a modifier object at time of the surface AST creation, either with
an explicit (and now ignored) modifier or with the implicit default modifier. We do not delete this
modifier since for future work it can probably be used as a type hint, but we will now ignore it.

8.3.2 Java Type Checking and Expression Flattening

Since during the task of the Java type checking and the expression flattening the Universe modi-
fiers of the local variables are not inferred yet, it is important that all Universe type checking stuff
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Figure 8.7: Object structure of a solver using alias matrix as analysis value.

is moved to the Uniqueness type checking pass (this means a move from typecheck() to checkU-
niverseUniqueness()). While typecheck runs on the original tree, checkUniverseUniqueness uses
the flattened version. But is works fine too. The movement of the code has the consequence that
the type checking is done after the analysis and thus the errors and warnings have another order
that before. Additionally we have to change the type queries for local variables as well as rep
fields and input parameters to queries to the analysis data flow.

isLValue. In the method typecheck(CExpressionContextType context) there is a call to the
method isLV alue(CExpressionContextType context):

1 public JExpression typecheck(CExpressionContextType context) {
2 ...
3 boolean isLValue = isLValue(context);
4 ...
5 }
6
7 public boolean isLValue(CExpressionContextType context) {
8 ...
9 if (context.isPure()) { ... }

10 ...
11 }

Since isLV alue needs type information we have to move this method call too. The isLV alue
method needs as argument an object of type CExpressionContextType for example to check
whether we are in a pure context as you can see in line 9. In the method checkUniverseUniqueness
we miss the context object. Thus, we cannot call directly the isLV alue method. We imple-
mented it in that way that in the method typecheck we call a new method setLV alueF lags which
stores in private boolean flags the information needed from the CExpressionContextType object
in the method isLV alue as for instance isPure. We now call from checkUniverseUniqueness
a new method isLV alue which has no argument and takes the information required from the
CExpressionContextType object by reading out the flags. After these changes the example
would look like this:
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public JExpression typecheck(CExpressionContextType context) {
...
setLValueFlags(context);
...

}

public boolean isLValue() {
...
if (isPure) { ... }
...

}

public void setLValueFlags(CExpressionContextType context) {
...
isPure = context.isPure();
...

}

protected void checkUniverseUniquenessNoFlattening(
CUniverseUniqContextType context) {

...
boolean isLValue = isLValue();
...

}

private boolean isPure;

8.3.3 Analysis Variables of Interest

In the old system only rep local variables and rep fields are used as analysis variables of interest.
We expand this now to all local variables and parameters of type rep. Thus we have to register all
local variables as well as fields and parameters of type rep. In the flow graph we handle parameters
like fields. The initial value of the partitions is that each field and parameter is in its cluster set
and each local variable is in an own set. The only exception occurs with multiple references on
one free cluster. All these references point into the same cluster at the beginning.

8.3.4 Translation to analysis AST

The analysis transition functions used to translate the core AST to the analysis AST has to be
modified since we have now no knowledge about the modifiers of the local variables (–> create-
AnalysisStatement() of subclasses of JStatement). The modified rules are listed in section 6.9.
The different type rules are implemented in the method createAnalysisStmtNoF lattening of the
classes mentioned in figure 8.1.

In the analysis transition rules (see section 6.9) we use the type combinator in a parameter
for the move and merge operations several times which looks as follows: merge(Pt, x, y BU mf ).
In every case the left hand side argument of the type combinator is a local variable and the right
hand side is a field, a method parameter or the result variable. Thus, we know the type of the
right hand side argument except in which cluster a rep variable points. Otherwise we do not know
anything about the type of the local variable. We can only check if the local variable is this or
not. Although we can determine which type the combination of the two variables should have in
terms of real type or in term of the type that one of the two involved variables will have at analysis
time. This is shown in the following table (the evaluation order must be from top to bottom):

this BU f = f
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L-ASSIGN: JLocalVariableExpression
L-FD-RD: JClassFieldExpression
L-FD-WR: JClassFieldExpression
L-ARR-RD: JArrayAccessExpression
L-ARR-WR: JArrayAccessExpression
L-PRE-INVK: JMethodCallExpression, JExplicitConstructorInvocation
L-INV: JMethodCallExpression
L-NEW: JNewObjectExpression
L-NEW-ARR: JNewArrayExpression
L-NULL: JUnaryPromote
L-CAST: JCastExpression
L-RETURN: JReturnStatement

Table 8.1: Classes where the transition rules are implemented.

x BU any = any
x BU free = free
x BU rep = any
x BU peer = x

The analysis variables for the local variable and the field can be detected at the time when
the transition from surface AST to analysis AST takes place. But since we do not have already
the analysis variables of the two markers Clpeer and Clany we have to introduce objects of type
AnalysisV arPeer and AnalysisV arAny as placeholder for the two markers. At analysis time
this objects forward queries to the marker objects of the AnalysisV alue at this point of the
computation.

The merge operation should be extended. All clusters which are not transferable are marked
with a marker (Clpeer, Clany, unusable or the this clusters of a class). To make sure that not two
non-transferable clusters are merged we check as postcondition of merge whether in the merged
set there is more than one marker. This would mean a type error.

After the merge operation we have to make sure that all rep fields whose types changed to
not rep should be made unusable. This is done by the method filterUnusableF ields which is
invoked by the merge operation.

8.3.5 Analysis Solver and Partition Sets

The analysis solver works on the analysis AST and the partition sets. We only need to handle the
two additional markers Clpeer and Clany.

Each partition set have to be extended with two new sets marked as holding all local variables
which are peer or any.

8.3.6 Performing the Type Checks

As mentioned above the type checking rules in the method checkUniverseUniquenessNoF lattening
have to be adapted as shown in figure 8.2.

Since we have no stable type information about local variables, we need to take the information
from the analyzer. By checking if a local variable is in the cluster Clpeer, in the cluster Clany or
in one of the this clusters we can find out if it is peer, any, rep 〈ClnonTr〉 or rep 〈Cltr〉 at this
point.

8.3.7 Parameter

In the old version parameters were handled like variables. Each parameter is represented by an
object of type JFormalParameter which is a subclass of JLocalVariable. Expressions containing
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T-ASSIGN: JLocalVariableExpression
T-FD-RD: JClassFieldExpression
T-FD-WR: JClassFieldExpression
T-ARR-RD: JArrayAccessExpression
T-ARR-WR: JArrayAccessExpression
T-INV: JMethodCallExpression, JExplicitConstructorInvocation
T-NEW: JNewObjectExpression
T-NEW-ARR: JNewArrayExpression
T-NULL: JUnaryPromote
T-CAST: JCastExpression
T-RETURN: JReturnStatement
T-MDECL: JMethodDeclaration, JReturnStatement

Table 8.2: Classes where the type rules are implemented.

a parameter were described by an object of type JLocalVariableExpression like it was for local
variables. This object structure is shown by the light gray ellipses in figure 8.8.

We now want to handle parameters for the Universe uniqueness stuff like field access. Thus,
for the normal Java checks we handle formal parameter like local variable, while the creation of
the analysis statements and the Universe checking is done like for fields. Therefore, we represent
parameters by objects of type JParameterExpression - a subclass of JClassFieldExpression - in
the flattened version. The additionally for the flattening created object are marked dark-gray in
the figure 8.8.

Figure 8.8: Slightly simplified object structure for parameters. For the Java checking part the light
gray structure is used where parameters are handled like local variables. The Universe checking is
executed on the flattened version where parameter access is treated like field access. The additional
objects for the flattened version are marked dark-gray.

8.3.8 Multiple Universe Types

In the old version the Universe type of a variable is represented by an instance of type CUniverse-
Rep, CUniversePeer, and CUniverseReadonly. This works fine as long as each variable has one
clear type. Since queries to the analysis can return DONT KNOW it is possible that an object
has more than one possible type. For these cases we create a new class CUniverseMultipleTypes
that represent a consolidation of different Universe types. As CUniverseMultipleTypes imple-
ments - like CUniverseRep, CUniversePeer, and CUniverseReadonly - the abstract meth-
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ods of CUniverse it can be handled like a normal Universe type. The only difference is that
CUniverseMultipleTypes has additional methods like isDefinitelyRep. The difference between
isDefinitelyRep and isRep is that isRep return true if the variable may be rep regardless whether
it is probably of another type too while isDefinitelyRep returns true iff the variable is only of
the type rep. The class structure is shown in figure 8.9.

Figure 8.9: Class diagramm of the Universe type classes.

8.3.9 InvTest

The invariant test InvTest includes the following two rules:

1. ∀f1, f2 ∈ Fd0 Lf1 = Lf2 ⇒ mf1 = mf2

2. ∀f ∈ Fd0 Lf ≤A mf

We implement this test in the class AbstractAnalysisV alue. The straightforward solution would
be to do both checks using the CUniverse object the field was declared with. But in the class
AbstractAnalysisV alue we have only access to the analysis variables. Thus, we have only field
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analysis variables for each rep field. In addition we know for each field analysis variable the cluster
which it was declared for. We have to use this cluster for looking up the declared type.

While the comparison, if two field analysis variables are declared of the same type, is easily
done by the check of its declared clusters, the assignable-to relation in the second check needs
some additional thought. Because peer and any fields can never change their type we can leave
out and only care about rep fields which are covered by the field analysis variables. If such a field
is in a transferable cluster it would be always assignable to its declared type since rep 〈Cltr〉 is
assignable to every type. Otherwise if a field is in a non-transferable cluster it should always be
declared of this cluster. This means that for the assignability check we have only to look that a
field declared as pointing into a non-transferable cluster is in its declared cluster now. In addition
no field should be unusable. The whole code for method invText is listed in figure 8.10.

public void invTest(TokenReference sourceRef){
for (int i = 0; i < nofFields; i++) {

FieldAnalysisVar field1 = getField(i );
for (int j = i + 1; j < nofFields; j++) {

FieldAnalysisVar field2 = getField(j );
// P f1 = P f2 > m f1 = m f2
if (pointToSameCluster(field1, field2 ) != NO
&& !field1.getCluster (). equals( field2 .getCluster ())) {

// report error
}

}

// type inferred by analysis should be assignable to declared type
checkNotUnusable(field1, sourceRef);

if (pointsPossiblyIntoNonTransferableCluster(field1)
&& pointToSameCluster(field1,

field1 .getCluster (). getAnalysisVar()) != YES) {
// report error

}
}

}

Figure 8.10: Code of invariant test method in class AbstractAnalysisValue.

The implementation of the methods invRestore and restoreF ields follows the same principle
as for invTest and take the declared cluster of an analysis variable to get the declared Universe
type of the variable.

8.4 Subclass Separation

Each class of type CClass is at creation time linked with a own this cluster. During the
initUniverseUniqueness pass each field, parameter and result type declared as plain rep is linked
with the this cluster of its owner class.

For the analysis of one method we linked all this clusters during execution of method registeringRepClusters-
AndRepFieldsDone() with a cluster analysis variable.
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8.5 Arrays

8.5.1 Array Type Object

Each array variable is linked with an object of type CArrayType which represent its type. As
shown in figure 8.11 an array type object has three important fields baseType, result type, and
universe. baseType represents the declared type of the elements, while universe is the ownership
type of the array object. result type is the type needed to access the elements. This means it is
the combined type of the array object type and the element type.

Figure 8.11: Structure of the type object for the array rep peer T[].

In the class CArrayType we had to change the assignability relation according to figure 4.2.

8.5.2 Array Access

The two transition rules for array writing and array reading are implemented in the method
createAnalysisStmtNoF lattening of the of the class JArrayAccessExpression. Analogously
the type rules are added to the method checkUniverseUniquenessNoF lattening of the same
class.

8.5.3 Array Creation Expression

In the class JNewArrayExpression on the one hand we have to implement the flattening process
in the method flatten. On the other hand we have to implement the transition rule in the method
createAnalysisStmtNoF lattening and the type rule in the method checkUniverseUniqueness-
NoFlattening.

8.5.4 Array Initializer

For array initialization it is only needed to implement the method flatten in the class JArrayIni-
tializer. Since in the flattened tree there are no nodes of type JArrayInitializer no type rules
or transition rules are needed to be implemented in this class.
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8.6 Passing Multiple References on a Free Cluster

8.6.1 Type Declaration Control

During parsing there is no difference whether a parameter p declared as rep[x] means that it points
into the same cluster as a free parameter x or as a uniq field x. During the Universe uniqueness
initialization pass in the method initUniverseUniqueness of the class JFormalParameter we
check whether there is a parameter called x in the same method declared as free. If there is no
such parameter we continue like in the old version by searching for a field x declared as uniq in
the same class. But if we find such a parameter x we first change the type of p to free 〈x〉. Then
we store a reference to parameter p in the object x. This link is later needed for efficiently finding
all parameters that point into the same free cluster.

8.6.2 Initial Situation

We have to ensure that at the beginning of a method all parameters that point into the same cluster
are in one block. Thus in the method checkUniverseUniqueness of class JMethodDeclaration
we create the analysis statements to merge all parameters that point into the same free cluster.
These analysis statements are added at the beginning of the statement sequence that is created
by the body of the method.

8.6.3 Parameter Order

As mentioned in section 5.2.3 we have to change the order of the analysis statements created by
each parameter passing in such a way that all formal parameters pointing into the same free
cluster are handled successively. In addition the analysis statement before which the assignability
check has to be done should be for each parameter of such a group the first analysis statement of
the group.

Order of Analysis Statements. The ordering of the analysis statements is done in the method
createAnalysisStmtNoF lattening of the class JMethodCallExpression. During the creation of
the merge statements for each parameter we arrange them into three different lists. In one list
we hold all analysis statements of parameters declared plain free, in another one all statements
of parameters of type free 〈p〉. In the main list we put the statements of all other parameters.
Then the analysis statement of each free parameter is added to the main list followed by all
parameters pointing into the same cluster. To efficiently finding the parameters pointing into the
same free cluster we use the method getMultipleFreeParameters in JFormalParameter which
gives back all these formal parameters. To find the analysis statements connected with each of
these parameters we use an array stmtForParameters that maps the original parameter indexes
to the previously created statements. This means that for a method call:

void m(free T f, peer T p, rep[f] T f2, free T g, rep[f ] T f3, rep T r, rep[g] T g2)

The order of its parameters according to the analysis statements would be:

(peer T p, rep T r, free T f, rep[f ] T f2, rep[f ] T f3, free T g, rep[g] T g2)

In the array checkArgsNodes we store for each parameter before which analysis statement its
type check should happens. For indexing the original parameter order is used. For each parameter
which is not of type free 〈p〉 the item in checkArgsNodes points to its own analysis statement.
The checkArgsNodes item for all parameters declared as pointing into the same cluster as another
free parameter p are set to the analysis statement of p.

Checking Assignability. When we now want to check the assignability in the method check-
UniverseUniquenessNoF lattening of JMethodCallExpression we do this for each parameter
before the analysis statement stored in checkArgsNodes.
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8.7 Changes or New Files

The following files have been changed or added:

• Package org.multijava.universes.uniqueness.analysis (classes for analysis variables and anal-
ysis values): AbstractAnalysisValue, AnalysisValue, AnalysisVar, AnalysisVarAny, Analy-
sisVarPeer, ClusterAnalysisVar, FieldAnalysisVar

• Package org.multijava.universes.uniqueness.analysis.statements (classes for analysis state-
ments): AbstractAnalysisStmtVisitor, AnalysisStmtVisitor, InvRestoreStmt, RestoreField-
sStmt

• Package org.multijava.universes.uniqueness.analysis.solvers.singlepartition (class for the sol-
ver): SinglePartitionAnalysisValue

• Package org.multijava.universes.uniqueness.analysis.solvers.partitionset (class for the solver):
AbstractPartitionSet

• Package org.multijava.universes.uniqueness.analysis.solvers.aliasmatrix (class for the solver):
AliasMatrix

• Package org.multijava.universes.uniqueness.analysis.graph (class for the flow graph): Flow-
Graph

• Package org.multijava.universes.uniqueness.testing.analysis.solvers (class for testing): Test-
WorklistSolver

• Package org.multijava.mjc:

– Classes for Universe types: CUniverse, CUniverseImplicitPeer, CUniverseImplicitRead-
only, CUniverseMultipleTypes, CUniversePeer, CUniverseReadonly, CUniverseRep, CU-
niverseRepCluster

– AST classes: JArrayAccessExpression, JArrayInitializer, JAssignmentExpression, JCas-
tExpression, JClassDeclaration, JClassFieldExpression, JExplicitConstructorInvocation,
JFieldDeclaration, JFormalParameter, JLocalVariable, JLocalVariableExpression, JMe-
thodCallExpression, JMethodDeclaration, JNewArrayExpression, JNewObjectExpres-
sion, JParameterExpression, JParenthesedExpression, JReturnStatement, JThisExpres-
sion, JTypeNameExpression, JUnaryPromote, JVariableDeclarationStatement, JVari-
ableDefinition

– Classes and interfaces for types, methods, and classes: CArrayType, CClass, CClassType,
CInitializable, CMethod

– Other classes needed for uniqueness: CUniverseUniqContext, CUniverseUniqContext-
Type, CUniverseUniqMessages, CUniverseUniqUtils
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Chapter 9

Conclusion and Future Work

9.1 Examples

9.1.1 Enhanced Linked List

Figure 1.3 shows the implementation of a linked list with the possibility to merge two linked lists.
Due to our extension we can enhance this linked list. First of all in our implementation (A.1) we
can simplify the releasing of a linked list as explained in section 2.2.11.

We added a second method

concatenate(free Node first, rep[ first ] Node last)

which adds not a whole list given as parameter but only a part given by the first and the last
list element. This shows the benefit of passing multiple references to one free cluster via method
invocation.

As a further additional feature we implement a method

pure free LinkedList find(free Iterator it , any Element obj)

that searches an element given a list iterator. Inside of this pure method we have to call the
non-pure method getNext on the iterator. Thus, we make use of our enhanced purity.

9.1.2 Hash Table Merging

The code in A.2 shows the merging of two hash tables. In the two merge methods we make use
of the possibility to transfer whole arrays. First in method call

merge(otherTable.getHashTable());

we release one hash table represented by an array and in the method merge:

void merge(free peer LinkedList[] otherTable)

we capture this hash table. Thus we changed the owner of a whole array.

9.1.3 AVL Tree

In the AVL Tree example (A.3) each subtree is owned by its parent node. Thus for each change
of the parent node an ownership transfer is needed. Note that the left and the right tree of a node
are in different clusters since they are moved independently.

The two methods

free AVLTree getLeft() and free AVLTree getRight()

91
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are used to release the left or the right tree of a node, while the corresponding methods

void setLeft(free AVLTree left) and void setRight(free AVLTree right)

capture a free tree. The rotation methods like

free AVLTree rotateWithLeftChild(free AVLTree k2)

capture a free tree, make the desired rotation on it and return the released tree. Similarly works
the insert method

free AVLTree insert(int x, free AVLTree t).

It captures a tree, inserts the new node by modifying and rotating the tree and returns the released
tree.

9.2 Conclusion

In this project we have completed the existing Universe type system with ownership transfer with
different extensions. The biggest extension was the type inference for local variables. Due to it we
get a more flexible solution since local variables can change their type and never become unusable.
Otherwise we could eliminate minor limitations of the existing system like the problem with the
release method in the list example (see section 2.2.11). Another advantage is that the user has
less notation overhead since no Universe modifiers for local variables are needed. On the other
hand our solution is more complicated to understand for the user. The different handling of local
variables and fields can be confusing and thus is another disadvantage of the local variable type
inference.

The enhanced purity allows more expressive examples like the find method in the linked
list (A.1). In fact, the precondition for the enhanced purity is complex but since it is only an
extension to the old purity there is no must for the user to make profit of it. Thus, the benefits of
our enhanced purity are bigger.

With the subclass separation we separated the this cluster of a class from the this clusters of
its subclasses. For the user the assignability of variables in the this cluster is more restricted. But
this feature has the advantage that the invariant of a subclass can be checked without touching
the superclass. This would be nice if once the Universe type system is integrated in Spec#.

For array handling we achieved a good solution which is derived from the handling of fields.
Array creation and initialization expressions are supported too. There is only the restriction that
all array elements should always be in the same cluster.

Our last extension was the support for passing multiple references to one free cluster via
method invocation. This is a powerful feature which allows methods like concatenate in the linked
list example (A.1). On the one hand we tried to use the existing syntax for this feature. On the
other hand this can be confusing since rep[f ] does not always refer to a cluster declared by a field.

9.3 Future Work

There are still some extension to the project which are left as future work:

Runtime Checks. In the method typeCheck some Universe runtime checks are done. They
make use of the declared Universe types. For local variables the type determined in the analysis
should be used. Thus, these checks should be moved to the method checkUniverseUniqueness-
NoFlattening.
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Exception Handling Model. In the current system exceptions are handled in a primitive way.
For the future a more precise treatment is desirable. A possible solution is to transfer an exception
into the context of the handler during propagation.

Acknowledgment. The author would like to thank Arsenii Rudich and Prof. Peter Müller for
their support.
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Appendix A

Code Examples

In this three code examples the keyword any is replaced by the keyword readonly since in the
current implementation readonly is needed.

A.1 Enhanced Linked List

1 import java.util .ArrayList;
2
3 /∗∗
4 ∗ Testing uniqueness, ownership transfer and local variable type inference in the Universe type
5 ∗ system: linked list implementation.
6 ∗ Testing the enhanced purity: method find
7 ∗ Testing multiple references on one free cluster :
8 ∗ method concatenate(free Node first , rep[ first ] Node last)
9 ∗ <p>

10 ∗ Expected result : no errors
11 ∗
12 ∗ @author ytakano, schaada
13 ∗/
14
15 public class LinkedList {
16
17 protected uniq Node header;
18
19 pure public LinkedList() {
20 Node tmp = new Node(null, null, null);
21 tmp.next = tmp;
22 tmp.prev = tmp;
23 header = tmp;
24 }
25
26 public void addFirst(readonly Element o) {
27 addBefore(o, header.next);
28 }
29
30 public void addLast(readonly Element o) {
31 addBefore(o, header);
32 }
33

97
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34 protected void addBefore(readonly Element o, rep[header] Node node) {
35 Node newNode = new Node(o, node, node.prev);
36 newNode.prev.next = newNode;
37 newNode.next.prev = newNode;
38 }
39
40 public boolean isEmpty() {
41 return header.next == header;
42 }
43
44 protected free Node getHeader() {
45 Node result = header;
46
47 header = new Node(null, null, null);
48 header.next = header.prev = header;
49
50 return result;
51 }
52
53 public void concatenate(peer LinkedList other) {
54 if (other.isEmpty()) {
55 return;
56 }
57
58 Node otherHeader = other.getHeader();
59
60 header.prev.next = otherHeader.next;
61 otherHeader.prev.next = header;
62
63 otherHeader.next.prev = header.prev;
64 header.prev = otherHeader.prev;
65 }
66
67 public void concatenate(free Node first, rep[first ] Node last) {
68 if ( first == null || last == null) {
69 return;
70 }
71
72 header.prev.next = first ;
73 last .next = header;
74
75 first .prev = header.prev;
76 header.prev = last;
77 }
78
79 public pure free LinkedList find(free Iterator it, readonly Element obj) {
80 Node curNode = it.getNext();
81 LinkedList found = new LinkedList();
82 while (curNode != header) {
83 if (curNode.element.equals(obj)) {
84 found.addLast(curNode.element);
85 }
86 curNode = it.getNext();
87 }
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88 return found;
89 }
90
91 public pure free LinkedList findAll(readonly Element obj){
92 Iterator it = new Iterator(this);
93 return find(it , obj);
94 }
95
96
97 public String toString() {
98 StringBuffer buffer = new StringBuffer();
99 buffer .append(”[ ”);

100
101 Node current = header.next;
102 while (current != header) {
103 // the cast to peer is needed since there is no method
104 // StringBuffer#append(readonly Object)
105 buffer .append(current.element.toStringF()).append(” ”);
106 current = current.next;
107 }
108
109 buffer .append(”]”);
110 return buffer.toString ();
111 }
112
113 public static void main(String[] args) {
114 System.out.println(”concatenate first version:”);
115 LinkedList l1 = new LinkedList();
116 l1 .addLast(new Element(1));
117 l1 .addLast(new Element(2));
118 l1 .addLast(new Element(3));
119 System.out.println(l1 ); // [ 1 2 3 ]
120
121 LinkedList l2 = new LinkedList();
122 l2 .addLast(new Element(4));
123 l2 .addLast(new Element(5));
124 System.out.println(l2 ); // [ 4 5 ]
125
126 l1 .concatenate(l2);
127 System.out.println(l1 ); // [ 1 2 3 4 5 ]
128 System.out.println(l2 ); // [ ]
129
130 System.out.println(”concatenate second version:”);
131 LinkedList l3 = new LinkedList();
132 l3 .addLast(new Element(1));
133 l3 .addLast(new Element(2));
134 l3 .addLast(new Element(3));
135 System.out.println(l3 ); // [ 1 2 3 ]
136
137 LinkedList l4 = new LinkedList();
138 l4 .addLast(new Element(4));
139 l4 .addLast(new Element(5));
140 System.out.println(l4 ); // [ 4 5 ]
141
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142 Node header = l4.getHeader();
143 l3 .concatenate(header.next, header.prev);
144 System.out.println(l3 ); // [ 1 2 3 4 5 ]
145 System.out.println(l4 ); // [ ]
146
147 System.out.println(”find :”);
148 LinkedList l5 = new LinkedList();
149 l5 .addLast(new Element(1));
150 l5 .addLast(new Element(2));
151 l5 .addLast(new Element(3));
152 l5 .addLast(new Element(4));
153 l5 .addLast(new Element(3));
154 l5 .addLast(new Element(5));
155 l5 .addLast(new Element(3));
156 System.out.println(l5 ); // [ 1 2 3 4 3 5 3]
157 LinkedList l6 = l5.findAll (new Element(3));
158 System.out.println(l6 ); // [3 3 3]
159
160 }
161
162 private static class Node {
163 readonly Element element;
164 peer Node next;
165 peer Node prev;
166 pure Node(readonly Element element, peer Node next, peer Node prev) {
167 this.element = element;
168 this.next = next;
169 this.prev = prev;
170 }
171 }
172
173 private static class Element {
174 int value;
175
176 pure Element(int i) {
177 value = i;
178 }
179
180 pure boolean equals (readonly Element other) {
181 if (value == other.value)
182 return true;
183 else
184 return false;
185 }
186
187 public pure free String toStringF() {
188 String s = ””;
189 s = s + value;
190 return s;
191 }
192 }
193
194
195 private static class Iterator {
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196 peer LinkedList list ;
197 readonly Node current;
198
199 readonly Node getNext() {
200 current = current.next;
201 return current;
202 }
203
204 pure Iterator(peer LinkedList l) {
205 list = l;
206 current = l.header;
207 }
208 }
209
210 }
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A.2 Merging of Hashtables

1 import java.util .ArrayList;
2
3 /∗∗
4 ∗ Testing ownership transfer of arrays
5 ∗ <p>
6 ∗ Expected result : no errors
7 ∗
8 ∗ @author schaada
9 ∗/

10
11 class HashTable {
12 uniq peer LinkedList[] hashTable;
13 static int size = 5;
14
15 public HashTable() {
16 hashTable = new LinkedList[size];
17 for (int i = 0; i < hashTable.length; i++) {
18 hashTable[i] = new LinkedList();
19 }
20 }
21
22 public free peer LinkedList[] getHashTable() {
23 peer LinkedList[] res = hashTable;
24 hashTable = new LinkedList[size];
25 for (int i = 0; i < hashTable.length; i++) {
26 hashTable[i] = new LinkedList();
27 }
28 return res;
29 }
30
31 void merge(free peer LinkedList[] otherTable) {
32 for (int i = 0; i < hashTable.length; i++) {
33 hashTable[i ]. concatenate(otherTable[i ]);
34 }
35 }
36
37 void merge(peer HashTable otherTable) {
38 merge(otherTable.getHashTable());
39 }
40
41 private static pure int getHashValue(readonly Element e) {
42 return ((e.value % size ));
43 }
44
45 void insert(readonly Element e) {
46 int index = getHashValue(e);
47 hashTable[index].addLast(e);
48 }
49
50 public free String toStringF() {
51 StringBuffer buffer = new StringBuffer();
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52 for (int i = 0; i < size; i++) {
53 String s = hashTable[i].toStringF();
54 buffer .append(s);
55 buffer .append(”\n”);
56 }
57 return buffer.toString ();
58 }
59
60 public static void main( String [ ] args ) {
61 HashTable t1 = new HashTable();
62 t1. insert (new Element(2));
63 t1. insert (new Element(3));
64 t1. insert (new Element(12));
65 t1. insert (new Element(22));
66 HashTable t2 = new HashTable();
67 t2. insert (new Element(32));
68 t2. insert (new Element(1));
69 t2. insert (new Element(13));
70 t2. insert (new Element(23));
71
72 System.out.println(t1.toStringF());
73 System.out.println(t2.toStringF());
74 t1.merge(t2);
75 System.out.println(t1.toStringF());
76 System.out.println(t2.toStringF());
77 }
78
79 private static class Element {
80 int value;
81
82 pure Element(int i) {
83 value = i;
84 }
85
86 public pure free String toStringF() {
87 String s = ””;
88 s = s + value;
89 return s;
90 }
91 }
92
93 private static class LinkedList {
94 protected uniq Node header;
95
96 pure public LinkedList() {
97 Node tmp = new Node(null, null, null);
98 tmp.next = tmp;
99 tmp.prev = tmp;

100 header = tmp;
101 }
102
103 public void addLast(readonly Element o) {
104 addBefore(o, header);
105 }
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106
107 protected void addBefore(readonly Element o, rep[header] Node node) {
108 Node newNode = new Node(o, node, node.prev);
109 newNode.prev.next = newNode;
110 newNode.next.prev = newNode;
111 }
112
113 public boolean isEmpty() {
114 return header.next == header;
115 }
116
117 protected free Node getHeader() {
118 Node result = header;
119
120 header = new Node(null, null, null);
121 header.next = header.prev = header;
122
123 return result;
124 }
125
126 public void concatenate(peer LinkedList other) {
127 if (other.isEmpty()) {
128 return;
129 }
130
131 Node otherHeader = other.getHeader();
132
133 header.prev.next = otherHeader.next;
134 otherHeader.prev.next = header;
135
136 otherHeader.next.prev = header.prev;
137 header.prev = otherHeader.prev;
138 }
139
140 public free String toStringF() {
141 String res = new String(”[ ”);
142
143 Node current = header.next;
144 while (current != header) {
145 res += current.element.toStringF() + ” ”;
146 current = current.next;
147 }
148
149 res += ”]”;
150 return res;
151 }
152 }
153
154 private static class Node {
155 readonly Element element;
156 peer Node next;
157 peer Node prev;
158 pure Node(readonly Element element, peer Node next, peer Node prev) {
159 this.element = element;
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160 this.next = next;
161 this.prev = prev;
162 }
163
164 }
165 }
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A.3 AVL Tree

1 /∗∗
2 ∗ Testing uniqueness, ownership transfer and local variable type inference
3 ∗ <p>
4 ∗ Expected result : no errors
5 ∗
6 ∗ @author schaada
7 ∗/
8
9 public class AVLTree {

10 int elem;
11 uniq AVLTree left;
12 uniq AVLTree right;
13 int height;
14
15 private static int height(readonly AVLTree t) {
16 return t == null ? 1 : t .height;
17 }
18
19 AVLTree() {
20 }
21
22 AVLTree(int e, free AVLTree l, free AVLTree r) {
23 elem = e;
24 left = l;
25 right = r;
26 }
27
28 private free AVLTree getLeft(){
29 AVLTree temp = left;
30 left = null;
31 return temp;
32 }
33
34 private free AVLTree getRight(){
35 AVLTree temp = right;
36 right = null;
37 return temp;
38 }
39
40 private void setLeft(free AVLTree left){
41 this. left = left ;
42 }
43
44 private void setRight(free AVLTree right){
45 this.right = right;
46 }
47
48 public void insert(int i) {
49 left = insert( i , getLeft ()); // root is a dummy node
50 }
51
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52 free AVLTree insert(int x, free AVLTree t) { // ”this” is parent of real node
53 if (t == null) {
54 t = new AVLTree(x, null, null);
55 } else if(x < t.elem) {
56 t . setLeft( insert (x, t .getLeft ()));
57 if (height(t . left ) height(t . right) == 2) {
58 if (x < t. left .elem)
59 t = rotateWithLeftChild( t );
60 else
61 t = doubleWithLeftChild( t );
62 }
63 } else if( x > t.elem ) {
64 t .setRight( insert ( x, t .getRight ()));
65 if( height( t . right ) height( t . left ) == 2 ) {
66 if( x > t.right .elem )
67 t = rotateWithRightChild( t );
68 else
69 t = doubleWithRightChild( t );
70 }
71 } else
72 ; // Duplicate; do nothing
73 t .height = max( height( t. left ), height( t . right ) ) + 1;
74 return t;
75 }
76
77
78 private static int max(int lhs, int rhs) {
79 return lhs > rhs ? lhs : rhs;
80 }
81
82
83 private free AVLTree rotateWithLeftChild(free AVLTree k2) {
84 AVLTree k1 = k2.getLeft();
85 k2.setLeft(k1.getRight());
86 k2.height = max( height( k2.left ), height( k2.right ) ) + 1;
87 k1.height = max( height( k1.left ), k2.height ) + 1;
88 k1.setRight(k2);
89 return k1;
90 }
91
92
93 private free AVLTree rotateWithRightChild(free AVLTree k1 ) {
94 AVLTree k2 = k1.getRight();
95 k1.setRight(k2.getLeft ());
96 k1.height = max( height( k1.left ), height( k1.right ) ) + 1;
97 k2.height = max( height( k2.right ), k1.height ) + 1;
98 k2.setLeft(k1);
99 return k2;

100 }
101
102 private free AVLTree doubleWithLeftChild(free AVLTree k3 ) {
103 k3.setLeft(rotateWithRightChild( k3.getLeft() ));
104 return rotateWithLeftChild( k3 );
105 }
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106
107 private free AVLTree doubleWithRightChild(free AVLTree k1 ) {
108 k1.setRight(rotateWithLeftChild( k1.getRight() ));
109 return rotateWithRightChild( k1 );
110 }
111
112
113
114 pure int computeHeight() {
115 int l = ( left == null ? 1 : left .computeHeight());
116 int r = (right == null ? 1 : right .computeHeight());
117 return max(l,r) + 1;
118 }
119
120 pure void test() {
121 System.out.println( ”Checking... (no more output means success)” );
122 if (height != computeHeight())
123 System.out.println(”Error: height is false !”);
124
125 int l = height( left );
126 int r = height( right );
127
128 int diff = l r ;
129 diff = (diff < 0 ? diff : diff );
130 if ( diff >= 2)
131 System.out.println(”Error: Tree is not balanced!”);
132 }
133
134 // Test program
135 public static void main( String [ ] args ) {
136 AVLTree t = new AVLTree( );
137 final int NUMS = 4000;
138 final int GAP = 37;
139
140 for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS )
141 t . insert ( i );
142
143 t . left . test ();
144 }
145 }
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