
Verifying weak memory programs in the Viper
ecosystem

Anouk Paradis Supervisors :
Gaurav Parthasarathy
Alexander J. Summers

April 15, 2019

1 Introduction

When reasoning about concurrent programs, the most intuitive setting is
sequential consistency [2], where we consider the program to behave as if
each of the threads’ executions were simply interleaved. However, due to the
many optimizations performed by modern compilers and hardware, such a
model is too simplistic to accurately represent the actual executions of the
program. We can hence only assume a weak memory model, which allows
many more possible executions of the accesses to shared memory locations.
However, these new possibilities of execution make reasoning about programs
more difficult, and at times counterintuitive. Writing correct programs is
hence extremely challenging in such a setting.

FSL++ [1] is a program logic developed to reason about concurrent pro-
grams in C11, which are governed by the weak memory model defined in the
C11 standard. This program logic allows for compositional proofs, through
preconditions and postconditions for functions for instance. However, such
proofs originally had to be encoded using the Coq interactive theorem prover,
thus requiring a lot of ad hoc work for each new program considered.

To try to alleviate this proof burden, part of this program logic has been
encoded into Viper [3] by Summers and Müller [5]. However it did not provide
any encoding for the notion of custom ghost state, an important feature
used to model information that cannot be deduced solely from the program

1



state. This ghost state is defined quite generally in FSL++, and needs to
be specialized for each example, which makes their encoding and their use
quite challenging. Parthasarathy et al. [4] provided such a specialization and
showed that it was sufficient to prove the correctness of a variety of example
programs. Building on this work, Wiesmann et al. [6] was then able to
define a specification syntax, and its encoding in Viper, that allowed easier
use of this specialization, without having to deal with lower level details.
Wiesmann et al. [6] also implemented a C++ frontend for Viper using this
specialization to provide more automation for proofs.

2 Core Tasks

The main goal of this project is to evaluate on some real world examples
the infrastructure developed around Viper for weak memory programs. This
infrastructure builds on different levels of abstraction. The specification syn-
tax defined by Wiesmann et al. [6] only encodes a simplification of the ghost
state defined by Parthasarathy et al. [4] and hence does not allow to fully
use the possibilities of this ghost state. This ghost state is already a special-
ization of the more generic ghost state definition by FSL++. Furthermore,
the C++ frontend implemented by Wiesmann et al. [6] does not support all
features. However, the hope is that most of these restrictions are not too
problematic in practice, and that they are expressive enough to allow for the
proof of a variety of examples.

This goal can be further divided into the following subgoals:

• Identifying interesting examples from real-world libraries, and under-
standing the underlying synchronization mechanisms;

• Proving those examples using each level of abstraction, from the ghost
state specialization defined by Parthasarathy et al. [4] to the C++
front-end and the encoding into Viper it provides defined by Wiesmann
et al. [6];

• Identifying the limitations of the different levels of abstraction in terms
of expressiveness, ease of use and efficiency.

2



3 Further Work

Some extensions of this project could be:

• Extending the current infrastructure to overcome some of the identified
limitations;

• Proving more challenging examples, involving more interleaved func-
tions and synchronization mechanisms;

• Formalizing and proving the soundness of the different levels of ab-
straction.

References

[1] M. Doko and V. Vafeiadis. Tackling real-life relaxed concurrency with
FSL++. In European Symposium on Programming (ESOP), pages 448–
475. Springer, 2017.

[2] L. Lamport. How to make a correct multiprocess program execute cor-
rectly on a multiprocessor. IEEE Trans. Comput., 46(7):779–782, July
1997.

[3] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infras-
tructure for permission-based reasoning. In B. Jobstmann and K. R. M.
Leino, editors, Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag, 2016.

[4] G. Parthasarathy. Applying and extending the weak-memory logic
FSL++. Research in Computer Science Project, ETH Zürich, 2017.

[5] A. J. Summers and P. Müller. Automating deductive verification for
weak-memory programs. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS, pages 190–209. Springer-
Verlag, 2018.

[6] P. Wiesmann. Deductive verification of real-world C++ weak-memory
programs. Master’s thesis, ETH Zürich, 2019.

3


