RESEARCH IN COMPUTER SCIENCE PROJECT REPORT

Verifying weak memory programs
in the Viper ecosystem

Supervisors:

Author:
Anouk PARADIS Gaurav PARTHASARATHY
ot Dr. Alexander J.SUMMERS
Chair of Programming
Methodology
ETH Zirich

December 8, 2019

Contents

& Bbackground
2.1 Weak Memoryl 0o

Z.1.1 >Synchronization on atomicy
212 Data raced

E.2 Formalizing weak memoryl

£.2.1 Atomics as exchange pomty
2.2.2 Ownershig 0.
2223 (+host stated

2.2.4 'loken-based reasoning m Vipey

b Limitations of the LEC ghost location and tokens
p.l T'he Folly reader-writer spinlock
p.2 FProot using the EFC permission structurg

p.o Prootf using token-based reasoning

4 Limitations of FSL 4+
d.l ohibc Reader-Writer Lock

g.l.1 Implementation
A. 1.2 Read-Modity-Write and Load
B.l.o Separation of tokens and permissioy
A.2 Folly Une Producer Une Consumer Queuq
g.2.1 Re-using values for location invarianty

B.2.2 Infinite queud Lo e e e e

p__Proving intertwined synchronization mechanisms
p.l Implementationo e e
p.l.1 —HEnsuring sequential execution
p.l.2 KEnsuring proper deletion when deleting reterences
p.2 Properties of the serialkxecutory

p.o Formalizing the speciicationy
p.4 FProof of the speciicationy« . v o v 0.

w

© 00~ 3 ~J oot

10
10
12
14

16
16
16
20
21
21
23
24

nada Function run

p.4.4 Functions drop and COPYl . -« - « « « v v v v v w0

ndan Some notes on constriictors and destriictord

EC I [Fud K

ol Euture work

pliography

Ib Folly ProducerConsumerQueue implementation

C SerialExecutor implementation|

40
40
41

42

44
46
46
47
47
48
48

49

51

Chapter 1

Introduction

When reasoning about concurrent programs, the most intuitive setting is se-
quential consistency [7], where we consider the program to behave as if each
of the threads’ executions were simply interleaved. However, due to the
many optimizations performed by modern compilers and hardware, such
a model is too simplistic to accurately represent the actual executions of
the program. We can hence only assume a weak memory model, which
allows many more possible executions of the accesses to shared memory lo-
cations. However, these new possibilities of execution make reasoning about
programs more difficult, and at times counterintuitive. Writing correct pro-
grams is hence extremely challenging in such a setting.

FSL++ [5] is a program logic developed to reason about concurrent
programs in C11, which are governed by the weak memory model defined
in the C11 standard. This program logic allows for compositional proofs,
through preconditions and postconditions for functions for instance. How-
ever, such proofs originally had to be encoded using the Coq interactive
theorem prover, thus requiring a lot of ad hoc work for each new program
considered.

To try to alleviate this proof burden, part of this program logic has been
encoded into Viper [R] by Summers and Miiller [10]. However it did not
provide any encoding for the notion of custom ghost state, an important
feature used to model information that cannot be deduced solely from the
program state. This ghost state is defined quite generally in FSL++, and
needs to be specialized for each example, which makes their encoding and
their use quite challenging. Parthasarathy et al. [d] provided such a spe-
cialization, the EFC permission structure, and showed that it was sufficient
to prove the correctness of a variety of example programs. Building on this
work, Wiesmann et al. [I1] was then able to define a specification syntax,
token based reasoning, and its encoding in Viper. This syntax abstracts
some details of the EFC ghost state and FSL++, such as rational permis-
sion amounts, limiting the complexity of this logic. Wiesmann et al. [i1]

also implemented a C+-+ front end for Viper using this specialization to
provide more automation for proofs.

This project explores this new infrastructure and tries to analyze some
of its limitations, not only in terms of what it allows us to do, but also
in how easily it allows us to do it. We were first able to identify a slight
mismatch between the intuition of the EFC permission structure and token
based reasoning. Furthermore, we found and studied three new real-world
examples. The first two allowed us to identify strong limitations of FSL++
that forbid proving many kind of examples. We finally provide a proof of
the last example, that uses two atomic locations, using the EFC permission
structure.

Chapter 2

Background

2.1 Weak Memory

As explained in the introduction, we cannot expect a sequentially consistent
behavior from any parallel program. We have to deal with all the behaviors
introduced by weak memory. We will now explain in some more details how
those work.

We consider two types of memory locations: atomics and non atomics.
Non atomics are the default, the ones we use in most programs. However,
they are not adapted for concurrent access: if two threads try to access a non
atomic location at the same time, and at least one of them intends to write,
there is a data race, and the behavior of the program is undefined. Hence
we cannot use this kind of locations in a concurrent environment without
making sure that no such racy access can happen.

The required synchronization is done using atomics. Operations on those
locations are atomic: we can think of them as happening in an instant, so
that nothing can happen at the same time (since they took so little time).
Hence the race situation described above, with a thread reading from an
atomic location at the same time as another thread is writing to it, cannot
happen. As both operations are atomic, either the read happens first, or the
write does. However, those atomic operations are more expensive than non
atomic ones. Hence we only use them to create the necessary synchronization
to avoid data races.

2.1.1 Synchronization on atomics

While atomics are unaffected by races, we still cannot trust them for se-
quential consistency. Due to potential reorderings by the compiler or the
processor, or delayed synchronization of different caches,a = 1; b = 1 may
become b = 1; a = 1. We hence need some construct to enforce ordering
between memory accesses, be them atomic or non atomic. We use fences
for that. We here only mention three of them: sequentially consistent (SC)

Read Write Read Read Write

N S | N

SC fence Acq fence Rel fence
Read Write Read Write Write

Figure 2.1: Fences synchronization

Read Acquire Read Write

N

Read Write Release Write

Figure 2.2: Release writes and acquire reads synchronization

ones, acquire (Acq) ones and release (Rel) ones. The synchronization they
offer is summarized in Figure 2. The sequentially consistent fence is the
strongest of them all: it forbids any reodering around it. However, it is quite
expensive. Hence, most of the time we try to use weaker fences, that take
less time to enforce. The release fence ensures that any read or write before
it will not be re-ordered after the writes after it. Hence reading a value
written by a write after this fence guarantees that all memory operations
that happened before this fence are visible as well: they were released with
the write. The acquire fence ensures that any read before it will not be
re-ordered with any read or write after it.

The easiest way to think about how those fences work, is to consider
that the order in which different operations appear in the program have no
impact on their actual execution order unless we use some special construct
that enforces an order. This is kind of the way the happen-before relation
defined in the C11 standard works [6]: we assume no order, and define using
fences, operations reading on the same variable, ... a transitive relation that
explicits the order that is preserved during the actual execution. Using this
way of thinking, a release fence creates arrows from all read and writes above
it to itself, and from itself to all writes below it.

On top of the fences, we can enforce synchronization by doing a release
write or an acquire read. Here the synchronization is slightly weaker than
when using a fence, as shown on Figure EZ2. For instance, the release write
only forbids reordering of previous read or writes with itself, and not with
all writes after itself.

2.1.2 Data races

Using the happen before relation we gave an outline of above, it is easy to
get a nicer intuition of data races: an program is racy if it contains two
operations on a non atomic location, one of which is a write, that are not
ordered with happen before.

Note that the bits of definition of happen before given here are in no way
formal, and simply aim at giving a better intuition of the synchronization
mechanisms we will study in this report.

2.2 Formalizing weak memory

We gave above some intuition of synchronization. However, this is far from
enough to build any proof for a program, let alone build a verification tool.
Quite a few formalizations have been proposed as a formal definition of what
can happen in this context. We will here use FSL++[5]. This separation
logic formalizes a strengthening of what the C11 standard describes. The
details of this strengthening are discussed in [5].

Let us first give an intuition of how this logic works. One further simpli-
fication imposed by this logic is that all locations are either atomic or non
atomic (whereas in C++ a cast could change that).

2.2.1 Atomics as exchange points

As we explained in the previous section, we usually use atomics to protect
non atomic locations from data races. Atomics are simply here to transfer
some information between threads, to ensure proper synchronization, and
let non atomics do the actual program work. This is for instance what we
do if we build a parallel program using locks: the atomics within the locks
enforce proper synchronization, and we use the rest of the variables to do
all the computations we are interested in.

FSL++ builds on this idea of atomics as mere signal senders between
threads. For each atomic variable, one can define a location invariant Q :
v +— Q(v). This invariant maps each value that can be read or stored in
the atomic variable to some predicate. Now when writing to an atomic
location a value v, a thread has to give up Q(v), whereas when it reads v
from this location, it gains Q(v). Some more rules are needed to ensure
that when reading twice the same value from a location, we do not get twice
the predicate. These rules are explained in more details in the parts of this
report they are relevant to.

2.2.2 Ownership

We just saw that in FSL-++ we use atomic locations to exchange predicates
between threads, but what kind of predicates? We here introduce the notion

of ownership. When a new non atomic location [is allocated by a thread,
the thread get full ownership of it, noted I!. This full ownership allows
the thread to read or write to the location. This ownership can then be
transferred to another thread through an atomic location for example. It
could also be split in two (or more) parts: 15 % [%5. Some of this fractional
permission can then be sent to another thread, while the other part of it
is kept. With this partial permission, a thread can only read from the non
atomic location [, and full permission is needed to write. As the total amount
of ownership is 1, and ownership cannot be created except when a variable
is allocated, there can always be at most one thread having full permission,
and if this is the case no other thread has any amount of permission. Hence
we make sure that at most one thread can write to a variable at any given
point, and if this is the case, no other thread can read concurrently to the
variable.

In [5], a notion of modality is also defined, to properly account for fences,
however in this report, we never need to use those modalities, as synchro-
nization always happen in such a way that no modality is present in the
proof presented. We will hence not explain more about them here.

2.2.3 Ghost states

On top of ownership, the predicates stored in the location invariants of
atomic locations can contain reference to a ghost state. A ghost state is
simply a special variable, that we use as a helper in the proof, to model
some information that cannot be translated simply using ownership. When
defining this special variable, we also define the domain in which it takes its
values. Carefully choosing this domain allows to model complex protocols,
that could not be modeled using FSL++ otherwise. In this report, we
will only use one kind of ghost state domain, the entity fractional-counting
(EFC) permission structure. It was defined in [9], and allows to prove with
few ghost locations the examples that were studied in [d].
The EFC permission structure is defined as

(Nsg x Qso x {—,+}) U{(a,0)",(a,0)"|a € N}, &, (0,0)",(0,0))
with the partial commutative and associative operation @ defined as

if a —c¢> 0 and
(a—c,b—d)~ b—d>0and
(a—c=0=b—-d=0)
undefined otherwise

(csd)* @ (a,5) 1= (a,b)" @ (c,d)* =

(a,b)t @ (c,d)" := (a+c,b+d)

(a,b)” @ (¢,d)” := undefined

The idea of this permission structure is to have a single source permission
(¢, 5)~, and some amount of tokens (1, s)*. The operation & being undefined
for two values with — ensures that there can only be one source permission.
This permission structure corresponds to the intuition one can have of an
atomic location [protecting a non atomic location d. We can have in the
location invariant of [the source permission, while threads that change the
value of the atomic location gain or give up some tokens. The tokens are
usually of the form (1,s)": they are hence unsplitable (because of the 1),
and s usually specifies the amount of permission the thread owns to d. For
instance a token (1,1)" specifies write permission. As & is not defined for
some values, a thread owning (1, 1) ensures that the source must be (¢, 1),
recording the fact that there is no permission left.

We explained above the idea of the tokens being related to an amount of
permission. The tokens themselves do not give any permission to a thread.
By defining carefully the invariant for [, we can make sure that a thread can
only gain permission at the same time as gaining a token. This can then be
used in the proof, by reasoning on the values of tokens and sources, to prove
that the program respects the invariant.

2.2.4 Token-based reasoning in Viper

In [I0], Wiesmann et al. abstracted some of the complexity of FSL++ and
the EFC permission structure, to be able to implement a tool that could
be used in Viper, and automate as much as possible of the reasoning for
concurrent C++ programs. Token based reasoning unifies the permission to
a location d®, and the token (1, s)™", into a new kind of token. It also removes
the exact amount of the permission s, replacing it with either write, read or
none. The possible tokes are hence

Tok (loc,n,7) where n € Nyg and 7 € {none, read, write}
and the source is now
Src(loc,n, 7) where n € N > 0, and 7 € {none, read, write}

This allows for simpler automation rules, at the price of some approxi-
mation, as we will see in Section B.

Chapter 3

Limitations of the EFC ghost
location and tokens

In this chapter, we will use the Folly library reader writer lock [2] to explore
some limitations of the EFC monoid defined in [9] and the token-based rea-
soning developed in [1]. While, as we will see, those limitations can easily
be overcome using some simple tricks, they make reasoning less intuitive,
and those tools harder to use.

3.1 The Folly reader-writer spinlock

The Folly reader-writer lock is used to allow multiple threads to access con-
currently a shared resource res, with either reader or writer privilege. This
lock allows multiple reader threads to access res concurrently, but makes
sure that if a thread has write access, all other threads are forbidden from
reading or writing to it. The (simplified) implementation of this lock is
shown in Figure B. This implementation is taken from [d].

The idea of the implementation is quite simple. It uses an atomic location
bits. The least significant bit of bits (which we will denote as Isb(bits))
indicates whether or not there is currently a thread with write access, while
|bits/4] indicates the number of threads currently having or attempting to
have read access. When a thread wanting a read access to res calls the
function try_lock_shared(), it first increments bits by 4. Then it checks
the value Isb(bits) had when it was incremented by 4. If it is zero, then there
is currently no writer thread. The call to try_lock_shared returns true,
indicating that the calling thread has obtained read access. If it is not zero,
the thread decrements bits by 4 and the call failed: no access is gained.
To release a reader lock, a thread simply decrements the bits variable by
4, using the unlock_shared function. To get a write-lock, a thread calls
try_lock, which simply atomically checks if bits is 0 (that is to say there is
no reader thread or thread currently attempting to get read access), and if

10

bool try_lock_shared ()

v0:=fetch__and_add_acq(bits ,4) //RMWI
if(lsb(v0) = 1) {
vl:=fetch__and_add_rel(bits,—4)//RMW2

res := false
}
else {

res := true
}
return res

}

void wunlock_shared () {
x:=fetch__and_add_rel(bits,—4)
}

bool try lock () {
v:=CAS_rel acq(bits ,0,1)
return (v = 0)

}

void unlock (bool getRead) {
x:=fetch__and_and_rel(bits ,~1)

}

void wunlock and_lock shared () {
x:=fetch _and add_acq(bits ,4) //RMWI
unlock (true)

}

Figure 3.1: Folly RW lock implementation (from [d])

11

so changes it to 1. Finally, to release a writer-lock, Isb(bits) is simply set to
0.

3.2 Proof using the EFC permission structure

As explained in more detail in Chapter B, the EFC permission structure is
based on the idea of giving entities, containing some amount of permission
and a token, to each thread that wants to be a reader or a writer. We then
record the number of tokens, and the total amount of permission that were
distributed.

Hence, when trying to prove this implementation correct using the EFC
permission structure, the first idea that comes to mind is to use only one
ghost location in the invariant, quantifying how many entities, and which
amount of permission were given away. This leads to the following invariant:

QFFC (y) :=letn = L%J + Isb(v), w = 1sb(v), in
s € QN0,1]-v>0AN(w=1s=1)A

resource(bits)!™* x }r)\ s (n,8)7)

corresponds to the full permission 1: >\ (1, 1)Jr ‘. The source >\ (n, s) ‘

in the invariant tracks the number n of entities that were glven away, as
well as the total amount of permission s that they contained. We show in
Figure B2 the function specifications we would like to prove.

Note that here the entities represented by the ghost location do not hold
any permission by themselves, they are simply used to track the permission
that is actually transmitted through resource(bits)?.

While this invariant and specifications seem quite straightforward, they
are not sufficient to prove correctness of the unlock_shared function. Let
us show where the proof fails.

To prove unlock_shared correct, we must use the fetch and add rule
shown in Figure 7 of [H]. We here instantiate Psend and Pieep 88 Psend =
REF ¢ (bits) and Preep = emp. It is hence sufficient to show that for all
values v > 0, we have that

12

{U(bits, Q)} bool try_lock_shared(){y.(y?RYF (bits) : emp)}

U(bits, Q)x]
{ REFC(bits) }v01d unlock_shared () {emp}

{U(bits, Q)}bool try_lockO){y.(y?WEFC (bits) : U(bits, Q))}

U(bits, Q)
WEFC (bits)* (getRead?
(getRead? void unlock(bool getRead) { get ea.) }
(L0 : R (bits) : exnp)

Lo - - = |

emp)

{ %Egz’(g)t;* }void unlock_and_lock) { R¥¥C (bits)}
A

Figure 3.2: Specifications of the lock functions

{U(bits, Q) * REFC (bits)}
CASel(bits,v,v — 4)
{y.(y = v Aemp) V (y # v A U(bits, Q) x REFC (bits))}

We want to show that when the fetch and add happens, there are some
values that bits cannot hold. To do so, the only rule we will use is the

CAS-_L one, defined in [G]. This rule is stated as follows:

Q(v) * P = false
{U(bits, Q) * P)}CAS,e1(bits,v,v'){a.a # v A U(bits, Q) * P}

We now proceed by case distinction. If v < 4 and 1lsb(v) = 0, that
would mean that there are currently no readers, which can’t be, as the
unlock_shared function can only be called by a reader. The cAs-L rule
allows us to prove that this indeed cannot happen. We have that Q(v) =

CAS-_L rule from [5] then allows us to conclude this case, by instantiating
P = REFC(bits).

The second case is v < 4 and 1lsb(v) = 1. Again, this should not
happen, as this value indicates that there are no readers. Here, we have

7777777 A
|

that Q(v) = }ﬁ)\ :(1,1)~ . We hence have again that for any ¢ in (0, 1),

13

the cas-L rule with P = REFC (bits).

The proof then fails for the case v > 4 and 1sb(v) = 1. In this case, we
would like to use again the CAs-_L rule: in our implementation, this case can
never happen, as we cannot at the same time have given a write permission
(as denoted by 1sb(v) = 1) and a read permission (currently owned by the
thread calling unlock_shared). However, the invariant fails to capture this
idea. The only information we can get from it here is that the amount
of permission that was given away in total is 1. For instance an invariant

each got permission 1/3 to the resource, or 1 writer got full permission, and
two threads are trying to get reader access (and are currently running the
try_lock_shared function). We could not express using only one ghost
location that the first case cannot happen.

While this example shows that the EFC permission structure is a bit less
expressive than we expect it to be at first sight, this proof can easily be made
to work using one extra ghost location, as is done in [d]. This extra ghost
location captures exactly the information we showed was lacking before: is
there currently a thread owning write permission?

It is interesting to note that this problem is not encountered in the Rust
Atomic Reference Counter proof using a single EFC ghost location developed
in [9]. This is simply because in this case, only readers of the data structures
are considered. It can hence be hardcoded in the invariant that the amount
of permission given away is always strictly less than 1.

3.3 Proof using token-based reasoning

We saw in the previous section how the EFC permission structure is weaker
in practice than what our intuition dictates. While this limitation can easily
be overcome, it is at the price of slightly less intuitive proofs. We will see
here that the token-based reasoning developed in [[] is itself weaker than
the EFC permission structure it was based on.

If we were to straightforwardly translate the proof developed in the pre-
vious section using the tokens defined in [I1], we would get the invariant
and read and write permissions shown in Figure B=3.

Now, in the unlock_shared function, we would like to prove that we
cannot read v < 4 from the location bits. Here we cannot do it, as the
token we own is not incompatible with the location invariant. Reading
v < 4 and Isb(v) = 1 from bits yields Src(res,1,none). Using the ANY-
SRC-READ-TOK rule from [I], we could then combine the source with our
read token to get Src(res,0,read), which using the ALL-TOKENS-A (from
[1] as well) yields Src(res, 0, write). We could not reach any contradiction
here.

14

QFFC(y) :=letn = LZJ + Isb(v), w = 1sb(v), in

v>0A (w=17 Src(res,n,none) : Src(res,n, read))

REFC (bits) = Tok(res, 1, read)

WEFC (bits) = Tok(res, 1, write)

Figure 3.3: Simple invariant and Read-Write permissions for the Folly
Reader-Writer Spinlock

This is because the tokens allow for "downgrading" of a token, from write
to read permission. Hence it could happen that a thread gets write permis-
sion, downgrades it to read permission, then gives back this permission. The
source then has to be able to reconstruct from the number of tokens it has
whether or not it now owns full permission or not. This could not happen
using the EFC ghost state directly as such a downgrading of permission

is not possible: the amount of permission ¢ contained in a ghost location
r--- -0 "

'A:(1,q9)" | cannot be made lower without further dividing the token.

" " "We here see that the proof fails earlier than when using the EFC per-
mission structure, showing a small difference between the two reasonings.
This can again be easily fixed, by making the proof a little less straight-
forward. We can for instance use the idea developed in [I1] for the Rust
Atomic Reference Counter proof: defining a different amount of tokens for
read and write permissions. This outcome can then be forbidden. By giving
3 tokens for read permission and 2 for write, we would reach a contradic-
tion by trying to combine Src(res, 2, write) and Tok(res, 3, read), using rule
TOO-MANY-TOKENS. This trick allows us to get as far in the proof as we
did using the EFC ghost location, but we then get stuck in the next step:
proving that v > 4 and Isb(v) = 1 is not possible. This is what we would
expect: the tokens are not more powerful than the EFC ghost location.

15

Chapter 4

Limitations of FSL+-+4

In the previous section, we showed some limitations of the EFC permis-
sion structure and token-based reasoning. However, those limitations could
be overcome, though they made proofs less intuitive and hence harder to
write. In this section, we will present some limitations of FSL++. Those
limitations seem more fundamental, as we could not find ways to overcome
them, and at least one would require an extension to the FSL++ logic. We
will present those limitations using two examples, from the glibc and Folly
libraries.

4.1 glibc Reader-Writer Lock

We will first focus on the glibc Reader-Writer lock [@]. As we will see in
Section 172, it cannot be proven in FSL++ for a deceptively simple reason.
We will still describe it in detail, as its synchronization mechanism is quite
interesting, and shows how a slightly different implementation can make for
different (or impossible in this case) proofs.

4.1.1 Implementation

The implementation of this lock is shown in Appendix Al This implementa-
tion was heavily simplified from the original one.

Just as the Folly reader-writer lock, this lock offers four main functions:
readLock (equivalent of lock_shared), readUnlock (unlock_shared), writeLock
(lock) and writeUnlock (unlock).

This implementation uses a single atomic location __readers, used sim-
ilarly as the location bits in the Folly reader writer lock. This location
is used as shown in Figure B, The least significant bit is used to denote
if the lock is in read or write phase. As can be expected, if it is in read
phase, only reader access can be granted, while if it is in write phase, only
writer access can be granted. The second least significant bit tells whether

16

is in write phase ?
\»

|

number of (aspiring)
readers

is there an (aspiring) writer ?

Figure 4.1: glibc reader-writer lock

or not there is currently a thread asking for or having write access. Finally,
| readers/8] gives us the number of threads currently owning reader ac-
cess or requesting it. For easier reading, we use the following denotation for
the value of __readers: __ readers/8|lsb(__ readers/2)|lsb(__ readers).
For instance, 2|1|1 corresponds to __readers = 19, which means the lock is
currently in write phase, and that one thread owns a write access, while two
threads are requesting a read access. If it were to contain 2|0|1, it means
it is still in write mode, but no thread owns write access to it. The imple-
mentation makes sure that in this case one of the threads requesting read
access will change the least significant bit to 0, allowing for read access. To
access the two least significant bits of __readers, the code uses two con-
stants: WRPHASE = 1 and WRLOCKED = 2. Using those constants we have
that __readers & WRPHASE (resp. __readers & WRLOCKED) is non zero if
and only if the least significant bit (resp. second least significant bit) of
__readers is non zero.

Each of the functions then uses appropriate synchronization mechanisms
to ensure the value of __readers accurately reflects the permissions threads
hold to the protected location, as well as proper synchronization when taking
or releasing the lock. A more detailed explanation of the lock implementa-
tion can be found in the Appendix Al The synchronization mechanisms are
quite complex, and not necessary to understand the following discussion.

We will here only focus on a further simplification of the readerLock
function which is sufficient to show the different mechanisms we are inter-
ested in. This simple code is shown in Figure B=2.

In this code, the function first increases the number of aspiring readers.
Then, if the lock is in read phase (that is to say r & WRPHASE == 0), the

17

Constants:
WRLOCKED = 2
WRPHASE = 1

int readLock (){
int r = fetch_and_ add_acq(__readers, 8) + 8
if (r & WRPHASE =— 0)
return 0

while ((r & WRPHASE != 0) && (r & WRLOCKED =— 0)){...}

while (load _acq(___ readers) & WRPHASE — 1){;}
return 0;

Figure 4.2: readLock function

function returns zero: the lock was acquired. Otherwise, the lock tries to
change the phase to read (in the elided content of the first while loop), and
returns if it succeeds. If it did not succeeded, it finally waits in the last
while loop until the phase is set to read by another thread. The zero return
value of this function simply indicates that it was able to execute without
errors. The original code contained additional lock options that could lead
to error codes, but we removed those here when simplifying the lock.

In the rest of this section, we will only use two executions scenarios to
support our reasoning. They are shown in Figure B23 and Figure 4. The
first one is the most straightforward: there is only one thread trying to
get the lock. It calls readLock(). The fetch_and_add occurs, increasing
the number of potential reader threads by 1. We then check if the least
significant bit (corresponding to WRPHASE) is set to 0. As it is the case, the
function returns: Thread 1 now has a read lock. In the second scenario,
Thread 1 holds a write lock when Thread 2 calls the readLock function.
Hence after the fetch_and_add, neither the if condition nor the following
while condition succeed. Thread 1 then releases the lock. The condition of
the final while is then not satisfied: the while loop terminates. The function
returns and Thread 2 now holds a read lock.

We see here that the calling thread can get read access to the resource in
two distinct points T. This is quite different from the Folly reader-writer spin-
lock implementation, where the access was granted by the fetch_and_add
operation only. If the lock was already taken, the function would cancel this
add (by subtracting the same value), and fail. We will see now how this
proves to be a problem when formalizing this lock in FSL++.

I There is actually a third one in the elided code, but it is not relevant to our discussion
here

18

__readers Thread 1
0]0]0
fetch_and_add_(__readers)
11010
if (r & WRPHASE == 0)
return O
Read lock succeeds!

Figure 4.3: First readLock() execution scenario

__readers Thread 1 Thread 2
0]0]0
writeLock()
011
fetch_and_add_(__readers)
111
if (r & WRPHASE == 0)
while(r & WRPHASE != 0 ...
writeUnlock()
11010

load_acq(__readers)&WRPHASE==
Read lock succeeds!

Figure 4.4: Second readLock() execution scenario

19

4.1.2 Read-Modify-Write and Load

As we saw in the two executions scenarios described above, read permission
can be given either by a fetch and add, or by a subsequent load. However,
when looking into the proof rules of FSL++, none of them allow for gaining
resources from a single atomic location both using a load and a fetch and
add. When looking further into it becomes quite clear why such a rule would
be quite difficult to implement.

In FSL++, atomic locations are used to transfer ownership (here to the
resources protected by the lock) between threads. It does so by using a loca-
tion invariant @ which for each value v gives the ownership corresponding to
this value. Then when writing value v to the atomic location, a thread has
to give up the assertion Q(v), and when reading value v, a thread gains this
assertion. However this simplistic idea is not sufficient: it could happen that
Thread 1 writes v, giving up Q(v), then Thread 2, reads v, gaining Q(v),
then Thread 3 reads as well v, gaining Q(v). Here, the assertion Q(v) has
been duplicated, which is clearly unsound 2. To forbid this outcome, FSL++
introduces the assertions Acq(¢, Q) and Rel(¢, Q). When a new variable is
created, the corresponding permissions {Acq(¢, Q) * Rel(¢, Q)} are created.
Rel(¢, Q) can then be freely duplicated, whereas the Acq(¢, Q) can only be
transmitted®, making sure only one thread is allowed to get ownership from
the location (all threads can read from the location, but they will get no
ownership from it).

Now for read modify write operations, that is to say operations that read
and write atomically to a variable, the situation is different. As the value
of the variable is read and changed in one atomic operation, the duplicating
problem does not occur anymore. If thread 1 does a fetch and add and
reads value v, it gets Q(v), and gives Q(v + 1). Hence if another thread
then does another fetch and add there is no risk of inadvertently getting
twice the same permission. Hence we can be more permissive here, allowing
multiple threads to perform read modify writes to the same location, and
all gaining ownership. To allow for this, FSL+-+ introduces the assertion
RMWAcq(¢, Q), that allows a thread to perform a read modify write opera-
tion on a variable, is freely duplicable and can be transmitted to all threads
requiring it. When a new variable is created, FSL+4 hence offers a choice
between Rel(¢, Q) xAcq(¥, Q) or Rel(¢, Q) * RMWAcq(¢, Q). There is however
no rule that would allow to have both Acq(¢, Q1)and RMWAcq(¢, Q2) for the
same location, with Q; not empty.

A new logic rule that would allow for this would be difficult to design, as
it would have to take into account the duplicability of RMWAcq(¢, Q) and

*For instance if Q(v) = resource(bits)!, this would lead to total permission access to
a location strictly greater than 1.

3 As will be explained in further details in Section B=2, the Acq(f, Q) assertion can also
be split, but this is not relevant here.

20

non duplicability of Acq(?, Q).

4.1.3 Separation of tokens and permission

We saw in the previous section how FSL++ rules do not allow for a proof
of the glibc reader-writer lock. Another interesting point of this lock when
thinking in terms of the EFC permission structure, is that it separates tokens
from permission. In the second scenario Figure B4, thread 2 increments the
number of readers with the fetch and add, but only gets permission with
the load in the second while. This would hence make counting the number
of permissions given away (as recorded by __readers / 8) difficult to link
with the amount of permission given (done in the load here).

4.2 Folly One Producer One Consumer Queue

We saw in the previous section that we could not use FSL+-+ to prove
strong results about the glibc reader-writer lock, because it lacked support
for both read modify writes and loads to the same variable. We will now
focus on a different example, using only store/load, to avoid encountering
this shortcoming again.

This new example is the Folly ProducerConsumerQueue [, a concurrent
fixed size queue. It allows for exactly one producer thread, and one consumer
thread. The queue is implemented using a circular buffer, as well as release
stores and acquire loads for synchronization. The full code, including some
extra functions that we will not discuss can be found in Appendix B. We
will here use the simplification of the code shown in Figure E=3.

An object Queue contains four fields: its size, an array records of size
size_, and two atomic indices readIndex, writeIndex. When creating
the object, both indices are set to 0. The queue offers two main functions:
write which takes an argument and adds it to the queue if it is not full, and
read which returns the last element if the queue is not empty.

Note here that in spite of its name, the read function requires full own-
ership to the array slot it is reading, as it deletes it when returning it.
This means that the producer and consumer threads need to transfer full
ownership between one another during those function calls.

This code is quite simple. Let us focus on the read function in more
detail. This function first reads the current read index. Note that this
read is relaxed. It is used here only to have a nicer interface for the func-
tion: as there is only one consumer thread, this thread could remember the
readIndex value from one call to another, and pass it as an argument to the
function, without fundamentally changing the function. We then compute
the position of the next slot in the array (which we use as a circular buffer
hence the need for %). The first synchronization then comes in: the value

21

bool write (toWrite){

int curWrite = load rlx(writelndex)

int nextWrite = (curWrite + 1) % size__

int curRead = load_acq(readIndex)

if (nextWrite != curRead){
records [curWrite] = toWrite
store_rel (writeIndex , nextWrite)
return true

}
return false

}

bool read(&valRead){
int curRead = load_rlx(readIndex)
int nextRead = (curRead + 1) % size _
int curWrite = load acq(writeIndex)

if (curRead = curWrite)

return false
valRead = records [curRead]
delete records[curRead]
store_rel (readIndex, nextRead)
return true

Figure 4.5: Simplified code for the Folly one producer one consumer queue

of writeIndex is read with an acquire synchronization. This synchroniza-
tion ensures that all reads or writes that come after will not be re-ordered
before. We then check whether the queue is empty. If not, we store the
current record in the reference that was passed as argument to the function,
then delete the record. Finally, we use a release store to update the value
of readIndex.

To better explain the synchronization ensuring that there is no data race
on records, we focus on a simple scenario: we start from an empty queue,
the producer thread then stores a value in records, and the consumer thread
then reads it. Part of this scenario is shown in Figure B4. The release store
to writeIndex ensures that any memory operation happening before it will
be visible to other threads when they see the value released. In particular,
any thread reading the new value of writeIndex will have the proper value
stored in records[0]. This is materialized by the red arrow. Then the
acquire load ensures that any memory operation after it will not be re-
ordered. In particular, reading in records[0] will happen after this value
was read, as shown by the blue arrow. Finally, as in this scenario the load
acquire reads the value from the previous release store, we have an ordering
between the two shown by the green arrow. There is hence a proper ordering
between the write access to records [0] by the producer thread and the read
access to it by the reader thread: data races are avoided.

22

Producer Consumer
records[0] = ...
@erel(writelndex, 0)

\4- load__acq(writelndex)
val = records|[0] /

Figure 4.6: Synchronization in the Folly one producer one consumer queue

4.2.1 Re-using values for location invariants

We saw in the previous section about the glibc reader-writer lock the need
for Acq(¢, Q) predicates, to ensure ownership could not be duplicated, for
instance by two threads reading to the same value. The restrictions on this
predicate are actually even stronger than what we developed there. The rule
for a read? in FSL++ is

{Acq(?, Q) x Init(¢)}1oad_acq(){v.Acq(¢, Qv := emp]) * Q(v)}

Hence reading value v from a location ¢ uses our permission to do so.
When the thread next reads the same value from this variable, it will not
be able to gain any ownership from it. The only way we could gain owner-
ship twice or more from reading the same value would be by splitting the
Acq(¥, Q) beforehand, using the following rule

Acq(?, Q1) * Acq(¥, Q2) = Acq(¥¢, M\v.Q1(v) * Qa2(v))

However, as noted when presenting the implementation of this queue,
both the read and write function require full ownership. As full ownership
cannot be split into two (or more) full ownership, we cannot apply this
rule here. Besides, FSL++ does not contain any rule that would allow for
strengthening the location invariant Q within Acq(¢, Q). This means that
when the location invariant in an acquire permission is set to emp for some
value v, it can never be made non-empty again.

So, if we were to prove the read code correct, we would need some
invariant Q, for the location writeIndex (as the synchronization uses this
location). This invariant would need to contain full permission for the slot in
the records array that the consumer thread can read. Now after some calls

4This rule is slightly simplified, some conditions are required on Q.

23

bool write (toWrite){

int curWrite = load rlx(writelndex)
int nextWrite = (curWrite + 1)
records [curWrite] = toWrite

store_rel (writeIndex , nextWrite)
return true

}

bool read(&valRead){
int curRead = load_rlx(readIndex)
int nextRead = (curRead + 1)
int curWrite = load acq(writelndex)

if (curRead = curWrite)

return false
valRead = records [curRead]
delete records[curRead]
store_rel (readIndex, nextRead)
return true

Figure 4.7: Simplified code for the Folly queue with infinite buffer

to the read and write functions, we may read the same value again from
writeIndex, as the slots in the circular buffer are used again and again.
At this point, since Q@ cannot be split while keeping full permission, it has
been kept full, and Acq(¢, Q) now has Q(v) = emp. We cannot gain any
new ownership. This is the case no matter which location invariant © we
chose, as long as it contains the full ownership required by the read function.
Hence we cannot prove this code to be correct using FSL++.

4.2.2 Infinite queue

As we have seen above, as the queue implementation uses many times the
same slots in the records array, used as a circular buffer, we cannot prove it
using FSL++. A simplification that immediately comes to mind would be to
use an infinite array for records. The queue would not be limited anymore,
and most importantly for us, slots in records are not re-used anymore.

Sadly, here again we were not able to use FSL++ to prove this simplified
code correct. The code of the simplification is shown in Figure B72.

Again, the problem lies in how we store ownership in location invariants.
We denote Q the location invariant of writeIndex. When the producer
thread adds a new value to the queue, it updates the value of writeIndex,
and hence needs to give up the corresponding assertion Q(v). Now if the
read function is then called, it reads writeIndex, and gets the corresponding
Q(v). However, if this is not the case and write is called again, it gives up
Q(v+1). The consumer thread calling read will then have access to Q(v+1),
but has no way to access Q(v) again. All the ownership contained in it is

24

lost: neither the producer nor the consumer can gain access to it again.

Here the correctness of this implementation relies on the fact that only
the consumer thread can gain ownership through writeIndex, and this vari-
able is always increased by 1. Hence if the consumer thread reads 1 then 4
from it, it is as if it had read 2 and 3 as well. We were not able to model this
idea using FSL++. This is not a problem when using read modify write, as
in this case all intermediate states of the variable are observed by one of the
threads: each write to this variable has to be preceded by a read to it.

Note that it would be tempting here to use the fact that the producer
thread begins the write function by reading the value writeIndex. One
could imagine that through this read the producer thread can get back
the resources it previously gave up. However, remember that Acq(¢, Q)
containing full ownership cannot be split between two threads, as explained
for the circular queue. This idea hence cannot be used here.

We are hence unable to prove this simplification of the queue to be
correct.

25

Chapter 5

Proving intertwined
synchronization mechanisms

In this chapter we will focus on a new example from the Folly library: the
Serial Executor [B]. This example makes use of two independent synchro-
nization mechanisms, using two atomic locations. We will show how FSL++
allows us to prove those two mechanisms almost independently. We have
not proven it in the proof framework developed in [T, but we believe that
this would be possible.

To the best of our knowledge, this is the first proof of this executor in
FSL++, as well as the only example making use of more than one synchro-
nization mechanism.

We now describe in more details this new example. An executor is a
tool that allows a thread to delegate the execution of a task. The thread
simply adds this task to the executor, and the executor guarantees that the
task will be executed at some point. Depending on the type of executor, the
executor may provide some extra guarantees on the execution order of the
task submitted to it. The executor we all know of is the CPU scheduler: it
has many tasks to execute (everything currently running on the computer)
and schedules them as it sees fit.

The Folly Serial Executor is an executor that guarantes that all the tasks
submitted to it will be executed serially: no two of them will be executed
concurrently. An example use case of such an executor would be in a server
for a port. We want to make sure that no two threads try to access the same
port at the same time. We can hence create a serial executor s dedicated to
that port. Now, any thread requiring action on this port will add the task
to this executor. The executor will then execute those tasks one after the
other, making sure no two tasks try to write to the port at the same time.

Note that it is possible that the executor uses multiple threads to exe-
cute the tasks assigned to the serial executor. The serial executor simply
guarantees that this will never be done concurrently: we will not have two

26

threads executing some tasks from the serial executor at the same time.

Besides, a serial executor guarantees that even if it is deleted, the tasks
that were added to it will be executed sequentially, as if it had not been
deleted.®

5.1 Implementation

A simplified implementation of the executor is shown in Figure Bl. This
code is quite different from the original, as it was originally divided among
two classes, and used pointers as well as customs destructors. A code more
faithful to the original can be found in Appendix O.

An executor is made of four fields. The field queue_ is used to record
the tasks that are submitted to the executor. The field parent_ refers
to another executor: the one that is the serial executor’s parent. Indeed,
the serial executor is merely a middleman here. It records the tasks that
are submitted to it (which we will call OT) in the queue of the queue_
field, and using this queue creates new tasks (NT) that it then add to its
parent, another executor, not necessarily serial. Those NT tasks use the
scheduled_ field to synchronize between one another, making sure that
only one of them executes OT tasks at any point in time. The NT tasks
may execute concurrently, but they make sure not to concurrently run the
OT tasks. Finally the field keepAliveCounter_ is used to track the number
of references to this executor, and deleting it when there are no references
to it anymore. The scheduled_ and keepAliveCounter_ fields are atomic
locations.

5.1.1 Ensuring sequential execution

Let us now describe the functions of the serial executor interface. The add
one is quite straightforward. It adds a new task, here denoted by func, to
the executor s. This is done by simply adding the task to the queue, and
sending a new task to the parent executor: running the serial executor run
function. Because the parent is an executor, it guarantees that this run
function will be executed at some later point in time. Besides, this run
function is private and only called by the add function in the serial executor
class. We hence have that there will be exactly one execution of run for
each call to add.

The run function is the one ensuring serial execution of the tasks, using
the scheduled_ location. To explain how it works, it helps to think about
what could have been an alternative implementation of this function. We
could have simply used scheduled_ as a flag recording whether or not there

!Unless the serial executor parent, that is the executor it delegates the tasks to is
deleted.

27

Executor newSerialExecutor (Executor parent){
s = alloc ();
s.parent_ = parent;
s.queue__ = new Queue ();
s.scheduled _ = 0;
s.keepAliveCounter_ = 1;
return s;

}

void add(Func func, Executor s){
s.queue__.enqueue (func);
s.parent__.add({this—>run () });

}

void run(Executor s){ //private function
if (fetch_add_acq(s.scheduled_, 1) > 0)
return;
do {
Func func = s.queue_ .dequeue ();
func ();
} while(fetch_sub_rel(s.scheduled_, 1) > 1);
}

void drop(Executor s){
int ¢ = fetch_sub_rel acq(s.keepAliveCounter_ , 1);
if(c = 1)
free(s);
}

Executor copy(Executor s){
fetch_add_rlx(s.keepAliveCounter, 1);
return s;

}

Figure 5.1: Simplified code for the Folly SerialExecutor

28

is currently a task executing. The simplified code would have been the
following
void run(Executor s){

if (CAS_acq(s.scheduled_, 0, 1)){
while (!s.queue_ .empty ()){
OF

func = s.queue.pop
func ()
}
CAS_rel(s.scheduled_, 1, 0);

}
}

We first try to set atomically scheduled_ to 1. If this succeeds, this is
now the only run() task from the serial executor s that can execute NT
tasks. Then as long as the queue is not empty, we keep executing one after
the other all the NT tasks that were added to it. When none are left, the
run() task releases the scheduled_ flag by setting it to 0. However, this
function requires two calls to queue_ per loop execution. One checking if it
is empty or not and the second popping an element?. The key remark here
is that we can use scheduled to count the number of elements in the queue
reliably. This is what is done in the run function shown in Figure BI.

Every time this function is called, it first increments scheduled_ by
one. As run is called every time an element is added to the queue_ by
the add function, scheduled_ records the number of elements in the queue.
Now if scheduled_ was zero before the task incremented it, the task starts
executing the tasks contained in queue_. This is similar to the case where
the CAS_acq on scheduled_ succeeded in the alternative implementation
discussed above. Every time a task from queue_ is executed, scheduled_
is decreased by one. As scheduled_ tracks the number of elements in the
queue, this ensures that we never try to pop from an empty queue®. When
scheduled_ reaches 0, that is to say when the value returned by fetch_sub
is 1, the task terminates. As in the alternative implementation shown above,
scheduled_ has been set back to 0, allowing another run() task to start
executing N'T tasks later.

We explained above the idea of the run function. Let us now develop
on the precise synchronization mechanisms used. As we have seen, it is
scheduled_ that allows execution to "pass' from one thread to another.
For instance, imagine Thread 1 calls run. It does the first fetch and add,
and sees that the former value was 0. It can hence start executing N'T tasks.
At some point, the fetch and sub brings scheduled_ back to 0. Thread 1

2Note that here, there is no risk of having a non empty queue when the condition check
is done, then its elements being removed by another thread before the pop is done. Indeed,
as scheduled_ is set to one, only the current task can remove elements from the queue.

3This is not trivial actually, it relies on the fact that no other thread can pop from the
queue, and that due to the careful of ordering of actions on scheduled_ and queue_, after
the fetch_sub, scheduled_ is smaller or equal to the number of elements in the queue.

29

stops executing NT tasks. Then at some later point, Thread 2 calls run,
and starts executing tasks. Here when Thread 2 takes over execution, we
have to make sure that for any other observer thread, all the memory events
done by Thread 1 as part of executing the tasks stay before all the memory
actions Thread 2 will do. As Thread 1 used a fetch and sub release, we
know that all events executed in Thread 1 before this fetch and sub will
stay before the action that set scheduled_ to 0. Besides, as Thread 2 uses
a fetch and add acquire, all events that are executed after this fetch and add
cannot be re-ordered with it. We hence have the required synchronization:

release

{Tasks 1} —— {scheduled_ = 0} 2cduire, {Tasks 2}

where we use Tasks 1 (resp. 2) to refer to the tasks executed by Thread
1 (resp. 2).

5.1.2 Ensuring proper deletion when deleting references

The functions drop and copy ensure that when all references to a serial
executor s are gone, it is deleted, but not before that. They do so in a
fashion extremely similar to that of the Rust Atomic Reference Counter,
studied in [G]. keepAliveCounter tracks the number of references to the
serial executor. Those references can be obtained through the copy function,
and deleted using the drop function. The latter then deletes the serial
executor if the reference dropped is the last one.

The only difference between this code and the one of the Rust ARC is in
the drop function. In the Rust ARC, the code is the following (taken from

int ¢ = fetch_sub_rel(s.keepAliveCounter_ , 1);
if(c = 1){

fence__acq;

free(s);

}

For the serial executor, instead of using a fence acquire only for the last
decrement, every fetch and sub contains an acquire synchronization. For
all the decrements that do not yield 0, this extra synchronization does not
affect the behavior we want to achieve. Finally, for the last decrement,
having acquire included in the fetch and sub instead of a standalone fence
does not change the synchronization provided by the function®?.

For a more in depth explanation of the synchronization mechanisms at
play here, refer to [4].

4In practice, there is a slight difference: a fence acquire prevents re-ordering of any read
before it with any read or write after it, whereas a load acquire only forbids re-ordering
between the load itself and any subsequent read or write.

30

5.2 Properties of the SerialExecutor

We explained above the implementation of the serial executor. We will here
detail the few properties we set out to prove about this code

The first property we want to show about this code, is that the Serial-
Executor is indeed serial, that is to say all functions passed to it through
add are executed sequentially, and never concurrently. As we are only in-
terested in the synchronization mechanism here, we model this using the
following simplification. We consider one non-atomic location protected,
and consider that all functions passed to add need full ownership of this
location for their execution, and nothing else. We hence have to show that
when they are run, they are in a thread that does own this permission. The
code with this simplification is shown in Figure B2. Let us now explain why
proving this simplification correct ensures non concurrent execution of the
tasks.

If we manage to prove this simplification correct, we will have proven
that there is no data race on the non atomic location protected_. This
means, by definition of a data race as given in Section B, that all memory
operations on protected_ are ordered by the happen-before relation, that is
to say they are all executed serially, and not concurrently. This would then
allow us to conclude that the synchronization in the run function is enough
to ensure ordering of the all operations executed within the repeat loop:
setting protected_ to some value a. If we were to replace this operation by
any function execution, as is the case in the original Serial Executor code,
we keep this property on ordering: the functions submitted to the Serial
Executor are all executed serially.

Note: One could think that proving the simplified code correct only shows
that the Serial Executor provides serial execution of the write memory op-
erations submitted to it, and not necessarily read operations. Indeed, we
mentioned in Section B that the release and acquire fences provide differ-
ent ordering constraints to read and write operations. However, in the run
function, the only synchronization operations are a release fetch and sub
and an acquire fetch and add. Both of those operations do not discriminate
between read and writes in the synchronization they provide, as shown in
Figure 2. Proving ordering of the write operations is hence enough to
conclude on ordering of all memory operations, read and write alike.

The second property we are interested in is a proper use of the queue: we
need to make sure that at any point there is at most one consumer, while
there can be many producers. To model this, we introduce two abstract
predicates Consumer(s.queue) and Producer(s.queue). They are governed

31

by the following properties:

{emp}q = new Queue () {Consumer(q) * Producer(q)} (NEW QUEUE)

Producer(q) <= Producer(q) * Producer(q) (PRODUCER DUPLICATION)

D
{Consumer(s.queue)}q.dequeue () {y.Consumer(s.queue)} (DEQUEUE)

E
{Producer(s.queue)}q.enqueue (a) {Producer(s.queue)} (ENQUEUE)

The (NEWQUEUR) allows us to create a new queue, and creates permission
for a consumer and a producer. The (PRODUCER-DUPLICATION) equivalence
allows us to duplicate the producer permission, allowing mutliple threads to
add to the queue. ([DEQ H) and (ENQ H) simply encode that a thread
con only enqueue (resp. dequeue) an element from the queue if it owns
the Producer(s.queue) (resp. Consumer(s.queue)) predicate. Those two
predicates should be thought of as some placeholders, that could be replaced
with more precise predicates defining the behavior of a single consumer
multiple producers queue.

Finally we want to prove that the keepAliveCounter works as expected,
that is to say like the Rust Atomic Reference Counter. The specification is
quite simple: the deallocation of the executor s is not done until all threads
are done with using the fields of s that are deallocated. However, note that
the specification of the SerialExecutor requires that even if it is deleted, all
the tasks submitted to it will still be executed with the same guarantees. We
can rephrase this property about the keepAliveCounter more precisely as:
no read to the parent_ field of the executor should race with the deallocation
of this executor.

Some other properties could be proven on this code, for instance the fact
that we never try to get an element from the empty queue. However, this
would require first defining and proving the properties of a single consumer,
multiple producer queue.

5.3 Formalizing the specifications

To produce a formal proof of the properties described above, we need to
rewrite again the code of the serial executor, using only language constructs
allowed in FSL++. The main change is the use of a protected non atomic
variable to model the resources the serial executor protects. Instead of

32

pushing tasks func to the queue, we now push some integer value, and
executing a task is simply assigning this value to the protected field. We
also replace the do ... while loop with a repeat, that repeats its body
until it returns a non-zero value. Finally, the drop function now returns
the value it read from keepAliveCounter_, so that we can have a more
precise specification of this function. The resulting simplified code is shown
in Figure b2.

Verifying our first property, that is to say that the executor guarantees se-
rial execution now amounts to proving that when the write to s.protected_
happens in the add function, we currently have full ownership of the s.protected_
location.

Verifying the second property simply requires showing that when calling
s.queue_.dequeue (), a thread holds the assertion Consumer(s.queue), and
when calling s.queue_.enqueue() it holds Producer(s.queue).

Finally, to show that keepAliveCounter_ works as expected, we need to
show that there exists a predicate SE(s) such that the function specifications
shown in Figure b3 hold. This predicate is parameterized by a ghost location
we will define in further detail later. For the sake of simplicity, we remove
the dependency on the protected location from this predicate.

Besides, this predicate should allow us to satisfy the two first properties.

5.4 Proof of the specifications

We will now prove each of the formalized specifications defined in the previ-
ous section. To do so, we define a location invariant for s.scheduled_ and
s.keepAliveCounter_, and define the SE,(s) predicate.

Definition 1 (scheduled_ invariant). For a location x, we define the fol-
lowing map, from values to assertions

Qu.s(c) =c>0A if c=0 then s.protected_l*Consumer(s. queue) else emp

This invariant simply contains ownership of the protected_ resource, as
well as predicate encoding consuming elements from the queue.

Definition 2 (keepAliveCounter_ invariant). For a location x and a ghost
location vy, we define the following map, from values to assertions

This invariant uses the EFC permission structure for the ghost state ~.
It is almost identical to the invariant defined in [9] for the proof of the Rust
ARC.

Finally, we define the predicate SE,(s).

33

Executor newSerialExecutor (Executor parent, Ress protected){

s = alloc ();

s.protected = protected;
s.parent_ = parent;

s.queue__ = new Queue ();
store_rel(s.scheduled , 0);
store_rlx (s.keepAliveCounter_ , 1);
return s;

}

void add(int f, Executor s){
s.queue__.enqueue (f);
s.parent_ .add({this—>run()});

}

void run(Executor s){
¢ = fetch_add_acq(s.scheduled_, 1);
if(c > 0) {}
else{
repeat (
a = s.queue_ .dequeue ();
s.protected_ .set(a);
¢ = fetch_sub_rel(s.scheduled_, 1);
(¢ = 1)//return value of the expression within repeat
)

}
}

int drop(Executor s){
int ¢ = fetch_sub_acq(s.keepAliveCounter_ , 1);
if(c = 1)
free(s);
return c;

}

Executor copy(Executor s){
fetch_add_rlx(s.keepAliveCounter, 1);
return s;

}

Figure 5.2: FSL++ compatible Serial Executor code

34

{protected' JnewSerialExecutor(parent, protected){s.3y.RE,(s)}

{SE, (s)}add(£, 5){SE, (s)}

{U(s.scheduled_, Q)}run(s){U(s.scheduled ,Q)}

{SE,(s)}copy(s){SE,(s) * SE;(s)}
{SE,(s)}drop(s){y.(y > 1 Aemp) V (y =1A s.parent_l)}

Figure 5.3: Serial executor fonctions specifications

Definition 3 (Serial executor resource).

SE,(s) = U(s.scheduled , Q) * U(s.keepAliveCounter ,P)
* Producer(s. queue) x 3¢ € QN (0, 1].s.parent_?

In this definition, we use U(¢,R) as a shortcut for
Rel(¢, R) *x RMWAcq(¢, R) * Init(¢)

as is done in [5].
We can now set out to prove that all of the formal properties outlined
in the previous sections hold.

5.4.1 Function newSerialExecutor

The proof outline of this function is given in Figure b4. We use here that a

5.4.2 Function add

Verifying this function is trivial, as the Serial Executor predicate SE,(s)
contains the predicate Producer(s.queue) allowing to push elements to the
queue.

5.4.3 Function run

The proof outline for this function is shown in Figure bZ3. Remember that
this function is not run by the thread using the executor, but by the executor

35

newSerialExecutor(parent, protected)

{protectedl}

s = alloc()
RMWACcq(s.scheduled , Q) * Rel(s.scheduled , Q)x
RMWACcq(s.keepAliveCounter ,R) * Rel(s.keepAliveACounter ,R)x
s.protected_1 * s.parent_1 * protected

s.protected_ = protected

s.parent__ = parent
RMWAcq(s.scheduled_, Q) * Rel(s.scheduled_, Q)*
RMWAcq(s.keepAliveCounter ,R) * Rel(s.keepAliveACounter ,R)*
s.parenti1 * s.protectedi1

s.queue_ = newQueue()
RMWACcq(s.scheduled , Q) * Rel(s.scheduled , Q)x
RMWACcq(s.keepAliveCounter ,R) * Rel(s.keepAliveACounter ,R)x
s.parent ! s.protected ! Consumer(s.queue) * Producer(s.queue)

Store_Rel(s.scheduled_,0)
U(s.scheduled_, Q) * RMWAcq(s.keepAliveCounter ,R)x*

7777777 il
|

Rel(s.keepAliveACounter ,R) x }r'y :(0,0)7

s.parenti1 Producer(s.queue)

Store_R1x(s.keepAliveCounter 1)
{ U(s.scheduled_, Q) * U(s.keepAliveCounter_,R)x }

s.parent !

Figure 5.4: Proof outline for the newSerialExecutor function

36

{U(s.scheduled ,Q),Q)}

run(s)

{U(s.scheduled ,Q)}

c = fetch add acq(s.scheduled 1)

{U(s.scheduled , Q) * (c = 07?s.protected ! x Consumer(s.queue) : emp)}
if(c > 0){}

else{

{U(s.scheduled , Q) * s.protected ' Consumer(s.queue)}

y = repeat(

{U(s.scheduled , Q) s.protected !« Consumer(s.queue)}

a = s.queue__.dequeue()

{U(s.scheduled , Q) «s.protected !« Consumer(s.queue)}
s.protected__.set(a)

{U(s.scheduled , Q) «s.protected !« Consumer(s.queue)}

c = fetch_ sub_rel(s.scheduled 1)

{¢>1AU(s.scheduled_, Q) (c = 17emp : s.protected ' x Consumer(s.queue)}
(c=1)

)Jend

{y.U(s.scheduled ,Q) A (y = 07s.protected ' * Consumer(s.queue) : emp)}

}

Figure 5.5: Proof outline for the run function

37

parent. As there is no way to model this delegation of execution in FSL++,
we here simply assume the weakest precondition needed to prove this func-
tion correct: U(s.scheduled , Q). This precondition is freely duplicable,
and available in any thread calling the add function. Hence, the only thing
we do not formally model in FSL++ is how this predicate is passed to the
parent executor in the line s.parent_.add(..) of the add function.

We first need to prove the fetch and add, that is to say show that:

{U(s.scheduled ,Q)}
c = fetch_add_acq(s.scheduled 1)
{U(s.scheduled , Q) * (c = 17emp : s.protected ' x Consumer(s.queue))}

For this we use the fetch and add rule outlined in [5]. We first need the
fact that U(s.scheduled_, Q) is duplicable. We now choose Pseng = emp
and Pjeep = U(s.scheduled , Q). We then need to show that for any value
t >= 0, we have

{U(s.scheduled_, Q) *xemp}
CAScquire(s.scheduled ,t,t+ 1)
{ y.(y=tAQ(t) V (y #t AU(s.scheduled_, Q) xemp) }

This compare and swap is trivial to prove, as the only two cases are t = 0
and t # 0.

We now move on to the repeat instruction. To prove it correct, we use
the following rule:

{P} E{y.Q}
Q/yl =P

{P} repeatFEend {y.Q Ay # 0}

where we chose
P = U(s.scheduled_, Q) * s.protected_! % Consumer(s.queue)

Q = U(s.scheduled , Q)+y = 0?s.protected '+Consumer(s.queue) : emp

We hence need to prove that

{U(s.scheduled , Q) s.protected ' Consumer(s.queue)}

a = s.queue__.dequeue(); s.protected_.set(a);

{U(s.scheduled , Q) «s.protected !« Consumer(s.queue)}

c = s.scheduled_.fetch_ sub(1,release)

{¢>1AU(s.scheduled_, Q) (c =17emp : s.protected ' x Consumer(s.queue)}

38

We use again the fetch and add rule outlined in [5], and the fact that
U(s.scheduled_, Q) is duplicable. We chose for all ¢ # 1

Psend(t) = emp

Preep(t) = U(s.scheduled , Q) * s.protected’ * Consumer(s.queue)

and
Poend(1) = s.protected! * Consumer(s.queue)

Preep(1) = U(s.scheduled , Q)
We then need to show that for all £ > 0, we have that

{U(s.scheduled , Q) * s.protected! x Consumer(s.queue)}
CAS_rel(s.scheduled ,t¢,t—1)
{ y(y=tAQ(t)V (y#tAU(s.scheduled , Q) * Preep) }

The only non trivial part is making sure that the fetch and sub cannot read
0 from s.scheduled_. This simply requires the CAS — 1, and the fact that
¢! % /' = 1: we cannot have more than 1 amount of permission for a single
location (s.scheduled_ here). This concludes the proof.

Note that here, we have that when a dequeue() operation is done, the
predicate Consumer(s.queue) holds, as well as the fact that when writing
to s.protected_, we have s.protected_l.

5.4.4 Functions drop and copy

The proof of those functions is exactly the same as the one of the copy and
drop functions provided for the Rust ARC in [4].

5.4.5 Some notes on constructors and destructors

Here the drop function only gives back permission to s.parent_. This is
because as explained in the beginning of this chapter, the serial executor
is not fully deleted when all references to it are removed. The queue and
protected location are freed only when all tasks submitted to the executor
have been executed, on top of the deletion of the executor. It would be
interesting to further delve into the original code of the executor, to pinpoint
the mechanism ensuring this deletion, and try to model it in FSL++.

Besides, as we model here the constructor of the serial executor as a
new function, we have to use a release synchronization for the initialization
of s.scheduled_, This synchronization is not present in the code, and is
only needed here because we could not model the construction of an object
properly: the fields of this object can only be accessed once its creation (and
initialization happening within) have been finished.

39

Chapter 6

Conclusion and future work

In this project we investigated potential limitations of the token-based rea-
soning tool devised in [}, based on the EFC permission structure defined
in [9], using FSL++ logic. At the beginning of this project, we expected to
find limitations due to using only the EFC permission structure for ghost
states, or to the simplifications further introduced by token-based reason-
ing. However, those new limitations were merely in ease of use of the system:
those new tools are slightly diverging from our intuition of them, but we did
not find any case where they actually restricted what could be proven. Sur-
prisingly, the hard limits we encountered were those of FSL++. We showed
that neither the glibc reader writer lock [4] nor the Folly one producer one
consumer queue [{] could be proven using this logic. Hence, while the infras-
tructure developed in [9] and [IT] has proven efficient so far in harnessing the
potential of FSL++ for automated reasoning, it seems that FSL++ is lim-
ited in some fundamental ways, especially for synchronization mechanisms
using loads and stores, and not only read modify writes.

Finally, we provided the first, to the best of our knowledge, proof of
the Folly Serial Executor [3]. This proof demonstrates the effectiveness of
FSL-++ to prove correct intertwined independent synchronization mecha-
nisms.

6.1 Future work

As developed above, the main limits we encountered were those of FSL+4+.
This open at least three directions of work: trying to extend FSL++ to
overcome those limits, or finding a new, more expressive, logic to build an
infrastructure on. The first direction seems difficult, as the extensions would
require some heavy changes to the logic, endangering its soundness proof.
The second direction would require developing new abstractions and tools,
and a more expressive logic would probably prove difficult to automate, at
least partially. Finally, a third way would be to keep FSL++, and the

40

infrastructure built in [0] and [I1], for what they seem extremely efficient
at: proving correct synchronization mechanisms that use only read modify
writes, and exploring new examples that fit this category.

6.2 Acknowledgments

I would like to thank my supervisors Gaurav Parthasarathy and Alexander
J. Summers for their guidance throughout this project. I would I also like to
thank Prof. Peter Miiller for the opportunity to work on such an interesting
topic.

41

Bibliography

[1]

Facebook folly one producer one consumer queue.
https://github.com/facebook/folly/blob/master/folly/
ProducerConsumerQueue.h, 2019 (accessed August 27, 2019).

Facebook folly reader writer lock. https://github.com/facebook/
folly/blob/master/folly/RWSpinLock.h, 2019 (accessed August 27,
2019).

Facebook folly serial executor. https://github.com/facebook/
folly/blob/master/folly/executors/SerialExecutor.cpp, 2019
(accessed August 27, 2019).

Glibc pthread reader-writer lock. https://sourceware.org/
git/7p=glibc.git;a=blob;f=nptl/pthread rwlock common.c;
h=8db861tfdcb49f6dba3tbabdf151at8d38512d131 ;hb=HEAD, 2019
(accessed August 27, 2019).

Marko Doko and Viktor Vafeiadis. Tackling real-life relaxed concur-
rency with FSL++. In European Symposium on Programming (ESOP),
pages 448-475. Springer, 2017.

ISO. C11 Standard, 2011. ISO/IEC 9899:2011.

Leslie Lamport. How to make a correct multiprocess program execute
correctly on a multiprocessor. IEEE Trans. Comput., 46(7):779-782,
July 1997.

P. Miiller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 9583 of LNCS, pages 41-62. Springer-
Verlag, 2016.

Gaurav Parthasarathy. Applying and extending the weak-memory logic
FSL++. Research in Computer Science Project, ETH Ziirich, 2017.

42

https://github.com/facebook/folly/blob/master/folly/ProducerConsumerQueue.h
https://github.com/facebook/folly/blob/master/folly/ProducerConsumerQueue.h
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://github.com/facebook/folly/blob/master/folly/executors/SerialExecutor.cpp
https://github.com/facebook/folly/blob/master/folly/executors/SerialExecutor.cpp
https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_rwlock_common.c;h=8db861fdcb49f6d5a3fba6df151af8d38512d131;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_rwlock_common.c;h=8db861fdcb49f6d5a3fba6df151af8d38512d131;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_rwlock_common.c;h=8db861fdcb49f6d5a3fba6df151af8d38512d131;hb=HEAD

[10] A. J. Summers and P. Miiller. Automating deductive verification for
weak-memory programs. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS, pages 190-209. Springer-
Verlag, 2018.

[11] Pascal Wiesmann. Deductive verification of real-world C++ weak-
memory programs. Master’s thesis, ETH Ziirich, 2019.

43

Appendix A

Glibc reader writer lock
implementation

We show below a simplification of the code of the glibc pthread_rwlock[4].
In this appendix, we use the following abbreviations: Acq for acquire, Rel for
release and Rlx for relaxed. While a lot of care was taken when transcribing
this code, it may still be possible that some errors can be found, as a lot of
simplifications were needed from the original code to this one.

The original code offers the possibility to prefer writers over readers.
We removed the code allowing this. We also removed extra variables that
were used for futex. These variables allowed threads to be added to a wait
queue, until a particular change to the variable awoke them. This avoided
the need for constant spinning on the __readers location. The correctness
of the lock is not affected by those variables. Each function also returns a
zero value confirming that it executed without errors. Those errors could
be raised by some checks that we removed here, as they were only of use for
some options of the locks we removed.

The constant WRLOCKED = 2 allows us to directly access the second least
significant bit, denoting if there is a thread requesting or having write access,
while WRPHASE = 1 corresponds to the least significant bit, telling if the lock
is in read or write phase.

The number of threads currently having or requesting write access to
the lock is | readers/8], as the third least significant bit is used in the
original implementation. We do not mention it here, as it is only used when
using the lock in a particular mode we are not interested in.

In this code, each CAS instruction not only reads and updates the value
of __readers, it also updates the value of r with the value it read in
__readers. This is done by passing a reference to r to the custom compare
and swap in the original code. We removed the explicit reference, but need
to keep in mind this update.

Constants:

44

WRLOCKED = 2
WRPHASE = 1

int readLock (){
int r = fetch_and_add_acq(__readers, 8) + 8
if (r & WRPHASE =— 0)
return 0
while(r & WRPHASE != 0 && r & WRLOCKED — 0){
if (CAS_acq(___readers, &r, r =~ WRPHASE))
return 0
}
//there is a writer (maybe in waiting),
//it will get us to read mode at some point
while (load__acq(___ readers) & WRPHASE — 0){;}

return 0
}
int readUnlock (){
int r = load_rlx(__readers)
while (1){
int rNew = r — 8
if (rNew = 0){
if (rNew & WRLOCKED)
rNew |= WRPHASE
}
if (CAS_rel(___readers, &r, rNew))
break
}
return 0
}

int writeLock (){
int r = fetch_and_or_acq(__ readers, WRLOCKED)
if (r & WRLOCKED){
while (1){
if (r & WRLOCKED — 0){
if (CAS _acq(__ readers, &r, r | WRLOCKED))
break
continue
}
r = load_rlx(___ readers)
}
r |= WRLOCKED
}
if (r & WRPHASE)
return 0
while(r & WRPHASE — 0 & r / 8 — 0){
if (CAS _acq(___readers, &r, r | WRPHASE)){
return 0
}
}
while (load rlx(__ readers) & WRPHASE =— 0) {;}

return 0

45

int writeUnlock (1){
r = load_rlx(___readers)
while (1)
int rNew = r = WRLOCKED
if(r / 8 > 0)
rNew = WRPHASE
if (CAS_rel(___readers, &r, rNew))
break;
}

return 0

}

A.1 Implementation explanation

Let us now explain in a bit more details how this code works. Note that
this is not necessary to understand why we cannot use FSL-++ to prove
this code. It is however interesting, as it provides a completely different
approach to the reader writer lock than the one offered by the Folly library
[2].

To approach this code, we will first outline the protocol readers and
writer abide by, and then explain how each function uses and enforces that
protocol.

Definition 4 (Unlock Protocol). Both the readUnlock() and writeUnlock()
functions abide by the following:

1. They are genial: when a writer (resp. reader) unlocks, if there are
other readers (resp. writer) waiting, they will change the phase from
write to read (resp. read to write). Note that a readUnlock() can
only do so if there are no other readers (__readers / 8 = 0);

2. They prefer their kind: when a writer (resp. reader) unlocks, if there
are no readers (resp. writer) waiting, they will not change the phase,
leaving it as write (resp. read).

A.1.1 Required synchronization

We want to make sure this lock enforces proper synchronization, that is to
say there cannot be any data races on the location it protects. To enforce
this it is sufficient to make sure that every unlock contains a release write
to __readers, while every lock contains an acquire read to this location.
The release write forbids any memory actions from the first thread to be
re-ordered past the write, which synchronizes with the acquire read reading
from it, and the latter forbids any memory actions by the second thread to be
re-ordered before the read. It is not sufficient to have an acquire load in the
lock function for this to hold: this acquire has to be the one that signals the

46

lock begin acquired, that is to say the last one before the function returns.
Those conditions are satisfied by the lock and unlock functions of this lock.
We will hence not mention these synchronization points in the remainder of
this appendix.

A.1.2 readlock() function

Let us first focus on the read lock. This function first increases __readers
by 8, that is to say signals itself as a new aspiring reader. It then checks
what used to be the value r of __readers before it incremented it. If this
value indicates a reader phase (that is to say r & WRPHASE = 0), the read
lock was acquired and the function returns. If r indicates a write phase,
there are two cases. If there is no writer thread currently (that is to say r
& WRLOCKED = 0), the function tries to set the phase to read. This is done
in a loop, as the attempt may fail if some other reader thread incremented
__readers in the meanwhile. This loop is repeated until it succeeds, or
some other thread sets the phase to read, or some writer thread gets the
lock (by setting the least second bit to 1). If the loop did not succeed, we
are in one of the two following cases: either some other reader thread has
set the phase to read, or some write thread got the lock. In both cases, it is
enough to wait until we read that the phase is now read. In the latter case,
we rely on the first part of the unlock etiquette given in Definition .

A.1.3 writeLock() function

The writeLock() function first uses a fetch and or to set the WRLOCKED bit
to 1. It then checks what used to be the value r of __readers. If r &
WRLOCKED = 0, it succeeded in signaling itself and can move on. If it is not
the case, the fetch and or had no effect: the current thread was not registered
as an aspiring writer. It hence needs to enter a loop, trying to set this bit
from 0 to 1, using a compare and swap. This loop uses a relaxed load to
lessen the synchronization: this load checks on __readers, and if it notices
that the compare and swap could succeed (ie the second least significant bit
is 0), the if statement containing the compare and swap is attempted®.
Once the second least significant bit of __readers has been successfully
set to 1, we check if we are in read phase. If this is the case, we simply
return (note that the latest read to __readers is then the compare and swap
acquire, or the fetch and or acquire, fulfilling the synchronization conditions
outlined in section A7TT). If this is not the case, either there are no readers,
in which case we try to set the phase to write using another compare and
swap, or there is at least one reader, and we wait for it to set the lock to
write mode. We keep trying to change the phase until we either succeed, or

"When the compare and swap is attempted, it updates the value of r. If it fails, we
can hence skip reading (using the relaxed load) __readers again, using the continue.

47

there are readers, or the lock is in write mode. If we did not succeed, we
then check on __readers until it is in write phase, relying on Definition @.

A.1.4 readUnlock() function

This functions simply repeatedly attemps a compare and swap until it suc-
ceeds. The new value is chosen so that we respect Definition B: if there are
no more readers, and an aspiring writer, we set the phase to write.

A.1.5 writeUnlock() function

Similarly, this function uses a compare and swap, and sets the phase to read
if there are any aspiring readers.

48

Appendix B

Folly
ProducerConsumerQueue
implementation

We show below a simplification of the code of the Folly ProducerConsum-
serQueue [].

class ProducerConsumerQueue{
int size_ ;
Tx records_ ;

//Atomic locations
int readlndex_ ;
int writelndex_ ;

ProducerConsumerQueue (int size){

}

size_ = size;

records = malloc(sizeof (T) % size);
readIndex_ = 0;

writelndex_ = 0;

bool write (Arg recordArg){

int currentWrite = load_rlx (writeIndex_);
int nextRecord = currentWrite + 1;
if (nextRecord = size_){

nextRecord = 0;

}
if (nextRecord != load Acq(readIndex_)){

records [currentWrite] = new T(recordArg);
store_rel (writeIndex_, nextRecors);
return true;

}

return false;

49

bool read (T& record){

int currentRead = load_rlx(readIndex_);

if (currentRead = load acq(writeIndex_))
return false; //queue is empty

int nextRecord = currentRead + 1;

if (nextRecord = size){
nextRecord = 0;

}

record = records_ [currentRead];

records_ [currentRead].~T();

store_rel (readIndex_ , nextRecord);

return true;

}

Tx frontPtr (){
int currentRead = load_rlx(readIndex_);
if (currentRead =— load_acq(writeIndex_))
return nullptr;//queue is empty
return &records_ [currentRead];

}

bool isEmpty () const {
return load_ acq(readIndex_) =— load_acq(writeIndex_);

}

bool isFull() const {
int nextRecord = load Acq(writeIndex) + 1;
if (nextRecord = size_)
nextRecord = 0;
if (nextRecord != load Acq(readIndex));
return false;
return true;

}

//if called by consumer, true size may be more
//if called by producer true size may be less
size_t sizeGuess () const {
int ret = load_Acq(writeIndex_) — load_Acq(readIndex_);
if(ret < 0)
ret 4= size_ ;
return ret;
}
}

50

Appendix C

SerialExecutor
implementation

We present below a simplified code for the Folly SerialExecutor. What this
executor does is explained in more details in Chapter B. The code ruling
the behavior of this executor can be found in the following files:

e https://github.com/facebook/folly/blob/master/folly/executors/
SerialExecutor.cpp

e https://github.com/facebook/folly/blob/master/folly/executors/
Serialkxecuntor.h

e https://github.com/facebook/folly/blob/master/folly/Executor.
h

As the code is originally in C++4, it makes heavy use of pointers. Re-
member that in C++, objects are manipulated as values, whereas they are
manipulated as references in Java. Hence when passing an object around in
C++, if we do not make use of pointers, we make multiple copies, and lose
access to the original object. The simplified code presented in Chapter B is
redacted in a more Java like simplified language, allowing us to avoid using
pointers.

If one were to dive back in the original code, it is worth knowing that the
Executor pointer encapsulated by the KeepAlive class is used to store a flag
in its least significant bit, on top of storing the actual value of the pointer.
This does not cause any problem, as this pointer is aligned in memory to
multiples of at least 4 (as it contains some integers). Hence, this pointer
is a multiple of 4, and setting its least significant bit to 0 allows us to get
back to the original pointer at anytime. We have removed this flag here, as
it would always be set to true in the case of the SerialExecutor.

o1

https://github.com/facebook/folly/blob/master/folly/executors/SerialExecutor.cpp
https://github.com/facebook/folly/blob/master/folly/executors/SerialExecutor.cpp
https://github.com/facebook/folly/blob/master/folly/executors/SerialExecutor.h
https://github.com/facebook/folly/blob/master/folly/executors/SerialExecutor.h
https://github.com/facebook/folly/blob/master/folly/Executor.h
https://github.com/facebook/folly/blob/master/folly/Executor.h

Finally, in the simplified version presented and proved correct in Chap-
ter B, we removed the KeepAlive class to make the code simpler, and avoided
constructors and destructors to replace them with functions newSerialExecutor,
drop and copy. It could be interesting to see if it is possible and not too
cumbersome to prove a code making use of the KeepAlive class, as well as
constructors and destructors.

As a side note, we kept the function names keepAliveAcquire and
keepAliveRelease, even though they are unrelated to the actual synchro-
nization used inside of the functions.

class SerialExecutor{
Executor parent_ ;
size_t scheduled__; //atomic
UnboundedQueue queue_; //multiple producers single consumer
int keepAliveCounter ; //atomic

SerialExecutor (parent){
parent_ = parent;
queue = newQueue ();
scheduled__ = 0;
keepAliveCounter_ = 1;

}

void add(Func func){
queue__.enqueue (func);
parent —>add ({this—>run()});

}

void run(){
if (fetch_add_acq(scheduled__, 1) > 0)

return;
do {
Func func = queue__.dequeue ();
func ();
} while(fetch_sub_rel(scheduled_, 1) > 1);

}

void keepAliveAcquire (){
int ¢ = fetch_add_ rlx(

}

void keepAliveRelease (){
int ¢ = fetch_sub_rel acq(keepAliveCounter, 1);
if(c = 1)
delete this;
}

KeepAlive getKeepAliveCounter (Executorx executor){
executor—>keepAliveAcquire ();
return KeepAlive (executor, false);

}

keepAliveAcquire, 1);

52

KeepAlive create (Executor parent){
return KeepAlive(SerialExecutor (parent));
}

}

class KeepAlive{
Executorx executor_ ;

KeepAlive (KeepAlive other){
xthis = getKeepAliveToken (other.get ());
}

KeepAlive (Executor* executor, bool v) : executor_ (executor){}

~KeepAlive () {
executor—>keepAliveRelease ();
}

Executorx get (){
return executor;
}

KeepAlive copy (){
executor . keepAliveAcquire ();
return KeepAlive (executor);

}
}

93

	Introduction
	Background
	Weak Memory
	Synchronization on atomics
	Data races

	Formalizing weak memory
	Atomics as exchange points
	Ownership
	Ghost states
	Token-based reasoning in Viper

	Limitations of the EFC ghost location and tokens
	The Folly reader-writer spinlock
	Proof using the EFC permission structure
	Proof using token-based reasoning

	Limitations of FSL++
	glibc Reader-Writer Lock
	Implementation
	Read-Modify-Write and Load
	Separation of tokens and permission

	Folly One Producer One Consumer Queue
	Re-using values for location invariants
	Infinite queue

	Proving intertwined synchronization mechanisms
	Implementation
	Ensuring sequential execution
	Ensuring proper deletion when deleting references

	Properties of the SerialExecutor
	Formalizing the specifications
	Proof of the specifications
	Function newSerialExecutor
	Function add
	Function run
	Functions drop and copy
	Some notes on constructors and destructors

	Conclusion and future work
	Future work
	Acknowledgments

	Bibliography
	Glibc reader writer lock implementation
	Implementation explanation
	Required synchronization
	readLock() function
	writeLock() function
	readUnlock() function
	writeUnlock() function

	Folly ProducerConsumerQueue implementation
	SerialExecutor implementation

