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1 Introduction

Program verification is the process of formally proving that a program behaves accord-
ing to its specification. One proof system widely used in program verification is Hoare
Logic (HL) [1]. It can prove properties of individual program executions, namely
trace properties, by using Hoare triples of the form {P}C{Q}, where C is a program
command and P , Q are predicates describing the initial and final program states
respectively. A Hoare triple {P}C{Q} holds if and only if executing C in an initial
state satisfying P can only result in final states satisfying Q.

However, classical HL cannot prove hyperproperties [2], i.e. properties of multiple
program executions, such as determinism. As a result, several extensions and adapta-
tions of HL have been suggested to overcome this limitation. For instance, Sousa and
Dillig [3] have proposed Cartesian Hoare Logic (CHL) that can reason over k execu-
tions of the same program, where k is some fixed integer ≥ 1. This is useful for verifying
properties like associativity and monotonicity. Similar to classical HL, CHL can only
prove the absence of bugs in computer programs because it overapproximates the pos-
sible program executions. To prove the existence of bugs in a program, O’Hearn [4] has
proposed Incorrectness Logic (IL) which underapproximates the possible program exe-
cutions [5]. Hoare-style logics combining overapproximation and underapproximation
have also been proposed, such as Outcome Logic (OL) [6] and RHLE [7]. Nevertheless,
each of the existing logics has its own limitations regarding the program properties that
they can prove (including trace properties and hyperproperties) and the type of rea-
soning that they can perform (including overapproximation and underapproximation).
For example, RHLE can prove both the existence and absence of bugs while relating
multiple executions of the same program, and it can also prove ∀∃-hyperproperties (i.e.
the existence of an execution that satisfies some condition with respect to all possible
executions), but, like any other existing logics, it cannot prove ∃∀-hyperproperties (i.e.
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the existence of executions with respect to all other executions) such as the existence
of a minimum returned value. Consequently, verifying a program that involves various
properties requires the application of multiple logics. This motivates the proposal of
Hyper Hoare Logic (HHL) [8] – a logic that can prove and disprove all aforementioned
program properties and more.

Unlike existing logics where assertions are predicates over a fixed number of pro-
gram states, HHL assertions are predicates over arbitrary sets of states. Analogous to
Hoare triples, HHL uses hyper-triples of the form [P ]C[Q], where C is a program com-
mand and P,Q are predicates describing the initial and final sets of program states
respectively. A hyper-triple [P ]C[Q] is valid if and only if executing C in any initial
set of states satisfying P leads to a final set of terminating states satisfying Q.

For the time being, HHL is a purely theoretical achievement. Its theoretical details
have been comprehensively presented in the paper authored by Dardinier and Müller
[8]. This project aims at implementing a prototype that automates HHL by developing
an encoding into Viper [9] – a program verification infrastructure. This general goal
is divided into multiple core goals and extension goals in the following sections.

2 Core Goals

2.1 Overapproximation Reasoning

The first step is to define an imperative programming language, similar to IMP, that
includes at least the following commands. Note that C is a program command, x is a
variable, e is an expression, and b is a predicate describing program states.

• skip
• x := e (assignment)
• x := nonDet() (non-deterministic assignment)
• assume b
• assert b
• C; C (sequential composition)
• while(b){C}
• if(b){C} else{C}

After the language is defined, the real challenge is to design an encoding into
Viper to enable reasoning with ∀-HHL, which we define as the strict subset of HHL
that involves overapproximation reasoning over multiple executions of the same pro-
gram. The encoding should then be tested on small program verification examples
retrieved from related literature. During this process, refinement should be applied to
the encoding if necessary.

2.2 Verifier Implementation

Next, we need to build a verifier that translates a program written in our language into
a Viper program to automatically generate the encoding from Section 2.1. The verifier
should have scanning, parsing and code generation phases. A type checking phase
is preferable but not mandatory. At this stage, we should also define the assertion
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language for ∀-HHL and enable the verifier to translate any assertion written in this
language.

2.3 Underapproximation Reasoning

Another important goal of the project is to automate reasoning with ∃-HHL, which
we define as the strict subset of HHL that involves underapproximation reasoning over
multiple executions of the same program. Similarly, an encoding from our language
into Viper should also be designed for ∃-HHL, and the verifier from Section 2.2 should
be updated to support ∃-HHL. Moreover, since underapproximation reasoning uses
existential quantification, which is hard for SMT-based verifiers like Viper to auto-
matically prove, we will explore the idea of enabling users to provide hints that can
aid the verification process.

2.4 Evaluation

After ∀-HHL and/or ∃-HHL have been automated, we should evaluate our tool with
respect to the tools implementing existing Hoare-style logics mentioned in Section 1,
such as Descartes [3] and ORHLE [7]. The evaluation should show whether our tool
can verify the programs verifiable by other tools and vice versa. Performance of the
tools can be included in the evaluation but is not mandatory.

3 Extension Goals

3.1 ∀∃-HHL and ∃∀-HHL

Ideally, we would like the prototype to be able to establish ∀∃-hyperproperties and
∃∀-hyperproperties. To do so, we need to design an encoding into Viper, update the
verifier, and also test the implementation on examples. This should build on the
foundations of automation for ∀-HHL and ∃-HHL.

3.2 Method Calls

Method calls should be handled modularly. However, since assertions in HHL are
predicates over sets of states, we need to explore how method specifications, i.e.
preconditions and postconditions, should be written so that such modularity is
achieved.

3.3 Comprehensions

There are hyperproperties that require comprehensions, such as counting and sum-
mation, rather than quantification over the program states. For example, one
hyperproperty that requires counting is the existence of n different outputs for any
given input. HHL is able to prove such properties theoretically, but the automation
for proving such properties remains to be explored.
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