
Improving User-Defined Permission
Models in Viper

Practical Work

Anqi Li

March 15, 2023

Advisors: Thibault Dardinier, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

Viper is a powerful toolchain and infrastructure for program verification.
It automates and provides native support for permission-based reason-
ing by using separation logic. Currently, the fractional permission model
is the only permission model available in Viper. A permission model is
a partial commutative monoid useful for reasoning about shared data
structures. Despite the merits of fractional permissions such as infinite
splittability (i.e. any non-empty share can be split into two non-empty
shares), alternative permission models can be useful depending on the
use cases. This project aims at assessing and improving a prototype
that introduces user-defined permission models to Viper. The goal is
achieved by first conducting several case studies where multiple per-
mission models are encoded using the prototype, and then adding to
the prototype a new feature that allows users to specify a permission
model for a field so that multiple permission models can exist in the
same program.

i

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Report Outline . 2

2 Case Studies 5
2.1 Background . 5

2.1.1 Architecture of Viper . 5
2.1.2 Separation Algebra . 5

2.2 Counting Permissions . 6
2.2.1 Permission Shares . 6
2.2.2 Joining Permission Shares 7
2.2.3 Result and Application 7

2.3 Tree Shares . 10
2.3.1 Permission Shares . 10
2.3.2 Joining Permission Shares 11
2.3.3 Result . 11

2.4 Duplicable Permissions . 12
2.4.1 Permission Shares . 12
2.4.2 Joining Permission Shares 13
2.4.3 Result and Application 13

2.5 Summary . 15

3 Permission-Model-per-Field Feature 17
3.1 Syntax . 17
3.2 Implementation . 18

3.2.1 Parser . 18
3.2.2 Typechecker . 18

iii

Contents

3.2.3 Permission Module . 18

4 Conclusion and Future Work 21
4.1 Conclusion . 21
4.2 Future Work . 21

A Appendix 23
A.1 Viper encoding of tree shares 23

Bibliography 31

iv

Chapter 1

Introduction

1.1 Motivation

Program verification is the process of formally proving that a program satis-
fies its specification. It is useful for proving the absence of errors in various
software systems. Nowadays, many software tools have been developed
to automate program verification, such as Viper [10]. Dissimilar to other
verification tools like Boogie [9] and Why3 [8], Viper uses separation logic
[11] to natively support permission-based reasoning via permission models.

A permission model is, typically, a partial commutative monoid [4, 7]. Each
permission model has its own set of permission shares that are used to express
heap location ownership. Permission shares can be split and recombined. By
using a permission model, one can reason about method calls with the frame
rule, and also efficiently verify concurrent programs that manipulate shared
data structures.

For the time being, Viper supports only one permission model – fractional
permissions [2, 3]. In the fractional permission model, permission amounts
are rational values in the range of [0, 1]. A permission amount of 1 allows
one to write to a heap location, while any non-zero permission amount
allows one to read from a heap location. The fractional permission model
can be used to efficiently reason about programs involving concurrent reads,
divide-and-conquer algorithms and so on, but it is not suitable for every
situation. For instance, consider the code snippet in Listing 1.1 that attempts
to formulate an inductive predicate for a binary tree data structure. When
p > 1

2 , the predicate always describes a binary tree, while when p ≤ 1
2 ,

it can describe a directed acyclic graph (DAG) rather than a binary tree.
To understand why this is the case, consider a DAG with 4 distinct nodes
T, L, R, B as shown in Figure 1.1.

1

1. Introduction

1 field leftChild: Ref

2 field rightChild: Ref

3 field elem: Int

4 predicate Tree (this: Ref , p: Perm) {

5 this != null && p > 0/1 ==>

6 acc(this.elem , p) & &

7 acc(this.leftChild , p) & &

8 acc(this. rightChild , p) &&

9 Tree(this.leftChild , P) &&

10 Tree(this.rightChild , p)

11 }

Listing 1.1: Tree predicate written in Viper

T

L R

B

pp

p p

Figure 1.1: A DAG described by the
tree predicate in Listing 1.1

Assume that Tree(T, p) holds. The defini-
tion of the predicate implies that Tree(L,

p), Tree(R, p) and Tree(B, p+p) must
also hold. When p > 1

2 , p + p > 1 is an
undefined permission amount, which inval-
idates such DAG. In contrast, when p ≤ 1

2 ,
p + p ≤ 1 is a valid permission amount, so
this DAG can be “mistakenly” considered
as a tree. As a result, if a method has some
positive permission amount to a binary tree
and would like to read it, it needs to know
that the left and right subtrees of the root
node are disjoint to be sure that it is indeed
reading a binary tree instead of a DAG. This example demonstrates the
limitations of fractional permissions in some situations. Consequently, it is
desirable to allow users to define alternative permission models and switch
between them depending on the use cases.

1.2 Related Work

User-defined permission models were introduced to Viper for the first time
as an experimental feature in a master’s thesis project. The thesis [12]
documents the theoretical foundations, methodology and implementation
details for this feature. As an extension of the thesis, this project builds upon
the existing prototype that implements such feature.

1.3 Report Outline

The content of the report is organized as follows. In Chapter 2, multiple
case studies are presented to explore the limits of the existing prototype.

2

1.3. Report Outline

Next, in Chapter 3, we describe how a new feature, which enables different
permission models in the same Viper program depending on the field, has
been implemented based on the prototype. Finally, we draw a conclusion
and discuss future work in Chapter 4.

3

Chapter 2

Case Studies

In this chapter, we present the case studies done with multiple permission
models, including counting permissions [2], tree shares [7] and duplicable
permissions. The main purpose of the case studies is to test the limits of the
existing prototype that enables users to define alternative permission models
in Viper programs. To achieve this goal, for each permission model, we study
its semantics, encode it using the prototype and test the encoded model. The
details of each case study are given in the following sections.

2.1 Background

2.1.1 Architecture of Viper

The prototype and all implementation done in this project are integrated into
Carbon – one of the two backends of Viper. It is essentially a compiler that
takes a program written in the Viper intermediate language as input and
produces a Boogie program as output. Figure 2.1 gives an overview of the
architecture of the Viper verification toolchain.

2.1.2 Separation Algebra

A separation algebra (SA) [4] is defined as a tuple ⟨A,⊕, u⟩, where A is a set
of elements, ⊕ is a partial operation of joining two elements, and u is the
unit element in A. Every SA satisfies the following axioms [7]:

• Commutative: a ⊕ b = b ⊕ a

• Associative: a ⊕ (b ⊕ c) = (a ⊕ b)⊕ c

• Identity: a ⊕ u = a

• Cancellative: a1 ⊕ b = a2 ⊕ b =⇒ a1 = a2

A permission model is a SA used for permission accounting.

5

2. Case Studies

Figure 2.1: Viper architecture overview

2.2 Counting Permissions

The counting permission model allows one to count the number of permis-
sions given out. An intuitive explanation of this permission model can be
found in Section 2.1.7 of Roshardt [12]’s thesis, while a more formal definition
and extensive details are available in the paper authored by Bornat et al. [2].

2.2.1 Permission Shares

In the model of counting permissions, permission shares are represented
using integers. More specifically, 0 means a full permission, −1 means a
read permission, and +k means a source permission from which k read
permissions have been taken. The unit share is represented by a symbol
u ̸∈ Z.

As an example, consider three threads A, B and C. Initially, thread A has a
full permission to some resource r, and the other threads have no permissions
to access r. In other words, thread A has permission share 0, and threads B
and C both have unit permissions represented by u. Thread A later gives
out read permissions to threads B and C respectively. As a consequence,
thread A now has permission share +2, while each of threads B and C has
permission share −1.

6

2.2. Counting Permissions

2.2.2 Joining Permission Shares

To join two shares a and b, the following rules apply:

a ⊕ b =

⊥ a ≥ 0 ∧ b ≥ 0
⊥ (a ≥ 0 ∨ b ≥ 0) ∧ (a + b < 0)
a + b Otherwise

(2.1)

2.2.3 Result and Application

By using the prototype, we encoded counting permissions in Viper as shown
in Listing 2.1. The function share(x:Int) returns the permission share
represented by integer x, so the full share, represented by the return value
of full(), is share(0). Based on Rules 2.1, we can easily formulate the
axiom for plus(x:Perm,y:Perm) by computing the arithmetic sum of the
two input shares, and we may also derive the joinable axiom axJoinable

by negating the disjunction of all conditions under which two shares a ⊕
b = ⊥. Lastly, to understand the encoding of minus(x:Perm,y:Perm) and
geq(x:Perm,y:Perm), one should refer to Section 5.3.3 of Roshardt [12]’s
thesis.

1 domain _Perm {

2 function unit (): Perm

3 function full (): Perm

4 function plus(x: Perm , y:Perm): Perm

5 function minus(x: Perm , y: Perm): Perm

6 function geq(x: Perm , y: Perm): Bool

7 function joinable(x: Perm , y: Perm): Bool

8
9 function share(x: Int): Perm

10
11 axiom axFullShare { full() == share (0) }

12
13 axiom axJoinable {

14 forall a: Int , b: Int ::

15 joinable(share(a), share(b)) <==>

16 ((a < 0 && b < 0) ||

17 (a < 0 && b > 0 && a + b >= 0) ||

18 (a > 0 && b < 0 && a + b >= 0))

19 }

20
21 axiom axJoinableUnit { forall t: Perm ::

22 joinable(unit(), t) && joinable(t, unit ())

23 }

24

7

2. Case Studies

25 axiom axPlus { forall a: Int , b: Int ::

26 joinable(share(a), share(b)) ==>

27 plus(share(a), share(b)) == share(a+b)

28 }

29
30 axiom axUnitPlus { forall t:Perm ::

31 plus(unit(), t) == t

32 && plus(t, unit ()) == t

33 }

34
35 axiom axMinus { forall a: Int , b: Int ::

36 geq(share(a), share(b)) && a != b ==>

37 minus(share(a), share(b)) == share(a-b)

38 }

39
40 axiom axUnitMinus { forall p: Perm ::

41 minus(p, p) == unit()

42 }

43
44 axiom axGeq {

45 forall a: Int , b: Int ::

46 geq(share(a), share(b)) <==>

47 ((a < 0 && b < 0 && a < b) ||

48 (a >= 0 && (b < 0 || (b >= 0 && a < b))) ||

49 (a == b))

50 }

51
52 axiom axUnitGeq { forall p: Perm ::

53 geq(p, unit ())

54 }

55 }

Listing 2.1: Counting permissions encoded using the prototype

The encoded counting permission model has been used to verify a program
with a readers-and-writers pattern where multiple threads concurrently read
from and write to some shared resource in the critical section. It is useful in
this scenario due to its ability to count the permissions given out. Listing 2.2
shows how we modeled this scenario in Viper by referring to Bornat et al.
[2]’s work.

In the following code, the variable count records the number of readers that
are currently accessing the shared resource. To enter the critical section, a
reader first needs to gain a read permission. If it is the first reader that
attempts to read the resource, it sets the variable m to 0 to prevent any writers

8

2.2. Counting Permissions

from writing to the shared resource. Before the reader leaves the critical
section, if it is the last reader to leave, i.e. if count == 0, it sets m to 1 to
unblock the writers. When m == 1, one writer will gain a full permission to
the shared resource and therefore become able to write.

1 field f: Int

2
3 define I_write(m)

4 m != 0 ==> acc(res.f, full ())

5
6 define I_read(num)

7 num != 0 ==> acc(res.f, share(num))

8
9 define P() {

10 var m: Int

11 m := havoc_int_binary ()

12 assume m != 0

13 inhale I_write(m)

14 m := 0

15 exhale I_write(m)

16 }

17
18 define V() {

19 var m: Int

20 m := havoc_int_binary ()

21 assume true

22 inhale I_write(m)

23 m := 1

24 exhale I_write(m)

25 }

26
27 method havoc_int () returns (res: Int)

28 ensures res >= 0

29
30 method havoc_int_binary () returns (res: Int)

31 ensures res == 0 || res == 1

32
33 method reader(res: Ref) {

34 var count: Int

35 count := havoc_int ()

36 assume true

37 inhale I_read(count)

38 if (count == 0) {

39 P()

9

2. Case Studies

40 }

41 count := count + 1

42 exhale I_read(count)

43
44 var content: Int

45 content := res.f // Read

46
47 count := havoc_int ()

48 assume count > 0

49 inhale I_read(count)

50 count := count - 1

51 if (count == 0) {

52 V()

53 }

54 exhale I_read(count)

55 }

56
57 method writer(res: Ref) {

58 P()

59 res.f := 2 // Write

60 V()

61 }

Listing 2.2: Viper program modeling the readers-and-writers problem

2.3 Tree Shares

The tree share permission model uses binary trees to represent permission
shares. We are interested in this model because of its desirable properties:
infinite splittability and disjointness. The former property means that any
non-empty shares can be split into two non-empty shares, whilst the latter
one means that no non-empty share can join with itself. A more extensive
description of this model can be found in Section 2.1.7 of Roshardt [12]’s
thesis.

2.3.1 Permission Shares

Permission shares are represented using binary trees defined as τ = #| |⟨τ, τ⟩
where

• # is a leaf with boolean value False, representing an empty permission.
It is also the unit share.

• is a leaf with boolean value True, representing a full permission.

10

2.3. Tree Shares

• ⟨τ, τ⟩ is a binary tree with unlabeled internal nodes and boolean-valued
leaves, which can represent any permission amount.

Note that, under such definition, trees of different shapes can represent the
same permission amount. For instance, both and ⟨ , ⟩ represent a full
permission. We say that such trees are equivalent to one another.

2.3.2 Joining Permission Shares

To join two shares represented by trees of the same shape, one should apply
the following rules leaf-wise:

#⊕# = #

#⊕ =

 ⊕# =

⟨τ1, τ2⟩ ⊕ ⟨τ3, τ4⟩ = ⟨τ1 ⊕ τ3, τ2 ⊕ τ4⟩

(2.2)

In the case where two shares are represented by trees τ1, τ2 of different shapes,
one needs to perform the following steps to convert them to equivalent trees
of the same shape before joining:

1. Let h1, h2 be the height of τ1, τ2 respectively. Compute h = max(h1, h2).

2. For each leaf of τ1 (resp. τ2), keep replacing it with two children of the
same value as itself until τ1 (resp. τ2) becomes a full binary tree 1 of
height h.

As an example, Figure 2.2 shows how a binary tree of height 1 is unfolded to
an equivalent full binary tree of height 2.

Figure 2.2: Tree unfolding example

2.3.3 Result

In the initial attempt to encode tree shares, permission shares were encoded
directly as trees, and equality of two shares was expressed using a function
eq(p1:Perm, p2:Perm) whose semantics were specified in an axiom. This

1A full binary tree is a binary tree in which every node except for the leaves has exactly 2
children.

11

2. Case Studies

is because two different trees can represent the same permission amount,
which cannot be directly expressed with the equality operator ==. Upon
detecting the declaration of eq(p1:Perm, p2:Perm) in the permission model,
the prototype syntactically replaced all occurrences of the equality operator
with calls to this function when translating the Viper program.

However, the tree shares encoded in this way did not have the expected
behavior because the equality relation did not propagate to functions. In
other words, we do not automatically have eq(a, b) ≠⇒ eq(f(a), f(b))

for some function f. This can happen for many reasons such as missing
axioms and bad triggers. Without such implication, one has to perform more
complex steps to arrive at the same conclusion as when such implication is
available. Therefore, in the final encoding of tree shares, we decided to use
a domain to define the binary tree data structure and another one to define
the permission shares represented by the trees. Equality of two tree shares is
expressed with == and the axiom in Listing 2.3. The complete Viper encoding
of tree shares is available in Appendix A.1.

1 function eqTree(Tree t1, Tree t2): Bool

2 function share(Tree t): _Perm_TreeShare

3 axiom axShareEq { forall t1: Tree , t2: Tree ::

4 eqTree(t1 , t2) ==> share(t1) == share(t2)

5 }

Listing 2.3: Equality axiom for tree shares

2.4 Duplicable Permissions

Duplicable permissions model the behavior of wildcard in Viper, which is an
unspecified positive permission amount useful for implementing duplicable
read-only resources [1].

2.4.1 Permission Shares

Duplicable permissions have 3 kinds of permission shares:

• #: empty permission, also the unit share

• : full permission

• G#: some positive permission amount that allows read-only access

12

2.4. Duplicable Permissions

2.4.2 Joining Permission Shares

To join two permission shares, the following rules apply:
#⊕# = #

#⊕ = ⊕# =

#⊕G# = G#⊕# = G#

G#⊕G# = G#

(2.3)

Among these rules, the last one is the most important one. It allows any
read-only permissions to be duplicated.

2.4.3 Result and Application

The encoding of duplicable permissions is shown in Listing 2.4.

1 domain _Perm {

2 function unit(): Perm

3 function full(): Perm

4 function plus(x: Perm , y:Perm): Perm

5 function minus(x: Perm , y: Perm): Perm

6 function geq(x: Perm , y: Perm): Bool

7 function joinable(x: Perm , y: Perm): Bool

8
9 function share (): Perm

10
11 axiom axUnitAndFull {

12 full() != share () && unit() != share()

13 }

14
15 axiom axPlus { forall p1: Perm , p2: Perm ::

16 joinable(p1, p2) &&

17 p1 != unit() && p2 != unit() ==>

18 plus(p1, p2) == share ()

19 }

20
21 axiom axPlusUnit { forall p: Perm ::

22 plus(unit(), p) == plus(p, unit()) &&

23 plus(unit(), p) == p

24 }

25
26 axiom axMinus { forall p1: Perm , p2: Perm ::

27 geq(p1 , p2) && p1 != unit() &&

28 p2 != unit() && p1 != full() &&

13

2. Case Studies

29 p2 != full() ==>

30 minus(p1 , p2) == share()

31 }

32
33 axiom axMinusFullFull {

34 minus(full(), full()) == unit()

35 }

36
37 axiom axMinusUnit { forall p: Perm ::

38 minus(p, unit()) == p

39 }

40
41 axiom axMinusFull { forall p: Perm ::

42 p != unit() && p != full()

43 ==> minus(full(), p) == share()

44 }

45
46 axiom axJoinable { forall p1: Perm , p2: Perm ::

47 joinable(p1, p2) <==>

48 (p1 != full() && p2 != full()) ||

49 (p1 == full() && p2 == unit()) ||

50 (p1 == unit() && p2 == full())

51 }

52
53 axiom axGeq { forall p1: Perm , p2: Perm ::

54 geq(p1 , p2) <==>

55 (p1 == full() && p2 != full()) ||

56 (p1 != unit() && p2 == unit()) ||

57 (p1 != unit() && p2 != unit()

58 && p1 != full() && p2 != full())

59 }

60
61 axiom axGeUnit { forall p: Perm ::

62 geq(p, unit())

63 }

64 }

Listing 2.4: Duplicable permissions encoded using the prototype

The encoded duplicable permission model was later used in a quick runtime
comparison experiment with wildcard. In the experiment, we created a
Viper program with references ref0, ref1, ref2, ref3, ref4, ref5 and
a block of code, shown in Listing 2.5, where a wildcard permission amount
was inhaled and exhaled once for each of these references.

14

2.5. Summary

1 inhale acc(ref0.f, wildcard)

2 ...

3 inhale acc(ref5.f, wildcard)

4 exhale acc(ref0.f, wildcard)

5 ...

6 exhale acc(ref5.f, wildcard)

Listing 2.5: Test code for runtime comparison between wildcard and duplicable permissions

Such code block was then repeated for a different number of times to form a
set of test programs. We ran the programs with wildcard and recorded the
runtime of Viper, and then replaced wildcard with share() from duplicable
permissions, which is wildcard in practice, in all programs and measured
the runtime again. Table 2.1 shows that duplicable permissions always yield
a shorter runtime than wildcard. The reduction in runtime is more and more
significant as the number of code blocks increases.

Number of Runtime of Runtime of
code blocks wildcard duplicable permissions

1 2.34s 2.55s
2 3.35s 2.80s
3 152s 3.04s
4 366s 9.91s

Table 2.1: Runtime comparison between wildcard and duplicable permissions

2.5 Summary

The case studies show that the prototype could encode various permission
models and that different permission models have different properties. The
properties that users might want in a permission model are as follows:

• Infinite splittability: each non-empty share can be split into two non-
empty shares.

• Disjointness: no non-empty share joins with itself.

• Countability: the permission model can count the number of permis-
sions given out.

• Recombinability: shares split from a full share can recombine to form a
full share.

• Complexity: defined with respect to the workload for SMT solvers to
work with the permission model.

Table 2.2 summarizes the properties of the aforementioned permission mod-
els.

15

2. Case Studies

Properties
Fractional Counting Tree Duplicable

permissions permissions shares permissions
Infinite splittability ✓ ✓ ✓

Disjointness ✓
Countability ✓

Recombinability ✓ ✓ ✓
Complexity +++ ++ ++++ +

Table 2.2: Properties of permission models

Consequently, users might prefer one permission model to another based
on the use cases, or they might need multiple permission models in one
Viper program, which leads to the development of a new feature, namely
permission-model-per-field, that we are going to discuss in the next chapter.

16

Chapter 3

Permission-Model-per-Field Feature

This chapter describes a new feature, permission-model-per-field, that allows
users to specify a permission model for a field in a Viper program. This
feature enables multiple permission models to coexist in the same program.
In the following sections, we first show the syntax of this feature, and then
illustrate how it has been implemented.

3.1 Syntax

It is obvious that this new feature requires that multiple permission models
could be defined in one Viper program. This leads to some changes in
the syntax of permission model declaration. To define a permission model,
users should declare a Viper domain with identifier Perm <id> and a list of
mandatory function declarations as follows:

• function unit <id>(): Perm <id>

This function returns a unit share.

• function full <id>(): Perm <id>

This function returns a full share.

• function plus <id>(x: Perm <id>, y: Perm <id>): Perm <id>

This function returns the result of joining two shares x and y.

• function minus <id>(x: Perm <id>, y: Perm <id>): Perm <id>

This function returns the result of inversely joining two shares x and y.
It is used to compute z such that x = y ⊕ z.

• function joinable <id>(x: Perm <id>, y: Perm <id>):Bool

This function checks if two shares x and y can join with each other.

• function geq <id>(x: Perm <id>, y: Perm <id>):Bool

This function checks if share x is greater than or equal to share y.

17

3. Permission-Model-per-Field Feature

An error message will be thrown if any of the functions above is missing
or does not have the expected signature. The semantics of these functions
depend on the encoded permission model and should be specified using
axioms.

To specify a permission model for a field, the following syntax should be
used for field declarations:

field ([Perm <id>])? <field id>: <field type>

Note that when the permission model of a field is left unspecified, the default
permission model, i.e. fractional permissions, is used.

3.2 Implementation

This section gives implementation details of the permission-model-per-field
feature. We first show the changes made in the parser and typechecker of
Silver, and then list the updates in the permission module of Carbon.

3.2.1 Parser

The grammar rule of field declarations has been updated to allow users to
specify Perm <id> for the declared field. This leads to the addition of one
argument, i.e. permId, to the constructor of PField with a default value
Fractions.

3.2.2 Typechecker

The typechecker checks that Perm <id> in every field declaration is indeed
the identifier of a domain declared in the program. It also ensures that strings
starting with unit, full, plus, minus, geq and joinable are only used as the
identifier of functions declared in permission models, i.e. any domain whose
identifier has the prefix Perm . Moreover, the typechecking rules are updated
such that domain types are allowed wherever only the built-in Perm type was
expected in the prototype. This has caused changes in the typechecking of
access predicates, perm() function calls, and wherever wildcard can appear.
Furthermore, the typechecker makes sure that the permission model used to
access a field matches with the permission model in the declaration of the
field. For instance, if x has type Ref and field f is declared to use counting
permissions, the typechecker rejects the statement inhale acc(x.f, 1/2).

3.2.3 Permission Module

The permission module specializes in the handling of permission models. It
checks that the declaration of permission models has the expected syntax, and

18

3.2. Implementation

then creates and maintains a Map object that allows us to access everything in
a permission model by providing its identifier.

To enable the use of multiple permission models, the module makes use
of polymorphism. Recall that every permission model is required to have
its own unit, full, plus, minus, geq and joinable functions. Instead of
emitting Boogie functions corresponding to these functions for every different
permission model encountered, the module emits the following polymorphic
Boogie functions only once:

1 function full <P>(): P;

2 function unit <P>(): P;

3 function joinable <P>(x: P, y: P): bool;

4 function plus <P>(x: P, y: P): P;

5 function geq <P>(x: P, y: P): bool;

6 function minus <P>(x: P, y: P): P;

Listing 3.1: Polymorphic Boogie functions emitted by the permission module

The semantics of these functions from each different permission model are
defined via axioms with the type parameter P specified. For example, Listing
3.2 shows an axiom that describes the semantics of the plus function for frac-
tional permissions, while the axiom in Listing 3.3 formulates the semantics
of the same function for duplicable permissions. The type parameter P is in-
stantiated as FracPerm in the former axiom and Perm wildcardDomainType

in the latter one.

1 axiom (forall x: FracPerm , y: FracPerm ::

2 joinable(x, y) ==> plus(x, y) == x + y

3);

Listing 3.2: Axiom of plus function from fractional permissions

1 axiom (forall p1: _Perm_wildcardDomainType , p2:

_Perm_wildcardDomainType ::

2 joinable(p1, p2) && p1 != unit() && p2 != unit()

3 ==> (plus(p1 , p2): _Perm_wildcardDomainType) == (

share(): _Perm_wildcardDomainType)

4);

Listing 3.3: Axiom of plus function from duplicable permissions

By using polymorphism, code duplication is avoided since functions shared
by permission models are emitted only once in the Boogie program. Moreover,
existing code can be reused without adaptation. For example, the code
emitting the axiom that initializes the zero masks to unit shares, shown
in Listing 3.4, does not need to be adapted, because there is no need to
specify the permission model associated with each unit share thanks to

19

3. Permission-Model-per-Field Feature

polymorphism. More importantly, the modularity of Carbon code base is
maintained: other modules in Carbon do not need to know the existence of
multiple permission models in the permission module.

1 axiom (forall <A, B, P> o_2: Ref , f_5: (Field A B P)

2 :: { ZeroMask[o_2 , f_5] }

3 !IsPredicateField(f_5) ==>

4 ZeroMask[o_2 , f_5] == (unit (): P)

5);

Listing 3.4: Zero mask initialization

20

Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this project, we have carried out case studies involving multiple permission
models to assess the functionality of the prototype that allows users to define
alternative permission models in Viper. Several bug fixes have also been
made to the prototype at the same time. Additionally, we have added a new
feature to the prototype to enable users to specify a permission model for a
field so that multiple permission models can exist in one Viper program.

4.2 Future Work

There are several aspects that can be improved in the future to extend our
work. Firstly, more extensive testing of the permission-model-per-field feature
is needed. One possible way to do so is to encode real-world scenarios that
use multiple permission models. Secondly, the automation of magic wands
[6] needs to be adapted to the changes made in the permission module of
Carbon. Last but not least, due to the introduction of the permission-model-
per-field feature, there can exist multiple permission models in one predicate.
Thereby, the multiplication of predicates [5] needs to be generalized.

21

Appendix A

Appendix

A.1 Viper encoding of tree shares

1
2 domain Tree {

3 function getRight(this: Tree): Tree

4 function getLeft(this: Tree): Tree

5 function node(t1: Tree , t2: Tree): Tree

6
7 function eqTree(t1: Tree , t2: Tree): Bool

8 function _eqTree(t1: Tree , t2: Tree): Bool

9 function geqTree(t1: Tree , t2: Tree): Bool

10 function _geqTree(t1: Tree , t2: Tree): Bool

11 function joinableTree(t1: Tree , t2: Tree): Bool

12 function _joinableTree(t1: Tree , t2: Tree):

Bool

13 function plusTree(t1: Tree , t2: Tree): Tree

14 function _plusTree(t1: Tree , t2: Tree): Tree

15 function minusTree(t1: Tree , t2: Tree): Tree

16 function _minusTree(t1: Tree , t2: Tree): Tree

17 function isLeaf(t1: Tree): Bool

18
19
20 function toFullTree(t: Tree , h: Int): Tree

21 function sameShape(t1: Tree , t2: Tree): Bool

22 function getHeight(t: Tree): Int

23 function max(a: Int , b: Int): Int

24
25 function dummy(t: Tree): Bool

26
27 // Leaves

23

A. Appendix

28 unique function zero(): Tree // White circle

29 unique function one(): Tree // Black circle

30
31 axiom axConst {

32 zero() != one()

33 }

34
35 axiom axMax { forall a: Int , b: Int ::

36 {max(a, b)}

37 (a >= b ==> max(a, b) == a) &&

38 (a < b ==> max(a, b) == b)

39 }

40
41 axiom axIsLeaf { forall t: Tree :: {isLeaf(t)}

42 isLeaf(t) <==> (t == zero() || t == one())

43 }

44
45 axiom axLeaf { forall t: Tree ::

46 (t == zero() || t == one()) ==>

47 (getRight(t) == t && getLeft(t) == t)

48 }

49
50 axiom axNonLeaf { forall t1: Tree , t2: Tree ::

51 getLeft(node(t1 , t2)) == t1 &&

52 getRight(node(t1, t2)) == t2 &&

53 !isLeaf(node(t1, t2))

54 }

55
56 axiom axSameShape { forall t1: Tree , t2: Tree

:: {dummy(t1), dummy(t2)}

57 sameShape(t1, t2) <==>

58 (isLeaf(t1) && isLeaf(t2)) ||

59 (! isLeaf(t1) && !isLeaf(t2) &&

60 sameShape(getLeft(t1), getLeft(t2)) &&

61 sameShape(getRight(t1), getRight(t2))

62)

63 }

64
65 axiom axGetHeight { forall t: Tree ::

66 {dummy(t), getHeight(t)}

67 (isLeaf(t) ==> getHeight(t) == 0) &&

68 (! isLeaf(t) ==> getHeight(t) == 1 + max(

getHeight(getLeft(t)), getHeight(

getRight(t))))

24

A.1. Viper encoding of tree shares

69 }

70
71 axiom axToFullTree { forall t: Tree , h: Int ::

{dummy(t), toFullTree(t, h)}

72 (h == 0 ==> toFullTree(t, h) == t) &&

73 (h != 0 ==> toFullTree(t, h) == node(

toFullTree(getLeft(t), h-1), toFullTree(

getRight(t), h-1)))

74 }

75
76 axiom axEqTree { forall t1: Tree , t2: Tree :: {

eqTree(t1 , t2)}

77 (sameShape(t1, t2) ==> eqTree(t1, t2) ==

_eqTree(t1 , t2)) &&

78 (! sameShape(t1 , t2) ==> eqTree(t1 , t2) ==

_eqTree(toFullTree(t1 , max(getHeight(t1)

, getHeight(t2))), toFullTree(t2 , max(

getHeight(t1), getHeight(t2)))))

79 }

80
81 // Assume that t1 & t2 have the same shape

82 axiom axEqTreeHelper { forall t1: Tree , t2:

Tree :: {dummy(t1), dummy(t2)}

83 _eqTree(t1 , t2) <==>

84 ((isLeaf(t1) && isLeaf(t2) && t1 == t2)

||

85 (! isLeaf(t1) && !isLeaf(t2) && _eqTree(

getRight(t1), getRight(t2)) &&

86 _eqTree(getLeft(t1), getLeft(t2))))

87 }

88
89 axiom axJoinableTree { forall t1: Tree , t2:

Tree :: {joinableTree(t1 , t2)}

90 (sameShape(t1, t2) ==> joinableTree(t1, t2)

== _joinableTree(t1 , t2)) &&

91 (! sameShape(t1 , t2) ==> joinableTree(t1 , t2

) == _joinableTree(toFullTree(t1, max(

getHeight(t1), getHeight(t2))),

toFullTree(t2, max(getHeight(t1),

getHeight(t2)))))

92 }

93
94 // Assume that t1 & t2 have the same shape

25

A. Appendix

95 axiom axJoinableTreeHelper { forall t1: Tree ,

t2: Tree :: {dummy(t1), dummy(t2)}

96 _joinableTree(t1, t2) <==>

97 (

98 (isLeaf(t1) && isLeaf(t2) &&

99 ((t1 == zero() && t2 == one())

||

100 (t1 == one() && t2 == zero())

||

101 (t1 == zero() && t2 == zero()))

102) ||

103 (! isLeaf(t1) && !isLeaf(t2) &&

104 _joinableTree(getRight(t1),

getRight(t2)) &&

105 _joinableTree(getLeft(t1),

getLeft(t2))

106)

107)

108 }

109
110 axiom axGeqTree { forall t1: Tree , t2: Tree ::

{geqTree(t1, t2)}

111 (sameShape(t1, t2) ==> geqTree(t1, t2) ==

_geqTree(t1, t2)) &&

112 (! sameShape(t1 , t2) ==> geqTree(t1 , t2) ==

_geqTree(toFullTree(t1, max(getHeight(t1

), getHeight(t2))), toFullTree(t2, max(

getHeight(t1), getHeight(t2)))))

113 }

114
115 // Assume that t1 & t2 have the same shape

116 axiom axGeqTreeHelper { forall t1: Tree , t2:

Tree :: {dummy(t1), dummy(t2)}

117 _geqTree(t1, t2) <==>

118 ((isLeaf(t1) && isLeaf(t2) &&

119 (t1 == t2) || (t1 == one() && t2 ==

zero())) ||

120 (! isLeaf(t1) && !isLeaf(t2) &&

121 _geqTree(getLeft(t1), getLeft(t2))

&& _geqTree(getRight(t1),

getRight(t2))))

122 }

123

26

A.1. Viper encoding of tree shares

124 axiom axPlusTree { forall t1: Tree , t2: Tree ::

{plusTree(t1, t2)}

125 (sameShape(t1, t2) ==> plusTree(t1, t2) ==

_plusTree(t1, t2)) &&

126 (! sameShape(t1 , t2) ==> plusTree(t1 , t2) ==

_plusTree(toFullTree(t1, max(getHeight(

t1), getHeight(t2))), toFullTree(t2 , max

(getHeight(t1), getHeight(t2)))))

127 }

128
129 // Assume that t1 & t2 have the same shape

130 axiom axPlusTreeHelper { forall t1: Tree , t2:

Tree :: {dummy(t1), dummy(t2)}

131 _joinableTree(t1, t2) ==>

132 (

133 (isLeaf(t1) && isLeaf(t2) &&

134 ((((t1 == zero() && t2 == one()

) || (t1 == one() && t2 ==

zero()))

135 ==> _plusTree(t1 , t2)

== one()) &&

136 ((t1 == zero() && t2 == zero()

) ==> _plusTree(t1 , t2) ==

zero()))

137) ||

138 (! isLeaf(t1) && !isLeaf(t2) &&

139 _plusTree(t1, t2) == node(

_plusTree(getLeft(t1),

getLeft(t2)), _plusTree(

getRight(t1), getRight(t2)))

)

140)

141 }

142
143 axiom axMinusTree { forall t1: Tree , t2: Tree

:: {minusTree(t1 , t2)}

144 (sameShape(t1, t2) ==> minusTree(t1, t2) ==

_minusTree(t1, t2)) &&

145 (! sameShape(t1 , t2) ==> minusTree(t1 , t2)

== _minusTree(toFullTree(t1 , max(

getHeight(t1), getHeight(t2))),

toFullTree(t2, max(getHeight(t1),

getHeight(t2)))))

146 }

27

A. Appendix

147
148 // Assume that t1 & t2 have the same shape

149 axiom axMinusTreeHelper { forall t1: Tree , t2:

Tree :: {dummy(t1), dummy(t2)}

150 _geqTree(t1, t2) ==>

151 (

152 (isLeaf(t1) && isLeaf(t2) &&

153 ((t1 == t2 ==> _minusTree(t1 , t2)

== zero()) &&

154 ((t1 == one() && t2 == zero()) ==>

_minusTree(t1, t2) == one()))

155) ||

156 (! isLeaf(t1) && !isLeaf(t2) &&

157 _minusTree(t1, t2) == node(

_minusTree(getLeft(t1), getLeft(

t2)), _minusTree(getRight(t1),

getRight(t2))))

158)

159 }

160 }

161
162 domain _Perm {

163 function unit(): Perm

164 function full(): Perm

165 function plus(x: Perm , y:Perm): Perm

166 function minus(x: Perm , y: Perm): Perm

167 function geq(x: Perm , y: Perm): Bool

168 function joinable(x: Perm , y: Perm): Bool

169 function share(tree: Tree): Perm

170
171 axiom axUnit { unit() == share(zero()) }

172 axiom axFull { full() == share(one()) }

173
174 axiom axJoinable { forall t1: Tree , t2: Tree ::

175 joinable(share(t1), share(t2)) ==

joinableTree(t1 , t2)

176 }

177
178 axiom axPlus { forall t1: Tree , t2: Tree ::

179 joinable(share(t1), share(t2)) ==>

180 plus(share(t1), share(t2)) ==

181 share(plusTree(t1 , t2))

182 }

183

28

A.1. Viper encoding of tree shares

184 axiom axGeq { forall t1: Tree , t2: Tree ::

185 geq(share(t1), share(t2)) ==

186 geqTree(t1 , t2)

187 }

188
189 axiom axMinus { forall t1: Tree , t2: Tree ::

190 geq(share(t1), share(t2)) ==>

191 minus(share(t1), share(t2)) ==

192 share(minusTree(t1, t2))

193 }

194
195 axiom axEq { forall a: Tree , b: Tree ::

196 eqTree(a, b) ==> share(a) == share(b)

197 }

198
199 axiom axUnitPlus { forall p: Perm ::

200 plus(unit(), p) == p &&

201 plus(p, unit()) == p

202 }

203 }

Listing A.1: Equality axiom for tree shares

29

Bibliography

[1] Viper tutorial. https://viper.ethz.ch/tutorial/.

[2] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkin-
son. Permission accounting in separation logic. SIGPLAN Not., 40(1):
259–270, jan 2005. ISSN 0362-1340. doi: 10.1145/1047659.1040327. URL
https://doi.org/10.1145/1047659.1040327.

[3] John Boyland. Checking interference with fractional permissions. In
Radhia Cousot, editor, Static Analysis, pages 55–72, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. ISBN 978-3-540-44898-3.

[4] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local
action and abstract separation logic. In 22nd Annual IEEE Symposium
on Logic in Computer Science (LICS 2007), pages 366–378, 2007. doi:
10.1109/LICS.2007.30.

[5] Thibault Dardinier, Peter Müller, and Alexander J. Summers. Fractional
resources in unbounded separation logic. Proc. ACM Program. Lang., 6
(OOPSLA2), oct 2022. doi: 10.1145/3563326. URL https://doi.org/10

.1145/3563326.

[6] Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller,
and Alexander J. Summers. Sound automation of magic wands. In
Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification,
pages 130–151, Cham, 2022. Springer International Publishing. ISBN
978-3-031-13188-2.

[7] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look
at separation algebras and share accounting. In Zhenjiang Hu, editor,
Programming Languages and Systems, pages 161–177, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. ISBN 978-3-642-10672-9.

31

https://viper.ethz.ch/tutorial/
https://doi.org/10.1145/1047659.1040327
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3563326

Bibliography

[8] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where pro-
grams meet provers. In Programming Languages and Systems, pages
125–128, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN
978-3-642-37036-6.

[9] K. Rustan M. Leino. This is boogie 2. June 2008. URL https://www.mi

crosoft.com/en-us/research/publication/this-is-boogie-2-2/.

[10] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper:
A verification infrastructure for permission-based reasoning. In Verifi-
cation, Model Checking, and Abstract Interpretation, pages 41–62, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-49122-5.

[11] J.C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, 2002. doi: 10.1109/LICS.2002.1029817.

[12] Matthias Roshardt. Extending the viper verification language with
user-defined permission models. Master’s thesis, 2021.

32

https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Declaration of originality

7KH�VLJQHG�GHFODUDWLRQ�RI�RULJLQDOLW\�LV�D�FRPSRQHQW�RI�HYHU\�VHPHVWHU�SDSHU��%DFKHORU¶V�WKHVLV��
0DVWHU¶V�WKHVLV�DQG�DQ\�RWKHU�GHJUHH�SDSHU�XQGHUWDNHQ�GXULQJ�WKH�FRXUVH�RI�VWXGLHV��LQFOXGLQJ�WKH�
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
í I KDYH�FRPPLWWHG�QRQH�RI�WKH�IRUPV�RI�SODJLDULVP�GHVFULEHG�LQ�WKH�µCitation etiquette¶�LQIRUPDWLRQ�

sheet.
í I have documented all methods, data and processes truthfully.
í I have not manipulated any data.
í I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Improving User-Defined Permission Models in Viper

Li Anqi

Zirich, Switzerland March 15, 2023 * 45!

	Contents
	Introduction
	Motivation
	Related Work
	Report Outline

	Case Studies
	Background
	Architecture of Viper
	Separation Algebra

	Counting Permissions
	Permission Shares
	Joining Permission Shares
	Result and Application

	Tree Shares
	Permission Shares
	Joining Permission Shares
	Result

	Duplicable Permissions
	Permission Shares
	Joining Permission Shares
	Result and Application

	Summary

	Permission-Model-per-Field Feature
	Syntax
	Implementation
	Parser
	Typechecker
	Permission Module

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Viper encoding of tree shares

	Bibliography

