Analyzing Serializabilty of Cassandra Applications

Arthur Kurath

Supervisor: Lucas Brutschy

October 8, 2016

1 Introduction

It is often challenging to develop applications that use eventually consistent data stores due to the pres-
ence of unexpected behaviors that do not occur under strong consistency guarantees. Recent work [3]
proposed a new serializability criterion for clients of eventually consistent data stores, and evaluated
it using a dynamic analysis, meaning traces from concurrently running clients were collected and the
criterion was applied in order to find out if the given execution was serializable. The goal of this masters
project is to build a static analysis which applies the criterion to an abstraction of all possible traces of
a given client, thus determining if all executions of such clients are serializable.

In this project, we target programs performing queries and updates on Apache Cassandra !, a scal-
able open source database. In Cassandra, data is distributed and replicated across many nodes which
can be placed in multiple data centers. Cassandra extends the concept of eventual consistency by offering
tunable consistency, which means that the client application decides how consistent the requested data
must be. For example, when writing or reading data, one can specify the number of replicas that need
to respond to the request before the result of the operation is returned. Additionally, Cassandra offers
a linearizable compare-and-set operation. This mechanism can be used if a value should only be written
if a certain condition is met, for example to implement that a new user should only be inserted in the
database if no other user with the same username is existing already. In addition to basic types like
numbers, strings or dates, Cassandra also offers sets, maps and lists as conflict-free replicated data types.
There also exists a counter type. [1, 2]

2 The Serializability Criterion

An eventually consistent schedule is characterized by visibility and arbitration. Informally, an update
is wvisible to a query if it is included in the evaluation of the result of the query. The order in which
update conflicts are eventually resolved by the system, is called arbitration. Given an eventually consis-
tent schedule, one can find dependencies and anti-dependencies between these updates and queries. A
query depends on an update if the returned data of the query would change if a visible update would
not be visible. An update has an anti-dependency to a query if the result of the query would change if
an invisible update would become visible to the query (i.e. making an update visible to a query would
introduce a new dependency).

Given a schedule, one can determine dependencies and anti-dependencies taking commutativity and
absorption into account. Two actions (updates / queries) commute, if the order in which the actions are
executed does not change their result. An action u absorbs v, if the result of executing v and then u is
the same as executing only u. Using these notions, a visible update w is a dependency of a query ¢ unless
commutativity and absorption can be applied as rewrite rules repeatedly to obtain a schedule where u is
not visible to ¢. An invisible update u anti-depends on a query ¢ if ¢ would depend on v when u would
be visible.

All existing dependencies and anti-dependencies together with arbitration and program order can be
combined in a directed graph, known as the dependency serialization graph (DSG). If this graph does

Thttp://cassandra.apache.org/

not contain a cycle, the given execution is serializable. One can construct a serial schedule of the events
by ordering them so that the partial orderings of the DSG are preserved. If the DSG contains at least
one cycle, it is possible that the execution is not serializable.

3 Core Goals

In this project, a static analysis is developed that builds a graph, the static dependency serialization
graph (SDSG), that abstracts dependencies and anti-dependencies of all possible executions of a given
program meeting the following requirements:

e Programming Language: The program is written in Java.

e Database Driver: Access to Cassandra is done using the datastax driver 2.
e Queries: Queries are either built using plain CQL or using the QueryBuilder class of the datastax
driver.

The analysis takes as an input the source of the program and a list of entry points (e.g. a process-request
method in the case of a web application). Dependencies and anti-dependencies are then determined using
the following information, which are defined beforehand or collected during the analysis using off-the-shelf
techniques:

e Commutativity and absorption rules for the operations issued by the datastax driver
e Pointer and aliasing information
e Set of possible values for a given variable at a given program point

In order to build the static dependency serialization graph, it may be necessary to create stubs for library
methods. If assumptions are made that introduce unsoundness, these should be clearly stated. Given
the SDSG, cycles are detected and reported. These cycles indicate actions that may not be serializable
when executed concurrently.

The analysis is then evaluated on several real programs found in public code repositories. It may be
necessary to modify programs to use the datastax driver instead of another one in order to find a
representative set of programs.

4 Extensions

Systematic Manual Inspection: It is likely that the static analysis reports cycles that do not reveal
real bugs. In order to reduce these false positives, it is necessary to determine which (anti-)dependencies
in the SDSG do not exist in the concrete schedules of the analyzed programs. Once these are known, the

next step is to find out which information is necessary in order to prevent the creation of these edges in
the SDSG.

Annotations: In order to improve the precision of the program, it may be necessary that information
is needed that could be supplied easily by the programmer. For example, a constraint in the database
is maintained by the program and can thus be assumed by the analysis. Or a variable in the program is
unique over all running clients (for example in the case of a unique session identifier). There should be
a set of annotations which can be used by the programmer to express such constraints in the database
or in the program. These annotations should then increase the precision of the analysis.

Infer Annotations: Once the analysis supports a set of annotations, it should be examined if some
of them can (partially) be inferred automatically. If this is the case for certain annotations, inference
should be implemented where it is possible.

2https://github.com/datastax/java-driver

5 Schedule

| Task | Date Duration (months) |
Search for example programs, explore related work | 01.10.2016 0.5
Implement basic analysis 15.10.2016 1.5
First evaluation, imprecision analysis 01.12.2016 0.5
Improve precision, implement annotations 15.12.2016 1.5
Infer annotations 01.02.2017 1
Finish report 01.03.2017 1
End of project 01.04.2017
References

[1] CQL for Apache Cassandra 2.0 & 2.1. http://docs.datastax.com/en/cql/3.1/.
[2] Documentation of Apache Cassandra 2.1. http://docs.datastax.com/en/cassandra/2.1/.

[3] Lucas Brutschy, Dimitar Dimitrov, Peter Mueller and Martin Vechev. Serializability for Eventual
Consistency: Criterion, Analysis and Applications.

