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Abstract

Programming an application that uses an eventual consistent data-store is challenging due to the
presence of unexpected behaviors that are not possible on data-stores with a stronger consistency

model, e.g. a traditional relational databases.

In this thesis we implemented a static analysis that checks a given program for possible serial-
izability violations that may occur at runtime. In a first phase, a set of graphs, which abstracts
all possible interactions of the program with the data-store, is built using abstract interpretation.
This graphical abstractions are then used to find concrete serializability violations that may occur

when the program is executed on multiple clients.

We evaluated the static analysis on several real world programs. The analysis reported multiple
serious serializability violations and only few false positives. The violations are easily understand-
able due to their graphical representation. Hence, the analysis is helpful for the development of

applications that use an eventual consistent data-store.
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1 Introduction

Large distributed systems often rely on replicated data-stores that offer high availability, scalability
and partition tolerance. As it is stated in the CAP theorem [13], it is impossible to provide also
consistency for such a data-store. So in exchange, these systems provide weaker consistency guaran-

tees than for example traditional relational databases, usually some variants of eventual consistency.

Programming an application that uses an eventual consistent data-store is challenging as the pro-
grammer has to ensure strong consistency himself whenever it is required. Serializability of a
program intuitively means that given a schedule of the transactions of the program, there exists a
sequence in which the transactions of the schedule can be executed such that the outcome is equal
to the outcome of the original schedule. This helps to reason about the correctness of the program:
If a program is serializable on a data-store with weak consistency guarantees, one can reason about
the program without taking the effects of the weak consistency model into account. Serializability
violations on the other hand point to program parts where strong consistency guarantees do not
hold. Therefore, these can help the programmer in identifying where additional synchronization

mechanisms are required in the program to make it work correctly.

Recently, Brutschy et al. [2] proposed a criterion that helps to decide whether an execution of
a program is serializable. In their work they evaluate it using a dynamic analysis, so the criterion is
applied to traces that are collected from running programs. While the dynamic analysis is already
promising, a static analysis would help to check serializability effectively during development. There
is no need for the overhead of running the program multiple times and collecting the traces. Ad-

ditionally, the results of a static analysis are valid for all executions and not only the observed ones.

In this project we implemented such a static analysis for Java programs that use Apache Cas-
sandral as a data-store. In a first phase, all possible interactions with Cassandra are abstracted
in a set of graphs using abstract interpretation. These graphs over-approximate all the operations
that may be executed on the database in the given program. In a first approach, we check for
serializability violations of the program by modeling dependencies between operations in the col-
lected graphs and search for cycles. In a second approach we model all possible executions of the
program on two clients and apply an extension of the criterion defined in [2] on these executions

to find serializability violations.

"https://cassandra.apache.org/
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2 1. INTRODUCTION

The remainder of this report is structured as follows: The next chapter provides background on
the criterion used for dynamic serializability checking and some information about Cassandra. In
Chapter 3, the static analysis that creates the graphs that over-approximate the possible interac-
tions with Cassandra is described. Afterwards follows a chapter about checking serializability on
these graphs. In Chapter 5 we evaluate the analysis on example projects. The report ends with a

conclusion and possible future work.



2 Background

In this chapter, the first section describes dynamically checking serializability of an execution of a
program using dependency serialization graphs. Some information about Apache Cassandra can be
found in the following section. We assume that the reader is familiar with abstract interpretation
[5, 16].

2.1 Dynamic Serializability Checking

Brutschy et al. proposed a criterion for checking if a given schedule is serializable [2]. A schedule
has events of two types of operations: An update modifies the state of the data-store whereas a
query retrieves the state (or part of it) of the data-store. An eventually consistent schedule is char-
acterized by visibility and arbitration. Informally, an update is visible to a query if it is included
in the evaluation of the result of the query. The order in which update conflicts are eventually
resolved by the system is called arbitration. Given an eventually consistent schedule, one can find
dependencies and anti-dependencies between these updates and queries. A query depends on an
update if the returned data of the query would change if a visible update would not be visible. An
update has an anti-dependency to a query if the result of the query would change if an invisible
update would become visible to the query (i.e. making an update visible to a query would introduce

a new dependency).

Given a schedule, one can determine dependencies and anti-dependencies taking commutativity
and absorption into account. Two operations (updates / queries) commute, if the order in which
the operations are executed does not change their result. An operation u absorbs v, if the result
of executing v and then wu is the same as executing only u. Using these notions, a visible update u
is a dependency of a query ¢ unless commutativity and absorption can be applied as rewrite rules
repeatedly to obtain a schedule where u is not visible to ¢. An invisible update u anti-depends on

a query q if ¢ would depend on u when u would be visible.

All existing dependencies and anti-dependencies together with arbitration and program order can
be combined in a directed graph, known as the dependency serialization graph (DSG). If this graph
does not contain a cycle, the given execution is serializable. One can construct a serial schedule of
the events by ordering them so that the partial orderings of the DSG are preserved. If the DSG

contains at least one cycle, it is possible that the execution is not serializable.
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Client 1 Client 2 Client 1 Client 2
x.set (1) y.set (1) x.set (1) y.set(1)
© © ©
po po po po
y.get():1 @D x.get():0 y.get():0 x.get():0

(a) serializable (b) not serializable

Figure 2.1: Dependency serialization graph for two different schedules. The right DSG contains a
cycle, so the schedule is not serializable.

Figure 2.1 shows the dependency serialization graphs for two schedules. Such a schedule could
result from two clients that first set some flag and then check the flag of the other client. The left
schedule is serializable: The events of client 2 can be executed before the events of client 1. The

right schedule is not serializable, as both clients do not see the update of the other client.

2.2 Apache Cassandra

Apache Cassandra is a scalable open source database. Data is distributed and replicated across
many nodes which can be placed in multiple data centers. Cassandra extends the concept of even-
tual consistency by offering tunable consistency, which means that the client application decides
how consistent the requested data must be. For example, when writing or reading data, one can
specify the number of replicas that need to respond to the request before the result of the operation
is returned. Additionally, Cassandra offers a linearizable compare-and-set operation. This mech-
anism can be used if a value should only be written if a certain condition is met, for example to
implement that a new user should only be inserted in the database if no other user with the same
username is existing already. In addition to basic types like numbers, strings or dates, Cassandra

also offers sets, maps, lists and counters as conflict-free replicated data types [17].

Data is organized in a column-family model, i.e. in rows of tables where each table has a fixed set
of columns. The primary key of each row consists of a partition key and an optional clustering key.
Both of them can include multiple columns. On which nodes a row is stored is determined by the
hash of the partition key. The clustering columns are used to order the rows within a partition on
a single node. When data is written to Cassandra, at least the partition key has to be specified.

None of the primary-key-columns can be updated.

Data is queried and updated using an SQL-like language named CQL. Statements are ordered
on the database using a timestamp, which is generated on the server per default, but can also be
specified on the client when executing a statement. The following types of statements exist for

querying and updating data:
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Query: A SELECT-statement is used to execute a query on Cassandra, e.g.
SELECT * FROM users WHERE username = ’Bob’;.

Upsert: A row is inserted or updated using either an INSERT or an UPDATE statement. Despite
that the syntax is different, the semantics on the database is the same for both statements.
If an inserted row already exists, the INSERT updates the column values. If a row is not
existing, the UPDATE statement does create it. So both of the following statements have the
same semantics on the database:
INSERT INTO users (username, password) VALUES (’Bob’, ’asdf’);
UPDATE users SET password = ’asdf’ WHERE username = ’Bob’;.

Delete: Some columns or an entire row are deleted using a DELETE statement, e.g.
DELETE playlist_names FROM users WHERE username = ’Alice’;
deletes the column playlist_name for the user named “Alice” whereas the following state-
ment deletes the entire row
DELETE FROM playlists WHERE username = ’Alice’ AND playlist_name = ’favourites’;.

Batch: Multiple upsert and delete statements can be combined into a single logical operation
using a batch. All statements of the batch will be executed using the same timestamp. Here
is an example of a batch:

BEGIN BATCH

UPDATE users SET chat_rooms = chat_rooms + {’cassandra’} WHERE username = ’Bob’;

UPDATE chat_rooms SET users = users + {’Bob’} WHERE room name = ’cassandra’;

APPLY BATCH;.

A compare-and-set operation (aka “Lightweight-Transaction” (LWT) in Cassandra terms) can be
executed by adding an IF-clause to an upsert or delete statement. One can either check for the
existence of a row or one can update a value based on a condition. So in the following examples,
“Alice” is inserted only if no other user with the username “Alice” is already existing and a chat-
room is deleted only if it was created by a user named “Bob”:

INSERT INTO users (username, password) VALUES (’Alice’, ’asdf’) IF NOT EXISTS;
DELETE FROM chat_rooms WHERE room name = ’Cassandra’ IF creator = ’Bob’.
Lightweight-Transactions are linearizable and are implemented using a consensus protocol, which
makes them less efficient. [7, 8, 10, 12]






3 Building the Transaction Graphs

In this chapter we describe how we obtain a representation of a program that we can use to check
for serializability violations. This representation is a set of graphs where each graph abstracts
one transaction. We call such a graph a transaction graph. A transaction is a set of events for
which a user wants that they are executed atomically and in isolation on the data-store. The
data-store itself has no support for transactions. A transaction is defined in terms of a method:
All events that are executed between the first and the last statement of this method are grouped
into one transaction. The methods that span a transaction are specified by the user either in form
of @Transaction annotations in the program or as an argument. Transactions of a program are
unrelated, i.e. each transaction can be considered as a single program with one method as an entry

point and no dependencies to other transactions.

We define the transaction graphs in the next section. Afterwards follows a description of the

static analysis that is used to build the transaction graphs for real Java programs.

3.1 Transaction Graphs

Definition: A transaction graph is a pair (E, P) where

E is a set of events on the data-store
P C{(u,v,res) : u,v € EU{entry,exit},res € {l,+, T}} is an order on the events

An operation is a specific function on the data-store that can be invoked in some way by providing
a list of arguments. An event is the execution of an operation on the data-store, so it consists of
an operation and a list of arguments. Hence, a transaction graph is a directed graph whose nodes
are events. An edge from e; to e; means that es can happen directly after e if either res = T
or else if the result of e; matches res. So the edge (e, ez, ) denotes that es can happen directly
after e; only if e; returns an empty result (respectively non-empty for (ej, e2,+)). The event entry
is the entry- and the event exit is the exit-node of the transaction. Both do not execute an op-

eration on the database. Each event in the transaction graph has to be on a path from entry to exit.

For our work with Cassandra as a data-store, an operation is a synonym for a CQL-query that may
contain bind-markers. A bind-marker in a CQL-query is either a question mark or a text of the

form :<id>. So the query

SELECT * FROM chat_rooms WHERE name = 7?7 AND creator = :username
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has two bind-markers: An unnamed bind-marker at index 0 and a named bind-marker at index 1
with the name “username”. Before a CQL-query is executed, all bind-markers have to be replaced
with concrete values, i.e. primitives or objects, which is called binding. So an event in our work
consists of an operation, i.e. a CQL-query as a string, and a list of mappings from bind-markers

to a set of possible values.

3.1.1 Examples

In this section, we show code-examples of single transactions in combination with the desired
transaction graph. The examples also motivate the design choices we have made for the static
analysis. The only way to execute an event on Cassandra so that is recognized in the analysis is by
calling the execute function on an object of type Session. The first argument is the CQL-query,

the remaining arguments are the replacements for the bind markers in the CQL-query.
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public class Twitter extends SessionHolder {
private final static String TABLE.USERS = ”users”;
@Transaction
private void register (String username, String password){
if (isNewUser (username))
addUser (username, password);
}
private boolean isNewUser (String username){
ResultSet res = session.execute(”SELECT username FROM ” + TABLE_USERS
+ 7 WHERE username = ’” 4 username + " ’;”);
return res.isExhausted ();
}
private void registerUser (String username, String password) {
String query = ”INSERT INTO ” + TABLEUSERS + ” (username, password) ”
+ "VALUES (’” + username + 7', ’7 + password + 7 7);”;
session .execute (query);
}
}

v

1_isNewUser

SELECT username FROM users WHERE username = :iwfnq
0 —> UnknownImmutableValue 5329cb8b

empty

2_registerUser

INSERT INTO users (username, password) VALUES (:iwfnqg, :qwrbo)

0 -> UnknownImmutableValue 5329cb8b
1 -> UnknownImmutableValue 25810a8c

e

Figure 3.1: This figure shows the transaction graph for a register transaction. The CQL-query
is created using string concatenation. A static field on line 2 is used to resolve the name of the
table. In the expected transaction graph, the concatenated CQL-queries from the program are
transformed into operations with bind-markers. The username and password parameters are
abstracted to an unknown value representation. A constraint on the edge from 1_isNewUser to
2_registerUser reflects that the second event only happens if the first event returned an empty
result.

String concatenation is transformed to the bytecode by creating an object of class StringBuilder
on which the concatenated values are appended. Therefore to support the provided code, the
analysis has to handle objects of class StringBuilder precisely. Additionally, string constants
stored in fields have to be recognized. Also some sort of inter-procedural analysis is necessary to
include all events that are executed inside a called method. Also the inter-procedural analysis has
to be precise enough to capture facts like equality of the usernames in the first and the second
event and the fact that the second event is only executed if the first returned an empty result.
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@Transaction
public void removeUserFromRoom (String roomName, String username) {
if (roomName != null && username != null){
final BatchStatement batch = new BatchStatement ();
batch.add (QueryBuilder.update(” chat_rooms” ).
with (QueryBuilder.remove(” users” , username)).
where (QueryBuilder . eq(”name” ; roomName)));

batch.add (QueryBuilder.update(” users” ).
with (QueryBuilder .remove (”rooms” , roomName)).
where (QueryBuilder.eq(”login”, username)));

session . execute (batch);

1 _removeUserFromRoom
UPDATE chat_rooms SET users = users - {:iwfnq} WHERE name = :qwrbo

0 —> UnknownImmutableValue 5329cb8b
1 -> UnknownImmutableValue 25810a8c

2_removeUserFromRoom

UPDATE users SET rooms = rooms - {:iwfnq} WHERE login = :qwrbo

0 -> UnknownImmutableValue 25810a8c
1 -> UnknownImmutableValue 5329cb8b

Figure 3.2: In this example, the QueryBuilder-API is used for building CQL-queries. The
QueryBuilder-API exposes a set of functions that can be used to create valid CQL-queries.

In the example, a batch statement is used that executes both UPDATEs simultaneously. In
the transaction graph, the batch statement is split into two distinct events, which makes checking
for serializability violations easier. As there is an if statement at the beginning of the transaction,
it is possible that no event is executed at all in this transaction. Therefore, there is an edge from
the entry-node to the exit-node.

The analysis has to support most of the methods that are provided by the QueryBuilder-
API. Also, a BatchStatement should be abstracted precisely enough such that the two statements
added on line 6 and 10 can be split into two events in the transaction graph. The control flow of
the program should be represented in the transaction graph too.
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1 @Transaction
2 public List<String> listArtist (String firstLetter , boolean desc) {
3 String queryText = "SELECT % FROM artists_by_first_letter”

4 + 7 WHERE first_letter = 77;

5 if (desc)

6 queryText = queryText + 7 ORDER BY artist DESC”;

7

8 ResultSet results = session.execute(queryText, firstLetter);
9

10 List<String> artists = new ArrayList <>();

11 for (Row row : results)

12 artists.add(row.getString ("artist”));

13
14 return artists;

1_listArtistByLetter

SELECT * FROM artists_by_first_letter WHERE first_letter = 7
0 -> UnknownImmutableValue 5329cb8b

2_listArtistByLetter

SELECT * FROM artists_by_first_letter
WHERE first_letter = 7 ORDER BY artist DESC

0 —> UnknownImmutableValue 5329cb8b

Figure 3.3: This example shows a transaction graph with multiple nodes following the entry-node.
Even though there is only one invocation of the execute function, the transaction graph has two
nodes as the CQL-query is different for the possible values of the parameter desc.

Therefore, one node in the transaction graph does not correspond to a point in the pro-

gram where the execute function is invoked. This has to be considered in the design of the
analysis.
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public class TimelineDaolmpl {
private Session session;
private PreparedStatement getTimelineStmt ;
private PreparedStatement getTweetStmt;

public TimelineDaolmpl(Session session){
this.session = session;
this.getTimelineStmt = session.
prepare (”SELECT tweet_id FROM timeline WHERE username = ?77);
this.getTweetStmt = session .
prepare (”SELECT body FROM tweets WHERE tweet_id = ?77);
}

Q@Transaction
public List<String> getTimeline(String username) {
ResultSet res = session.execute(getTimelineStmt.bind (username));
List<String> tweets = new ArrayList <>();
for (Row row : res){
UUID tweetld = row.getUUID(” tweet_id” );
Row tweet = session.execute (getTweetStmt.bind (tweetId)).one();
tweets.add (tweet.getString (body));

}

return tweets;

!

1_getTimeline

SELECT tweet_id FROM timeline WHERE username = 7
0 -> UnknownImmutableValue 5329cb8b

2_getTimeline

SELECT body FROM tweets WHERE tweet_id = 7
0 -> Unknown UUIDValue

Figure 3.4: This example demonstrates the usage of prepared statements [9]. A prepared statement
can be used to increase the performance if the same CQL-query is executed multiple times. It
is created by calling the function session.prepare with the CQL-query as the argument. In
the preparation phase, the CQL-query is sent to Cassandra where it is parsed and cached, which
means that parsing can be skipped when an event that uses this query is executed. Prepared
statements should be reused and therefore are usually created in a constructor or initialization
method and stored in some field.

To handle this example precisely, the analysis needs to know what the possible values for
the fields in line 3 and 4 are. Inside the transaction code, these fields are never assigned, so it is
also necessary to run an analysis on the code that is never used in a transaction to collect constant
field values.
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public class TrackServlet {
@Transaction
protected void doPost(ServletRequest request, ServletResponse response){
String artist = request.getParameter(”artist”);
String track.name = request.getParameter(”track_-name”);
TracksDAO newTrack = new TracksDAO(artist , track_name);
newTrack.addTrack ();
}
¥

public class TracksDAO {
private final UUID track_id;
private final String artist;
private final String track;

public TracksDAO(String artist , String track){
this.track_id = UUID.randomUUID ();
this.artist = artist;
this.track = track;

}

public void addTrack(){
SessionSingleton .get (). execute (
"INSERT INTO tracks (track_id, artist, track) VALUES (7, 7, ?)”,
track_id , artist, track);

1_addTrack

INSERT INTO tracks (track_id, artist, track) VALUES (7, 7, 7)

0 —> Random UUIDValue 88a622bc
1 -> UnknownImmutableValue 1452bb5ac
2 —> UnknownImmutableValue 5329cb8b

8

Figure 3.5: This figure shows the transaction graph for a servlet that offers a transaction to add
a new track. On line 7, a new track object is created. A random universally unique identifier
(UUID) [14] is created inside the constructor as the id of the track. Random UUIDs have the
property that they are globally unique, so in this example a track created in one transaction has
never the same id as a track created in another transaction.

Whether a UUID is globally unique should be tracked by the analysis, as inequality is use-
ful when defining commutativity. The analysis also has to implement some abstraction for general
objects like the newTrack object on line 7 to handle the method call on line 8 precisely.

The session.execute function takes an arbitrary number of bind arguments. In the byte-
code, this is transformed to an array of type Object with fixed length. So in the bytecode, the
execute function has only two parameters where the second parameter in the call on line 24 is an
array of length 3 containing the track_id, artist and track. Therefore, there is a need for an
abstraction for fixed length arrays in the analysis.
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3.2 Analysis

Using abstract interpretation [5], we have implemented a static analysis to build transaction graphs
for programs written in Java. The idea behind abstract interpretation is to compute a flow (aka
abstract context or abstract state) for each point in the program which over-approximates the real
execution state at that point, i.e. the flow at a program point must include all possible states that
can occur at runtime at the given point. The flow for each program point is computed iteratively
on the control flow graph (CFG) by merging all flows from predecessor nodes and then applying the
effect of the current statement. Merging is done by applying a join function (U). If fres = f1 U fa,
fres must over-approximate f; and fo. For a node stmt in the CFG, we define the in-flow as the
merged flows from all predecessors, the transformer as the function that applies the effects of stmt
on the in-flow and the out-flow as the resulting flow after applying the transformer. The entry-flow
is the flow that is used as the in-flow for the entry-nodes (i.e. nodes without predecessors) in the
CFG. An over-approximation for each program point is calculated by iterating over all program
points and calculate the out-flow by applying the transformer on the in-flow. This is done until a
fixed point is reached, i.e. for each program point, the out-flow is equal to a new transformation of

the in-flow.

The next section describes the flow and the corresponding transformers that we used for the anal-
ysis. Afterwards we describe the four steps of the static analysis which consist of transforming
the CFGs, the collection of possible field values and finally building and parsing the transaction
graphs. We finish the section with an overview of the cases where the resulting transaction graphs

may be unsound.

3.2.1 Flow and Transformers

Flow: We use a flow that consists of three parts: A transaction graph, a path constraint and an
environment. The transaction graph in the out-flow of a program point p represents the graph if
the current transaction spans from the entry-node to p. The path constraint consists of two sets
where each set contains all events from the transaction graph that must have returned an empty
respectively a non-empty result so that the current program-point is feasible. The environment
maps each static field or local variable that may be in scope at the current program point to
references. We use allocation-site based abstraction for references [4], i.e. a reference abstracts the
program point at which an object is created. Therefore if two variables may point to the same
reference, we may have aliasing. The environment additionally maps references to a set of symbolic
values. The symbolic values are divided into four categories. Each category has its own definition

of a top value.

Immutable values: Strings, Integers and UUIDs cannot be modified in the program after they
are created. Therefore, we do not have to care about escaping and can also copy these values
around if necessary. Additionally to the constants mentioned before, there exists also an
unknown immutable value which is used for example for user inputs or results from unknown

functions. This unknown immutable value contains the program point where it was created,
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which is used to determine if two unknown immutable values are equal. The top value is
an unknown immutable value for which we cannot assume equality if it is used in different

statements.

Mutable values: To this category belong mutable values that are specifically handled by the
analysis, e.g. objects of type StringBuilder or all the objects that have a subtype of
Statement (e.g. PreparedStatement, BoundStatement). The top value is an unknown value
with no further properties. Also all the symbolic values for the objects created from the static

methods of the QueryBuilder class belong to this category.

Objects: Each object that does not belong to the other categories and has the type of an analyzed
class is represented as a map of field descriptors to references. For each type there exists a
distinct top value which contains all the fields that can only have a finite number of possible
values at runtime. Theses possible field value sets are calculated in the second step of the

static analysis (see Section 3.2.3).

Arrays: An array is represented as a map from integers to references or immutable values. An
entry in this map with key 7 means that a reference or an immutable value was directly
assigned to index ¢, where 7 is a constant. All remaining indexes point therefore to the initial
value depending on the type of the element (0 or null). Therefore, the map is bounded by
the number of integer constants that appear in the program. The top value is a representation

of an array where each index points to the top value of the category the elements belong to.

Widening: The transaction graph and the path constraint in the flows are bounded by the
number of execute statements in the program, so there is no need for widening. The mapping
from static fields or variables to references is also bounded: Static fields and variables are bounded
by their occurrences in the program and references are bounded due to the fact that there is only a
finite number of allocation sites for a program. Widening is therefore only defined for the mapping
from references to symbolic values. Widening for a mapping from a single reference r to a set of

values v1, vy is defined as follows:

() if V1 = V2
(r,v1)V(r,vy) = ’
T, otherwise

The map that contains the mappings from references to symbolic values is widened by applying

the widening defined above on all entries.

Transformers: For a lot of the transformers, the implementation is straight-forward. Thus,
we only describe some parts of the transformers that are more special. Whenever we say that we
set a variable var to top, this means that all references var may point to are set to top. Setting
a reference ref to top means that for all references that are reachable from ref and point to a
non-immutable value, the values they point to are replaced with the top value. This means that if
for example a reference pointing to array a is set to top, also all the references of the elements of

a are set to top.
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Default Transformer: This transformer is sound to use whenever we do not have a better trans-
former for a statement. All local variables that are used in the statement that is abstracted
(e.g. parameters and the base object in a method call) are set to top. If a new variable is

defined, it is initialized with top.

Field-Assignments: Assignments to a field always appear in the form o.f = v in the represen-
tation of the CFG where v is either a variable or a constant. If o points to a symbolic object,
the mapping for field f is updated to v. If o points to a top value and v is a variable, we
check if v is in fact constant, i.e. either v points only to immutable values or we know from
the second phase of the analysis that v will never be modified (cf. Section 3.2.3). If v is not

constant, we set it to top, otherwise we do nothing.

Variable-Assignment from Field: If the value of a field is assigned to a variable, i.e. v = o.f
and o points to a symbolic object, v is initialized with the current value of f in o. If o points
to a top value and f is in the possible field values map (cf. Section 3.2.3), v is initialized with
the references of the possible field values map. If f is not in this map, v is initialized with

top.

Array-Element-Assignments: Assignments of an array element appear in the representation
of the CFG in the form a[i] = v where a is a variable and i and v are either a variable or
a constant. If a points to a symbolic array and i is an integer constant, we set the element
with index i to v in a. If i is not an integer constant, we do not know which element is

written in a. Therefore, we set a and v to top. If a points to a top value, we set v to top.

Casts: As we have categories for different types, it is possible that a value changes the category
if it is casted. For example in the statement String str = (String) o, o may point to a
top mutable value. As str belongs to the immutable value category, the references o points

to cannot be assigned to str, so str is initialized with top and o is also set to top.

Execution of Events on the Database: An execution of an event on the database is trans-

formed in three steps:

1. The arguments of the session.execute function call have to be transformed to a sym-
bolic value that represents the event, which consists of the CQL-query string and a
list of symbolic values that replace the bind markers. If the event was created using a
PreparedStatement or the QueryBuilder, there is a single argument to the execute
function that already points to a symbolic value with the right form. However, if string
concatenation was used for creating the CQL-query, it is likely that the symbolic value
for the CQL-query contains non-string-parts (e.g. integers or top values). In this case,
the analysis generates a random bind marker for each non-string part, adds the part as
a bind marker replacement to the event and uses the bind marker in the CQL-query

instead.

2. Afterwards, the event is added to the transaction graph.
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3. Finally, if the result from the execution is assigned to a variable v, the analysis creates

a symbolic value for the result that refers to the newly created event and assigns it to v.

Apply-Condition: As the in-flow of each statement is transformed to a single out-flow, con-
ditions of an if-statement cannot be added to the path constraint from the transformer of
the if-statement, as this would result in multiple out-flows. Instead, two transformers that
apply a condition to the path constraint are added in both branches after the if-statements
when transforming the CFG (see Section 3.2.2). For conditions that check whether an event
returned an empty (respectively non-empty) result, the flow is transformed by altering the

current path constraint.

Invoke-Analyzed-Method and Return-Analyzed-Method: If an analyzed method is called
in the inter-procedural analysis, these two transformers enclose the transformers of the called
method. These two transformers transform the flow in the following way: When the method
is invoked, the base object is assigned to the this pointer and the function arguments to
the parameter variables. When the method returns, the old this pointer is restored and the

return value is assigned to the left variable of the method call.

3.2.2 Transformation of the CFG

The first step of the static analysis is to transform the CFG into an abstract control flow graph
(ACFG). Whereas the CFG consists of the statements that transform the real program state, the
ACFG consists of functions that transform the flow we have defined before with respect to the
semantics of the abstracted statement. This also means that statements that do not modify the
flow can be excluded from the ACFG. Edges in the ACFG also represent possible control flow. We
can use the ACFG of a method m to directly run a data-flow analysis on m that calculates the
flow defined above at each program point. The in-flow of a node is the flow resulting from merging
all out-flows of the predecessors in the ACFG. The out-flow of a node is obtained by applying the

transformer of the node on the in-flow.

We use the Soot framework [18] for transforming the byte-code of the program into a CFG. Soot
provides different representations of the CFG. Our analysis is built on the Shimple representation®,
which is a typed representation of the byte-code in SSA-form [6]. The IfStmt is the only node
in the CFG that has more then one successor. It has the form if <condition> goto <stmty>
with the two successors stmt; and stmts. So if the condition evaluates to true, control flow
goes to stmto, otherwise it goes to stmty. To simplify the analysis, our ACFG does not contain
such conditional branches. Instead, each IfStmt is transformed to an If-Transformer with two
Apply-Condition-Transformers as successors. The If-Transformer does not modify the flow

whereas the Apply-Condition-Transformer applies the condition of the IfStmt to the flow.

The CFG of a method is transformed to the ACFG by running an intra-procedural data-flow

analysis. The flow is the set of transformers that reach a program point. For the entry-flow, a

"https://github.com/Sable/soot/wiki/A-brief-overview-of-Shimple



18 3. BUILDING THE TRANSACTION GRAPHS

special transformer tesq, is created that marks the entry-point of the ACFG. At each statement

stmt, the in-flow is transformed to the out-flow according to the following steps:

1. Replace each If-Transformer ¢; in the in-flow with an Apply-Condition-Transformer ¢,
and add an edge t; — t2 to the ACFG.

2. Check if an analyzed method is called in the statement and no predefined transformer ex-
ists. If this is the case, create an Invoke-Analyzed-Method-Transformer tipyoke and a
Return-Analyzed-Method-Transformer tietyrn, add treturn to the out-flow and add an edge
tin — tinvoke for each transformer ti, in the in-flow. We create such a transformer pair for
each method that may be called from a call-site. The set of possible methods is calculated
using a class-hierarchy-analysis [11] and is provided by Soot.

Otherwise, if a transformer ¢ is needed for the current statement, add an edge ti, — t to
the execute graph for each transformer ¢, in the in-flow and set the out-flow to ¢. If no

transformer is needed (e.g. for a GotoStmt), copy the in-flow to the out-flow.

When the fixpoint is reached, we have the ACFG for the analyzed method. Note that the graph
created in this step may be disconnected. For each invocation of an analyzed method, the cre-
ated Invoke-Analyzed-Method-Transformer has no successors and the corresponding Return-
Analyzed-Method-Transformer has no predecessors in the graph. Figure 3.6 shows the Shimple
representation and the ACFG for a register method.
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1 private void register (String username, String password){
if (dbAccess.isNewUser (username))
dbAccess.addUser (username, password );

~ W N

1 private void register (String, String){

2 r0 := Qthis: SimpleTwitter;

3 rl := @parameterO: String;

4 r2 := @parameterl: String;

5 $r3 = r0.<SimpleTwitter: DBAccess dbAccess>;

6 $20 = virtualinvoke $r3.<DBAccess: boolean isNewUser(String)>(rl);
7 if $20 = 0 goto labell;

8 $r4 = r0.<SimpleTwitter: DBAccess dbAccess>;

9 virtualinvoke $r4.<DBAccess: void addUser(String, String)>(rl, r2);
10 labell :

11 return;

H
[V
—

NopProgramPoint [java.lang. Object@6adccef7]

IdentityStmtProgramPoint [r0 = @this: simpletwitter. SimpleTwitter]

IdentityStmtProgramPoint [r] = @parameter0: java.lang. String]

IdentityStmtProgramPoint [r2 == @parameter]: java.lang.String]

AbstractAssignProgramPoint [$r3 = r0.<simpletwitter.SimpleTwitter: simpletwitter. DBAccess dbAccess>]

}

AnalyzedMethodInvokePoint[<simpletwitter. DBAccess: boolean isNewUser(java.lang.String)>]

AnalyzedMethodReturnPoint[<simpletwitter. DBAccess: boolean isNewUser(java.lang. String)>]

IfStmtProgramPoint [if $z0 == 0 goto return]

ApplyConditionProgramPoint [conditionExpr=$z0 == 0, negate=true]

~

ApplyConditionProgramPoint [conditionExpr=$z0 == 0, negate=false] AbstractAssignProgramPoint [$r4 = r0.<simpletwitter. SimpleTwitter: simpletwitter. DBAccess dbAccess>]

/

AnalyzedMethodInvokePoint[<simpletwitter. DBAccess: void addUser(java.lang. String,java.lang. String)>]

AnalyzedMethodReturnPoint[<simpletwitter. DBAccess: void addUser(java.lang.String, java.lang.String)>]

NopProgramPoint [java.lang.Object@69391e08]

Figure 3.6: Java and Shimple representation of a register method. The graph on the bottom
shows the abstract control flow graph of the method. The IfStmt from the method is represented
by three nodes in the ACFG. There are disconnected transformers that abstract the method calls
isNewUser and addUser.
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3.2.3 Collection of Possible Field Values

In the second step of the analysis, the ACFGs are used for collecting sets of possible values for each
field in the analyzed classes. It is quite common in our examples that prepared statements, table
names or CQL-queries are stored in fields (see for example Figure 3.4), so it is crucial for a precise
analysis to have some knowledge about possible field values. The analysis is restricted to fields
per type, so more formally the goal is to build a map possibleFieldValuesMap := FieldDesc —
P(Reference) for all fields to which only a specific set of values are assigned. For static fields, the
map should be restricted to immutable values. Annotated fields are excluded from this analysis,
as the annotation could be used to inject values at runtime (e.g. the @Autowired annotation from

the Spring framework?).

The possibleFieldValuesMap maps fields to a set containing references. The values the refer-
ences point to are stored in the environment part of the flow. Therefore only references that are
never created in a transformer can be stored in the possibleFieldValuesMap. We call such a

reference that is never created in a transformer a global-reference.

A field contains a mapping in the possibleFieldValuesMap only if the values pointed by the
references that are assigned to the field are never modified after the initial assignment. This means
that all fields that have a mapping in the possibleFieldValuesMap point via references to a set of
symbolic values that are in fact constant. Therefore if the value of a field £ of an unknown object
o is assigned to a variable v (i.e. v. = o.f), v can be directly initialized with the global-references

stored in the possibleFieldValuesMap.

We iterate over all methods and run an intra-procedural data-flow-analysis on its ACFGs as long

as the possibleFieldValuesMap changes. The algorithm works as follows:

1. Initialize the possibleFieldValuesMap with a reference to the default value for each field,

e.g. 0 for an int field or null for a field that contains an object.

2. Loop over all methods as long as the possibleFieldValuesMap changes. For each method,

execute the following steps:

(a) Build a representation of the ACFG in which each Invoke-Analyzed-Method-Transformer
and its corresponding Return-Analyzed-Method-Transformer is replaced with a Default-

Transformer to get a connected graph.

(b) Create the entry-flow, which means that for the this pointer and for each parameter
a top value is created. Additionally, the symbolic values for all the references in the

possibleFieldValuesMap are copied to the entry-flow.

(c) Run the data-flow analysis until a fixpoint is reached. After each transformation of the
in-flow to the out-flow, check if a symbolic value referenced from the possibleFieldValuesMap
has changed and if this is the case, add the field to a changedFieldsSet. Also add a

2http://docs.spring.io/spring-boot/docs/current/reference/html
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static field to the changedFieldsSet if a reference that points to a non-immutable value

is assigned to the static field.

(d) Remove all fields in the changedFieldsSet from the possibleFieldValuesMap. Also
remove all fields from the possibleFieldValuesMap that point directly or indirectly via

an array element or another field of an object to a top value.

(e) For all fields that are in the possibleFieldValuesMap, add all new references that were
assigned to the field in the last analysis to the possibleFieldValuesMap. Also copy the

corresponding symbolic values from the environment.

(f) Transform all references in the possibleFieldValuesMap to global-references. As the
same method may be analyzed multiple times, this is needed to ensure that the values
assigned to fields in previous data-flow analyses do not interfere with another analysis

on the same method.

The possibleFieldValuesMap is used if a field of a top value is read. This is especially important

for the this pointer and the parameters of the methods that span a transaction.

3.2.4 Building the Transaction Graph

In this step, the analysis will build a first version of the transaction graphs. The entry-point of each
transaction has to be specified either by using an annotation in the program or by suppling the
method-signature as an argument. For each specified method, the transaction graph is created by
running an inter-procedural context-sensitive data-flow analysis on the ACFGs. We use call strings
for the context as described in [16, 2.5.4], but bound the length of each call string by including

each label at most once.

For each transaction, we build a super-graph of the ACFGs. The super-graph encodes the context-
sensitive inter-procedural analysis in a graph by including the ACFGs of all methods that may be
called transitively from the entry-method. Each transformer is instantiated with a stack of method
invokes that lead to the execution of the transformer. So for the first method m; that is called
in a transaction, the stack is empty. If m; calls another method mo at statement stmti, stmi;
is pushed on the stack and the transformers of my are instantiated using the new stack. Now, if
method mg3 is called from statement stmts in ms, the transformers of mg are instantiated with the
stack stmtqstmto. If the stack already contains the statement where a new method is invoked, the
statement is not added again. This ensures termination even for recursive function calls. Local
variables and references are always allocated in the context of the stack at a given transformer,
so we still have SSA-form in the super-graph. The super-graph for a transaction is built using a

work-list-based approach:

1. Create an empty graph and add all nodes from the ACFG of the method that starts the
transaction. Add all Invoke-Analyzed-Method-Transformers contained in the ACFG to
the work-list.
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2. Take the first Invoke-Analyzed-Method-Transformer of the work-list. If it was not pro-
cessed yet, create a new stack containing the invoke statement and add all transformers of the
invoked method instantiated with the new stack to the super graph. Add all Invoke-Analyzed-

Method-Transformer to the work-list.

3. Connect the source nodes of the inserted method with the invoke-node and the sinks with
the return-node. Also connect each transformer with all Caught-Exception-Transformers

that enclose the transformer. If the work-list is not empty, proceed with step 2.

4. Post-process the graph by adding an edge from each Throw-Exception-Transformer to the
sink node of the graph. Also remove all edges from other transformers than Throw-Exception-
Transformer to a Caught-Exception-Transformer if the sound throw analysis is not enabled

(see Section 3.2.6 for a discussion).

Finally, the entry-flow, which consists of possible values for all static fields, the this object and
all parameters, is built using the results from the possible field values collection step. The data-
flow analysis is run on the super-graph until a fixpoint is reached. The transaction graph is then

obtained by merging all out-flows of the sink-nodes.

3.2.5 Transformation of the Transaction Graph

The transaction graph obtained from the data-flow analysis on the super-graph is in a form which
makes it difficult to analyze it. One node in the transaction graph can contain events with different
CQL-queries, e.g. if the CQL-query looks different depending on the value of some parameter (see
Figure 3.3). Also, the statements are not parsed at this stage and a bind marker can point to
multiple symbolic values. In this step, the transaction graph is transformed into a graph in which
each node represents exactly one event. This means that each node is split into possibly multiple

nodes in this step. CQL-queries are parsed using the parser from the Cassandra source code®.

Events are transformed into three structures: Queries (SELECT), upserts (INSERT, UPDATE and
DELETE <col> FROM (i.e. deletions of single columns)) and deletes (DELETE FROM (i.e. deletion of
full rows)). All three types consist of the table name and a set of constraints that restrict the rows
that are relevant for the event. Constraints are extracted from the WHERE part of the CQL-queries.
Additionally, queries also have a set of columns that are selected in the event and upserts contain
a map from columns to symbolic values that reflects the changes that are applied in the event. So
all the facts that we have collected in the static analysis are transformed to a simple data-structure

that facilitates the checking afterwards.
3.2.6 Unsoundness

The analysis may be unsound for the following cases:

Lambdas: A lambda is represented as a dynamic invoke call in the bytecode. Thus, we cannot

analyze the body of the lambda. Objects that are used inside a lambda are set to top when

3https://github.com/apache/cassandra
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the lambda is created. However, we cannot capture whether a statement is executed on the

database from inside the lambda.

Reflection: If a method is called using reflection, this call is not represented in the call graph
and thus, the method is not included in the super-graph. This may lead to unsoundness if

e.g. an execution of a statement is not included.

Unknown Methods: Calls of method whose source is not available can lead to unsoundness if
the method contains assignments to fields of analyzed classes or executes statements on the

database.

Single-Threaded: The analysis assumes that the program is executed in a single thread. Con-

current modification of static fields or shared objects may lead to an unsound result.

Exception Handling: Per default the only predecessors of catch statements in the super-graph
are throw statements. If another statement throws an exception at runtime, this state is
missing after the catch statement. If a sound exception handling is required, each statement
that may throw an exception should have an edge to all enclosing catch statements, which
may introduce a lot of edges in the super-graph. Sound handling can be enabled using the

options, but may have an impact on the performance.

Communication with Cassandra: All events on Cassandra have to be executed using the
execute function of the com.datastax.driver.core.Session interface of the Datastax

4

driver?. If for example the object mapper® of the Java driver is also used, some events

might be missing in the transaction graph.

Asynchronous Execution of Events: The analysis does not differ between synchronous and
asynchronous executions of events, i.e. the program order in the transaction graph reflects
the program order in the super-graph. This may not be true for an asynchronous execution

of an event.

For most applications these restrictions should be acceptable. Some minor modifications were

necessary to analyze the evaluated examples soundly, which are discussed in Section 5.1.

‘https://github.com/datastax/java-driver
"https://github.com/datastax/java-driver/tree/3.1.x/manual/object_mapper
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4 Serializability Checking

We check whether all executions of a program are serializable in two ways. The first approach is
to over-approximate all possible dependency serialization graphs in a summary graph and search
it for specific cycles that indicate a serializability violation. In the second approach, we check all
possible executions involving up to two transactions on two clients for serializability violations using
an SMT-solver. In the next section, we present the consistency model that we used. The sections

following describe the two approaches.

From here on, the term event refers to the parsed version of the events (as described in Sec-
tion 3.2.5). A query refers to a query event and an update refers to either an upsert or delete
event. For readability reasons, we still use the CQL-queries with bind markers or concrete values

in illustrations, despite that the parsed events do not have this form anymore.

4.1 Consistency Model

For serializability checking we assume that Cassandra provides causal-consistency [3]. An event e;
happens before another event es, if it is ordered by the transitive closure of program order and vis-
ibility. A data-store that provides causal-consistency ensures that if an update u happened before
a query ¢, than wu is visible to ¢. Also if an update w1 happened before update us, w1 is arbitrated

before wus.

Additionally we assume atomic visibility, i.e. that all or none of the updates executed in a transac-
tion are visible to queries in other transactions. As transactions are only defined in programs, this

has to be ensured somehow by the programmer rather than by the system.

There exists a causal-consistent data-store called Eiger that was implemented by Lloyd et al on
top of Cassandra [15]. Eiger provides two operations for reading and writing data on multiple
rows, namely read-only and write-only transactions. A read-only transaction does only read data
from completed write-only transactions. Using these two types of transactions, a programmer can
implement a transaction that is causal-consistent and atomic visible to other transactions by first
reading all the values required in a read-only transaction and then finally write back the updates

using a write-only transaction.

Using causal-consistency, we can define a critical cycle for a static over-approximation of the depen-

25
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dency serialization graph, i.e. edges a cycle has to contain at minimum such that a serializability
violation is possible at runtime. Bernardi et al. showed in [1] that a critical cycle consists of at

least two anti-dependencies or one anti-dependency and one arbitration edge.

4.2 Over-Approximation of the Dependency Serialization Graph

The dependency serialization graph of an execution can be used to check if serializability violations
occurred as described in Section 2.1. One can therefore over-approximate all possible dependency
serialization graphs of a program and if there is no critical cycle in the over-approximation, no such
cycle can occur at runtime and therefore, all executions of the program are serializable. If critical
cycles exist, these can point to transactions that may lead to a serializability violation if executed

concurrently.

Given the transaction graphs for a program, the over-approximation of the dependency serialization
graph is created by first adding all transactions as nodes. Afterwards, for all pairs of transactions

(t1,t2), the following edges are inserted:

e If a query ¢ from ¢; and an update u from t5 exist that may not commute, a dependency edge

from t9 to t; and an anti-dependency edge from t; to to are added.

e [f there is an update uy from ¢; and an update us from to that do not always commute, an

arbitration edge from ¢; to to and another from to to £; are inserted.

Figure 4.1a shows an over-approximation of a program that has two transactions addTweet and
viewTweet. For each transaction ¢, the checker reports a minimal number of transactions such that
a critical cycle exists and ¢ is part of it. One critical cycle for the twitter program can be found in
Figure 4.1b. However, the critical cycle reported is a false positive: If there is arbitration between

the addTweet transactions, there is also absorption, which resolves the cycle.

If the checker does not report a critical cycle for a program, all executions of the program are

serializable.

4.3 Checking Serializability for Two Clients

Whether a program is serializable for two clients is checked using a tool called ECChecker. The
input to the tool consists of a specification of the operations that are offered by the data-store and

all the events that may be executed on a client. It consists of the following parts:

System Specification: Specifies the semantics of the data-store, i.e. the set of the offered oper-
ations together with specifications for commutativity, absorption, asymmetric commutativity,

synchronization and legality between these operations.

Transaction Graphs: A set of transactions where each transaction is a set of events combined
with a program order between these. An event consists of an operation that is part of the

system specification and an optional constraint.
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viewTweet addTweet

INSERT INTO tweets
(tweet_id, username, body)
VALUES (7, 7, 7)

SELECT tweet_id
FROM userline
WHERE username = 7

SELECT tweet_id,
username, body

FROM  tweets

WHERE tweet_id IN 7

INSERT INTO userline
(username, time, tweet_id)
VALUES (7, 7, 7)

44&8

(a) Over-approximation of the possible dependency serialization graphs for a program that has a transaction
addTweet and a transaction viewTweet. The dotted lines indicate that there is either a dependency from
addTweet to viewTweet or an anti-dependency from viewTweet to addTweet.

Client 1
addTweet

Client 2
addTweet

Client 1

view Tweet

(b) A minimal critical cycle for the over-approximation of the possible dependency serialization graphs.
However, this violation is a false positive: If there is arbitration between the addTweet transactions, there
is also absorption, which resolves the cycle.

Figure 4.1: Over-approximation of the DSG and a minimal critical cycle.
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Transaction Order: A set of edges. An edge (t1,%2) means that transaction t can be executed

directly after transaction ¢; on a client.
Global Constraint: The last part of the input is a constraint that must hold on both clients.

ECChecker checks for two clients all combinations of up to two transactions per client for serial-
izability violations, which is enough in order to find all possible serializability violations between
two clients. For each combination, the transactions are instantiated to the clients and the program
order is unrolled such that in the end there is an acyclic graph representing the combination. This
graph is transformed into a logical formula that encodes serializability violations for the specified
data-store under the assumptions of causality and atomic visibility (cf. Section 4.1). The logical
formula is checked for satisfiability using Z3!, which is an SMT-solver. If the formula is unsatisfi-
able, no serializability violation exists for the combination. Otherwise, the model is used to build

a graph that represents the violation.

The remainder of this section consists of the following subsections: In the next part, the transfor-
mation from the transaction graphs to the ECChecker input is described. Afterwards, we motivate

and describe the enhancements and annotations that we introduced for reducing false positives.

4.3.1 Encoding of the ECChecker Input

All constraints are encoded using a simple expression language that supports three types: Integers,
strings and booleans. Each expression consists of variables, constants, comparisons (equal, not
equal) and boolean operations (not, and, or, implies). Variables are typed and are partitioned into
global variables, client local variables and argument variables. A global variable has global scope,
i.e. has the same value on all clients, a client local variable has client scope, i.e. has the same value
on a single client, but may have another value on the other client, and an argument variable has
event scope, i.e. an argument variable with the same name can have different values in different

events.

Each event of the transaction graphs is encoded as a single operation in the system specifica-
tion. The argument variables are numbered as follows: The integer argument variable with index 0
is used to refer to the client identifier, a client-unique number. The constraints and column updates
are numbered for each event, so the remaining integer argument variables are used to relate to val-
ues used in constraints or updates. Additionally for queries, the boolean argument variable with
index 0 reflects whether the query returned an empty result. For updates, the boolean argument
variable with index 1 reflects whether at least one new row was inserted and the variable with
index 2 whether at least one row was updated. We now describe the different parts of the system

specification and roughly what we encode for the operations in each part:

Commutativity: Commutativity specifies for pair of operations o1 and oy what constraint im-

plies that executing o1; 02 leaves the data-store in the same state as executing o9;01 and

"https://github.com/Z3Prover
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vice versa. Therefore, commutativity is symmetric. Trivially, if both operations are queries
or both operate on different tables, the operations always commute, so true is specified for
these pairs.

For a query ¢ and an update u, we specify true if u updates other columns than the ones
that are selected from ¢. Otherwise we encode that u updates other rows than the ones that
are selected by q.

For two updates u; and uo, we encode that u; updates other rows than us or that columns

that are updated from both updates are set to the same value.

Absorption: For absorption we specify for two updates u; and us which constraint implies that
ug masks the effects of uq, i.e. that executing ui;uo leaves the data-store in the same state
as executing only uo. Clearly, this specification is not symmetric. If both updates operate
on different tables, we specify false, otherwise we specify that us updates a superset of the

columns and a superset of the rows updated by uy.

Asymmetric Commutativity: For two operations o1 and o9, asymmetric commutativity spec-
ifies the constraint that implies that executing o1; 02 leaves the database in the same state as
executing o9; 01, but it does not imply that also the execution of 09; 01 leaves the database
in the same state as 01;02. We use asymmetric commutativity for some corner cases, e.g. if
we have a delete event d and an update event u where w is a strict update, i.e. it does not
insert new rows, then we can specify true for asymmetric commutativity of d and u. If u
also includes rows that are deleted by d, moving u before d only means that these rows are
updated before they are deleted, so the final state of the data-store is the same.

Another example is that if we have an upsert event ¢ and a query event ¢, than we can specify
that ¢, ¢ commutes if ¢ does not update any rows and ¢ does not return any rows. So if ¢
does not return any rows after new rows are added by %, ¢ will also not return a result if it
is executed before 7. But note that if ¢ also updates rows, this would not hold, as i could

update a value that is used to constrain the rows in q.

Synchronization: Here we can specify for two operations o; and oo under what conditions the
data-store guarantees that o; is causally after oy or og is causally after 0. Cassandra imposes
an order on two lightweight transactions that operate on the same row, so for synchronization
we specify the constraints under which two updates u1, us update the same row if both are
executed in a lightweight transaction. This is not entirely sound, as all events ordered after
o1 and o9 are also ordered by this synchronization specification, which is not the case in the

real system.

Legality: Legality lets us specify constraints for two operations o1, oo that must hold if oo is
causally ordered after o;. We use legality for specifications of operations that operate on
tables where no deletes happen. If we have for example a query ¢ and an update u that
operate on a table with no deletes, we can specify that u cannot insert a new row if the same
row was previously returned by ¢. Another example is that a query ¢o that is executed after

¢1 cannot return an empty result if ¢; returned a non empty result and both queries selected
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the same rows.

For the input of the transaction order, we specify that each transaction can happen after each other
transaction. The transformation of the transaction graphs for the ECChecker input is also straight-
forward. As we have created an operation in the system specification for each event, we transform
each event in the transaction graph to a node that refers to the created operation. Additionally,
we encode for each column update and constraint of each event equalities and inequalities between
argument variables. For example for client local variables that are annotated by the user in the
program, we can assign the argument variables to a client local variable. This means that if we
have for example the two events SELECT * FROM users WHERE username = :ul and INSERT INTO
users (username) VALUES (:u2) and we know from the static analysis that the replacements for
the binds ul and u2 are equal on a client, we assign the argument variable representing ul to the
same client local variable as the argument variable representing u2. This ensures that the analysis

assumes that the usernames are equal per client.

The edges in the transaction graph are transformed by specifying the expected result from the

source event of the edge in the expression language used by ECChecker.

4.3.2 Annotations and Enhancements

In this section we motivate and describe the annotations that a programmer can use to reduce
false positives. Also we show what kind of false positives can be excluded when enabling the
implemented enhancements and additional specification parts other than commutativity. All the
examples provided in the following sections are minimized versions of the transactions of the real
examples. For the illustrations of the violations, we use CQL-queries with all bind markers replaced

by concrete values, which should help understanding what the violation is.

4.3.2.1 Absorption and Schema Information

The example shown in Figure 4.2 consists of two transactions: One adds a new user to the database
and the other retrieves a user from the database. As the INSERT events of client 0 and client 1
do not commute, we have arbitration between them. Also the query on client 0 might not see the
password inserted in client 1, so there is an anti-dependency from 0_SELECT_2 to 0_INSERT_1, which

results in a potential violation.

The user of the analysis can specify the path to a file that contains the CQL-statements that
are needed for creating the schema on the database. This file is parsed in the analysis so that the
primary key columns of each table are known, which improves precision when defining the system
specification. As UPDATE and DELETE statements must specify the partition key in the WHERE part,
the analysis can deduce a set of primary key columns even in the absence of the file, but usually

not enough to enable a precise analysis.

This false positive is resolved by taking absorption into account. We know from the schema infor-
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Client 0
0 createUser 1
0_INSERT 1 NG
INSERT INTO users (username, passw)
VALUES (‘Alice’, ‘asdf’)
to
0_getUser_2
0_SELECT 2 \Y
SELECT username, passw
FROM  users
WHERE username = ‘Alice’

Client 1

31

1 createUser 1

1 _INSERT 1 \

|_w VALUES (‘Alice’, ¢jk16’)

™ INSERT INTO users (username, passw)

@
/ \l/
©

Figure 4.2: Using schema information and absorption removes this false positive.

mation that the primary key of the users table is the username column, so the event 0_INSERT_1

absorbs the event 1_INSERT_1. Therefore, we can order the transaction of client 1 before the trans-

actions of client 0 to obtain a serial schedule. Note that the cycle is also resolved if the username of
0_INSERT'_1 is not equal to the one of 1_INSERT_1: When the usernames are unequal, the updates

are commutative instead, so in this case there is no arbitration edge.

4.3.2.2 Program Order

In Figure 4.3 we have a transaction that is used to either create a new user or check the creden-

tials. The transaction consists of two events that are both entry- and exit-nodes of the graph. If

Figure 4.3: Encoding program order removes this false positive.

Client 0
0_login_1
0_INSERT 1 \ 0 SELECT 3 y
INSERT INTO users (username, passw) _ .
VALUES (‘Alice’, ‘asdf’) SELECT * FROM users WHER\.EI/ username = ‘Alice’
ar &)
1_login_1
L_INSERT_1 v 4 1_SELECT_2 \
INSERT INTO users (username, passw) _ .
VALUES (‘Alice’, ‘jk16°) SELECT * FROM users WHER.\T/ username = ‘Alice’
Client 1
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Client 0 Client 1
0 addTrack 1 1 _addUser 3
0_INSERT 1 NG 1 INSERT 3 NG
INSERT INTO tracks(id, artist, track) INSERT INTO users (username, passw)
VALUES (15-33-871, ‘Panda’, ‘Oben’) \ / VALUES (‘Alice’, ‘asdf’)
V% ar O V%
to l lto
0_getUser_2 1_addTrack_1
0_SELECT 2 NG 1 INSERT 1 NG
SELECT * FROM users INSERT INTO tracks(id, artist, track)
WHERE username = ‘Alice’ VALUES (15-33-871, ‘DTH’, ‘Disco’)
v v

Figure 4.4: Encoding the uniqueness of the track identifiers removes this false positive.

the 1_SELECT_2 event does not observe the password “asdf”, there is an anti-dependency between
1_SELECT_2 and O_INSERT_1. Also there is arbitration between O_INSERT_1 and 1_INSERT_1, so we

have a possible violation.

When the program order is included in the analysis, the logical formula specifies additionally
that either only the update or only the query event is executed on each client. As at most one edge
exist between these transactions when program order is included, these transactions cannot form

a critical cycle.

4.3.2.3 Value Analysis

In Figure 4.4, we have two transactions where one adds a new user and the other queries a user.
There is an anti-dependency from the event 0_SELECT_2 to 1_INSERT_3. The violation is completed
by the other two transactions where in each a new track is added using the same identifiers, so

there is an arbitration edge.

The value that is used as a track id in the addTrack transactions is a newly generated random
universally unique identifier (UUID) [14]. A new random UUID is never equal to another new ran-
dom UUID. Therefore if the value analysis is enabled, the static analysis deduces that the UUID
used as the id in the event 0_INSERT_1 is unequal to the id from 1_INSERT_1. When encoding this
fact in the specification, the two addTrack transactions commute with each other, so there is no

arbitration.

4.3.2.4 Client Local Variables

The analysis does not know any facts about the transaction arguments (e.g. the username of a
transaction that registers a new user). In the code, the transaction arguments are the parameters

of the method that spans the transaction and therefore, the arguments are set to top by the static
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Client 0 Client 1
0_registerUser__1 1_registerUser__1
0_INSERT 1 NG 1 INSERT 1 NG
INSERT INTO users (username, passw) INSERT INTO users (username, passw)
VALUES (‘Alice’, ‘password’) / VALUES (‘Bob’, ‘asdf’)
\2 e 0O \
to to
0_getUser 2 1 getUser 2
0_SELECT 2 % 1_SELECT 2 VY
SELECT * FROM users SELECT * FROM users
WHERE username = ‘Bob’ WHERE username = ‘Alice’
@Transaction
public void registerUser (String username, String password){
ClientLocalValues.set (”username” , username );

session .execute ("INSERT INTO users (username, passw) VALUES (7, ?7)”,
username , password );

}

@Transaction
public ResultSet getUser (String username){
ClientLocalValues.set (”username” , username );

return session.execute (”SELECT % FROM users WHERE username = 7”7, username );

}

Figure 4.5: Using client local variables removes the false positive on top. In the code on the bottom,
the parameter username is annotated on line 3 and line 10. Therefore, the analysis assumes for
this code that the usernames are equal in both transactions.

analysis. In Figure 4.5, we have a register and a getUser transaction. The violation occurs,
as on both clients a new user is registered first and afterwards, the user that was created on the
other client is queried. So there is a possible anti-dependency from the getUser to the register

transaction which results in a critical cycle.

When inspecting the program manually, one can see that the username for the getUser is ex-
tracted from a session and must therefore be equal to the username that was registered in the
registerUser transaction. This resolves the false positive, as if the usernames are not equal on
both clients, all the transactions from client 0 commute with all transactions of client 1 and if the

usernames are equal, we again have absorption (cf. Section 4.3.2.1).

Such equalities can be annotated in the program by calling the set method of the ClientLocalValues
class. Hence, the analysis can deduce for the program in Figure 4.5 that the usernames are the

same and does not report the false positive.
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Client 0 Client 1
0_deleteTrack 1 1 deleteTrack 1
0_SELECT 1 NG 1_SELECT 1 NG
SELECT * FROM playlist_tracks SELECT * FROM playlist_tracks
WHERE playlist = ‘favorites’ WHERE playlist = ‘favorites’
AND username = ‘Alice’ AND username = ‘Alice’
0_DELETE 2 \I/ 1 DELETE 2 \I/
DELETE FROM playlist_tracks @ @ DELETE FROM playlist_tracks
WHERE playlist = ‘favorites’ ] 4 WHERE playlist = ‘favorites’
AND username = ‘Alice’ AND username = ‘Alice’
AND track_no = 10 AND track_no = 10

Figure 4.6: Declaring client local variables as unique per client, this violation can be removed.

4.3.2.5 Unique Client Local Variables

In the following example, the same track is removed from the same playlist on both clients. When
the track that is deleted is included in the first query, we have two anti-dependencies from the
SELECT_1 to the DELETE_2 events which is a critical cycle.

In some applications it is ensured that the user cannot login on multiple clients at the same time.
If this is the case, the violation shown in Figure 4.6 is a false positive. Therefore, an option can be
set in the analysis that ensures that client local variables are unique per client. In this example,
this would mean that the username cannot be equal on both clients. As the username is part of the
primary key of the playlist_tracks table, the events of one client commute with the events of the
other client, so there are no anti-dependencies in this example when unique client local variables

are enabled.

4.3.2.6 Display Code

In most of the analyzed examples, some results of queries are directly displayed to the user, so
there is no application logic that builds on these results. Usually it is acceptable if these results are
not strongly consistent. Such parts can be annotated in the program and an option can be set that
excludes such display code from being checked. If all events of a transaction are only executed to
get some data that is directly displayed to the user, the whole transaction can be marked as display
code. If single queries or subsets of columns in a query are used only for displaying, a comment

can be added to the CQL-query that specifies these columns.

In the violation in Figure 4.7 we have one transaction on each client in which a playlist for a
user is deleted. On each user row, there is a set named playlists that contains the names of the
playlists of the user. In the deletePlaylist transaction, the user is loaded from the database for

application logic, but the set with the playlist names is only used for displaying. It is therefore not
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Client 0 Client 1
0__deletePlaylist_ 1 1_ deletePlaylist_ 1

0_SELECT 1 VY 1_SELECT 1 \

SELECT * /*!DISPLAY playlists !*/ SELECT * /*!DISPLAY playlists !*/

FROM  users FROM  users

WHERE username = ‘Alice’ WHERE username = ‘Alice’
0_UPDATE_ 2 \l/ 1 _UPDATE 2 \l/

UPDATE users ‘/ CHS) \ UPDATE users

SET playlists = playlists-{‘favl’} SET playlists = playlists-{‘fav2’}

WHERE username = ‘Alice’ WHERE username = ‘Alice’
0_DELETE_3 \l/ 1 _DELETE_3 \l/

DELETE FROM playlist_tracks DELETE FROM playlist_tracks

WHERE username = ‘Alice’ WHERE username = ‘Alice’

AND playlist = ‘favl’ AND playlist = ‘fav2’

Figure 4.7: When display code is excluded from the analysis, this violation can be removed.

a real violation that if two playlists are deleted simultaneously on two clients, both clients may still
display the playlist deleted on the other client. When display code is enabled, the SELECT_1 event

commutes with the UPDATE_2 event, as the update only removes a value from a display column.

4.3.2.7 Strict Updates

In the example shown in Figure 4.8, we have two clients that execute a chat application. Client
0 adds a message to the “Cassandra” chat room and executes a query to read the user details
afterwards. Client 1 leaves the “Java” chat room first and then reads the messages from the “Cas-

sandra” chat room. The chat rooms where a user participates in are stored as a set on the users

Client 0 Client 1
0_addMessage_ 1 1_leaveChatRoom_ 3
0_INSERT 1 Y 1_UPDATE_3 \
INSERT INTO messages UPDATE /*!STRICT!*/ users
(chat_room, id, msg) SET chat_rooms = chat_rooms - {‘Java’}
VALUES (‘Cassandra’, 11-86-533, ‘Hi!’) WHERE username = ‘Bob’
7 N v
to to
0_getUser_ 2 1 getMessages 4
0_SELECT 2 NG 1 SELECT 4 NG
SELECT username, passw FROM users SELECT * FROM messages
WHERE username = ‘Bob’ WHERE chat_room = ‘Cassandra’

v \’

Figure 4.8: This violation is only possible when the 1 UPDATE_3 event may insert a new row. If this
is not the case, it can be annotated as strict, which removes the violation.



36 4. SERIALIZABILITY CHECKING

row in the users table.

As client 1 may not see the message posted by client 0, there is an anti-dependency from 1_SELECT_4
to 0_INSERT_1. Due to the fact that an UPDATE event may also add new rows in a table, it is possible
that 1 _UPDATE_3 adds a new user row that is not observed in 0_SELECT_2, which is why there is a

second anti-dependency.

The programmer may know that the user row exists when a leaveChatRoom transaction is ex-
ecuted (e.g. because the user had to login first). If the row already exists, the 1_UPDATE_3 event
cannot add a new row, which would mean that the 1_UPDATE_3 commutes with 0_SELECT_2. That
an UPDATE does not insert any rows can be specified by adding a comment /*!STRICT!*/ to the

CQL-query. Therefore if this annotation is enabled, the analysis does not report the false positive.

4.3.2.8 Program Order Constraints

The example shown in Figure 4.9 is from a Twitter application. Client 0 first registers “Alice”
as a new user and then checks if she has followers. On client 1, “Bob” wants to follow “Alice”.
The follow transaction first checks if both user exist and only if this is the case, a new row is
added to the followers table. The violation that is reported happens if client 1 does not see
“Alice” in the users table and “Alice” does not see that “Bob” is following her. So there are two

anti-dependencies.

If the constraints on the program order are also considered, we can resolve this false positive.
If there is an anti-dependency from 1_SELECT_4 to O_INSERT_1, client 1 does not see “Alice” yet, so

1_INSERT_5 is not executed. If client 1 sees “Alice”, there is no anti-dependency in the first case.

Client 0 Client 1
0_register_ 1 1_follow 3
0_INSERT 1 \ 1_SELECT_3 \/
INSERT INTO users (username, passw) SELECT username FROM users
VALUES (‘Alice’, ‘asdf’) A WHERE username = ‘Bob’
\l/ non-empty
©) 1 SELECT 4
to \ SELECT username FROM users ||
WHERE username = ‘Alice’
0_getFollowers_ 2
0_SELECT 2 \ 1_INSERT 5 o ey
SELECT follower INSERT INTO followers
FROM followers » (username, follower)
WHERE username = ‘Alice’ © VALUES (‘Alice’, ‘Bob’)

Figure 4.9: Encoding the constraints on the program order removes this false positive.
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Client 0 Client 1
0 addTrack 1 1 addTrack 1
0_INSERT 1 NG 1 INSERT 1 NG
INSERT INTO tracks (id, artist, track) INSERT INTO tracks (id, artist, track)
VALUES (15-33-871, ‘Panda’, ‘Oben’) \ / VALUES (16-87-364, ‘DTH’, ‘Disco’)
\% 00O \,
to l lto
0_getTrack_ 2 1 getTrack 2
0_SELECT 2 % 1_SELECT 2 VY
SELECT * FROM tracks SELECT * FROM tracks
WHERE id = 16-87-364 WHERE id = 15-33-871
\ v

Figure 4.10: When specifying that 1_SELECT_2 asymmetrically commutes with 0_INSERT_1, this
violation can be removed.

4.3.2.9 Asymmetric Commutativity

We have two transactions in the example shown in Figure 4.10: The first transaction adds a new
track to the database. A random UUID (cf. Section 4.3.2.3) is generated as the identifier of the
track. The other transaction queries the database to obtain the details for a given track. The
possible violation occurs as both clients add a new track and then request the details of the track
the other client has added, but do not see the track yet.

In reality, the clients cannot behave in this way. As a UUID is unique and random, client 0 cannot
know which UUID is used by client 1 when inserting a new track (except when client 0 has another
channel than the database to communicate with client 1). If the programmer sets the option that
no such side channel exist, the analysis specifies for this example that the event SELECT_2 does
commute asymmetrically with INSERT_1 if the events happen on different clients. This is due to
the fact that SELECT_2 must read other rows than the one that may be added by a succeeding
INSERT_1, as the identifier that INSERT_1 uses cannot be known in SELECT_2.

Another false positive that can be removed by asymmetric commutativity is illustrated in Figure
4.11: On client 0, “Alice” is registered first. Afterwards, the tracks from the “favorites” playlist
are queried. Client 1 wants to delete the “favorites” playlist. First, the user details are loaded and

only if the result is not empty, the playlist is removed.

We can specify that the events 1_SELECT_3 and 0_INSERT_1 commute in this order if the query
does return a non-empty result. As the query can return at most one row (i.e. all primary key
columns are constrained), a non-empty result implies that the 0_INSERT_1 can only insert a new

row with a different primary key.
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Client 0
0_register_1
0_INSERT 1 NG Client 1
INSERT INTO users (username, passw) 1 deletePlaylist 3
VALUES (‘Alice’, ‘asdf’) =y &) o o
IF NOT EXISTS \ 1 SELECT 3 v
\l/ ~ SELECT * FROM users |
WHERE username = ‘Alice’
-empt
to 1 DELETE 4 )P
0_getPlaylist_2 DELETE FROM playlist_tracks
0_SELECT 2 \]/ |_w WHERE username = ‘Alice’
. g o
SELECT * FROM playlist_tracks / R s
WHERE username = ‘Alice’ ] © N;
AND playlist_name = ‘favorites’

Figure 4.11: Another false positive that can be removed using asymmetric commutativity.

So the false positive can be resolved with asymmetric commutativity: If 1_SELECT returns an
empty result, the 1 DELETE 4 event is not executed, otherwise 1_SELECT asymmetrically commutes
with O_INSERT_1, which also breaks the cycle.

4.3.2.10 Synchronization

The example shown in Figure 4.12 makes use of lightweight transactions. Client 1 creates a new

chat room if no other room with the same name already exists. Client 0 joins the chat room and

Client 0
0_joinChatRoom_ 1
0_UPDATE_1 \
UPDATE chat_rooms
SET users = users + {‘Alice’} Client 1
WHERE room_name = ‘Cassandra’ %
IF EXISTS W 1_ createChatRoom_ 3
0 1_INSERT_3 \
N\ INSERT INTO chat_rooms
to (room_name, users)
0 findChatRoom 2 VALUES (‘Cassandra’, {‘Bob’})
~¥| IF NOT EXISTS
0_SELECT 2 \l/ /
SELECT * FROM chat_rooms | e V
WHERE room_name = ‘Cassandra’

Figure 4.12: This false positive can be removed when encoding that two LWTs on the same row
synchronize on each other.
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Client 0 Client 1
0_register_ 1 1_register_1
0_SELECT 1 NG 1_SELECT 1 NG
SELECT * FROM users SELECT * FROM users
WHERE username = ‘Alice’ WHERE username = ‘Alice’
0_INSERT_2 1_INSERT_2

INSERT INTO users (username, passw) 6 6 N INSERT INTO users (username, passw)
VALUES (‘Alice’, ‘asdf’) 4 VALUES (‘Alice’, ‘asdf’)
IF NOT EXISTS IF NOT EXISTS

V V

Figure 4.13: This real violation is not reported when synchronization is specified.

then queries all information for the room. Joining is also implemented using a LWT, as otherwise a
room would be created when a user joins and the room does not exist (due to the upsert semantics
of the UPDATE).

By specifying that 0_UPDATE_1 and 1_INSERT_3 synchronize if both use the same room name, we can
break the critical cycle. Synchronization introduces a causality edge either from 1_createChatRoom_3
to 0_joinChatRoom_1, in which case the anti-dependency does not exist, or from 0_joinChatRoom_1

to 1_createChatRoom_3, in which case arbitration is not possible in the opposite direction.

The problem is that it is not always sound to introduce causality edges. The real violation il-
lustrated in Figure 4.13 is not reported when the synchronization specification is enabled. The
INSERT events either commute or synchronize. If they synchronize, it is still possible that both
query events get an empty result, which is not serializable. Nonetheless, the violation is not re-

ported as the transactions synchronize.

4.3.2.11 Legality

We use legality for tables where data is only inserted or modified, but never deleted. The users
table in Figure 4.14 is such an example. Both clients execute the same transaction: First, the user
joins a new chat room. Afterwards, both clients query the user information from the database. If
the SELECT_2 events do not return a result, an anti-dependency may exist to the UPDATE_1 of the

other client, which results in a possible violation.

Using legality, the analysis can specify that if the UPDATE_1 either updates an existing row or
inserts a new row, the SELECT_2 cannot return an empty result if it is ordered after the UPDATE_1
event in the causality order. This breaks the critical cycle as either the UPDATE does nothing or the
SELECT returns a non-empty row, so both anti-dependencies are not feasible when legality is also

considered.
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Client 0 Client 1
0_joinChatRoom_ 1 1_joinChatRoom_ 1
0_UPDATE 1 NG 1 _UPDATE 1 NG
UPDATE users UPDATE users
SET rooms = rooms + {‘Cassandra’} SET rooms = rooms + {‘Java’}
WHERE username = ‘Alice’ \ / WHERE username = ‘Alice’
v N v
to to
0_getUser_2 1_getUser_2
0_SELECT 2 \/ 1_SELECT 2 \/
SELECT * /*!DISPLAY rooms !*x/ SELECT * /*!DISPLAY rooms !*/
FROM users FROM users
WHERE username = ‘Alice’ WHERE username = ‘Alice’

Figure 4.14: A false positive that is not reported when specifying legality.

The violation could also be resolved manually by the user, as he could use the strict update
annotation (see Section 4.3.2.7) on the UPDATE CQL-query. This is no longer necessary for this

case, as the analysis can resolve this false positive automatically using legality.

The example shown in Figure 4.15 was also used in the Section 4.3.2.10. If it would be the case
that no deletes happen on the chat_rooms table, it can also be solved with the help of legality,

so that synchronization is not even necessary. We can specify that if 0_UPDATE_1 updates a row,

Client 0
0_joinChatRoom_ 1
0_UPDATE_1 \Y
UPDATE chat_rooms
SET users = users + {‘Alice’} Client 1
WHERE room_name = ‘Cassandra’ %
IF EXISTS W 1_createChatRoom_ 3
v 1_INSERT 3 \

N\ INSERT INTO chat_rooms
lto (room_name, users)
0_findChatRoom_2 VALUES (‘Cassandra’, {‘Bob’})
v —¥| IF NOT EXISTS
\

0_SELECT 2

SELECT * FROM chat_rooms |
WHERE room_name = ‘Cassandra’

\%

\

Figure 4.15: A violation that could be removed using legality if no deletes happen on the table
chat_rooms.



4. SERIALIZABILITY CHECKING 41

then 0_SELECT_2 cannot return an empty result. So either the arbitration edge is not possible (if
the 0_UPDATE_1 event does not update a row) or otherwise the anti-dependency is not possible (as

0_SELECT_O does not return an empty result).






5 Evaluation

We evaluated the static analysis and both approaches for checking serializability on twelve programs
that we found in public code repositories. All measurements were taken on a system with a 1.9
GHz 2-Core CPU (Intel i7-3517U) and 8 GB of RAM running Windows 10. The following section
describes the examples we used for evaluation. Afterwards, the results of the evaluation for each

part are summarized in a section.

5.1 Examples

In this section we describe the example programs found in public code repositories that we used
to evaluate the static analysis. For all the examples we annotated transactions, display code and
strict updates where appropriate. Additionally, we annotated username variables as client local
values in the examples that have users. If further modifications were necessary, these are described

below.

cassandra-lock!: This project provides a library that can be used for distributed locking. Lock-

ing is implemented using Cassandras lightweight transactions.

cassandra-twitter?: This project is a twitter clone that implements transactions for registering
new users, following other users, adding and displaying tweets. Interaction with the user
happens on the command line. To simplify the analysis, we have rewritten the code that
checks if a user exists. In the original, a list of the rows returned from the database is
created. If this list is empty, the user does not exist. We use the isExhausted function

directly on the ResultSet to check whether a user exists.
cassatwitter?: Another implementation of a twitter clone. Similar to cassandra-twitter.

cassieq®: An implementation of a distributed queue. In some methods, lambda functions are
used. As we cannot analyze the code of lambda functions (see Section 3.2.6), we have removed
the lambdas and inserted the code directly in the method instead to enable a sound analysis.
At some places in the code, an exception is thrown if some result of a query is required but
the returned result is empty. In order to simplify the flow of the static analysis, we have

moved the throwing of the exceptions inside the method that executes the query.

"https://github.com/dekses/cassandra-lock
’https://github.com/edmundophie/cassandra-twitter
3https://bitbucket.org/ClearingPath/cassatwitter
“https://github.com/paradoxical-io/cassieq
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currency-exchange®: This project provides an overview of trade activities. New trades can be
added to the system and trade data can be queried. Input to the saveTrade transaction is
an object of class Trade. At the begin of the transaction, a new random UUID is set on
the argument as the identifier of the trade. As the transaction argument is set to top by the
analysis, the identifier is also abstracted with top in this case.
We manually cloned the trade object in the beginning of the transaction, so that the new

UUID can also be abstracted as such by the analysis.
datastax-queueing®: This is an implementation of a single threaded queuing system.

killrchat”: This program implements a chat application. As the original implementation uses an
unsupported driver for the communication with Cassandra, we have rewritten the application

so that it makes use of the Datastax driver.

playlist®: This is an implementation of a playlist service. Users can add music tracks and combine

them into playlists.

roomstore’: This is a implementation of a bot that logs all messages that are sent on the different
channels of an IRC server. If the bot receives a message of a defined format (e.g. “~ today”),

it will reply with the requested information (e.g. a list of all messages posted today).

shopping-cart'?: This is an implementation of an online shop. Cassandra is only used for

querying product information.
simple-twitter: Inspired by cassandra-twitter, we implemented our own twitter clone.

twissandra'l: This is another project that implements a twitter clone. We removed code that
was never used (afterBatchWorks in MyBatch). Otherwise, an extension of the static analysis

would have been necessary to handle twissandra precisely.

The analysis should be sound on the projects with the modifications that we have described above.
Some of the examples are web applications that are multi-threaded, but these programs do not

share global state. Reflection and asynchronous method calls are not used at all.

5.2 Building the Transaction Graphs

We have measured the performance of the different phases of the static analysis that builds the
transaction graphs (see Section 3.2). Table 5.2 gives an overview of the runtime information. With
the exception of cassieq, the static analysis needs at most 10 seconds to complete. In cassieq, there

is one transaction with a lot of method calls, which results in a huge super-graph with more than

"https://github.com/Haiyan2/Trade
https://github.com/PatrickCallaghan/datastax-queueing-demo
"https://github.com/doanduyhai/killrchat
®https://github.com/DataStaxDocs/playlist
“https://github.com/mebigfatguy/roomstore

Ohttps://github. com/nikhilswagle/Shopping_Cart_Angular_Cassandra
"https://github.com/cilesizemre/twissandra
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Example # Transactions | # Violations ignorﬁlgvlg)il:;;;);-sCo de
cassandra-lock 3 0 0
cassandra-twitter 5 5 3
cassatwitter 7 6 3
cassieq 18 16 13
currency-exchange 2 2 0
datastax-queueing 2 2 2
killrchat 11 11 3
playlist 11 11 6
roomstore 5} b} 0
shopping-cart 6 0 0
simple-twitter 4 3 1
twissandra 7 6 2

Table 5.1: Number of transactions that are part of at least one critical cycle in the over-
approximation of the dependency serialization graphs. Statements that are only used to display
some information are excluded from one evaluation.

6’000 nodes and 20’000 edges. Also, there is a catch statement in the first method, which results
in a lot of edges when sound exception handling is enabled. Therefore, this example takes longer

to analyze.

5.3 Over-Approximation of the Dependency Serialization Graph

Table 5.1 contains the number of transactions ¢ for which a critical cycle exists in the over-
approximation of the dependency serialization graph that includes t. The runtime of the checker
is less than one second for all the examples. We also evaluated the examples once with excluding

all the statements whose results are only used for displaying.

This approach is rather imprecise, as two statements normally do not commute if both oper-
ate on the same table. The examples that have zero critical cycles do either only write data

(cassandra-lock) or only read data (shopping-cart).

5.4 Checking Serializability for Two Clients

In this section, we evaluate the serializability checking for all combinations of up to two transactions
on two clients using ECChecker. In the first section, we provide a classification of the reported vi-
olations and also show examples of real violations. In the following section, we compare the results
from ECChecker with the results from a trivial analysis. We also analyzed the impact of the anno-

tations and enhancements on the number of false positives. The results are listed in the last section.

We excluded parts of cassieq for the evaluation. The implementation of the queues is quite com-

plicated, which results in transactions with lot of events (e.g. more than 60 for the getMessage



# Classes / Field
Example # Methods / Soot | CFG Trans- Values Transaction | Parsing Total
# Transactions | Setup | formation | Collection Graph

cassandra-lock 6/30/3 3.74 1.62 1.25 0.04 (0.04) 0.53 7.18 (7.18)
cassandra-twitter 1/19/5 4.08 1.32 0.63 0.09 (0.11) 0.45 6.57 (6.59)
cassatwitter 6/46 /7 3.72 1.87 0.79 0.34 (0.76) 0.56 7.28 (7.70)
cassieq 280 / 1294 / 17 4.54 6.97 3.78 41.08 (283.27) 0.93 57.30 (299.49)
currency-exchange 21 /96 /2 3.98 1.89 1.30 0.05 (0.06) 0.35 7.57 (7.58)
datastax-queueing 6 /56 /2 3.56 1.47 0.68 0.12 (0.12) 0.35 6.18 (6.18)
killrchat 72 /401 /11 5.15 2.91 1.34 0.16 (0.17) 0.49 10.05 (10.06)
playlist 24 /122 / 11 4.15 2.22 0.90 0.51 (0.59) 0.75 8.53 (8.61)
roomstore 9/47/5 3.81 1.84 1.01 0.08 (0.08) 0.50 7.24 (7.24)
shopping-cart 30 / 127 / 6 0.63 1.26 0.51 0.16 (0.12) 0.34 2.90 (2.86)
simple-twitter 2/13/4 4.30 0.80 0.81 0.07 (0.07) 0.96 6.94 (6.94)
twissandra 35 /107 /7 4.43 1.52 0.78 0.16 (0.16) 0.56 7.45 (7.45)

Table 5.2: Overview of the runtime (in seconds) of the different parts of the static analysis. The numbers in parentheses are the runtimes if
sound exception handling was enabled.
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transaction). This lead sometimes to timeouts in the SMT-solver on the one hand, but it was also
not possible to classify the reported violations due to the complexity. Therefore we only evalu-
ated the transactions that are related to user management, so that checking and classification was

possible for all combinations.

5.4.1 Reported Violations and Runtime

We evaluated the output of ECChecker on the examples. Table 5.3 shows an overview of the results.
We run the analysis on each example at most four times with different options. If display code
(cf. Section 4.3.2.6) is included in the analysis, the options list contains “display”. If the analysis
assumed that client local variables are unique on different clients (cf. Section 4.3.2.5), “unique”
is listed in the options. If a combination of options is missing in the table, this means that the

example makes no use of the specific annotation.

ECChecker first checks all combinations that consist of two transactions. Afterwards, the com-
binations with three and then the ones with four transactions are checked. Combinations that
include a smaller combination which was already reported as a violation are ignored. Symmetric
combinations are also checked only once. For each combination, a trivial analysis checks first if
a critical cycle can exist using the same approach as we used for the over-approximation of the
dependency serialization graph (cf. Section 4.2). Only if this is the case, a logical formula is built
and checked using the SMT-solver.

Due to this bottom-up checking, the less violations exist for a given example, the more formu-
las are checked using the SMT-solver. The number in the column “SMT Checks” indicates how
many formulas were checked for the given example. The “SER” column contains the number of
combinations consisting of 4 transactions that do not contain a violation (i.e. are serializable). The
“Violations” column contains the reported violations, i.e. the minimal 2-; 3-, and 4-combinations.
The runtime increases linearly with the number of SMT-checks. All runs completed in less than 2

minutes.

We classified all reported violations into the four categories false positive (FP), error (ERR), warn-
ing (W), and harmless (H). A false positive is a violation that cannot occur in practice. The other
three categories are used to distinguish the violations that can lead to non-serializable executions.
An error is a violation that is likely to be fixed by a programmer. A warning is used for violations
where it is debatable if they are acceptable. A harmless violation is used if we think that a non-

serializable execution is acceptable.

When display-code is not included, the analysis did report 6 false positives for killrchat. For
cassandra-twitter, cassatwitter, cassieq, datastax-queueing, playlist, simple-twitter and twissan-
dra, we found serious errors and some warnings. When display code is also considered, the analysis
reports a lot of harmless violations. Also, we have some false positives for killrchat and one for

cassandra-twitter. With the unique option and without display code, we could show that killrchat,
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Example Options Tg?e Csﬁ\fcis SER 1:£:§ns FP |ERR |W | H
cassandra-lock 0.2 0 0 0 0 0 0 0
cassandra-twitter 2.3 5 2 2 0 1 1 0
cassandra-twitter | unique 6.4 15 8 2 0 0 1 1
cassandra-twitter | display 8.4 25 10 8 1 1 1 5
cassandra-twitter | display unique 12.4 39 22 5 1 0 1 3
cassatwitter 3.1 2 0 2 0 1 1 0
cassatwitter unique 7.4 5 3 0 0 0 0 0
cassatwitter display 9 16 4 9 0 1 1 7
cassatwitter display unique 16.6 27 19 1 0 0 0 1
cassieq™ 12.3 103 65 6 0 5 0 1
cassieq™ unique 46.2 391 290 0 0 0 0 0
cassieq™® display 17.7 147 98 10 0 5 0 5
cassieq*® display unique 54.3 513 386 10 0 0 0 10
currency-exchange 0.1 0 0 0 0 0 0 0
currency-exchange | display 1.2 3 1 1 0 0 0 1
datastax-queueing 2 3 0 3 0 2 0 1
killrchat 5.5 23 15 6 6 0 0 0
killrchat unique ) 23 21 0 0 0 0 0
killrchat display 102.3 641 307 267 36 0 22 | 209
killrchat display unique || 99.4 731 507 148 21 0 11 | 116
playlist 26.3 126 79 5 0 0 4 1
playlist unique 62 319 228 0 0 0 0 0
playlist display 31.1 131 56 51 0 0 4 | 47
playlist display unique 99 507 380 23 0 0 0 | 23
roomstore 0.2 0 0 0 0 0 0 0
roomstore display 3.2 4 0 4 0 0 4 0
shopping-cart 0.1 0 0 0 0 0 0 0
simple-twitter 0.8 1 0 1 0 1 0 0
simple-twitter unique 0.8 3 1 0 0 0 0 0
simple-twitter display 1.7 4 1 2 0 1 0 1
simple-twitter display unique 2.1 8 4 1 0 0 0 1
twissandra 3 3 0 2 0 0 2 0
twissandra unique 3.2 3 1 1 0 0 1 0
twissandra display 14.1 25 5 14 0 0 4 | 10
twissandra display unique 14.6 29 17 5 0 0 2 3

Table 5.3: Overview of the results from checking serializability using ECChecker.
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playlist, cassiq, cassatwitter and simple-twitter do not have a single violation. This means, that as

long as a user is not logged in multiple times in the application, no serialization errors are expected.

The following illustrations show typical false positives and real errors that we found. Only the
necessary parts of the real transactions are illustrated for improving readability. That is, all the

events in a transaction that are not necessary for the violation are omitted.

5.4.1.1 False Positive in Cassandra-Twitter

Figure 5.1 illustrates the violation from cassandra-twitter that is a false positive. Client 0 is used
by “Alice”. She first adds a new tweet and than wants to follow the user “Bob”. When a new
tweet is added, the tweet is also added to the timeline of all followers (0_SELECT_1 and 0_INSERT_2).
When a user wants to follow another user, there is an initial check if both users exist and only
if this is the case, the follower is inserted. Client 1 is used by “Bob”. In the first transaction he

registers himself and then requests the timeline in the second transaction.

In the violation, we have an anti-dependency from the user check from left to right which means

that the query 0_SELECT_4 returned an empty result. Another anti-dependency is from the query

Client 0
0 addTweet 1
0_SELECT 1 VY
SELECT follower FROM followers
WHERE username = ‘Alice’
Client 1
For each follower .
0_INSERT 2 l_reglster_?)
INSERT INTO timeline (username,tweetid) 1_INSERT 6 \]/
VALUES (:follower, 14-23-188) \ INSERT INTO users (username, passw)
\l/ VALUES (‘Bob’, ‘asdf’)
&
S) \
to
0_follow_ 2 to
0_SELECT 3 \ o
1 showTimeline 4
SELECT username FROM users |
WHERE username = ‘Alice’ 1 SELECT 7 \]/
SELECT tweetid FROM timeline
non-empty
0_SELECT 4 WHERE username = ‘Bob’
SELECT username FROM users Z \l/
WHERE username = ‘Bob’
0_INSERT_5 jomempty
INSERT INTO followers
(username, follower)
VALUES (‘Alice’, ‘Bob’)

Figure 5.1: False positive that is reported for cassandra-twitter.
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of the timeline to the insertion of the new tweet in the timeline, therefore the new tweet is added to
the timeline of “Bob” in the 0_addTweet_1 transaction. This means that “Bob” has to be following
“Alice” and client 0 has already observed this. Due to causality and the design of the follow
transaction, the query 0_SELECT_4 cannot return an empty result on client 0, as a user is never

deleted and the existence check for “Bob” happened before the insertion in the followers table.

In order to prevent the reporting of this false positive, the analysis would have to track some-
how that the usernames that are returned from the query 0_SELECT_1 have to exist in the users
table at this point.

5.4.1.2 False Positives in Killrchat

If display code is not included in the analysis, ECChecker reports 6 false positives that all base
on the same reason. One of these false positives is shown in Figure 5.2. Client 0 first posts a
new message in a chat room and then requests the details of the user. On client 1, a new user is
created first and afterwards, the chat room where client 0 posted the message is deleted. We have
arbitration from 1 DELETE 4 to O_INSERT_1. Also we have an anti-dependency from O_SELECT_2
to 1_INSERT_3, which means that the user query returned an empty result. A new message can
only be posted if the user is logged in, which can only happen if the corresponding row exists in
the users table. Therefore 0_SELECT_2 cannot return an empty row, so the anti-dependency is not

possible.

The false positive could be avoided if it would be possible to specify properties for events that
hold if the event happens after some transaction. This would enable e.g. the programmer to anno-
tate that the query 0_SELECT_2 cannot return an empty result when executed after the postMessage
transaction. We do have only six of these false positives as for some examples the analysis can

deduce exactly the property that a row exists after a given transaction using legality. E.g. in the

Client 0 Client 1
0_ postMessage_ 1 1 createUser 3
0_INSERT 1 \/ 1_INSERT 3 \/
INSERT INTO chat_room_messages INSERT INTO users (username, passw)
(id, room_name, username, message) VALUES (‘Bob’, ‘asdf’)
VALUES (41-32-512, ‘Java’, ‘Bob’, ‘Hi’) ar @ / IF NOT EXISTS
\, \,
to to
0_getUser_ 2 1_ deleteChatRoom_ 4
0_SELECT 2 NG | DELETE 4 NG
SELECT username, passw, chat_rooms DELETE FROM chat_room_messages
/*IDISPLAY chat_rooms !*/ FROM users WHERE room_name = ‘Java’
WHERE username = ‘Bob’ \l/

Figure 5.2: False positive that is reported for killrchat if display code is not included.
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transaction that adds a user to a chat room, there is an upsert UPDATE users SET chat_rooms =
chat rooms + {?7}. The analysis can specify in the legality specification that after this upsert, a
0_SELECT_2 must return a row. So for the combination where on client 0 a user is added to a chat
room first and the user details are queried afterwards, the analysis does not report a violation, as

due to legality, the user row exists in the second transaction on client 0.

With display code, we get additional false positives. In Figure 5.3, client 0 removes a chat room
and afterwards queries the user information. Client 1 removes a single user from the chat room.
On both clients, the same user is logged in. We have arbitration from client 1 to client 0 as the user
posts a message when he leaves the chat, which is then deleted when the chat room is removed.
We have an anti-dependency from the left to the right, as the set with the chat rooms a user
participates in is also stored in the users table, which is updated in the removeUserFromChatRoom

transaction.

A chat room can only be deleted from the creator, so “Bob” participates in the chat room he
deletes. In the deleteChatRoom transaction, the chat room that is deleted is also removed from

the user rows of all participants by executing 0_UPDATE_4 in a loop. As “Bob” is a participant, one

Client 0
0_deleteChatRoom_ 1
0_SELECT 1 i
SELECT * FROM chat_rooms
= ¢ H]
WHERE room_name Java Client 1
0 DELETE 2 1_removeUserFromChatRoom_ 3
DELETE FROM chat_rooms 1_UPDATE 6 v
WHERE room_name = ‘Java’ UPDATE users
IF creator = ‘Bob’ SET chat_rooms = chat_rooms - {‘Java’}
WHERE username = ‘Bob’
0 DELETE 3
DELETE FROM chat_rooms_messages @ L_UE DD
WHERE room_name = ‘Java’ UPDATE chat_rooms SET
ar participants = participants - {‘Bob’}
For each participant VIR, e seme = ©Jeme)
0_UPDATE_4 ¥
UPDATE users
SET chat_rooms = chat_rooms - {‘Java’} L INSERT 8
WHERE username = :participant INSERT INTO chat_room_messages
T (id, room_name, username, message)
VALUES (41-32-512, ‘Java’, ‘Bob’,
to ‘Bob left the room’)
0_getUser_ 2 \l/
0_SELECT 5 \/
SELECT username, passw, chat_rooms
FROM users
WHERE username = ‘Bob’

Figure 5.3: A false positive that is reported for killrchat if display code is included in the analysis.
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Client 0
0 addUserToChatRoom 1
0_UPDATE 1 \]/
UPDATE users Client 1
SET chat_rooms = chat_rooms + {‘Java’} " 1 - Ch
WHERE username = ‘Bob’ _ removeUserFromChatRoom_ 3
1_UPDATE_6 \/
1_UPDATE_2 ar N UPDATE users
= = 6 2
UPDATE chat_rooms SET SET chat_rooms - flgaz:rooms {¢Java’}
participants = participants + username = ©o
{0x88633543}
WHERE room_name = ‘Java’ 1_UPDATE 7
\l/ UPDATE chat_rooms SET
participants = participants -
to Vol {0x42164233}
0_findRoom 2 S WHERE room_name = ‘Java’
0_SELECT 5 \]/ \l/
SELECT * FROM chat_rooms
WHERE room_name = ‘Java’

V2

Figure 5.4: Another false positive that is reported for killrchat if display code is included.

concrete execution of the 0_UPDATE_4 event removes the chat room “Java” from the row of “Bob”,

which absorbs the 1 _UPDATE_6 event. Therefore, the anti-dependency cannot occur.

The programmer could solve this false positive by explicitly updating the row of the current user

in a single event instead of updating it also in the loop.

Figure 5.4 shows another false positive in which we have two clients where on one, the user joins a
chat room while on the other the same user leaves the chat room. Each row in the chat_rooms table
has a set containing all the participants of the chat room. The user data of which this participants
set consists of is stored as a serialized object. In the violation, we have an anti-dependency from
0_SELECT_3 to 1_UPDATE_5, which is not possible in reality as the update would be absorbed by
O_UPDATE_2.

Currently, the analysis does only encode equality of immutable values. This false positive would

be avoided if equality would be correctly encoded for serialized objects too.

These three types of imprecisions explain all the false positives that are reported for killrchat.

5.4.1.3 Errors and Warnings from the Twitter Clones

Cassandra-twitter, cassatwitter and simple-twitter all have the error shown in Figure 5.5 for the
register transaction: If the user already exists is checked using a query first. If no result is

returned, a new user is created. This means that if two users register simultaneously, both first
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Client 0
0_register 1
0_SELECT 1 \]/
| SELECT * FROM users
WHERE username = ‘Alice’ N
empty
0_INSERT 2
INSERT INTO users (username, passw) g
VALUES (‘Alice’, ‘asdf’)

\%

53

Client 1
1_register 1
1_SELECT 1 \
SELECT * FROM users
| WHERE username = ‘Alice’
empty
1 _INSERT 2
4| INSERT INTO users (username, passw)
VALUES (‘Alice’, ‘password’)

\%

Figure 5.5: Error in the register transaction found in cassandra-twitter, cassatwitter and simple-

twitter.

get an empty result as no other user with the same username already exists. Both think that they

registered with their password, but only one is registered eventually. The error can be resolved in

the programs by relying on lightweight transactions.

Also all twitter clones have the same type of warnings: Two different users follow each other.

It is possible that then both add a tweet which is not displayed in the timeline of the other user.
So it is possible that “Alice” follows “Bob” since 10:00, but she does not see the tweet that “Bob”

posts at 10:01 on her timeline.

Client 0

0 follow 1
0_INSERT 1 Vi

INSERT INTO followers
(username, follower)
VALUES (‘Alice’, ‘Bob’)

\%

to
0 addTweet 2

0_SELECT 2 Y

SELECT follower FROM followers
WHERE username = ‘Bob’

For each follower
0_INSERT 3

INSERT INTO timeline (username,tweetid)
VALUES (:follower, 14-23-188)

v

SES

Client 1

1 follow 1
1 INSERT 1 Vi

INSERT INTO followers
(username, follower)
VALUES (‘Bob’, ‘Alice’)

/

\%

to
1 addTweet 2

1_SELECT 2 \

SELECT follower FROM followers
WHERE username = ‘Alice’

For each follower
1_INSERT_ 3

INSERT INTO timeline (username,tweetid)
VALUES (:follower, 86-99-035)

v

Figure 5.6: Serializability violation that is reported for all twitter clones.
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Client 0

Client 1
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0_addNewKey_ 1
0_SELECT 1 \]/

SELECT keys FROM account
WHERE account = ‘webapp’

0_UPDATE 2

UPDATE account SET keys = {102, 581}

WHERE account = ‘webapp’

<

4

\%

1_addNewKey_ 1

1_SELECT 1 \

SELECT keys FROM account

”| WHERE account = ‘webapp’
Pp
1 _UPDATE 2
4| UPDATE account SET keys = {102, 834}
WHERE account = ‘webapp’

Figure 5.7: Serializability violation found in cassieq.

Figure 5.6 shows this type of violation. In the first transaction, both users follow the other user.
When adding a tweet, they query the list of followers and add the tweet also to the timeline of all
followers. In this example, on both clients, SELECT_2 returns an empty result, which means that

the tweet does not show up in the timeline of the other user.

Resolving this violation without a performance penalty is probably not possible. If a user does
not follow a lot of other users, the timeline could also be built by fetching the timeline for each

followed user separately.

5.4.1.4 Errors for Cassieq

The five errors that are reported for cassieq can be classified in two types. The first type of error
is a lost update: Each account in cassieq has a set of keys that identify the account. Keys are also
used for authentication. New keys can be added to an account using the addNewKey transaction.
Cassieq reads the current set of keys, adds the new key to the set and updates the account with the
new set. Two clients can therefore read the old set simultaneously and add a new key each. One
of the updates is then lost, as the update that is arbitrated last overwrites the first. This violation

is shown in Figure 5.7.

Client 0

0_addNewKey_ 1
0 _SELECT 1 \]/

SELECT keys FROM account
WHERE account = ‘webapp’

0_UPDATE_ 2

UPDATE account SET keys = {102, 581}
WHERE account = ‘webapp’

Client 1

1 deleteAccount 2
1_SELECT 3 \Y

SELECT * FROM account
WHERE account = ‘webapp’

1_DELETE_ 4

DELETE FROM account

ar

\%

WHERE account = ‘webapp’

\%

Figure 5.8: Another serializability violation found in cassieq.
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The error can be resolved using the add to set operator of CQL. Instead of selecting and up-
dating, one can update the set in place using the following CQL-query: UPDATE account SET
keys = keys + {:newKey} WHERE account = :account.

In the other type of error, the account is updated while it is deleted on a second client. The

deleted account can reappear eventually due to the upsert semantics of an UPDATE CQL-query.

Figure 5.8 illustrates this behavior: Client 0 does not observe the event 1 DELETE 4 which is
arbitrated before 0_UPDATE_2. Eventually, client 1 will observe the 0_UPDATE_2, which means that

the deleted account reappeared.

As the account is probably not modified a lot of times, lightweight transactions could be used
to fix this error. The UPDATE should check if the record exists using the IF EXISTS condition in

order to avoid the recreation of a deleted account.

5.4.1.5 Errors in Datastax-Queueing

Datastax-Queueing is a small program that implements a queueing system. It is designed for a
single reader and a single writer. The system is implemented using a circular buffer and two indexes
that indicate the next position to read and the next position to write. Both errors that are reported

for this example are due to a double read or double write on the same index.

Figure 5.9 shows what may happen if two writers send a new job to the system: Both writers
query the current index, write the job at that index and update the index in the table. If both

writers fetch the same index initially, one of the jobs is overwritten by the other.

Client 0 Client 1
0_addNewJob 1 1 _addNewlJob 1
0_SELECT 1 NG 1_SELECT 1 NG
SELECT reader, writer FROM queue_idxs SELECT reader, writer FROM queue_idxs
WHERE dummy = 1 WHERE dummy = 1
0_INSERT 2 1_INSERT 2
INSERT INTO queue (idx, job) B INSERT INTO queue (idx, job)
VALUES (10, ‘Sync Mail’) | ar VALUES (10, ‘Archive 01d Mails’)
0_UPDATE 3 @ 1 _UPDATE 3
UPDATE queue_idx SET writer = 11 \ UPDATE queue_idx SET writer = 11
WHERE dummy = 1 WHERE dummy = 1

Figure 5.9: A serializability violation found in the datastax-queueing example.
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The error can be resolved using lightweight transactions and sets with indexes of jobs that are
ready to be processed. The next index on the queue_ids table is incremented using a LWT that
checks if the current index equals the selected one. If the LWT succeeds, the job is written to the
table and the index of the job is added into a ready set. The reader can poll this set, remove an

index using an LWT and if the LW is successful, process the job stored at the given index.

5.4.1.6 Warnings for KillrChat

For killrchat, there is only one type of warning: Messages are sometimes posted in a chat room
where a user does not belong to. This may lead to strange behavior, e.g. if a new chat room is

created and a message is already there or if a user posts in a chat room he does not participate in.

In the violation shown in Figure 5.10, client 0 creates a new chat room and checks afterwards
the messages from the new chat room. Client 1 does remove a user from the same chat room that
is created by client 0. As the 0_INSERT_1 is an LWT, a new chat room is only created if no other
room with the same name exists. Client 1 is arbitrated before client 0 which means that client
1 posts his leaving message before the chat room exists. Note that 1_UPDATE_5 is not an upsert:
This update behaves like a delete because the only update is the removal from a set. Therefore
the LWT of client 0 still succeeds. Even though that the 0_fetchMessages_2 does not fetch the

leaving message in this violation, it eventually will.

Client 0
0_ createChatRoom_ 1 Client 1
0_INSERT 1 \]/ 1 removeUserFromChatRoom 3
INSERT INTO chat_rooms 1 _UPDATE_4 \Y

| (room_name, creator, participants) UPDATE users

(4 (4 (4
VALUES (‘Java’, ‘Bob’, {‘Bob’}) SET chat_rooms = chat_rooms - {‘Java’}
IF NOT EXISTS WHERE username = ‘Bob’

ar

0_UPDATE 2

UPDATE users
SET chat_rooms = chat_rooms + {‘Java’}
WHERE username ‘Bob’

\%

1 _UPDATE 5
UPDATE chat_rooms SET
participants = participants - {‘Bob’}
WHERE room_name = ‘Java’

1_INSERT 6
0 fetchMessages 2 vo INSERT INTO chat_room_messages
— — (id, room_name, username, message)
0_SELECT_3 \]/ ~¥| VALUES (41-32-512, ‘Java’, ‘Bob’,
SELECT * FROM chat_room_messages /4 ‘Bob left the room’)
WHERE room_name = ‘Java’ N%

\,

Figure 5.10: A serializability violation found in killrchat.
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Client 0

0_removeUserFromChatRoom_ 1

0_UPDATE_1 i Client 1
UPDATE users
SET chat_rooms = chat_rooms - {‘Java’}

1 deleteChatRoom 3

WHERE username = ‘Bob’ 1 SELECT 5 \
SELECT * FROM chat_rooms
0 UPDATE 2 WHERE room_name = ‘Java’
UPDATE chat_rooms SET
participants = participants - {‘Bob’}|w ar 1_DELETE_6
WHERE room_name = ‘Java’ \ DELETE FROM chat_rooms
WHERE room_name = ‘Java’
0 INSERT 3 7 IF creator = ‘Alice’
INSERT INTO chat_room_messages
(id, room_name, username, message) 1 _DELETE 7
VALUES (41-32-512, ‘Java’, ‘Bob’, DELETE FROM chat_rooms_messages
‘Bob left the room’) WHERE room_name = ‘Java’
\l/ For each participant
l © 1_UPDATE 8
to
UPDATE users
0_findRoom_2 SET chat_rooms = chat_rooms - {‘Java’}
0 SELECT 4 \]/ WHERE username = :participant
SELECT * FROM chat_rooms Y
WHERE room_name = ‘Java’

V2

Figure 5.11: Another serializability violation found in killrchat.

Figure 5.11 shows how it can occur that client 1 from the previous example left a chat room he did
not participate in: Client 1 deletes a chat room. The transaction 0_removeUserFromChatRoom_1,
in which client 0 leaves the same room, is arbitrated later. Therefore, client 0 posts his leaving
message in a non-existing chat room. Also, in the second transaction on client 0, the chat room

“Java” is still returned from the data-store (as there is an anti-dependency).

One solution to this problem is using a surrogate key for the chat rooms, e.g. a UUID. If each new
chat room is created with a new UUID, messages that are posted after the deletion of a chat room

will still remain in the database, but they will eventually not show up in the application.

5.4.1.7 Warnings for Playlist

The reported violations that we classified as warnings for playlist can be split in two categories.
Tracks are combined in playlists where each playlist has a name and a user it belongs to. The pri-
mary key of the table playlist_tracks, which is used to store the playlists, consists of username,
playlist_name and sequence no. The sequence no column represents the timestamp in millisec-

onds when a track was added to the playlist.

If two tracks are added to the same playlist at exactly the same time, we have a lost update. Figure
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Client 0 Client 1
0_addTrackToPlaylist 1 1 _addTrackToPlaylist 1
0_SELECT 1 v 1_SELECT 1 v
SELECT * FROM playlist_tracks SELECT * FROM playlist_tracks
WHERE username = ‘Bob’ WHERE username = ‘Bob’
AND playlist_name = ‘favs’ AND playlist_name = ‘favs’
0_INSERT 2 1 _INSERT 2
INSERT playlist_tracks (username, INSERT playlist_tracks (username,
playlist_name, sequence_no, track_id) \g playlist_name, sequence_no, track_id)
VALUES (‘Bob’, ‘favs’, 3152123581, ar VALUES (‘Bob’, ‘favs’, 3152123581,
64-25-156) 33-88-007)

Figure 5.12: A serializability violation found in the playlist example.

5.12 shows the possible serializability violation that leads to a lost update. If the sequence no is
not equal on both clients, we still may have a serializability violation (with two anti-dependencies),

but no lost update.

The other type of warning is illustrated in Figure 5.13. Client 1 deletes a playlist. Client 0 adds a
new track to the same playlist. This is similar to the warnings reported for killrchat. Eventually
the playlist is deleted but a track for the playlist is still in the database. If a playlist with the same

name is recreated later, the new playlist already contains tracks.

The problem with the lost update can be solved with using a UUID for the sequence_no instead
of a timestamp. UUIDs can be created based on the current time, which means that tracks would
still be sorted in the partition in the order in which they were added to the playlist. But in contrast

to a timestamp, a UUID is unique.

Client 0
0_addTrackToPlaylist_ 1
0_SELECT 1 \]/ .
SELECT * FROM playlist_tracks Client 1
WHERE username = ‘Bob’ N 1_ deletePlaylist_ 1
AND playlist_name = ‘favs’ © 1 DELETE 3 "
DELETE FROM playlist_tracks
0 INSERT 2 ™A WHERE username = ‘Bob’
INSERT playlist_tracks (username, / AND playlist_name = ‘favs’
playlist_name, sequence_no, track_id) |, ar v
VALUES (‘Bob’, ‘favs’, 3152123581,
64-25-156)

Figure 5.13: Another serializability violation found in the playlist example.
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Client 0
0_addMessage_ 1
0_INSERT 1 \]/
INSERT INTO messages Client 1

(channel, user, time, message) T addM 1
VALUES (‘Java’, ‘Bob’, 315810245, ‘Ok’) —adaviessage
1_INSERT 1 \/

0_UPDATE 2 INSERT INTO messages
(channel, user, time, message)
VALUES (‘Java’, ‘Bob’, 315810120, ‘Hi’)

UPDATE users
SET last_seen = 315810245

WHERE channel = ‘Java’ AN
AND user = ‘Bob’ ar 1_UPDATE_2
\l/ UPDATE users
SET last_seen = 315810120
to WHERE channel = ‘Java’
0_getMessages_ 2 ) AND  user = ‘Bob’
0_SELECT 3 \ 2

SELECT * FROM messages
WHERE channel = ‘Java’

V2

Figure 5.14: A serializability violation reported for the roomstore example.

5.4.1.8 Warnings for Roomstore

The violations that are reported for roomstore are only classified as warnings as they indicate a
possible problem. Figure 5.14 shows the violation, which is quite simple: Two messages are added
to the data-store and the timestamp when the user sent the last message is updated. This results
in a potential arbitration edge and an anti-dependency when a query for a message is added on

one client.

This violation is probably not a warning, it is rather harmless. But the problem with room-
store is also that the primary key consists of the username, the channel and the timestamp when a
message is sent, which may not be unique. If multiple messages are sent at the same time, all but
one are lost. That two messages are sent at exactly the same time from the same user can happen
e.g. due to delays or leap-seconds. However, if two messages are sent using the same timestamp,

we do not have a serializability violation due to absorption.

5.4.2 Comparison with Trivial Analysis

We compared the false positives that are reported from ECChecker with the false positives that are
reported if we only check if a critical cycle exists once without any annotations or enhancements
and once with all annotations and enhancements. For this comparison, only combinations that
consist of two transactions per client are considered. Table 5.4 shows the results of the comparison.
The column “violations” contains the number of serializability violations that we have classified for

the given project. The column “CC” shows how many combinations exist with a critical cycle if the



Example Options | Violations | CC gg EnhCC Enl;f(’j C 1-— % ECC EFQJPC 1-— % 1-— 7EEECCC
cassandra-lock 0 0 0 0 0 - 0 0 - -
cassandra-twitter 8 18 | 10 10 2 80% 8 0 100% 100%
cassandra-twitter | display 16 33 | 17 27 11 35% 17 1 94% 91%
cassatwitter 3 7 4 3 0 100% 3 0 100% -
cassatwitter display 16 25 9 20 4 56% 16 0 100% 100%
cassieq™® 225 290 | 65 290 65 0% 225 0 100% 100%
cassieq™® display 298 396 | 98 396 98 0% 298 0 100% 100%
currency-exchange 0 0 0 0 0 - 0 0 - -
currency-exchange | display 1 2 1 2 1 0% 1 0 100% 100%
datastax-queueing 10 10 0 10 - 10 0 - -
killrchat 0 129 | 129 21 21 84% 6 6 95% 1%
killrchat display 326 935 | 609 759 433 29% 452 126 79% 1%
playlist 149 228 | 79 228 79 0% 149 0 100% 100%
playlist display 347 403 | 56 403 56 0% 347 0 100% 100%
roomstore 0 0 0 0 0 - 0 0 - -
roomstore display 14 14 0 14 0 - 14 0 - -
shopping-cart display 0 0 0 0 0 - 0 0 - -
simple-twitter 1 2 1 1 0 100% 1 0 100% -
simple-twitter display 4 5 1 5 1 0% 4 0 100% 100%
twissandra 2 3 1 2 0 100% 2 0 100% -
twissandra display 20 25 5 25 5 0% 20 0 100% 100%

Table 5.4: False positives (FP) resulting from checking serializability using critical cycles (CC), enhanced critical cycles (EnhCC) and ECChecker
(ECC). The reduction in the number of false positives a better analysis can achieve is shown in percent.
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trivial analysis does not use any enhancements. Subtracting the real violations gives the number of
false positives that are reported (FP CC). The trivial analysis does also profit from the enhance-
ments, e.g. the schema information and asymmetric commutativity. In the column “EnhCC” is the
number of critical cycles that are reported by the trivial analysis if all enhancements are enabled.
The column “FP EnhCC” contains the number of false positives generated by the enhanced trivial
analysis. The number of reported violations from ECChecker with all annotations and enhance-
ments enabled is shown in the column “ECC”. The reduction in the number of false positives a

better analysis can achieve is shown in percent for each case.

For all of the examples, ECChecker reduces the number of false positives by more than 75% com-
pared to a trivial analysis that only checks for critical cycles and by more than 70% compared to

the enhanced trivial analysis.

5.4.3 Effects of Annotations and Enhancements

We analyzed the impact of the different annotations and enhancements on the reported violations.
Like in Section 5.4.2 we only considered combinations for two clients with two transactions per
client. We measured the number of false positives that are reported if we disable one enhancement
or annotation and compared it to a trivial analysis that only checks if a critical cycle can occur
in the combination without any enhancements. Only examples where at least one false positive is
reported by the trivial analysis are considered for this measurement. The results can be found in
Table 5.5.

If each option is considered on its own, the schema setup scripts have the biggest impact on
the result. If these are not provided, the reduction of false positives is only 22%, compared to 98%
when the default options are used. Nevertheless, e.g. for cassieq providing the schema has no effect.
This is due to the fact that the part of cassieq that we analyze acts on a single table. As there is
an update statement, the analysis can deduce from the WHERE part of the update which columns
are part of the primary key. Hence, the schema does not provide additional information. Also
commutativity (i.e. that a logical formula is used for commutativity instead of true and false),
global and event constraints and the value analysis are crucial for a precise result. The encoding of
these parts happens based on the results of the static analysis. This shows that it is important that
the static analysis collects properties like equality, inequality and uniqueness for the arguments of

the operations and uses them for serializability checking.

We can also see in the results that there is no useless option. Although there are sometimes
only few examples that profit from a single annotation or enhancement, each of them has some

impact for at least one project.
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cassandra-twitter 0% 80% | 80% | 80% | 80% | 80% | 80% | 80% | 100% | 80% | 100% | 100% | 100% | 100%
cassandra-twitter | display 0% 35% | 35% | 35% | 59% | 59% | 59% | 65% | 94% | 656% | 88% | 94% | 94% 94%
cassatwitter 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
cassatwitter display 0% 56% | 56% | 56% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
cassieq™® 100% | 0% 3% 17% 8% 8% 8% 17% | 12% | 100% | 100% | 100% | 100% || 100%
cassieq™® display 100% | 0% 3% 15% 8% 8% 8% 15% | 11% | 100% | 100% | 100% | 100% || 100%
currency-exchange | display 0% 0% 0% 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
killrchat 76% | 84% | 88% | 88% | 94% | 94% | 95% | 91% | 95% | 94% | 95% | 92% | 86% 95%
killrchat display 25% | 14% | 37% | 24% | 57% | 50% | 9% | 62% | 2% | 60% | 9% | 53% | 73% 79%
playlist 6% 9% 0% 6% 9% 85% | 27% | 8% | 100% | 47% | 92% | 100% | 100% || 100%
playlist display 21% | 16% 4% 18% | 50% | 32% | 75% | 50% | 96% | 86% | 57% | 84% | 100% | 100%
simple-twitter 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
simple-twitter display 0% 0% 0% 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
twissandra 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
twissandra display 0% 0% 0% 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% || 100%
Total | 22% | 40% | 40% | 43% | T1% | 74% | 5% | 8% | 85% | 89% | 94% | 95% | 97% | 98%

Table 5.5: Reduction of false positives with the default options and one missing annotation / enhancement. While the average reduction is
98% when the default options are used, reduction is only 22% on average if the analysis is executed without providing a schema setup script
(all other options are still set to default).
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Figure 5.15 shows the results of another evaluation of the effects of some enhancements. We created
a set v of possible serializability violations by running the trivial analysis with all enhancements
enabled in the following way: First for all combinations consisting of one transaction per client, the
trivial analysis checked if a critical cycle is possible and reported all the combinations for which
this is the case. Afterwards, all combinations with 2 transactions on one client and 1 transaction
on the other client, which did not consist of a violation that was already reported, were checked
for a critical cycle and reported if necessary. Finally all combinations consisting of 2 transactions
on both clients were checked and reported if necessary. Then, we run ECChecker with the default
options and one enhancement disabled and counted all violations that are part of v, but are not
reported by an ECChecker analysis with all enhancements enabled (i.e. all reported violations that
must be false positives). The numbers in Figure 5.15 show how many false-positives over all exam-
ples are reported if the respective enhancement is disabled. If a certain violation v; is reported if
either the constraints are disabled or commutativity is disabled, v is counted in the intersection

of the areas for constraints and commutativity.

We can see that more than half of all false positives need more than one enhancement to be
resolved. Commutativity, processes and constraints (global, event and program order constraints)
have the biggest effect in this experiment. Legality and constraints only have an impact if also

commutativity is enabled.
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Figure 5.15: Number of false positives that are reported if one enhancement is missing. A violation
that is reported if either commutativity or constraints are disabled, counts for the number in the

intersection of constraints and commutativity.



6 Conclusions

In this thesis, we have implemented and evaluated a static analysis for checking serializability of
programs written in Java and operating on a Cassandra database assuming causal-consistency and
atomic visibility. The manual inspection of the reported violations revealed some serious serializ-

ability errors while only few false positives were reported.

The extension of the original criterion [2] with asymmetric commutativity, synchronization and
legality proved to have a significant effect on reducing the number of false positives. The evalua-
tion of the effects of the enhancements also showed that it is necessary for enough precision to know
facts about equalities and inequalities of operation arguments. The design of the static analysis as
an inter-procedural and context-sensitive data-flow analysis proved to be useful for collecting lots

of these facts.

The program does not need a lot of annotations for the analysis to be precise. Therefore, the
tool can be used easily and without a lot of effort during the development of a Java program
that works on Cassandra. The output of the tool is minimal, i.e. no other transactions then the
ones that are part of a violation are reported. The graphical representations of the violations also
contain a model of the event arguments that lead to the violation. Harmless violations can be
classified as such so that they are reported separately in later analyses. Therefore, the output of
the tool should be useful and understandable for a programmer and help him find and fix serious

serializability violations during the development.

6.1 Future Work

We see the following possibilities for future work:

Other Consistency Models: Serializability is currently checked assuming causal-consistency
and atomic visibility. The design of the analysis allows to also encode other consistency
models. Therefore the analysis could be extended easily with e.g. a model that is closer to
the concrete semantics of Cassandra in order to reveal more bugs that are not possible under

causal consistency, but may still occur in the real system.

Precision of the Static Analysis: Currently, the static analysis encodes equality only for pre-
defined immutable objects like numbers, strings and UUIDs. The missing encoding of equality

for other objects lead to false positives in the evaluation. Therefore, the precision of the anal-

65
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ysis could be improved if the static analysis infers equality for general objects too. When an
object is considered as equal depends on the serialization technique used, but as a start, an

object could be considered as equal if all the fields are equal.
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