
Bachelor Thesis Description

Recording Symbolic Executions

Andreas Buob

Supervisor: Malte Schwerhoff

Introduction

Silicon is a verifier for the intermediate language Silver, an intermediate verification language for

permission-based, automated program verification[1]. Verification is done using symbolic execution,

meaning that the program isn't executed with actual input, but with symbolic values. A statement

such as x := s; x := x * 2, where s is a local variable with symbolic value s', does not

result in a state where x has a concrete value, but rather a state where x is constrained by

x == s'*2. Furthermore, the symbolic execution can branch into different execution paths.

Symbolically executing a statement such as s1; if (b) then s2 else s3; s4; will branch

execution after the statement s1: Down one path, s2; s4 is executed under the assumption that

b holds, down the other path, s3; s4 is executed under the assumption!b. Paths can also be

joined again, which leads to merged states.

This project consists of two parts: First, finding a way to record the individual steps of a symbolic

execution and second, visualise the recorded executions. Since different possibilities on visualising

symbolic execution have already been inspected by previous work[2], the focus of this project lies

on recording symbolic executions.

Core Tasks

• Design and implement a datastructure that allows one to record the individual steps of the

execution, including their current states

• Implement an execution recorder that provides an understandable API, whose calls can be

integrated into the symbolic execution engine in an unintrusive and elegant way

• The execution recorder should be extensible so that recording the execution of features

that will be added to Silicon in the future is facilitated

• Design and implement a prototypical visualisation that demonstrates that the recorded

data can be used to inspect symbolic execution

1

Possible Extensions

• Improve visualisation and allow specialized views as described by previous work[2]

• The recorder supports additional Silver features such as magic wands or quantified

permissions

References

[1] Uri Juhasz, Ioannis T. Kassios, Peter Müller, Milos Novacek, Malte Schwerhoff, Alexander J.

Summers. Viper: A Verification Infrastructure for Permission-Based Reasoning. Technical

Report, ETH Zurich, 2014

[2] Ivo Colombo. Debugging Symbolic Execution. Master's Thesis, ETH Zurich, 2012

2

