Tree-based Version Control in Envision
Project Description and Schedule

Balz Guenat
guenatb@student.ethz.ch

January 15, 2015

Background

State of the art version control systems track changes to the granularity of
lines in files. This only partially corresponds to how program code is structured
semantically. Envision [1], an experimental IDE that is being developed at ETH
Zurich, aims to aid the programmer by providing a visual representation of the
program structure. Envision grants us the opportunity to explore how version
control could work on the basis of a program’s abstract syntax tree. Much initial
work on this idea was done by Marin Otth during his master thesis [2]. The
goal of this project is to complete and extend Otth’s work by providing stronger
correctness guarantees, designing good interfaces for the system’s features and
enabling users to customize the behavior of diff and merge.

Core Goals

The diff and merge algorithms are major components of a version control system
and as such, should provide some guarantees of correctness and completeness.
A first core goal is to define these guarantees in an exact manner to then sys-
tematically analyze the diff and merge algorithms. This analysis will guide the
necessary revisions of the algorithms and underlying data structures in order to
reach the established guarantees. After these proposed conceptual changes are
deemed reasonable, they will be implemented.

Another core goal is to develop a suitable way to visualize the diff and
merge functionalities for the user to enable an intuitive and effective interface.
This includes diff visualization, manual merging and histories of individual AST
nodes. Again, these interfaces will be implemented and integrated into Envision.

An evaluation of the revised algorithms will be performed to confirm that the
desired guarantees are established and that the overall correctness of the system
could be improved. Special attention will be given to cases that previously led
to incorrect results.

Additionally, advantages of the developed system over existing line-based
version control systems will be highlighted by comparing how common use cases
are handled.

Possible Extensions

It would be interesting to provide a plugin interface to the diff and merge
algorithms. This would allow users to add custom behavior in order to enhance
diff information and/or to improve the outcome of a merge. In his work, Otth
proposes some ideas on how renaming of entities could be handled by the version
control system. This functionality could be designed as a plugin for the merge.
If sufficient time remains after achieving the core goals, such an interface and
client could be implemented and tested.

Schedule

This is a rough outline of the planned progress of the project. Especially the
time allocated for extension work is flexible.

Deadline Week Task

Feb 1 0 Start of project
Feb 15 2 Familiarize with codebase and understand Otth’s work
Feb 22 3 Define what guarantees diff and merge should provide
Mar 8 5 Identify weaknesses of current diff, merge and/or provide
reasoning for correctness
Mar 22 7 Find conceptual solutions
Apr 19 11 Implement said solutions
Apr 26 12 Begin writing report about work up to this point
May 17 15 Come up with good interfaces for diff, merge and history
May 31 19 Implement said interfaces
Jun 7 20 Evaluation of work up to this point
Jun 21 22 Conceptual work for extensions
Jul 12 25 Implementation and evaluation of extensions
Aug 1 28 Finish report, end of project
References

[1] D. Asenov and P. Miiller. Envision: A fast and flexible visual code editor
with fluid interactions (overview). In Visual Languages and Human-Centric
Computing (VL/HCC), pages 9-12, 2014.

[2] Martin Otth. Fine-grained software version control based on a program’s
abstract syntax tree. Master thesis, ETH Zurich, 2014.

