
Developing an Interactive, Web-Based Tutorial for an

Intermediate Verification Language

Mathias Birrer
matbirre@student.ethz.ch

Supervised by Malte Schwerhoff

21.03.2015

1 Motivation

The Viper1 verification infrastructure is built for permission based reasoning and pro-
vides an intermediate verification language (IVL) called Silver, that natively supports
an expressive permission model and a set of carefully chosen language constructs that
enables an encoding of a wide range of higher-level programming and specification
features. The Viper verification infrastructure includes two back-end verifiers called
Silicon and Carbon.

Since only a technical report2 of Silver exists, the effort needed to get started with
the Silver IVL is very high. A tutorial which explains the basic features and demon-
strates how to encode features from high-level languages into Silver would make it
more easily accessible to interested people.

In an earlier Bachelor’s thesis, a web interface called Tuwin, which allows to use various
verification tools, has been developed3. Such a web-based access simplifies the use of
verification tools a lot.

With the existing web-based access to verification tools, we can create an interac-
tive tutorial for the Silver IVL. Interactive means that the reader of the tutorial is
able to write and try some examples right on the tutorial page, which leads to a more
hands-on introduction to Silver.

The following picture shows a possible design of the interactive tutorial, where the
text floats around a code input box.

1http://www.pm.inf.ethz.ch/research/viper
2http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf
3http://www.pm.inf.ethz.ch/education/theses/student_docs/Roland_Meyer/Roland_Meyer_

BA_report

1

http://www.pm.inf.ethz.ch/research/viper
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf
http://www.pm.inf.ethz.ch/education/theses/student_docs/Roland_Meyer/Roland_Meyer_BA_report
http://www.pm.inf.ethz.ch/education/theses/student_docs/Roland_Meyer/Roland_Meyer_BA_report


Figure 1: Possible layout for the interactive tutorial

2 Core Goals

The core goal of this Bachelor’s thesis is to develop an interactive tutorial for the Silver
IVL. The following points clarify the tasks related to the core goal:

• Create an interactive tutorial for the Silver IVL. The tutorial is a combination of
a normal tutorial that explains the features of Silver and an online verification
tool, with which the reader can try examples themselves.

• The tutorial should address an audience that has some general experience in
software verification, but not necessarily in permission-based reasoning, and is
interested in learning the advantages of the Silver IVL.

• The tutorial should be rich in examples and tasks the reader can try themselves
with the online verification tool.

• The tool used for online verification has very high latency in its current version.
The performance of this tool has to be improved such that the response time
becomes acceptable for an interactive tutorial.

2



3 Schedule

The following items summarize the tasks this thesis includes. The percentage should
offer a rough estimation of how much time is planned to complete them:

• Familiarize with Silver (5%)

• Familiarize with the Scala language and the code of the Viper tools (10%)

• Write tutorial content (30%)

• Update Tuwin libraries (10%)

• Make Silicon and Carbon available through the web interface (10%)

• Further development of Tuwin, e.g. reduce response time and improve user
interface (15%)

• Implement interactive tutorial (10%)

• Write report (10%)

4 Extensions

If time permits, the following extensions could be addressed:

Cover additional Silver features in the tutorial
The Silver language offers some features such as magic wands, quantified permissions
and obligations, which are still under development. One or more of those could be
covered in the tutorial as an extension.

Simplify process of adding tool support
The current process to add a new verification tool to the Tuwin web interface is not
easy, and also not optimal from a security point of view. Both issues could be ad-
dressed as an extension.

Improve online code editor
The used code editor is very flexible and can be adapted in many ways. Another pos-
sible extension is to implement nice-to-have features such as autocompletion or code
folding.

3


	Motivation
	Core Goals
	Schedule
	Extensions

