
Incremental Symbolic Execution

- Project Description -

Roger Koradi
Supervisors: Malte Schwerhoff, Valentin Wüstholz, Peter Müller

ETH Zürich, Switzerland

Wednesday 1st April, 2015

1 Motivation

Most often, programs under verification are changed incrementally, i.e. they
gradually evolve to implement the desired functionality. Therefore, most
parts of the program are likely to be unaffected by some code changes. It
would be wasteful, for example, to re-verify the entire program just because
the programmer appended one more statement.
The Silicon verifier—as part of the Viper infrastructure1—is supposed to be
constantly running in the background during IDE sessions, providing peri-
odic feedback to the programmers as they are editing the code. As such,
response time is crucial to IDE integration. This is why we will optimise Sil-
icon’s responsiveness and performance by reducing the amount of code that
must be re-verified after changes by caching and re-using earlier verification
results where appropriate.

We will be adopting a caching technique that was developed for the Dafny
IDE and its Boogie backend. The key challenge in this is generalising and
extending the solution to the new setting of the permission-based symbolic-
execution tool Silicon. This might also allow for several optimisations in the
caching.

1http://www.pm.inf.ethz.ch/research/viper

1

http://www.pm.inf.ethz.ch/research/viper


2 Core Goals

Identify and implement ways of re-verifying as little as possible after code
has been changed. As of now, we will use two such approaches:

Coarse-grained caching refers to deciding which methods are affected by
current changes in code and which methods can be assumed to not need re-
verification. This will presumably require the implementation of checksums
of some kind, two in total, one that will change if the method itself is modi-
fied and one that will change if a callee’s specification is. A change in either
checksum may indicate the need for re-verification of the method. Note that
the computation of checksums may also need to deal with changes to other
global entities in Silver, such as domains, axioms and fields. To attach these
checksums to methods and functions, we will add support for attributes on
methods and functions.

Fine-grained caching means taking into account that we may not need
to re-verify the entirety of a method’s implementation if we can prove parts
of it were not affected by the change that triggered the re-verification. For
example, contract changes to a callee may be harmless for the caller if they
strengthen a postcondition or weaken a precondition.

The existing technique for fine-grained caching makes it possible to mark as-
sertions as fully-verified or as partially-verified under certain conditions that
usually depend on whether callees’ postconditions from the cached version
of the program still hold in the current version. We will thus add support for
attributes on assertions to so mark them, allowing Silicon to later simplify
their checking if these conditions hold.

Expressing the conditions will require checking if an “old” postcondition still
holds after a call to the new, changed callee. Unlike in Boogie, this is more
involved in a setting with postconditions that mention permissions and will
require support for an “exhalable” construct that will allow us to check if
a given condition—possibly containing permissions—holds at a given pro-
gram point. Note that this is different from the existing “exhale”-statement
which checks that a given condition holds and gives up any permissions the
condition requires.

We believe the technique is beneficial not only to the simplification of the
checking of assertions but to statements in general. For, unlike in Boogie,
some statements in Silver require implicit checks during verification. For
instance, the receiver of a method invocation must not be null or the index
during an array access must be within a valid range.

2



Therefore, the project will:

• Add language support for statement, method and function attributes,
for the “exhalable” construct and for partially-verified statements.

• Implement and evaluate effectiveness of coarse-grained caching.

• Implement and evaluate effectiveness of fine-grained caching.

3 Extension Goals

• Integrate caching infrastructure into the IDE.

• If the simplified checking for assertions and exhale statements yields a
benefit, extend it to work for all partially-verified statements.

• Evaluate effectiveness over real IDE sessions.

• Add support for new language features in Carbon.

4 Timeline

Start: Monday, 23rd February 2015
Deadline: Sunday, 23rd August 2015

19th March Project Presentation

11th May Implemented language support for statement/method/function attributes,
for the “exhalable” construct and for partially-verified statements,
as well as method/function entity & dependency checksums
and evaluated the merit of simplified checking for assertions and exhalable
statements

25th May Implemented coarse-grained caching
1st June Evaluated coarse-grained caching

15th June Implemented fine-grained caching
22nd June Evaluated fine-grained caching

29th June Extension goals

6th July Start writing report

23rd August deadline

3


	Motivation
	Core Goals
	Extension Goals
	Timeline

