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1 Project description

1.1 Overview

eSemper Intermediate Language (abbreviated to ) is a verification language for concurrent
programs.  offers functions and predicates in the strict sense, that is, they are free from side
effects and thus also called pure functions. Central to formal verification are assertions, which
in  can be abstracted with the help of functions. A verifier for  is Silicon. e goal of this
project is to improve the reasoning of Silicon about functions.

1.2 Scope of the work

1.2.1 Core

• Two common approaches for the construction of automatic program verifiers are Veri-
fication Condition Generation  and Symbolic Execution . Experiments suggest
that  is generally more efficient than , but less complete [2].  simulates a program
execution with symbolic values, accumulating them in a logical formula known as the
path condition, which is given to the prover whenever an assertion needs to be verified.
Silicon is based on . We plan to change Silicon by additionally giving the prover rel-
evant functions as axioms, an idea taken from . Since this provides the prover with
stronger assumptions, it should improve the completeness of the verifier.

• To strengthen the ability of Silicon to prove partial correctness of functions, it should be
extended with a technique based on the induction principle [3]. ere might be a need to
make  more expressive, for instance to give the verifier a hint about whether to apply
an inductive proof.
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1.2.2 Extensions

• Verfiers translate functions into axioms, thereby facilitating the verification. If recursive
functions are represented as recursive axioms, then they might be instantiated indefin-
itely. Being unable to terminate, the prover enters a so-called matching loop. Recent
research proposes a solution for  [1]. We could integrate it into Silicon.

• e termination of certain recursive functions should be proven, namely if the function
provides a well-founded termination measure on its arguments.

1.3 Intended results

• A test suite should be developed with program examples covering the problems.

• e improved verifier should do well on the test suite.

• A report in English should be completed. It is to introduce the concepts around ,
document the techniques incorporated into Silicon and evaluate the changes.

2 Project management

2.1 Objectives and priorities

e main objective is to improve the completeness of the verifier. It should be sound, so any
verified assertion must be correct indeed. e program examples form a basis for the experi-
mental evaluation.

2.2 Criteria for success

A chosen subset of the program examples are required to be verified without a specific time
constraint. Together with the completion of the report and the two presentations, this guaran-
tees the lowest passing grade 4 or more.

2.3 Method of work

At the beginning of the project, there are weekly meetings with the supervisor to identify
problems early. If desirable, this frequency can be loosened later to once a fortnight.
Two presentations should take place. e initial presentation is to be given about one month

aer the start of the project. e intention is to inform the research group, receive fruitful
feedback and exchange thoughts related to the topic. e final presentation at the end of the
project should summarise the whole project.

2.4 ality management

2.4.1 Documentation

e report should document the techniques realised in the verifier on an abstract level. e
source code should be documented by employing a good programming style.
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2.4.2 Validation steps

e soware should be validated with code reviews and the test suite.

3 Plan with milestones

Time / weeks

Project step Budget Accumulated Deadline

Ideas and studies completed 1 1 2013-03-17
Background material collected 1 2 2013-03-24
Program examples created 1 3 2013-03-31
Milestone 1: requirements completed 0 3 2013-03-31

Design completed 2 5 2013-04-14
Initial presentation given 1 6 2013-04-21
Implementation completed 7 13 2013-06-09
Time buffer 2 15 2013-06-23
Validation completed 1 16 2013-06-30
Experimental evaluation completed 1 17 2013-07-07
Milestone 2: soware completed 0 17 2013-07-07

Report completed 5 22 2013-08-11
Final presentation given 1 23 2013-08-18
Time buffer 2 25 2013-09-01
Milestone 3: project completed 0 25 2013-09-01
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