
Strong Support for Pure Functions in an
Automated Program Verifier

Project Plan

Benjamin Fischer

17 March 2013

Bachelor thesis: 11 March 2013 to 1 September 2013  Computer Science
Supervisor: Dr. Ioannis Kassios Prof. Dr. Peter Müller

1 Project description

1.1 Overview

eSemper Intermediate Language (abbreviated to ) is a verification language for concurrent
programs.  offers functions and predicates in the strict sense, that is, they are free from side
effects and thus also called pure functions. Central to formal verification are assertions, which
in  can be abstracted with the help of functions. A verifier for  is Silicon. e goal of this
project is to improve the reasoning of Silicon about functions.

1.2 Scope of the work

1.2.1 Core

• Two common approaches for the construction of automatic program verifiers are Veri-
fication Condition Generation  and Symbolic Execution . Experiments suggest
that  is generally more efficient than , but less complete [2].  simulates a program
execution with symbolic values, accumulating them in a logical formula known as the
path condition, which is given to the prover whenever an assertion needs to be verified.
Silicon is based on . We plan to change Silicon by additionally giving the prover rel-
evant functions as axioms, an idea taken from . Since this provides the prover with
stronger assumptions, it should improve the completeness of the verifier.

• To strengthen the ability of Silicon to prove partial correctness of functions, it should be
extended with a technique based on the induction principle [3]. ere might be a need to
make  more expressive, for instance to give the verifier a hint about whether to apply
an inductive proof.

1



1.2.2 Extensions

• Verfiers translate functions into axioms, thereby facilitating the verification. If recursive
functions are represented as recursive axioms, then they might be instantiated indefin-
itely. Being unable to terminate, the prover enters a so-called matching loop. Recent
research proposes a solution for  [1]. We could integrate it into Silicon.

• e termination of certain recursive functions should be proven, namely if the function
provides a well-founded termination measure on its arguments.

1.3 Intended results

• A test suite should be developed with program examples covering the problems.

• e improved verifier should do well on the test suite.

• A report in English should be completed. It is to introduce the concepts around ,
document the techniques incorporated into Silicon and evaluate the changes.

2 Project management

2.1 Objectives and priorities

e main objective is to improve the completeness of the verifier. It should be sound, so any
verified assertion must be correct indeed. e program examples form a basis for the experi-
mental evaluation.

2.2 Criteria for success

A chosen subset of the program examples are required to be verified without a specific time
constraint. Together with the completion of the report and the two presentations, this guaran-
tees the lowest passing grade 4 or more.

2.3 Method of work

At the beginning of the project, there are weekly meetings with the supervisor to identify
problems early. If desirable, this frequency can be loosened later to once a fortnight.
Two presentations should take place. e initial presentation is to be given about one month

aer the start of the project. e intention is to inform the research group, receive fruitful
feedback and exchange thoughts related to the topic. e final presentation at the end of the
project should summarise the whole project.

2.4 ality management

2.4.1 Documentation

e report should document the techniques realised in the verifier on an abstract level. e
source code should be documented by employing a good programming style.

2



2.4.2 Validation steps

e soware should be validated with code reviews and the test suite.

3 Plan with milestones

Time / weeks

Project step Budget Accumulated Deadline

Ideas and studies completed 1 1 2013-03-17
Background material collected 1 2 2013-03-24
Program examples created 1 3 2013-03-31
Milestone 1: requirements completed 0 3 2013-03-31

Design completed 2 5 2013-04-14
Initial presentation given 1 6 2013-04-21
Implementation completed 7 13 2013-06-09
Time buffer 2 15 2013-06-23
Validation completed 1 16 2013-06-30
Experimental evaluation completed 1 17 2013-07-07
Milestone 2: soware completed 0 17 2013-07-07

Report completed 5 22 2013-08-11
Final presentation given 1 23 2013-08-18
Time buffer 2 25 2013-09-01
Milestone 3: project completed 0 25 2013-09-01

References

[1] Stefan Heule et al. Verification Condition Generation for Permission Logics with Abstract
Predicates and Abstraction Functions. Technical report.  Zurich, 2012. : http://pm.
inf.ethz.ch/publications/getpdf.php?bibname=Own&id=HeuleKassiosMuellerSummers12.
pdf.

[2] Ioannis T. Kassios, Peter Müller, and Malte Schwerhoff. “Comparing Verification Condi-
tion Generation with Symbolic Execution: an Experience Report”. In: Proceedings of the
4th international conference on Verified Soware: theories, tools, experiments. Ed. by Ra-
jeev Joshi, Peter Müller, and Andreas Podelski. 2012. : http://pm.inf.ethz.ch/
publications/getpdf.php?bibname=Own&id=KassiosMuellerSchwerhoff12.pdf.

[3] K. Rustan M. Leino. “Automating Induction with an  Solver”. In: Proceedings of the
13th international conference on Verification, Model Checking, and Abstract Interpretation.
Ed. by Viktor Kuncak and Andrey Rybalchenko. 2012. : http://research.microsoft.
com/en-us/um/people/leino/papers/krml218.pdf.

3

http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=HeuleKassiosMuellerSummers12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=HeuleKassiosMuellerSummers12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=HeuleKassiosMuellerSummers12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosMuellerSchwerhoff12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosMuellerSchwerhoff12.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml218.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml218.pdf

	Project description
	Overview
	Scope of the work
	Core
	Extensions

	Intended results

	Project management
	Objectives and priorities
	Criteria for success
	Method of work
	Quality management
	Documentation
	Validation steps


	Plan with milestones

