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Abstract

 is an intermediate verification language. is thesis addresses the application of the
induction principle and termination of functions for automatic formal verification, realising
the techniques as -to- transformations. e experimental evaluation was done with the
verifier Silicon, which employs Symbolic Execution and relies on an  solver.

In the first part,  expressions are transformed by the induction principle, similar to the
technique of another language and program verifier Dafny. A heuristic decides when to in-
volve induction and assembles the induction variables in tuples. Alternatively, domain types
are interpreted as algebraic data types, which are not expressible in , to enable structural
induction. With this second instance of induction, 25 of 38 selected inductive properties were
verified automatically. 10 more properties can be verified by manually triggering axioms about
case distinctions, leaving questions about further automation open.

e second part explores the termination of functions with variants. e developed tech-
nique guesses a variant for each function by deducing a tuple from the arguments and the
folding depth of abstract predicates. e termination conditions are then generated to check
whether every recursive call decreases the variant guesses along a well-founded relation. is
proved successful for simple program examples.
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1 Introduction

Formal verification is a field of computer science which is about proving properties of systems
like programs. e Semper Intermediate Language () is a new language to write such pro-
grams to be formally verified. is thesis has two distinct parts, both of which improve the
automatic verification of  programs.

e first part is about induction. Induction is a crucial method of proof for well-founded
structures. It is formalised as an axiom in higher-order logic. However,  solvers, which are
employed by current verifiers for  programs, solely support first-order logic with equality.
us, they cannot directly prove many interesting properties in . Leino [12] successfully
automated induction with an  solver for another verification language called Dafny. is
was a major source of ideas for this thesis.

e second part is about termination of functions.  offers functions in the strict sense, that
is, they are free from side effects. Specifications in  like preconditions and postconditions
can call functions. ese functions must terminate, otherwise the soundness of the formal
verification could be compromised. None of the current verifiers for  programs prove ter-
mination. It is well known that the halting problem is undecidable. As we shall see, a lot of
recursive functions can still be verified to terminate by a simple approach.
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2 Background

As a foundation for the technical work later, we introduce the verification language in use as
well as relevant mathematical background.

2.1 Semper Intermediate Language ()

e Semper Intermediate Language (abbreviated to ) was chosen for the scope of this thesis.
is choice seemed natural from the circumstances given by the research group at the time.
However, it is important to notice that the concepts can be implemented for other verification
languages equally well.

2.1.1 Role of 

 is an intermediate verification language. Figure 2.1 shows the infrastructure around such an
intermediate language. Translators transform programs of so-called front-end languages into
programs of a common intermediate language. A verifier now does the formal verification of
the translated program. Any pair with a translator and a verifier can be applied, since they are
independent of each other.

Figure 2.1:  as an intermediate verification language (boxes represent data formats, while
arrows correspond to transformations between these)

 is part of the Semper project and comes with a library [4].e goal of this ongoing project
is the automatic verification of Scala programs. Brodowsky [3] developed a translator for Scala.
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Furthermore, Klauser [10] worked on a translation for Chalice, another verification language
for concurrent programs [14].

Two common approaches for the construction of automatic program verifiers are Symbolic
Execution  and Verification Condition Generation . Kassios, Müller, and Schwerhoff
[9] give an overview of the two approaches followed by a comparison of their efficiency. ere
currently exist two automatic verifiers for  programs: Silicon [15] and Carbon [7]. ey
implement  and , respectively. Both verifiers make use of the  solver Z3 [2]. We
applied Silicon for all verification purposes throughout this thesis.

Besides translators and verifiers, there are transformations working on  programs alone.
ese are essentially -to- functions. Transformations of this third kind are especially
reusable, since any other transformation can apply them independently. We shall see how
both parts of this thesis can be designed as such  transformations, making them available
for any translator or verifier. e library developed for  transformations is called Silmore.

2.1.2 Relevant Programming Constructs

In the following, we present programming constructs of  which are relevant for this thesis.
A complete grammar for  can be found in [3]. As  is a rather new research language, parts
of it might change.

Basic Expressions and Statements

e types Bool and Int belong to the primitive types of . Bool is the type of Boolean variables
with the literals false and true. Int represents arbitrary-precision integers. Table 2.1 on
the next page summarises a selection of  operators. As usual, the implication ==> is right-
associative and the Boolean operators in order of increasing binding strength are ? :, ==>, ||,
&&, !. Boolean operators apply short-circuit evaluation. e scope of the quantifications exists
and forall extends to the very right, a rule we also use for our mathematical notation.

Let us consider the complete  program of Listing 2.1. It comprises a function factorial
and amethod factorialImperative introducedwith the corresponding keywords, which com-
pute the factorial in a functional and imperative way, respectively. Functions and methods can
have an arbitrary number of parameters.

Listing 2.1: Selection of basic  programming constructs

1 function factorial(count: Int): Int
2 requires count >= 0
3 ensures result >= 1
4 { count == 0 ? 1 : count * factorial(count - 1) }
5

6 method factorialImperative(count: Int) returns (product: Int)
7 requires count >= 0
8 ensures product == factorial(count)
9 {

10 var factor: Int
11 product := 1
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Table 2.1: Selected operators of , where a, b are of type Bool and m, n of type Int, whereas y,
z can have either type

Operators Meaning Example

? : Conditional expression a ? y : z
==> Implication a ==> b
||, && Disjunction and conjunction a || b
! Boolean negation !a

exists Existential quantification exists z: Bool :: a
forall Universal quantification forall z: Int :: a
==, != Equality and inequality y != z

<, <=, >, >= Ordering m < n
+, -, * Addition, subtraction and multiplication m - n
\, % Integer division and modulo m \ n
+, - Plus and minus signs -n

12 factor := 0
13 while (factor < count)
14 invariant factor >= 0 && product == factorial(factor) && factor <= count
15 {
16 factor := factor + 1
17 product := product * factor
18 }
19 }

e body of a function in  is an expression, that is, it is free from side effects. Expressions
can call functions, thereby enabling recursion as seen in the example. A function can specify
a precondition and a postcondition by a sequence of lines with the keywords requires and
ensures, respectively. Such specifications are in turn Boolean expressions, which implies that
they can call functions. A postcondition of a function can refer to the evaluation of its body
with the keyword result.

A function with specifications expresses a contract: whenever the function is called such
that its precondition holds and the evaluation of its body terminates, then the postcondition
holds. Satisfying this property is called partial correctness. If we additionally require that the
function terminates, this guarantee is referred to as total correctness. In the case of our function
factorial, total correctness means that for every natural number n, the call factorial(n)
terminates and returns a nonzero natural number.

Methods can specify preconditions and postconditions, too. In contrast to functions, meth-
ods can compute a tuple of results indicated by the keyword returns. is tuple is possibly
empty, because methods may solely live from their side effects. Method bodies can first declare
a number of local variables with var followed by a sequence of statements. Possible  state-
ments include variable assignments with :=, method calls and conditional statements with the
keywords if, elsif and else as expected. A loop is introduced with the keyword while. Loops
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can express an invariant with the keyword invariant. A loop invariant should hold before the
entry of the loop and aer each iteration.

Inhaling, Exhaling and Inhale-Exhale Expressions

It is the objective of formal verification to prove that a program is correct in a certain sense.
For example, Listing 2.1 on page 8 can be verified by Silicon. Two fundamental notions for the
model of  programs are inhaling and exhaling. ese respective terms refer to assuming and
asserting Boolean expressions during the verification. In fact, there exist the keywords inhale
and exhale in .

To see this concept in use, think symbolically of a function foo as in

1 function foo(…): T
2 requires pre
3 ensures post
4 { b }

with a precondition pre, a postcondition post and a body b of type T. Formally verifying
partial correctness of this function can work as follows. e verifier assumes pre, processes b
and finally has post as a proof obligation. us, this could be translated into

1 inhale pre
2 // Process function body b
3 exhale post

When the verifier encounters a call to foo, this works the other way round. pre is exhaled
before the call and post is inhaled aer the call.

A new construct in  are the so-called inhale-exhale expressions. An inhale-exhale expres-
sion has the syntax

1 [i, e]

where i and e are Boolean expressions. e semantics is that when [i, e] is inhaled, i is
inhaled, while when [i, e] is exhaled, e is exhaled. In other words, [i, e] is replaced by i or
e for inhaling or exhaling, respectively. As a possible justification, an inhale-exhale expression
can be employed if i and e are equivalent.

Let us clarify inhale-exhale expressions in the context of formal verificationwith the example
of a function bar as in

1 function bar(…): T
2 requires [pre_in, pre_ex]
3 ensures [post_in, post_ex]
4 { b }

For partial correctness of bar, the verifier generates

1 inhale pre_in
2 // Process function body b
3 exhale post_ex
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From the perspective of calling bar, the verifier translates the call into

1 exhale pre_ex
2 inhale post_in

Domain Types

Besides the primitive types,  programs can define domain types. Domain types are a gen-
eral concept to introduce own theories for formal verification. For instance, they allow the
definition of structures like sets, lists or natural numbers. A domain type is a collection of
function signatures accompanied by axioms in first-order logic with equality. Since domain
functions neither have specifications nor bodies, the axioms usually specify their behaviour.
In addition, a domain type can have type variables to abstract from the concrete types of its
domain functions.

Listing 2.2 defines a domain type for binary trees with the keys in their leaves. e keyword
domain precedes the name Tree of the domain type together with the type variable A for the
type of the keys. Keys can be wrapped into leaves with the domain function leaf. In the
recursive nature of trees, the domain function node shows that an inner node has a le and a
right subtree. e first axiom leafOrNode guarantees that any tree is equal to an application of
leaf to some key or node to some pair of trees. e domain function key unwraps the key of a
leaf again, as stated by the second axiom keyLeaf. Applying key to an inner node is undefined.
e remaining axioms define equality on trees by matching paerns for a pair of trees.

Listing 2.2: Domain type representing a binary tree with the keys in its leaves

1 domain Tree[A] {
2 function leaf(key: A): Tree[A]
3

4 function node(left: Tree[A], right: Tree[A]): Tree[A]
5

6 function key(tree: Tree[A]): A
7

8 axiom leafOrNode {
9 forall t: Tree[A] :: (exists k: A :: t == leaf(k)) ||

10 exists l: Tree[A], r: Tree[A] :: t == node(l, r)
11 }
12

13 axiom keyLeaf {
14 forall k: A :: key(leaf(k)) == k
15 }
16

17 axiom equalLeafLeaf {
18 forall l: A, r: A :: (leaf(l) == leaf(r)) == (l == r)
19 }
20
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21 axiom equalLeafNode {
22 forall k: A, l: Tree[A], r: Tree[A] :: leaf(k) != node(l, r)
23 }
24

25 axiom equalNodeLeaf {
26 forall l: Tree[A], r: Tree[A], k: A :: node(l, r) != leaf(k)
27 }
28

29 axiom equalNodeNode {
30 forall lL: Tree[A], lR: Tree[A], rL: Tree[A], rR: Tree[A] ::
31 (node(lL, lR) == node(rL, rR)) == (lL == rL && lR == rR)
32 }
33 }

An important thing to note is that domain types may describe infinite structures. For ex-
ample, infinite trees conform to the domain type of Listing 2.2 on the previous page. Even
though infinite trees cannot be constructed by a finite number of applications of the domain
functions leaf and node, they can be deconstructed into a le and right subtree, thereby obey-
ing the rules of this domain type. A way to think about domain types is as a set of objects
restricted by rules. To further restrict the set to finite trees, one could additionally provide an
axiom asking for the smallest such set. However, an axiom like this cannot be expressed in
first-order logic.

Fields, Permissions, Predicates and Unfolding Expressions

 offers another primitive type Ref for a reference to a collection of memory locations in the
heap. Such memory locations are instances of the fields of a program, which are declared like
variables on the top level of the program. For example, Listing 2.3 on the following page has
the fields next and item. Since the field next is in turn a reference, this recursively defines a
linked list of integers. References may be null. Variables of type Ref are passed to a method by
reference, which introduces the possibility of side effects on the referenced memory locations.
is is one way of aliasing.

Methods and functions in  need to provide an upper bound on the part of the heap they
modify. is specification problem is an instance of the so-called frame problem and is crucial
for the modular verification of programs. e central concept of permissions helps to solve
this frame problem. Permissions are a way to express access rights on heap locations like read
or write access.  bases its permission model on Chalice. Leino, Müller, and Smans [14] give
a tutorial about Chalice, including an informal guide to permissions. A speciality of  is that
it supplies constructs for permissions at the level of an intermediate language.

Predicates abstract from permissions. In Listing 2.3 on the next page, the predicate valid
is a wrapper for write access to the first item of the given list, its reference to the remaining
list and recursively to the remaining list if it exists. Note that r.p() for a reference r and a
predicate p represents a call p(r). e function sum recursively adds the items of a linked list.
For this reason, it needs to have read access to the complete list. So its precondition gives it
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just enough permissions by the keyword wildcard. Functions always implicitly give back the
permissions they require, thus, there is no postcondition ensuring this.

In the body of the function sum, we apply the keyword unfolding to exchange the predicate
valid of list for its permissions on the next reference, the current item and the predicate
valid of the next list. Such unfolding expressions are can be thought of as unwrapping one
layer of abstraction in order to reveal memory locations or more layers of abstraction. Unfold-
ing expressions only unfold permissions temporarily for their evaluation, leaving the predicates
folded otherwise. For this reason, there is no need for a folding expression. What exists are
fold and unfold statements covered in [14].

Listing 2.3: Linked list with a predicate valid

1 var next: Ref
2

3 var item: Int
4

5 predicate valid(list: Ref)
6 { acc(list.item, write) && acc(list.next, write) &&
7 (list.next != null ==> acc(list.next.valid(), write)) }
8

9 function sum(list: Ref): Int
10 requires acc(list.valid(), wildcard)
11 { unfolding acc(list.valid(), wildcard) in
12 list.next == null ? list.item : list.item + sum(list.next) }

What will be relevant later is that when evaluating an expression, the number of successfully
executed unfolding expressions is always finite. More precisely, we are given an arbitrary
unfolding expression u as

1 unfolding p in e

for expressions p and e. We assume that the evaluation of p terminates, so that the unfolding
eventually succeeds. Prior to evaluating u, only a finite number n ∈ N of foldings can be
executed. As a result, the evaluation of u can execute at most n unfolding expressions, since
expressions cannot produce new foldings.

2.2 Mathematical Background

Wenow lay the relevant foundations ofmathematics. What connects the two parts of induction
and termination of functions is the notion of well-foundedness.

2.2.1 Well-Foundedness

Definition 1. A binary relation≺ on a classC iswell-founded precisely if any nonempty subset
of C has a minimal element with respect to ≺, that is,

∀S ⊆ C • S 6= ∅ → ∃m ∈ S • ∀e ∈ S • ¬(e ≺ m).
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We reserve the symbol≺ solely for well-founded relations. Due to the irreflexivity of≺, some
texts refer to it as a strictly well-founded relation. [8]

Equivalently, a relation ≺ on a class C is well-founded if and only if there exists no infinite
sequence e0, e1, e2, … with en ∈ C such that en+1 ≺ en for each n ∈ N. Intuitively, every
decreasing chain constructed with≺ eventually terminates when reaching a minimal element.

Well-founded relations can be defined on various sets.

• e strict inequality < on the natural numbers N is well-founded, since any decreasing
chain n0 > n1 > n2 > … is limited by zero and hence finite.

• Leino [12] suggests a well-founded relation on the integers Z as

k ≺ n ↔ k < n ∧ b ≤ n (2.1)

for an arbitrary b ∈ Z.

• A well-founded relation on ordered pairs is possible. Let the ordered pairs be a subset of
S0×S1 with well-founded relations≺0 on S0 and≺1 on S1. For an equivalence relation
= on S0, a well-founded relation is

(l0, l1) ≺ (h0, h1) ↔ l0 ≺0 h0 ∨ (l0 = h0 ∧ l1 ≺1 h1). (2.2)

If ≺0 and ≺1 are partial orders, then this relation≺ is known as a lexicographical order.

• Tuples of arbitrary lengths can be represented recursively by ordered pairs. For example,
an alternative representation of the triple (a, b, c) is the ordered pair (a, (b, c)). ere-
fore, a well-founded relation on n-tuples can be reduced to a well-founded relation on
ordered pairs.

• Given a well-founded relation ≺0 on a set S0, we can define a well-founded relation on
a set S1 by applying a function f : S1 → S0 as in

l ≺ h ↔ f(l) ≺0 f(h). (2.3)

• Finally, algebraic data types allow well-founded relations. An algebraic data type defines
a set A by a set of n data constructors

{ci : Si,0 × Si,1 ×…× Si,ai−1 → A | i ∈ {0, 1,…, n− 1}}.

For every i, the data constructor ci is a function of arity ai with codomain A. A is now
the smallest set such that

∀i ∈ {0,…, n− 1} • ∀t • t ∈ Si,0 ×…× Si,ai−1 → ci(t) ∈ A.

Recursive structures are possible as soon as Si,k = A for some i and k.

Based on an idea by Leino [12], for a setA produced by an algebraic data type, we define
an application of one of its data constructors to succeed each of its arguments of the same
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typeA along awell-founded relation. More formally, the relation≺ onA is characterised
by

∀i • ∀e0 ∈ Si,0,…, eai−1 ∈ Si,ai−1 • ∀k • Si,k = A → ek ≺ ci(e0,…, eai−1). (2.4)

Take the algebraic data type List as an example. It has the data constructors

{nil : List, cons : S × List → List}

to create the empty list and prepend an element of the set S to another list, respectively.
According to our template, the well-founded relation ≺ on List is defined by

∀e0 ∈ S, e1 ∈ List • e1 ≺ cons(e0, e1).

2.2.2 Noetherian Induction

Definition 2. e axiom of Noetherian induction states that for any well-founded relation≺ on
a set S and an arbitrary predicate P on S, the formulae

∀n • P (n) (2.5)

and
∀n • (∀k • k ≺ n → P (k)) → P (n) (2.6)

are equivalent when quantifying over S.

e axiom of Noetherian induction is stated in second-order logic, since it quantifies over
predicates P . As  solvers just employ first-order logic with equality, an idea by Leino [12]
is to translate between the formulae of Equation (2.5) and Equation (2.6) as part of a translation
to an intermediate verification language. To put this fruitful idea in a nutshell, Equation (2.5)
is used for assumptions and Equation (2.6) for assertions. An  solver oen seems to have a
beer chance to prove Equation (2.6).

If a set A is characterised by an algebraic data type, we can make use of the well-founded
relation≺ defined by Equation (2.4) to instantiate the rule of Noetherian induction for A. is
kind of induction on algebraic data types is referred to as structural induction.

Definition 3. Let the set A be defined by an algebraic data type with n data constructors

{ci : Si,0 × Si,1 ×…× Si,ai−1 → A | i ∈ {0,…, n− 1}}.

e rule of structural induction states that for an arbitrary predicate P on A, the formulae

∀n • P (n)

and

∀i • ∀e0 ∈ Si,0,…, eai−1 ∈ Si,ai−1 • (∀k • Si,k = A → P (ek)) → P (ci(e0,…, eai−1))

are equivalent.

Let us come back to our example with the algebraic data type List from Section 2.2.1 on
page 13. In this case, the rule of structural induction states that for a predicate P on List, the
formula ∀n • P (n) is equivalent to

P (nil) ∧ ∀e0 ∈ S, e1 ∈ List • P (e1) → P (cons(e0, e1)). (2.7)
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2.2.3 Recursive Functions with Variants

We introduce important terms to see later how these play together for the termination of re-
cursive functions. Definitions 4, 8 and 9 on the current page and on the following page are not
really official, but rather creations by the author.

Call Graphs and Strongly Connected Components

Definition 4. A set F of functions is closed precisely if for any f ∈ F , if a call to t appears in
the definition of f , then t ∈ F .

Definition 5. e call graph of a closed set of functions V is a directed multigraphG = (V,A).
A is the multiset with an arc (f, t) for every call to function t in the definition of function f .

Definition 6. Let f be an arbitrary function and (V,A) a call graph with f ∈ V . f is called

• directly recursive if (f, f) ∈ A,

• indirectly recursive if f is part of a cycle with at least two functions,

• recursive if f is directly or indirectly recursive

and vice versa.

Definition 7. e strongly connected components of a directed multigraphG are the subgraphs
G0, G1, …, Gn−1 of G such that n is minimal and for any i, all vertices of Gi can reach each
other.

When every strongly connected component of a directed graphG is contracted to one vertex,
the resulting directed multigraph is called the condensation of G. e condensation is acyclic;
otherwise, the original strongly connected components would not be maximal. An example of
a graph and its condensation is shown in Figure 2.2.

Figure 2.2: Directed multigraph with its condensation, which is acyclic
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Evaluation Trees and Variants

Definition 8. e evaluation tree of a function call f(a0,…, an−1) is a rooted tree T = (V,A).
e set of vertices V is made of all function calls encountered during the evaluation of the root
f(a0,…, an−1). e set of arcs A is the set of all pairs (p, c) of function calls, where the parent
p directly calls the child c. T can be infinite.

As an example, let us consider the Fibonacci numbers calculated by the  function fibonacci
of Listing 2.4. e evaluation tree of the function call fibonacci(3) is shown in Figure 2.3.

Listing 2.4: Fibonacci numbers in 

1 function fibonacci(n: Int): Int
2 requires n >= 0
3 { n <= 1 ? n : fibonacci(n - 1) + fibonacci(n - 2) }

Figure 2.3: Evaluation tree of the function call fibonacci(3) for Listing 2.4

An evaluation of a function call terminates if and only if the evaluation tree of this function
call is finite. e tree must be finite if every path from the root of an evaluation tree can be
interpreted as a decreasing chain with respect to a well-founded relation.

Definition 9. Let C be the functions of a strongly connected component of a call graph. A
variant of the strongly connected component C is a function v mapping calls to functions of
C to elements of a set S with a well-founded relation ≺ such that the following holds: any
evaluation tree (V,A) is such that for every arc (p, c) ∈ A where both p and c denote calls to
functions of C , we have v(c) ≺ v(p). If v is partially applied to a function f ∈ C , we call the
resulting function vf a variant of the function f .

In the example of Listing 2.4, a variant of the function fibonacci is the current argument
with the well-founded relation < on the natural numbers N. e reason is that the recursive
calls have n− 1 or n− 2 as arguments, respectively, both of which are smaller than n and still
in N.
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3 Induction

e axiom of Noetherian induction from Definition 2 on page 15 gives us reason to translate
an expression like

∀n • P (n)

into an inhale-exhale expression

[∀n • P (n), ∀n • (∀k • k ≺ n → P (k)) → P (n)] (3.1)

for a predicate P . is is still abstract and leaves many questions about the implementation
unanswered. A central aspect is the decision for a well-founded relation ≺ on the universe
quantified over. In the following, we show the technical work for two possibilities.

Another important question arises in the general case of a universal quantification

∀n0, n1,… • P (n0, n1,…)

with an arbitrary number of variables over possibly different universes. On which variables do
we do induction? If we select no variable at all, then we suppress the translation. If we select
exactly one variable ni, we can reduce this to

∀ni • P ′(ni)

for the predicate
P ′(ni) = ∀n0,…, ni−1, ni+1,… • P (n0, n1,…).

Lastly, if we decide to select multiple variables, what well-founded relation on them would
make sense?

3.1 Induction on Tuples

We first consider a way to do induction on an arbitrary number of variables by assembling
them in a tuple.

3.1.1 Well-founded Relation on Tuples

Recall the well-founded relation on tuples based on Equation (2.2) on page 14. As elements
of the tuples, we permit objects of arbitrary sets S as long as there is a function f : S → Z
mapping this set to integers. en the well-founded relation applied to such tuples is the well-
founded relation on the integer tuples constructed bymapping the objects to integers with their
respective function f . at is, we reduce thewell-founded relations for eachS by Equation (2.3)
on page 14 to the one on integers of Equation (2.1) on page 14.
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3.1.2 Induction on Integers

Let us have a look at an example with induction on a single variable of type Int. We would
like to verify that the sum of the first n odd natural numbers equals n2, that is,

n∑
k=1

(2k − 1) = n2

for all n ∈ N. e  program of Listing 3.1 shows a function sumOdd to add the first n odd
natural numbers. We then use this function to express the proof obligation with a method
checkClosedFormSumOdd. Methods with empty bodies like this are helpful to prove formulae
solely about functions. However, Silicon is not able to verify this program.

Listing 3.1: Original  program to prove
∑n

k=1(2k − 1) = n2, not verified by Silicon

1 function sumOdd(n: Int): Int
2 requires n >= 0
3 { n == 0 ? 0 : (2 * n - 1 + sumOdd(n - 1)) }
4

5 method checkClosedFormSumOdd() // Not verified
6 ensures forall n: Int :: n >= 0 ==> sumOdd(n) == (n * n)
7 { }

is is where Silmore comes into play. Applying the induction transformation for tuples to
Listing 3.1 results in the program of Listing 3.2. e universal quantification is transformed
into an inhale-exhale expression with the paern of Equation (3.1) on the preceding page. We
recognise the predicate P (n) as

1 n >= 0 ==> sumOdd(n) == (n * n)

and the well-founded relation ≺ on integers as

1 n_1 < n_0 && 0 <= n_0

with b = 0 in Equation (2.1) on page 14. e transformed program is successfully verified by
Silicon.

Listing 3.2: Transformation of Listing 3.1 with Silmore, verified by Silicon

1 function sumOdd(n: Int): Int
2 requires n >= 0
3 { n == 0 ? 0 : (2 * n - 1 + sumOdd(n - 1)) }
4

5 method checkClosedFormSumOdd() // Verified
6 ensures [forall n: Int :: n >= 0 ==> sumOdd(n) == (n * n), // P(n)
7 forall n_0: Int ::
8 (forall n_1: Int :: n_1 < n_0 && 0 <= n_0 ==> // n_1 ≺ n_0
9 n_1 >= 0 ==> sumOdd(n_1) == (n_1 * n_1)) ==> // P(n_1)

10 n_0 >= 0 ==> sumOdd(n_0) == (n_0 * n_0)] // P(n_0)
11 { }
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3.1.3 Mapping Domain Types to Integers

Variables of a domain type can be used as elements of tuples to do induction on if a function
mapping the domain type to integers is provided. By default, Silmore automatically chooses
the first domain function in the definition of a domain type D which maps D to integers. For
instance, for the domain type List[A] of Listing 3.3 offers the function length as a mapping
to integers.

Listing 3.3: Domain type List[A] without axioms about equality of lists

1 domain List[A] {
2 function nil(type: A): List[A]
3

4 function cons(element: A, list: List[A]): List[A]
5

6 function length(list: List[A]): Int
7

8 function concatenate(left: List[A], right: List[A]): List[A]
9

10 axiom nilOrCons {
11 forall l: List[A] ::
12 (exists t: A :: l == nil(t)) || exists e: A, r: List[A] :: l == cons(e, r)
13 }
14

15 // Axioms about equality of lists omitted
16

17 axiom lengthNil {
18 forall t: A :: length(nil(t)) == 0
19 }
20

21 axiom lengthCons {
22 forall e: A, xs: List[A] :: length(cons(e, xs)) == (length(xs) + 1)
23 }
24

25 axiom concatenateNilList {
26 forall t: A, ys: List[A] :: concatenate(nil(t), ys) == ys
27 }
28

29 axiom concatenateConsList {
30 forall x: A, xs: List[A], ys: List[A] ::
31 concatenate(cons(x, xs), ys) == cons(x, concatenate(xs, ys))
32 }
33 }

For the next example, we define the domain type List[A] for lists with elements of type
A as in Listing 3.3. e domain functions nil and cons construct the empty list and a list
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with an element prepended, respectively. Note that nil only has a parameter for the sake of
determining the type for the type variable Awhen constructing the empty list. length computes
the size of the list and finally, concatenate joins two lists.

e property to be verified is that the concatenation of lists is associative as formalised by
Listing 3.4. For properties which should hold for any type for type variables of a domain type,
we introduce the domain type Any. Any has no restrictions and can thus be replaced by any
other type.

Listing 3.4: Original property, not verified by Silicon

1 domain Any {
2 }
3

4 method checkConcatenationAssociative() // Not verified
5 ensures forall l: List[Any] :: // P(l)
6 forall m: List[Any], r: List[Any] ::
7 concatenate(concatenate(l, m), r) == concatenate(l, concatenate(m, r))
8 { }

Let P (l) be the predicate

1 forall m: List[Any], r: List[Any] ::
2 concatenate(concatenate(l, m), r) == concatenate(l, concatenate(m, r))

to improve the readability of the results. e transformed program is shown in Listing 3.5. e
domain function length is applied to lists for a well-founded relation. However, the property
is still not verified by Silicon. For the induction hypothesis to be of use for the verifier, it needs
to know that the length of a List is always natural, namely

1 0 <= length(l_0)

which in turn calls for induction. Even if we give this to the verifier as an axiom, the property
cannot be verified.

Listing 3.5: Transformation of Listing 3.4 with integer mapping length of List[A], still not
verified by Silicon

1 method checkConcatenationAssociative() // Not verified
2 ensures [forall l: List[Any] :: P(l),
3 forall l_0: List[Any] :: (forall l_1: List[Any] ::
4 length(l_1) < length(l_0) && 0 <= length(l_0) ==> P(l_1)) ==> P(l_0)]
5 { }

3.1.4 Selecting Induction Variables

Induction is not always of benefit to a verifier, but might instead just reduce its efficiency.
Furthermore, one could prefer not to do induction on all variables of a universal quantification,
but make a selection. erefore, it is worth thinking about an approach to automatically select
the induction variables.
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Given ∀n • P (n), Leino [12] proposes to select the variable n for induction if P (n) has a
call to a recursive function with n as part of an argument. Silmore applies this heuristic to
expressions like

∀n0, n1,… • P (n0, n1,…)

in order to compose the tuple of variables ni to do induction on. In the example of Listing 3.1
on page 19, the function sumOdd of is recursive, thereby triggering induction for the universal
quantification of checkClosedFormSumOdd.

Silmore allows to customise the rule to select induction variables. Besides the default heur-
istic, there exists an induction transformation which forces induction on all variables. Solely
the outermost universal quantification is considered, but not possibly nested ones. Forcing
induction may fulfil its purpose for expressions without function calls. Another use case are
domain functions, since they do not have bodies to be examined for recursion. For instance,
induction is forced to arrive at Listing 3.5 on the previous page.

3.2 Structural Induction on Domain Types

Algebraic data types are a very expressive modelling construct. ey intrinsically come with
a well-founded relation and enable structural induction by Definition 3 on page 15.

3.2.1 Representing Algebraic Data Types by Domain Types

 does not natively offer algebraic data types. However, the generality of domain types make
it possible to emulate algebraic data types to a certain extent. Basically, an algebraic data type
A has two ingredients. Firstly, there is a set of functions known as the data constructors. And
secondly, the set defined by A is the smallest possible when repeatedly applying these data
constructors.

In order to emulate A with a domain type D, we can introduce a domain function for every
data constructor of A and supply axioms about their behaviour. What cannot be expressed in
 is the second ingredient asking for the smallest set obeying the restrictions ofD. Whenever
a tool applies structural induction toD, it is responsible to ensure this guarantee, otherwise the
transformation might not be sound. For instance, care must be taken with infinite structures.

For structural induction on a domain type D representing an algebraic data type, a number
of domain functions of D are designated as the data constructors. In Silmore, this designation
can either be done manually or automatically. If D should be automatically interpreted as an
algebraic data type, then the longest prefix of domain functions of D with a codomain D is
designated as the data constructors. For example, the domain type Tree[A] of Listing 2.2 on
page 11 has the data constructors leaf and node by default.

3.2.2 Transformation of Structural Induction

Let us come back to the example about the associativity of the concatenation of lists. We wish
to verify the property of Listing 3.4 on the preceding page for finite lists. For this purpose,
we interpret the domain type List[A] of Listing 3.3 on page 20 as an algebraic data type. By
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default, the data constructors are given by the domain functions nil and cons as desired. Given
that P (l) again denotes the predicate

1 forall m: List[Any], r: List[Any] ::
2 concatenate(concatenate(l, m), r) == concatenate(l, concatenate(m, r))

the result of applying structural induction is shown in Listing 3.6. It has the form of Equa-
tion (2.7) on page 15 apart from an additional universal quantification for the type of nil and a
more local universal quantification of the prepended element. Silicon verifies this transformed
property.

Listing 3.6: Transformation of Listing 3.4 on page 21 with data constructors nil and cons of
List[A], now verified by Silicon

1 method checkConcatenationAssociative() // Verified
2 ensures [forall l: List[Any] :: P(l),
3 (forall t_1: Any :: P(nil(t_1))) &&
4 forall l_1: List[Any] :: P(l_1) ==> forall e_1: Any :: P(cons(e_1, l_1))]
5 { }

At the moment, there is no heuristic to select the induction variables for structural induc-
tion. If there is a choice between multiple variables, induction on each of them is aempted
individually, connecting the resulting formulae by disjunctions. e verification of Listing 3.7
exemplifies this approach. e domain type Natural represents a common algebraic data type
for the natural numbers. Its data constructors are the domain functions zero for the first nat-
ural number and successor to increment a natural number by one. Natural numbers can be
added by plus and subtracted by minus. Only once transformed with structural induction into
Listing 3.8, the property is verified by Silicon. Induction on the variable n can be verified, but
not on the other variable m quantified over.

Listing 3.7: Property number 7 from [5] for a domain type Natural representing an algebraic
data type for the natural numbers with the data constructors zero and successor

1 method property07() // Not verified
2 ensures forall n: Natural, m: Natural :: minus(plus(n, m), n) == m
3 { }

Listing 3.8: Transformation of Listing 3.7 with induction tried on either variable n and m in turn,
verified by Silicon

1 method property07() // Verified
2 ensures [forall n: Natural, m: Natural :: minus(plus(n, m), n) == m,
3 // Structural induction on 'n': verified
4 (forall m_3: Natural :: minus(plus(zero(), m_3), zero()) == m_3) &&
5 (forall n_0: Natural ::
6 (forall m_4: Natural :: minus(plus(n_0, m_4), n_0) == m_4) ==>
7 forall m_5: Natural ::
8 minus(plus(successor(n_0), m_5), successor(n_0)) == m_5)
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9 ||
10 // Structural induction on 'm': not verified
11 (forall n_1: Natural :: minus(plus(n_1, zero()), n_1) == zero()) &&
12 (forall n_5: Natural ::
13 (forall n_6: Natural :: minus(plus(n_6, n_5), n_6) == n_5) ==>
14 (forall n_7: Natural ::
15 minus(plus(n_7, successor(n_5)), n_7) == successor(n_5)))]
16 { }
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4 Termination of Functions

e second part of this thesis is about generating conditions for the termination of functions.
e terminology of Section 2.2.3 on page 16 serves as a base.

4.1 Termination with Variants

First of all, let us prove that the existence of variants of functions ensures their termination.
We begin with the termination of a single function and then generalise to multiple functions
in two steps.

Lemma 1. If the function f does not call other functions and there exists a variant of f , then the
evaluation of each call to f terminates.

Proof. Let v be a variant of f with a well-founded relation ≺. Furthermore, f(a0,…, an−1)
is an arbitrary call to f with the evaluation tree T . In order to arrive at a contradiction, we
assume that the call f(a0,…, an−1) does not terminate. is implies that T has an infinite
path c0, c1, c2, … originating from its root. By the definition of a variant of a function, we
have v(cn+1) ≺ v(cn) for each n ∈ N. us, we can construct an infinite decreasing chain
v(c0), v(c1), v(c2), … with respect to ≺. However, this contradicts our assumption that ≺ is a
well-founded relation.

Lemma 2. Let F be a closed set of functions such that no f ∈ F is indirectly recursive. If every
f ∈ F has a variant, then the evaluation of any function call to an f ∈ F terminates.

Proof. Let F be an arbitrary closed set of functions with variants and no indirectly recursive
function. We prove termination by induction on the cardinality of F . Clearly, if F is empty,
all functions terminate. Otherwise, F is not empty. As our induction hypothesis, we assume
that all closed proper subsets of F solely have terminating functions.

Let us choose an arbitrary f ∈ F . Lemma 1 implies that the evaluation of any call to f either
terminates or eventually calls another function. For each such call to another function t ∈ F ,
we define the set F ′ to be F without the functions reaching f in the call graph of F . Since
there is no indirect recursion, the call to t never reaches any of the functions F \ F ′ and can
thus be evaluated with the functions F ′ alone. As F ′ is closed and f /∈ F ′, we conclude by
virtue of the induction hypothesis that the call to t terminates.

Nowwemove to the general case of arbitrary recursion. e idea is that a strongly connected
component of a call graph can essentially be translated into a single function which is not
indirectly recursive and has a variant. Intuitively, variants justify the condensation of a call
graph as an abstraction from the evaluation of its functions.
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Lemma 3. If each strongly connected component of a call graph with the functionsF has a variant,
then the evaluation of any function call to an f ∈ F terminates.

Proof. Let G be an arbitrary call graph with n strongly connected components G0, …, Gn−1.
We translate the functions of every Gi into a single function with an analogous behaviour.
We have any Gi = (V,A) with k functions V and a variant v. If k ≥ 2, we construct a
function f : I → O as follows. Both I andO are algebraic data types with k data constructors,
one for each function of V . f paern matches on its input to evaluate the definition of the
corresponding function in V . For the output, f applies the data constructor corresponding to
the desired function. All function calls within Gi are replaced by direct recursion of f with
essentially the same variant v. is way, we can reduce this case to the case of directly recursive
functions of Lemma 2 on the preceding page.

4.2 Variant Guessing and Generating Termination Conditions

How do we find variants? As stated by Definition 9 on page 17, the value of a variant must
decrease along a well-founded relation for each function call within the same strongly con-
nected component of a call graph. We cannot be sure that a mapping is indeed a variant until
this condition is proved. Once we have a variant for every function of a closed set, Lemma 3
guarantees the termination of these functions.

Definition 10. A variant guess is a function which is conjectured to be a variant.

Silmore makes a variant guess for a function f as a mapping from the current arguments of a
call to f to a tuple. Arguments of types which supply a mapping to integers can be part of the
tuple, while the other arguments are omied. e user can define which types are chosen by
providing a mapping to integers. Besides arguments of type Int, domain types with an integer
mapping can be chosen as documented in Section 3.1.3 on page 20.

e well-founded relation ≺ applied for the generated tuples has the same form as the one
in Section 3.1.1 on page 18. For every call within the same strongly connected component, a
condition is generated that the variant guesses applied to the respective arguments decrease
along the well-founded relation ≺. e function calls checked for termination are only those
part of the bodies of  functions. Function calls in specifications like preconditions and post-
conditions, on the other hand, do not maer for the evaluation of a function and are therefore
not considered.

For an arbitrary function f , we always assume the partial correctness of f . For any checked
function call of f , the path condition in the body of f leading to this call is assumed for the
generated condition. Otherwise, well-formedness might be compromised. For instance, if a
certain call performs a modulo operation, the divisor must not be zero, which may be given
as part of the path condition. Optionally, the precondition of the callee instantiated with the
current arguments may be assumed. Eventually, all the checks for f are collected in a single
termination condition. A method with an empty body is created with this termination condi-
tion as the postcondition. is checking method has the same parameters and preconditions
as f to establish the context of f .
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Let us demonstrate this transformation with some examples. Wewould like to verify that the
directly recursive function fibonacci of Listing 4.1 terminates. For this purpose, we transform
the  program to generate the termination check of themethod check_fibonacci. e variant
guess is a tuple with the parameter n as its single element. If n <= 1, then there is no recursive
call. Otherwise, there are two recursive calls with the variant guess instantiated to n - 1 and
n - 2, respectively. Both of these instances are checked to be smaller than n along the well-
founded relation on integers. Furthermore, the precondition of fibonacci is assumed for these
two recursive calls to show how this works, although Silicon verifies the check anyway.

Listing 4.1: Directly recursive function with its termination check, verified by Silicon

1 function fibonacci(n: Int): Int
2 requires n >= 0
3 { n <= 1 ? n : fibonacci(n - 1) + fibonacci(n - 2) }
4

5 // Check for termination of function 'fibonacci'.
6 // Variant guess: (n)
7 method check_fibonacci(n: Int) // Verified
8 requires n >= 0
9 ensures n <= 1 ||

10 (n - 1 >= 0 ==> n - 1 < n && 0 <= n) && // n - 1 ≺ n
11 (n - 2 >= 0 ==> n - 2 < n && 0 <= n) // n - 2 ≺ n
12 { }

e next example is the Ackermann-Péter function of Listing 4.2. It is directly recursive and
has two Int parameters, not both of which are made smaller in every recursive call. For this
reason, the variant cannot simply choose a single argument. e variant guess made is the
ordered pair of both arguments of a call, which is checked to decrease for each of the three
recursive calls. is time, the well-founded relation for ordered pairs as in Equation (2.2) on
page 14 is employed and the precondition is not assumed. Silicon successfully verifies this
program.

Listing 4.2: Directly recursive function with an ordered pair as a variant, verified by Silicon

1 function ackermannPeter(l: Int, r: Int): Int
2 requires l >= 0 && r >= 0
3 ensures result >= 0
4 { l == 0 ? r + 1 : r == 0 ? ackermannPeter(l - 1, 1) :
5 ackermannPeter(l - 1, ackermannPeter(l, r - 1)) }
6

7 // Check for termination of function 'ackermannPeter'.
8 // Variant guess: (l, r)
9 method check_ackermannPeter(l: Int, r: Int) // Verified

10 requires l >= 0 && r >= 0
11 ensures l == 0 || (r == 0 ?
12 // (l - 1, 1) ≺ (l, r)
13 l - 1 < l && 0 <= l || l - 1 == l && (1 < r && 0 <= r) :
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14 // (l - 1, ackermannPeter(l, r - 1)) ≺ (l, r)
15 (l - 1 < l && 0 <= l || l - 1 == l &&
16 (ackermannPeter(l, r - 1) < r && 0 <= r)) &&
17 // (l, r - 1) ≺ (l, r)
18 (l < l && 0 <= l || l == l && (r - 1 < r && 0 <= r)))
19 { }

e program of Listing 4.3 features the indirectly recursive functions isEven and isOdd to
determine the parity of a natural number. By calling each other, they form a strongly con-
nected component and give rise to two termination checks. Deriving a variant guess from the
respective parameter n, the program is verified by Silicon.

Listing 4.3: Indirectly recursive functions with their termination checks, verified by Silicon

1 function isEven(n: Int): Bool
2 requires n >= 0
3 { n == 0 ? true : !isOdd(n - 1) }
4

5 function isOdd(n: Int): Bool
6 requires n >= 0
7 { n == 0 ? false : !isEven(n - 1) }
8

9 // Check for termination of function 'isEven'.
10 // Variant guess: (n)
11 method check_isEven(n: Int) // Verified
12 requires n >= 0
13 ensures n == 0 || n - 1 < n && 0 <= n // n - 1 ≺ n
14 { }
15

16 // Check for termination of function 'isOdd'.
17 // Variant guess: (n)
18 method check_isOdd(n: Int) // Verified
19 requires n >= 0
20 ensures n == 0 || n - 1 < n && 0 <= n // n - 1 ≺ n
21 { }

4.3 Folding Depth as Part of Variant Guesses

We now make use of unfolding expressions to enhance the completeness of the termination
checking. Let u be an arbitrary unfolding expression

1 unfolding p in e

for expressions p and e. Under the assumption that the evaluation of p terminates, the evalu-
ation of u always encounters a finite number n ∈ N of unfolding expressions, because the pre-
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ceding program execution cannot fold infinitely many times. is is explained in Section 2.1.2
on page 12.

As the current folding depth n cannot be increased solely by evaluating a function, it does
not hurt to always include n in a variant guess. Silmore implicitly takes n as the first tuple
element of any variant guess. Sincen is decremented by one in the expression e, all the function
calls as part of e automatically have a decreased variant guess along the well-founded relation
on tuples. us, it is enough to check the expression p for termination. e idea to prove
the termination of functions by using the folding depth comes from the verification language
Chalice [13].

Listing 4.4 exemplifies this approach. e program shows a linked list recursively built from
references where the last cell assigns null to next. e predicate valid expresses access per-
missions to the reference to the tail next of the current linked list and its predicate valid unless
it is the last cell. e directly recursive function length unfolds this predicate to calculate the
size of a linked list. e only recursive call happens within the second part of the unfolding
expression and hence has a smaller folding depth. When Silmore transforms this program to
check termination, it does not generate a termination condition, since it recognises the unfold-
ing expression around the recursive call.

Listing 4.4: Recursive function with an unfolding expression decreasing its variant

1 var next: Ref
2

3 predicate valid(list: Ref)
4 { acc(list.next, write) &&
5 (list.next != null ==> acc(list.next.valid(), write)) }
6

7 function length(list: Ref): Int
8 requires acc(list.valid(), wildcard)
9 ensures result >= 1

10 { unfolding acc(list.valid(), wildcard) in
11 list.next == null ? 1 : 1 + length(list.next) }
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5 Library Guide

e following is a guide to the basic usage of the library Silmore. e programming language
in use is Scala. Please refer to the readme file for more information such as installation instruc-
tions, usage as a standalone program and notes about the development like testing.

5.1 Basic Usage Example

Let us give a basic, yet complete example to introduce the usage of the library. Listing 5.1 shows
how to parse a  program, create a program transformer and transform the program with it.
Associating the program text with a filename, the parsing applies the  library to generate a
program  called program. For simplicity, we omit any error handling. Next, a well-founded
relation wellFounded for integer tuples is created with domain types of the program mapped
to integers if possible. e program transformer is then instantiated with this well-founded
relation to check the functions of the program for termination. Functions which might not
terminate are reported.

Listing 5.1: Complete example for the basic usage of the Silmore library

1 import java.nio.file.Paths
2 import semper.silmore.transformers.{
3 TerminationTransformer,
4 WellFoundedIntegerRelation
5 }
6 import semper.silmore.utility.ProgramProcessor
7

8 /* Parse program (associated with filename). No error handling here. */
9 val programText = "function a(): Bool { a() }"

10 val associatedFile = Paths.get("Program.sil")
11 val program = ProgramProcessor.parse(programText, associatedFile).right.get
12

13 /* Create termination checker with default well-founded relation. */
14 val wellFounded = WellFoundedIntegerRelation.defaultFromProgram(program)
15 val checker = new TerminationTransformer(wellFounded)
16

17 /* Add termination checks for functions of program. */
18 val (transformedProgram, uncheckedFunctions) = checker.addChecks(program)()
19

20 /* Report functions without generated termination check. */
21 println("No check for: " + uncheckedFunctions.map(_.name).mkString(" "))
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5.2 Well-Founded Relations

Well-founded relations are of central importance for induction as well as termination of func-
tions. e following hierarchy exists in the library:

1 trait WellFoundedRelation
2 trait WellFoundedTupleRelation extends WellFoundedRelation
3 class WellFoundedIntegerRelation(PartialFunction[Exp, Exp], Int)
4 extends WellFoundedTupleRelation

e trait WellFoundedRelation essentially guarantees a function isSmaller to generate a
 expression checking whether one element is smaller than another along the defined well-
founded relation. is is extended by the trait WellFoundedTupleRelation to a well-founded
relation on tuples. e class WellFoundedIntegerRelation implements a well-founded rela-
tion on tuples by mapping the elements to integers. For this purpose, the constructor takes a
PartialFunction[Exp, Exp] which decides to map expressions satisfying certain conditions,
for instance when they are of a domain type with an integer mapping. e Int defines the b in
Equation (2.1) on page 14.

e companion object of WellFoundedIntegerRelation features some helpers. A collection
of partial functions PartialFunction[Exp, Exp] is available to map expressions of type Bool
and Int to integers. What is more, domain types can be mapped to integers, either implicitly
by automatically trying to find integer mappings or explicitly by supplying a map Map[Domain
, Exp => Exp] defining the mappings for a selection of domain types. For example, the fol-
lowing program defines two well-founded relations, both of which choose expressions of type
Int and domain types of the program with an integer mapping. e well-founded relation
extendedWellFounded additionally maps Boolean expressions to integers:

1 import semper.silmore.transformers.WellFoundedIntegerRelation
2

3 val program = …
4

5 val defaultWellFounded = WellFoundedIntegerRelation.defaultFromProgram(program)
6

7 val partialFunction = WellFoundedIntegerRelation.
8 mapDomainsInteger(program.domains).
9 orElse(WellFoundedIntegerRelation.mapBoolean)

10 val extendedWellFounded = new WellFoundedIntegerRelation(partialFunction)

5.3 Induction

e trait InductionTransformer is a common ancestor for induction. It offers the method

1 def transform(Program): Program

to transform the universal quantifications of the specifications of a program by induction. It
does not specify the well-founded relation in use or how to select the induction variables.
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Furthermore, the abstract method expressionTransformer generates a function to transform
single universal quantifications instead of entire programs.

5.3.1 Induction on Tuples

e two classes

1 class DefaultInductionTransformer(WellFoundedRelation)
2 class ForcedInductionTransformer(WellFoundedRelation)

do the induction transformation on tuples as described in Section 3.1.1 on page 18. Both take
a well-founded relation to instantiate the rule of Noetherian induction. e heuristic to select
the induction variables by Leino [12] is integrated into the DefaultInductionTransformer.
For example, it transforms Listing 3.1 on page 19 into Listing 3.2 on page 19. Forcing induction
is the business of ForcedInductionTransformer. For instance, it transforms the property of
Listing 3.4 on page 21 into Listing 3.5 on page 21.

5.3.2 Structural Induction on Domain Types

For structural induction, the class

1 class StructuralInductionTransformer(Map[Domain, AlgebraicDataType])

works as shown in Section 3.2 on page 22. It takes amap definingwhich domain types should be
interpreted as which algebraic data types. With its help, the example of Listing 3.4 on page 21
is transformed into Listing 3.6 on page 23.

e companion object of the class AlgebraicDataType assists in constructing algebraic data
types from domain types. To this end, it comes with the methods

1 def defaultDomainMapping(Seq[Domain]): Map[Domain, AlgebraicDataType]
2 def domainAlgebraicDataType(Seq[DomainFunc]): AlgebraicDataType

e method defaultDomainMapping automatically interprets the given domain types as algeb-
raic data types. For every domain type, its longest prefix of domain functions with a codomain
of the domain type itself is designated as the set of data constructors. If the data constructors of
a domain type should be specified manually, then the other method domainAlgebraicDataType
can construct an algebraic data type from domain functions. Care must be taken to make sure
that such a structure inferred from a domain type really is an algebraic data type. Otherwise,
the soundness of structural induction is endangered. More details can be found in Section 3.2.1
on page 22.

e following example shows how these modules work together:

1 import semper.silmore.transformers.{
2 AlgebraicDataType,
3 StructuralInductionTransformer
4 }
5

6 val program = …
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7

8 val domainMapping = AlgebraicDataType.defaultDomainMapping(program.domains)
9 val transformer = new StructuralInductionTransformer(domainMapping)

10 val transformedProgram = transformer.transform(program)

5.4 Termination of Functions

For checking the termination of functions, the class

1 class TerminationTransformer(WellFoundedRelation, Boolean)

takes a well-founded relation to generate the termination conditions. Moreover, a Boolean says
whether the preconditions of a called function should be assumed for the termination checks.
For instance, Listing 4.1 on page 27 assumes preconditions, while Listings 4.2 and 4.3 on page 27
and on page 28 do not.

Termination can be checked by

1 def addChecks(Program)(Seq[Function]): (Program, Seq[Function])

e first argument is the program to which the termination checks are added as methods. e
functions to be checked for termination are supplied as the second argument. e returned pair
comprises the transformed program and the functions (from the ones given as a second argu-
ment) which still remain without a termination check. Unchecked functions occur if Silmore
already knows that the variant guess is wrong in case the termination condition does obvi-
ously not hold. is is a chain-of-responsibility paern for the functions to be checked. For
unchecked functions, there are function calls for which the applied variant guesses do not de-
crease along the desired well-founded relation. ese problematic calls are added in the form
of a comment to the generated program.
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6 Evaluation

As an ultimate examination, the technical work is now evaluated. We first concentrate on the
question whether the transformations behave as specified. Aerwards, experiments about the
formal verification of transformed programs are reported. e verifier in use is always Silicon
by Schwerhoff [15]. e programs for all the experiments can be found as part of the Silmore
test suite.

6.1 Test Suite

Silmore comes with a test suite of currently 121 own tests. Most of these tests basically have
a pair of  programs, namely the original input program and the expected output program.
e original program is transformed by a designated program transformer and the transformed
program is compared to the expected program. Measuring the code coverage with a tool by
Koponen [11], the tests achieve a statement coverage of about 97 % of the Silmore code.

In addition to these own tests, Silmore uses the programs given by the tests of the  lib-
rary [4]. Silmore applies every program transformer to each of these programs. e purpose
is to check whether no transformation crashes on various program constructs, ignoring the
results of a transformation. At the moment, this gives rise to additional 57 tests per program
transformer.

6.2 Induction

Bundy, Dixon, and Johansson [5] assembled 87 properties to evaluate their system IsaPlanner
for inductive proofs. IsaPlanner can automatically verify 47 of these properties, and of these,
Dafny by Leino [12] can verify 45. Of these 45 properties, we selected 38 properties for the
experiments. Not all properties can be translated into , since some involve higher-order
functions, a construct not expressible in . Whenever a type is arbitrary in a property, we
employ the domain type Any with an empty body as in Listing 3.4 on page 21.

6.2.1 Automatically Verified Properties

Table 6.1 on the following page lists the properties verified by the corresponding tools. Without
applying any induction transformation by Silmore, Silicon alone is able to verify 10 of the
38 properties. When applying the structural induction by Silmore, a total of 25 properties are
verified automatically. No manual intervention in the verification like selecting the induction
variables is done at all. For instance, property number 7 shown in Listing 3.7 on page 23 is
transformed into Listing 3.7 on page 23 and then verified.
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Table 6.1: Formal verification of 38 properties taken from [5]

Tool
Indices of the properties verified in addition
to the preceding tool

Totally verified
of all 38

Silicon alone 4, 5, 11, 13, 16, 28, 38, 39, 40, 42 10
Silicon with Silmore 2, 3, 6, 7, 8, 10, 15, 17, 18, 21, 26, 27, 29, 30, 37 25
Silicon with Silmore
and manual 

1, 19, 22, 23, 24, 25, 31, 32, 33, 34 35

Dafny [12] 9 36
IsaPlanner [5] 20, 47 38

6.2.2 Cases Axiom Triggering ()

Let us now see how more properties can be verified by a manual supplement. Property 1 is not
automatically verified. Its original form is given by Listing 6.1 with the domain types Natural
and List as seen earlier. e property states that for an arbitrary list, the concatenation of a
prefix of any length and the list without this prefix equals the same list again. If P (xs) is the
predicate

1 forall n: Natural :: concatenate(take(n, xs), drop(n, xs)) == xs

then the transformed property is shown in Listing 6.2. For simplicity, we only consider induc-
tion on the variable xs.

Listing 6.1: Property number 1 from [5] for the domain types Natural and List representing
algebraic data types, not verified by Silicon

1 method property01() // Not verified
2 ensures forall n: Natural, xs: List[Natural] ::
3 concatenate(take(n, xs), drop(n, xs)) == xs
4 { }

Listing 6.2: Transformation of Listing 6.1 with structural induction just on variable xs for sim-
plicity, still not verified by Silicon

1 method property01() // Not verified
2 ensures [forall n: Natural, xs: List[Natural] :: // forall xs :: P(xs)
3 concatenate(take(n, xs), drop(n, xs)) == xs,
4 (forall t_0: Natural :: P(nil(t_0))) && forall l_0: List[Natural] ::
5 P(l_0) ==> forall e_0: Natural :: P(cons(e_0, l_0))]
6 { }

Why can property 1 still not be verified? An axiom about every algebraic data type is that
each of its elements is equal to an application of one of its data constructors for suitable argu-
ments. For any domain type representing an algebraic data type in the experiments, an axiom
for such a case distinction is already provided. However, the verifier seems not always to be
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able to trigger these axioms when needed. For instance, the axiom for a case distinction of the
domain type Natural is

1 axiom zeroOrSuccessor {
2 forall n: Natural :: n == zero() || exists p: Natural :: n == successor(p)
3 }

We call the process of reminding the verifier of the case distinction of an algebraic data type
cases axiom triggering, abbreviated to . An idea by Leino [12] is to integrate  into the
rule of structural induction by replicating the case distinction. e kind of  we now do is
to manually supply calls to domain functions which represent a case distinction.

For property 1, we extend the domain type Naturalwith the domain function and the axiom

1 function isZeroOrSuccessor(n: Natural): Bool
2

3 axiom isZeroOrSuccessorNatural {
4 forall n: Natural :: isZeroOrSuccessor(n) ==
5 (n == zero() || exists p: Natural :: n == successor(p))
6 }

such that calls to isZeroOrSuccessor trigger this axiom for the case distinction. In the same
way, we add the pieces

1 function isNilOrCons(l: List[A]): Bool
2

3 axiom isNilOrConsList {
4 forall l: List[A] :: isNilOrCons(l) == ((exists t: A :: l == nil(t)) ||
5 exists e: A, r: List[A] :: l == cons(e, r))
6 }

to the domain type List[A]. Manual  is then done in Listing 6.3. e program reminds
the verifier of the case distinctions, thereby indeed being verified by Silicon. ere are three
instances of manual , none of which seems to be dispensable. e program fails to verify
when removing the first or second manual . If the third manual  is omied, then the
verification with Silicon does not terminate within half an hour.

Listing 6.3: Manual  for Listing 6.2 on the previous page at different places, now verified by Silicon

1 method property01() // Verified
2 ensures [forall n: Natural, xs: List[Natural] :: // forall xs :: P(xs)
3 concatenate(take(n, xs), drop(n, xs)) == xs,
4

5 (forall t_0: Natural :: P(nil(t_0))) && forall l_0: List[Natural] ::
6 isNilOrCons(l_0) ==> // First manual CAT
7 P(l_0) ==> forall e_0: Natural ::
8 isZeroOrSuccessor(e_0) ==> // Second manual CAT
9 forall n_5: Natural ::

10 isZeroOrSuccessor(n_5) ==> // Third manual CAT
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11 concatenate(take(n_5, cons(e_0, l_0)),
12 drop(n_5, cons(e_0, l_0))) == cons(e_0, l_0)]
13 { }

e arguments of the calls for these manual  instances have different roles. In the first
two calls, the arguments are variables introduced by the rule of structural induction, namely
l_0 and e_0. e third call for manual  happens inside the predicate of induction and takes
the variable n_5 of that predicate. is demonstrates that  may be irregular and therefore
not easy to automate. By manual , as many as 10 more properties can be verified.

6.2.3 Difficult Properties

Property 9 is verified by Dafny, but Silicon with Silmore and even manual  fails. As seen
in Listing 6.4, this property has a universal quantification with three variables. Silmore tries
induction on each of them, which results in the  solver Z3 running out of memory during
the verification. When we manually select the variable j to do induction on and employ ,
this property can be verified as well.

Listing 6.4: Property number 9 from [5] with three variables quantified over

1 method property09() // Not verified
2 ensures forall i: Natural, j: Natural, k: Natural ::
3 minus(minus(i, j), k) == minus(i, plus(j, k))
4 { }

As proposed by Leino [12], property 47 can be verified once property 23 is invoked by a
method call. e remaining property 20 could not be verified.

6.3 Termination of Functions

To evaluate the generation of termination conditions, 8 programs which do not terminate and
9 other programs which do terminate were created. e programs were then transformed with
Silmore for the termination checks and aempted to verify with Silicon.

6.3.1 Nonterminating Programs

Nonterminating programs were created by injecting mistakes into terminating programs to
prevent their termination. Such mistakes can be forgoen preconditions, missing base cases in
the definition of a function or recursive calls which do not decrease the variant guess along a
well-founded relation. e program of Listing 6.5 contains a terminating function factorial
and a pathological modification showing ways to prevent its termination. Of all 8 nontermin-
ating programs, none are verified as desired.

Listing 6.5: Factorial function and a nonterminating modification

1 // Variant guess: (n)
2 function factorial(n: Int): Int
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3 requires n >= 0
4 { n == 0 ? 1 : n * factorial(n - 1) }
5

6 // Variant guess: (n)
7 function f(n: Int): Int
8 { n * f(n + 1) }

6.3.2 Terminating Programs

Of the 9 terminating programs, the termination of 7 programs can be verified automatically.
One of the recursive functions with a termination check which is not verified is shown in
Listing 6.6. Extending the domain type of Listing 2.2 on page 11, the type Tree[Int] represents
a binary search tree with the integer keys in the leaves. In order to find the minimum of such
a tree, the function minimumKey recursively visits the le subtree until a leaf is reached. is
gives rise to a termination check, which applies the integer mapping height for the length of
the longest path in a tree from the root to a leaf.

Listing 6.6: Terminating function with an integer mapping of a domain type as a variant guess,
not verified by Silicon

1 function minimumKey(tree: Tree[Int]): Int
2 { isLeaf(tree) ? key(tree) : minimumKey(leftChild(tree)) }
3

4 // Check for termination of function 'minimumKey'.
5 // Variant guess: (tree)
6 method check_minimumKey(tree: Tree[Int]) // Not verified
7 ensures isLeaf(tree) ||
8 height(leftChild(tree)) < height(tree) && 0 <= height(tree)
9 { }

e termination condition can be stated as

1 forall t: Tree[Int] :: isLeaf(t) ||
2 height(leftChild(t)) < height(t) && 0 <= height(t)

where we introduced a universal quantification. e idea is to apply structural induction. For
this purpose, we treat Tree[A] as an algebraic data type and try to verify the transformed
expression. Only when additionally employing manual , Silicon verifies the property. is
example demonstrates how a composition of the termination and induction transformations
might prove useful.

e other program which terminates but is not verified automatically is Listing 6.7 on the
following page. It calculates the greatest common divisor of two natural numbers (not both of
which are zero) in a recursive manner. e variant guess is the tuple (l, r) of the two arguments
l and r. However, this is not a variant. If l < r, the recursive call just exchanges the arguments
and instantiates the variant guess with (r, l), which is not smaller than (l, r) along the well-
founded relation in use. For a function call with arguments l and r, possible variants are simply
r or the tuple (r, l). Our approach of automatically determining a variant guess reaches a limit.

38



Listing 6.7: Terminating function with a variant guess which is not a variant

1 // Variant guess: (l, r)
2 function gcd(l: Int, r: Int): Int
3 requires l >= 0 && r >= 0
4 requires l != 0 || r != 0
5 { r == 0 ? l : gcd(r, l % r) }
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7 Discussion

Let us now summarise the most important work done about automating induction for formal
verification. Finally, we discuss how this thesis can be improved and what new questions could
be explored.

7.1 Related Work

Bundy, Dixon, and Johansson [5] integrated an analysis of paern-matching for inductively
defined data types into a heuristic called rippling [1]. is was used to extend the system Is-
aPlanner to automatically prove theorems with case statements by induction. ese authors
collected 87 properties for the evaluation, of which their extension of IsaPlanner automatically
proves 47.

Drossopoulou, Eisenbach, and Sonnex [6] developed the tool Zeno for the automatic verific-
ation of functional programs. It uses an alternative technique to rippling. Of the 87 properties
from [5], Zeno can prove 84 theorems, while of the remaining 5 properties, 2 are false and only
3 le unproven.

e work by Leino [12] is closely related to this thesis and serves as a major reference.
When translating the source language Dafny into the intermediate verification language Boo-
gie, a simple heuristic determines whether to apply induction to a property and if so, on which
variables. e program is then verified by an  solver, namely Z3 [2]. Compared to IsaPlan-
ner and Zeno, this approach is straightforward and effective. Of the 47 properties proved by
IsaPlanner [5], Dafny is able to automatically verify 45.

7.2 Future Work

e transformation for structural induction by Silmore benefits from manual . erefore, it
would be desirable to automate  in a way that significantly enhances the completeness of
verification and does not poison efficiency because of too many case distinctions. Furthermore,
a heuristic to select induction variables for structural induction is missing. Trying induction
on all variables individually may consume too much memory as seen for Listing 6.4 on page 37.

What concerns the termination of functions, the well-founded relation on algebraic data
types of Equation (2.4) on page 15 is not employed. It might allow to automatically verify
termination conditions for functions as in Listing 6.6 on page 38, since it seemsmore direct than
the approach with mappings to integers. In addition, a heuristic to make a beer variant guess
for examples like Listing 6.7 on the preceding page would help. Similar to trying induction
on each variable in turn, multiple variant guesses could be tried to see whether one of them
verifies.
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Based on the lessons learned during this thesis,  and the tools working with it like Silicon
could be further strengthened. For instance, one could think about offering algebraic data types
as a programming construct of .
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8 Conclusion

In conclusion, diverse forms of the induction principle and generation of termination condi-
tions for functions have been enabled in . e structural induction is not yet as complete as
it could be, since case distinctions coming with algebraic data types are not always triggered
automatically. Nevertheless, many interesting properties stating something about all instances
of a structure can now be verified. By cooperating with the Silmore library, the completeness
of Silicon was significantly improved, both in terms of partial correctness and termination.

e transformations are realised as independent -to- functions, allowing them to be
applied by any  program verifier. Not only that, arbitrary translators of front-end languages
for  can make use of the library, hopefully with more translators to come. is in turn should
further motivate the work on , thereby developing the automatic verification of concurrent
programs in languages such as Scala.
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