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Abstract

Viper is a verification language designed by the Programming Method-
ology Group of the Department of Computer Science at ETH Zürich.
Program verification languages are designed to verify the specifications
of programs. With the help of verifiers, we can ensure the correct
behaviour of critical applications.

Program verification is hard. Currently, there is a lack of good pedagog-
ical material for beginners, entering the field of program verification.
This thesis creates new pedagogical material. This material is aimed
at beginners in program verification. We will start by translating ex-
amples and exercises from the Book Program Proofs [1] written in the
verification language Dafny, to Viper.
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Chapter 1

Introduction

Today’s world wouldn’t be imaginable without software. There is an enor-
mous amount of software being designed and implemented for very different
systems. For many applications, it would be valuable to guarantee that
programs will behave as they are supposed to. Rather than relying solely on
the testing of a program, with the help of verification languages such as Viper
[2] and Dafny [3], we are able to prove the correctness of such programs with
respect to their formal specification.

Verification languages are programming languages that focus on ensuring the
correctness, reliability, and security of software through formal verification.
These languages often come with tooling, and with the help of those tools
we are able to prove that code satisfies certain specifications. Verification
languages focus on the verification of program properties, such as safety,
liveness, termination, and absence of vulnerabilities. They often employ
formal logics, such as first-order logic, temporal logic, or separation logic,
to express program specifications, assertions, preconditions, postconditions,
and loop invariants. These specifications serve as a basis for formal reasoning
and verification.

Verification languages typically provide tools that perform automated analy-
sis on programs written in these languages. These tools use techniques like
model checking, abstract interpretation, symbolic execution, and theorem
proving to verify the desired properties of the code. Viper [2] and Dafny [3]
use multiple such concepts to enable a user to write verified code.

As we see in Figure 1.1, Viper consists of the Viper intermediate language,
the symbolic execution backend, as well as of the Verification Condition
generation backend. There are frontends that transform code written in other
languages into Viper (such as Gobra [4] for Go or Nagini [5] for Python).
After this transformation, they can use the Viper infrastructure to prove the
correctness of the translated programs, giving them the certainty that their
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1. Introduction

Figure 1.1: This figure shows how Viper is used to verify code written in other languages, by
translating programs in these languages to a Viper program. [2]

code is correct.

Program verification is hard, and it is very helpful to be able to look at
and analyse code. The motivation for this project is to create pedagogical
material that introduces Viper to programmers without previous experience
in program verification. The book Program Proofs [1] will be used as a
source of examples and exercises for pedagogical material in Viper. The book
Program Proofs is aimed at programmers without any experience in program
verification, it serves as an introductory textbook on program verification.
The book uses the programming language Dafny in all of its examples and
exercises. The book focuses on the basic features of program verifiers, such
as how to specify behaviors of functions and methods using preconditions
and postconditions and how to deal with loops and recursive functions in
program verification. All the basic features of Dafny are further covered in
the Backround section of this thesis. To create new pedagogical material
for Viper, this thesis translates examples and exercises from this book and
documents the most important differences between the Dafny and Viper
versions in a way that is easy to understand for beginners of both languages.
The thesis covers the chapters 6 to 8 and the chapters 10 to 12 of the book.
This material should give an intuition for most concepts provided by a
verification language.
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Chapter 2

Background

This chapter contains information about the different materials and program
verification languages used in this thesis. First, we will give a quick overview
of the book Program Proofs and we will discuss the topics contained in the
book. Secondly, we will take a look at the program verification language
Dafny and Viper. Dafny which is used in the book and Viper the language
for wich we will be creating pedagogical material. We will be looking at
features used and supported by Dafny and Viper.

2.1 The Book: Program Proofs

The book was written by K. Rustan M. Leino and published in March 2023.
The author is a Senior Principal Applied Scientist in the Automated Reason-
ing Group at Amazon Web Services. It contains 18 Chapters and is divided
into three parts. Each of the 18 chapters introduces us to features of the
verification language Dafny.

The three parts of the book are Part 0: Learning the Ropes, Part 1: Functional
Programs, and Part 2: Imperative Programs. Chapter 0 provides us with
a quick introduction. It introduces program verification in general and
establishes the prerequisites needed in order to understand the examples
and exercises of the book, it gives a quick overview of the topics covered in
the book and introduces the verification language Dafny.

Part 0

Part 0 of the book was skipped, this is because there already exists a transla-
tion for this part. We do not translate any code covered in this part to Viper.
Nevertheless, it is still important to quickly mention its contents, since it
introduces features used in chapters 6 to chapter 12 which we are translating.
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2. Background

Figure 2.1: This figure shows the cover of the Book Program Proofs [1]

Part 0 includes chapters 1 to 5. Part 0 deals with the basic features of Dafny
such as Methods, Assert Statements or Compiled vs Ghost code, introducing
Hoare logic, recursion and termination, inductive data types to lemmas and
proofs in Dafny.

Part 1

The second part of the book deals with more specific topics. Titled Functional
Programs, the features introduced and used are similar to the ones used
in functional programming, defined by the use of recursion and match
statements. In this thesis, we will not cover Chapter 9. This is because
Chapter 9 is dealing with modules. In Dafny this is done by declaring
a module. Functions in modules can be accessed and seen only by other
functions inside the module unless they are exported. Viper does not support
anything similar to modules, and it does not make sense to translate the
examples and exercises that explore these features.

In this part, all the chapters except chapter 9 were translated from Dafny to
Viper, therefore we will later give a bit more details about them.

Part 2

The third and final part of the book deals with imperative programming. It
contains chapters 11 up to chapter 17. For this thesis, we only translated
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2.2. Features

chapters 11 and 12.

Chapter 11 introduces loops and loop invariants. It teaches us how to
find loop invariants. It also concerns itself with the termination proof of
loops using decreasing values in each loop iteration. Chapter 12 deals
with recursive specifications and iterative programs, like iterative Fibonacci.
It elaborates on differently optimized implementations of the Fibonacci
sequence as well as of the power function.

2.2 Features

This section introduces the main features of Dafny and Viper. In general,
Dafny has more high-level constructs as Dafny was designed for program-
mers to write their applications in Dafny, while also verifying them in Dafny.
On the other hand, Viper was designed as an intermediate verification lan-
guage, meaning it is more often used as an interface to verify code written in
other languages.

Dafny

Dafny is a verification-aware programming language and verification tool
designed to help write correct and reliable programs. It was developed at
Microsoft Research and is primarily used for program verification. Dafny
is based on the feature of programming by contract, where programs are
annotated with preconditions, postconditions, and invariants that define
their behavior. These specifications can be used to specify the intended
properties of the program, and the Dafny tool can then automatically verify
if the program meets those specifications.

Section 2.2 introduces the features of Dafny. We will show the different
features provided by Dafny. Throughout this section, we will mention,
whether there is an equivalent feature supported by Viper. We try to mention
the features in the order they appear in the book.

Viper

Viper is a verification language and verification tool that is designed for
program verification. Viper is not a compiled language and therefore, cannot
be compiled and executed contrary to Dafny. The intermediate verification
language Viper was developed by ETH Zürich. It is currently used for
educational purposes by many other institutions, such as Brown University
and Columbia University.

Many verifiers are built on top of Viper, such as Gobra for Go, Nagini for
Python, or Prusti for Rust. Those frontends are tools that allow developers
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2. Background

to automatically create Viper encodings of their code. Those encodings will
then be analysed by Viper and its formal verification tools. This helps to
ensure that the code behaves correctly according to its specifications.

Viper backends

At this point, it makes sense to mention that there are two different backends
for Viper. One is called Viper Silicon, and it is set as the default verifier
in Visual Studio Code, the other verifier is called Carbon [6]. Silicon is
a symbolic-execution-based verifier for the Viper intermediate verification
language, while Carbon is a verification-condition-generation-based verifier.
The performance of such program verifiers based on SMT solvers is often
unpredictable, and in some cases, one solver might perform better than the
other depending on the program.

Symbolic-execution-based verifier is a formal verification tool or approach
that uses symbolic execution to analyze and reason about programs for
correctness. Symbolic execution is a technique used in software analysis and
verification where program execution is performed symbolically, representing
program inputs and variables as symbolic expressions rather than concrete
values.

In symbolic execution program paths are explored symbolically considering
different possible values and branches that the variables can take during
execution. Instead of executing the program with actual input values, the
verifier works with abstract interpretations of inputs and tracks how the
program’s variables and expressions change based on these symbols.

This type of verifier checks whether each branch of the program is safe and
generates multiple smaller queries per method to the underlying solver. In
the case of Viper, this solver is Z3 [7]. [8]

Verification-condition-generation-based verifier generates verification con-
ditions to check the correctness of a program. Verification condition genera-
tion is a common technique used in formal methods and program analysis
to automatically generate logical conditions that capture the correctness
properties that need to be verified.

Contrary to the Symbolic-execution-based verifier behind Silicon, a verifica-
tion condition generation based verifier generates a single larger query per
method and sends it to the underlying solver. Both Viper backends Silicon
and Carbon use the Z3 solver [7]. [9]
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2.2. Features

Methods

In Dafny and Viper, a method refers to a sequence of code that performs a
specific task or computation. It is a fundamental building block of programs
written in the Dafny and Viper programming language. Methods consist of
a series of instructions and can take input parameters, perform operations,
and return results.

Methods can have various combinations of input parameters, local variables,
loops and conditionals, and other programming constructs. They can per-
form computations, call other methods, and interact with objects and data
structures.

1 method Triple(x: int) returns (r: int)

2 requires x % 2 == 0

3 ensures r == 3 * x

4 {

5 if x == 0 {

6 r := 0;

7 } else {

8 var y := 2 * x;

9 r := x + y;

10 }

11 assert r == 3 * x;

12 }

Figure 2.2: This is an example of a method written in Dafny. It uses precondition, postcondition,
if and else branching as well as assignments and assert statements. [1]

1 method Triple2(x: Int) returns (r: Int)

2 requires x % 2 == 0

3 ensures r == 3 * x

4 {

5 if (x == 0) {

6 r := 0

7 } else {

8 var y : Int := 2 * x;

9 r := x + y;

10 }

11 assert r == 3 * x;

12 }

Figure 2.3: This code example shows the same method as in Figure 2.2 written in Viper. The
syntax is very similar. The biggest difference in this example is the mandatory brackets around
the if condition, as well as the forced declaration of the variable type of y.
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2. Background

Methods can also have preconditions and postconditions specified using
Dafny’s or Vipers contract annotations seen in section 2.2. Preconditions
describe the assumptions that must hold before the method is invoked, while
postconditions specify the expected properties or guarantees that should
hold after the completion of the method.

Functions

Functions are blocks of code that take input parameters, perform computa-
tions, and return a single value. A function in Viper and Dafny corresponds
to a mathematical function. Function bodies consist of a single expression.

Functions and methods look similar. They are however not the same. Func-
tions do not have side effects and their return value is solely determined by
their inputs. This enables us to use functions in preconditions and postcondi-
tions to verify properties. Methods on the other hand are not side effect-free
and might return different values given the same input.

1 function Length’<T>(xs: List<T>): nat {

2 if xs == Nil then 0 else 1 + Length’(xs.tail)

3 }

Figure 2.4: This code 2.4 shows the declaration of a function in Dafny.

1 function length(xs : List[Int]) : Int

2 ensures result >= 0

3 decreases xs

4 {

5 xs.isNil ? 0 : (1 + length(xs.tail))

6 }

Figure 2.5: In this code example 2.5 we see the equivalent declaration of the function Length’
written in Dafny in Figure 2.4. In Viper, a function can only consist of expressions. If and else
conditions are not categorized as expressions in Viper and can therefore not be used in function
bodies. Due to this, the ternary operator ? was used.

Assert Statements

Assert Statements allow you to specify and enforce certain conditions or
properties within a program. Assert statements are used for runtime checks
and can help identify potential errors or inconsistencies.

Assert statements are helpful for expressing expected properties within the
program. They act as sanity checks during program execution, helping to
catch potential bugs or incorrect program states, by asserting statements that
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2.2. Features

are expected to be true. In some cases, assert statements can help prove
certain statements, by making Dafny or Viper aware of additional facts that
help the verifier in proving a postcondition.

An example of an assert statement in Dafny can be seen in this code example
fig. 2.2. The same syntax is also used in Viper, as seen in code this code
example fig. 2.3.

If, Else and Match statements

Dafny supports if and else statements, and pattern matching. Viper only
supports if and else statements, but it does not support pattern matching. If
and else statements in Dafny are seen as expressions as they can be used in
functions. In Viper, they are not treated as expressions but are statements
and can not be used in functions. If a method contains such control path
statements, Dafny or Viper will prove a postcondition by proving it for all
paths.

Match statements are equivalent to the ones used in functional programming
languages and can be compared to if, else, and else if branches with the
conditions regarding the matched structure.

An example of if and else branching can be seen for Dafny in the code
example 2.2 and for Viper in 2.3. The syntax for a match statement in Dafny
can be seen in the code example 2.6.

Preconditions, Postconditions and Loop Invariants

In Dafny and Viper, preconditions, postconditions, and loop invariants are
contract annotations used to specify properties and conditions of the pro-
gram’s behavior. These annotations help to formally verify programs, en-
abling Dafny or Viper to statically analyze and prove the correctness proper-
ties of a program.

Preconditions are used to specify the assumptions or requirements that must
hold before a method is invoked or a loop iteration begins. They define
the conditions under which the method or loop is expected to behave as
intended. Preconditions are specified using the ”requires” keyword in Dafny
and Viper.

Postconditions describe the expected properties or guarantees that a method
should satisfy upon completion. They specify the conditions that must hold
after the execution of a method or a loop. Postconditions are specified
using the ”ensures” keyword in Dafny. An example of a precondtion and
postcondition can be seen in Dafny and Viper in example 2.2 and example
2.3, respectively.
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2. Background

Loop invariants are used to specify properties that hold before and after each
iteration of a loop. They are crucial for loop termination and ensuring loop
correctness. Loop invariants are specified using the ”invariant” keyword in
Dafny. Example 2.10 and example 2.9 show the application of an invariant in
Dafny and Viper, respectively.

By specifying preconditions, postconditions, and loop invariants, developers
can express the expected behavior of their code in a formal and verifiable
way, enabling the verifier to prove the correct execution of the program.

Ghost Code

Ghost code is denoted by the ”ghost” keyword in Dafny, which indicates that
the code is intended for verification purposes only and should be ignored
during compilation. The main purpose of ghost code is to provide additional
assertions, or auxiliary functions, that help in the verification of a program.
It allows programmers to express properties and invariants that cannot be
expressed in executable code, or properties that do not need to be in the
executable code.

1 ghost function Elements(pq: PQueue): multiset<int> {

2 match pq

3 case Leaf => multiset{}

4 case Node(x, left, right) =>

5 multiset{x} + Elements(left) + Elements(right)

6 }

Figure 2.6: This is a program that shows us an example of Dafny ghost code. This function
calculates the number of elements stored in a PQueue recursively. This program is only used for
specification and verification purposes and is therefore flagged as ghost code. [10]

Ghost code is a powerful feature in Dafny that simplifies formal verification
and supports precise program specifications and properties beyond what
is captured in the executable code. Ghost code enables a programmer to
introduce additional code that aids verification, while not compromising the
speed and complexity of the compiled code.

Viper does not support ghost code. Viper was designed as an intermediate
verification language. As such, Viper provides only a very limited set of
features. Nonetheless, ghost code is useful and most of the frontends of Viper
do support ghost code. Implementing ghost code is thus the responsibility
of the developers of the front-ends.
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2.2. Features

Simultaneous assignments

Dafny supports simultaneous assignments. This allows to assign multiple
variables to values simultaneously within a single statement. This feature
enables efficient assignment of values to multiple variables in a single oper-
ation. Simultaneous assignments are particularly useful when performing
operations involving multiple variables that need to be updated together,
such as swapping values or parallel assignments.

1 x, y := y, x;

Figure 2.7: This shows the simultaneous assignment of two variables in Dafny. In this code
example the values of x and y are swapped.

Viper does not support simultaneous assignments. Unfortunately, we cannot
simply translate statements like the one in Figure 2.7 from Dafny to Viper.
We need an intermediate step in order to save the first variable assignment.
The respective code in Viper would look like the code in Figure 2.8.

1 x = temp

2
3 x = y

4
5 y = temp

Figure 2.8: This shows how the equivalent code to the simultaneous assignment in Dafny seen
in Figure 2.7 looks like in Viper.

Termination

Termination is a crucial aspect of program correctness and is necessary for
Dafny’s verification process. In Viper, termination proofs are not enforced.
Nonetheless, the user is still able to prove termination by providing a termi-
nation measure in a ”decreases” clause. The user can still prove termination
by providing a termination measure. Dafny and Viper statically analyses
the code to ensure that every loop and recursive function terminates. It
checks whether the termination condition is bounded and decreasing across
recursive calls. If no termination measure is provided Viper defaults to a
constant. This usually suffices for non-recursive functions without loops.

Termination is crucial because it guarantees that the program will eventually
complete its execution and not get stuck in an infinite loop. To help ensure
termination Dafny and Viper require loop invariants and recursive functions
to have a clear termination argument or measure. Dafny generates a termina-
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2. Background

tion condition automatically. If it is not able to prove termination with the
automatically generated condition, one can be manually specified using the
keyword ”decreases”.

1 method Loops11200()

2 decreases

3 {

4 var x : Int

5 var y : Int

6
7 x := 0

8 y := 191

9 while(7 <= y)

10 invariant 0 <= 7 && 7 * x + y == 191

11 decreases y

12 {

13 y := y -7

14 x := x + 1

15 }

16 }

Figure 2.9: This code shows a Viper method, where the decreases clause is used in order to force
Viper to check for termination of the loop and the function.

In contrast to Dafny, Viper does not automatically generate a termination
criterion. We have to provide a termination criterion to the function in order
to check the termination of methods or functions.

1 method DivMod7() {

2 var x, y;

3
4 x, y := 0, 191;

5 while 7 <= y

6 invariant 0 <= y && 7 * x + y == 191

7 decreases y

8 {

9 y := y - 7;

10 x := x + 1;

11 }

12 }

Figure 2.10: This next example 2.10 shows the equivalent method to method Loops11200 in
Dafny. Here, we do not have to provide a ”decreases” clause at the start of the method, since
Dafny checks for termination automatically. However, in order to check for loop termination in
Dafny we have to append a ”decreases” clause, as seen in example 2.10.
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2.2. Features

In example 2.9, we see a method that is proven to terminate. In some easy
cases Viper is able to infer the termination condition itself. We do not need
to specify any condition for the method Loops1120, since the method simply
checks whether its body terminates. The while loop inside the method has a
specified termination criterion, namely y decreases with each iteration. With
this information Viper proves the termination of the method.

Algebraic Data Type

1 datatype List<T> = Nil | Cons(head: T, tail: List<T>)

Figure 2.11: This code shows how an ADT can be declared in Dafny. [1]

Algebraic Data Types (ADTs) in Dafny can be created using the syntax shown
in Figure 2.11. ADTs are a feature in computer programming that originated
from functional programming languages like Haskell. ADTs allow you to
define composite data types by combining existing types using sum types
and product types. Dafny supports generic ADTs, meaning we do not have
to specify the type of the list element as seen in Figure 2.11 by introducing T
as a generic type.

The example given in Figure 2.11 shows a sum type, where the Nil is the
constructor for the base case and Cons is the constructor for the elements of
this data type.

1 adt List[T] {

2 Nil()

3 Cons(value : T, tail : List[T])

4 }

Figure 2.12: This code shows how an ADT is defined in Viper.

Viper also supports Algebraic Data Types. In Figure 2.12 we see how such a
type would be defined in Viper. However, Viper does not support generic
functions using such Algebraic Data Types. Viper also does not automatically
generate a well-founded order over the Algebraic Data Type.

Lemmas

Lemmas are auxiliary assertions or properties that can be used to state and
prove additional facts about a program. Lemmas serve as intermediate steps
in the formal verification process to establish certain properties or invariants.
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2. Background

Lemmas are used to express and prove intermediate results that are useful for
reasoning about the correctness of a program or method but are not necessary
for the program’s execution. They can be used to establish invariants, derive
properties, or simplify complex proofs. They enable modular reasoning and
allow developers to establish and reuse intermediate facts.

1 lemma ReverseAuxAppend<T>(xs: List<T>, ys: List<T>, acc: List<T>)

2 ensures ReverseAux(Append(xs, ys), acc)

3 == Append(Reverse(ys), ReverseAux(xs, acc))

4 {

5 match xs

6 case Nil =>

7 ReverseAuxCorrect(ys, acc);

8 case Cons(x, tail) =>

9 }

Figure 2.13: This figure shows us an example of a lemma in Dafny. [10]

Lemmas in Dafny are theorems that are used to prove a result. Lemmas do
not have a goal in and of themselves and are only useful for verification. They
allow Dafny to break the proof of a more complex statement into multiple
parts proving each of those parts separately. In the end, those proofs are
combined to finally prove the correctness of the program or function. Viper
does not have a construct called lemma. We model lemmas in Viper as
described in section 3.1.

Automatic Induction

Automatic induction refers to a feature supported by Dafny that automates
the process of applying inductive reasoning to prove properties of recursive
functions and data structures, such as the List ADT created in Figure 2.11.

Dafny’s automatic induction feature uses the structure of recursive functions
and data types to automatically generate induction proofs. By automating
induction, Dafny reduces the complexity and effort for the programmer
required to prove the properties of recursive structures. There is also a limit
to automatic induction in Dafny and there do exist cases, where the proof
has to be done manually by the programmer.
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2.2. Features

1 lemma {:induction false} AddZero(x: Unary)

2 ensures Add(Zero, x) == x

3 {

4 match x

5 case Zero =>

6 case Suc(x’) =>

7 calc {

8 Add(Zero, Suc(x’));

9 == // def. Add

10 Suc(Add(Zero, x’));

11 == { AddZero(x’); }

12 Suc(x’);

13 }

14 }

Figure 2.14: This code shows a lemma with induction false and a calc block to calculate the
proof. Here the induction proof has to be done manually. [10]

Unlike Dafny, Viper does not support automatic induction. This can be seen
in the translated examples as we have to specify the induction steps Viper
needs to verify a statement each time. If turned off automatic induction in
Dafny using the {: induction false} specification, we would have to state the
induction step and create similar proofs to the ones in Viper.

1 function lemmaSnocAppend(xs : List[Int], y: Int) : Unit

2 ensures Snoc(xs, y) == append(xs, Cons(y, Nil()))

3 decreases xs

4 {

5 (xs.isNil) ? unit() : lemmaSnocAppend(xs.tail, y)

6 }

Figure 2.15: This program shows a Viper method where the decreases clause is used in order to
force Viper to check for the termination of the loop and the function.

Calc Blocks

Calc blocks in Dafny are sequences of logical or mathematical steps that help
the verifier prove certain conditions. A calc block enables the programmer
to write down the derivation steps to help the verifier prove the correctness
of the code. An example of a calc block in Dafny can be seen in Figure 2.14.
Viper does not support such a calc block.
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2. Background

Let expressions

In Dafny and Viper, let expressions are used to introduce local variables
into the code body. It allows you to define and bind values to variables
that are only valid within the scope of the let expression. This is mainly
done to simplify function bodies and to be able to reuse local variables for
expressions appearing multiple times inside the function.

”Let” expressions in Dafny and Viper allow developers to define temporary
variables for intermediate calculations or to bind values to names for clarity
and reuse within a limited scope. They can improve the readability of code
by providing a way to structure complex expressions or calculations.

Domain

Domains in Viper allow for the introduction of additional types, mathematical
functions, and axioms that define their properties. In terms of syntax, a
domain consists of a name and a block where several function declarations
and axioms can be defined. The Figure 1 contained in the appendix illustrates
a basic domain declaration.

The functions declared within a domain have a global scope, meaning they
can be applied anywhere else within the Viper program. These functions,
known as domain functions, have certain limitations compared to the stan-
dard Viper functions discussed earlier. Specifically, domain functions cannot
have preconditions. Additionally, they are always abstract, meaning they
lack a defined body. The behavior of those functions is usually described by
axioms.

Domain axioms also possess a global scope as they define properties that
hold in all program states. As axioms must be well-defined across all states
they cannot reference the values of heap locations or permission amounts.
Domain axioms are expressed as standard first-order logic assertions they
often use quantifiers to state their properties. [11]

Dafny does not support a domain construct. The closest Dafny construct to
domains is Objects. Objects are however discussed in chapter 17 and are not
relevant for this thesis.

18



Chapter 3

Translation

In this chapter, we dive into the translation of each of the chapters. We
discuss the key points of those chapters and the problems faced during their
translation. We also look at how the features in Dafny were translated to
Viper, especially those that do not exist in Viper.

3.1 Translated Features

In this section, we will go in-depth on how we model features or types in
Viper that do not have an equivalent to the ones in Dafny.

Lemmas

After starting the translation of the exercises, it is clear that an equivalent
construct to the lemmas in Dafny had to be found. In order to model the
lemmas as closely as possible, two main questions had to be answered.

• Do we implement lemmas as a function or as a method?

• If we implement lemmas as functions, what return type will they use?

We choose to translate lemmas as functions that return a type Unit, which
was defined by an ADT that consists of a single possible value. The return
type Unit was created in order to differentiate between normal functions and
lemmas, as lemmas are not supposed to have a return type. An alternative
we considered was to create lemmas as methods where we would not need
to specify a return type. We would also be able to use if and else conditions
in methods, making them more readable than with ternary operators. We
stepped away from this approach since we could not use methods in function
preconditions or postconditions, making it impossible to prove certain condi-
tions. An example of such a lemma created in Viper is seen in Figure 2.14.
Another important reason for implementing lemmas as functions is because
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otherwise, we would not be able to call lemmas from function bodies. This
would make it impossible to prove a number of postconditions.

1 adt Unit {

2 unit()

3 }

Figure 3.1: This is the type Unit defined in Viper.

Well-founded order on user-defined Data Types

While translating the examples, the problem of how to prove the termination
of our newly created ADT arose. Contrary to Dafny, the ADT functionality
in Viper does not automatically generate a well-founded order for its data
type. In order to prove the termination of our functions we need to define a
well-founded order for our data structure. With this order Viper can define
which structures of the data type are structurally smaller and can prove the
decreasing size of function arguments on recursive calls.

This code in Figure 3.2 shows how the well-founded order on the List[T] data
type has been defined. decreasing() and bounded() are both functions defined
in the file decreases/all.vpr. This file is part of the standard library of Viper
and includes the well-founded orders of all data types initially defined by
Viper, such as Int or Rational. decreasing() defines the structurally smaller
element of a user-defined data type created by a domain, such as List[T] in
our example. The bounded() function defines the smallest possible element
of a user-defined data type. In our case this is the Nil() construct of List[T].
With those two functions we are able to create a well-founded order on any
user-defined data type.
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1 import <decreases/all.vpr>

2 /**

3 * The ADT plugin of Viper generates an

4 * Abstract Data Type, but it does

5 * not automatically construct a well-founded

6 * order regarding this Data Type.

7 * Therefore we have to define a well-founded

8 * order ourselves. This order is needed

9 * to prove the termination of functions and methods.

10 *

11 * To define such a well-founded order, we use

12 * a construct supported by Viper called

13 * domain. A domain is used to define a new

14 * type, by introducing functions and

15 * using axioms to describe those functions

16 * (We will see another example of a domain

17 * later). In this example, we only use the

18 * axioms to describe the behavior of well

19 * founded order over the adt List.

20 *

21 * We chose to define our well-founded order

22 * over the structural inclusion of a list.

23 * This means that, for all lists x and y, x

24 * is smaller than y if and only if x is

25 * a suffix of y. This is not the only way of

26 * defining a well-founded order. We

27 * could have also defined it over the length of a list.

28 */

Figure 3.2: This code shows the definition of the well-founded order on the List[T] data type.
This is the first part, the second part can be seen in Figure 3.3.
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1 domain ListWellFoundedOrder[T] {

2
3 /**

4 * This axiom establishes that, for each

5 * variable of type List[T], there

6 * exists a minimal element. In our case,

7 * this minimal element corresponds to

8 * Nil(). The function bounded is defined in

9 * the imported file

10 * (import <decreases/all.vpr>). The

11 * bounded(y) in curly brackets is the trigger, this

12 * axiom will be triggered whenever the

13 * function bounded(y) for some y of type List[T]

14 * is called.

15 */

16 axiom {

17 forall y : List[T] :: {bounded(y)} bounded(y)

18 }

19
20 /**

21 * With this axiom and the axiom above, we

22 * define an order. The decreasing function

23 * is defined in the file

24 * <decreases/all.vpr> just like the bounded function. For

25 * decreasing(xs, Cons(y, xs)) it defines xs

26 * to be smaller than Cons(y, xs) regarding

27 * the order of a List[T]. Unlike above, we

28 * have not defined a trigger for this

29 * axiom, Viper will automatically define such a trigger.

30 */

31 axiom {

32 forall xs : List[T] , y : T ::

33 decreasing(xs, Cons(y, xs))

34 }

35
36 /**

37 * This axiom defines the transitivity of

38 * the well-founded order relation on

39 * List[T]. Stating that if xs < ys and ys < zs, then xs < zs.

40 */

41 axiom {

42 forall xs : List[T], ys : List[T], zs : List[T] :: {decreasing(xs, ys), decreasing(ys, zs)}

43 decreasing(xs, ys) && decreasing(ys, zs) ==> decreasing(xs, zs)

44 }

45 }

Figure 3.3: This code shows the definition of the well-founded order on the List[T] data type. It
is the second part and complements Figure 3.2.
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Pair Data Type

In section 7.4 of the book the function DivMod is introduced, for this function
we need a type Pair. This type should contain two different types which can
be individually set and returned. Dafny has built-in support for a Pair type
while Viper does not have built-in support for tuples. DivMod should return
two Unarys. The first argument of the pair should be the division of x by y
and the second argument should be the remainder of the division.

1 function DivMod(x : Unary, y : Unary) : Pair[Unary, Unary]

2 requires y != Zero()

3 decreases UnaryToNat(x)

4 {

5 Less(x, y) ? pair(Zero(), x)

6 :

7 let _ == (lemmaSubCorrect(x, y)) in

8 let r == (DivMod(Sub(x, y), y)) in

9 pair(Suc(getLeft(r)), getRight(r))

10 }

Figure 3.4: This function is the first function in the book where the Pair data type is needed.

After agreeing on the behavior of the Pair type, the question of how to
implement the type in Viper was simple to answer. User-defined data types
can be created using the domains and therefore the obvious choice is to
model the pair type using a domain. With the help of a domain, we can
specify the behavior of our new type clearly. By using axioms we can define
which value will be returned by either getLeft() or getRight() as seen in Figure
3.5.
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1 domain Pair[T, G] {

2 function pair(T, G) : Pair[T, G]

3
4 function getLeft(Pair[T, G]) : T

5 function getRight(Pair[T, G]) : G

6
7 axiom axgetLeft {

8 forall x : T, y : G ::

9 getLeft(pair(x, y)) == x

10 }

11
12 axiom axgetRight {

13 forall x : T, y : G ::

14 getRight(pair(x, y)) == y

15 }

16 }

Figure 3.5: This domain in Viper models a Pair data type.

Asserting function

While proving lemmas it can be helpful to first write the proof body in
methods. This is due to being able to write if and else clauses in methods,
calling lemmas directly and assigning it to a variable rather than always
using the let statements. This makes the whole body clearer to read and
easier to understand. It also allows for easier debugging considering that
we can introduce assumptions at multiple points in the program to focus
on specific paths of the proof. With the help of such statements, we can
completely disable a proof subtree. This means we are able to ignore a branch
and try proving each proof tree branch individually.

The method in Figure 3.6 is an example of how the lemmas in Dafny of the
book were first translated into methods in order to make it easier to prove
the postconditions. However, at some point, the 1 to 1 translation of the
methods to functions did not work anymore. We realized that at some points
the functions do not leverage the result of other functions. Therefore, we had
to assert certain equalities inside the function body explicitly in order for the
Viper to actually check whether the assertion holds.
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1 method lemmaInsertSameElementsM(y : Int, xs : List[Int], p : Int)

2 ensures Project(Cons(y, xs), p) == Project(Insert(y, xs), p)

3 decreases xs

4 {

5 if (y==p){

6 if (xs.isNil){

7
8 }

9 else {

10 if (xs.value <= y){

11 if (xs.value == p){

12 lemmaInsertSameElementsM(y, xs.tail, p)

13 assume false

14 }

15 else {

16 assert Project(Cons(y, xs), p) ==

17 Cons(y, Project(xs, p))

18 lemmaInsertSameElementsM(y, xs.tail, p)

19 assume false

20 }

21 }

22 else {

23 assume false

24 }

25 }

26 }

27 else {

28 var a : Unit

29 if (xs.isNil){

30 assume false

31 }

32 else {

33 var a : Unit

34 a := lemmaDifferentElementsInserted(y, xs, p)

35 assert Project(Insert(y, xs), p) == Project(xs, p)

36 lemmaInsertSameElementsM(y, xs.tail, p)

37 assert Project(Cons(y, xs), p) == Cons(y, Project(xs, p))

38
39 assume false

40 }

41 a := lemmaDifferentElementsInserted(y, xs, p)

42 }

43 }

Figure 3.6: This method shows the process of proving the lemma InsertSameElements in Viper.
This is the equivalent proof to the one seen in Figure 3.8 where we prove it using a function.

In order to assert conditions inside the function bodies we used a new
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function called asserting. The definition of the function in Viper is shown
in Figure 3.7. The most important part of this function is the precondition
it requires. By requiring the input x to hold upon entry to the function it
will trigger an error if this is not the case. With this function we can assert
boolean expressions and enforce Viper to prove the assertions. This asserting
of properties is important as it is often necessary to make Viper aware of
these facts that are necessary to conclude proofs. We are not using the assert
statement provided by Viper since we can not use statements in functions
and are only allowed to use expressions. This reason encouraged us to create
the asserting function.

1 function asserting(x : Bool) : Unit

2 requires x

3 decreases

4 {

5 unit()

6 }

Figure 3.7: This function shows the asserting function used in this thesis.

Once it has checked the assertion it used it in the proof as well and was able
to verify the postconditions in the functions. As seen in Figure 3.8 with the
help of the asserting function and let expressions we are able to mimic the
style of proofs that we would have written in methods.
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1 function lemmaInsertSameElements(y : Int, xs : List[Int], p : Int) : Unit

2 ensures Project(Cons(y, xs), p) == Project(Insert(y, xs), p)

3 decreases xs

4 {

5 (y == p) ? xs.isNil ? unit()

6 :

7 (xs.value <= y) ? (xs.value == p) ? let _0 ==

8 (lemmaInsertSameElements(y, xs.tail, p)) in

9 asserting(Project(Cons(y, xs), p) ==

10 Project(Insert(y, xs), p))

11 :

12 let _0 == (asserting(Project(Cons(y, xs), p) ==

13 Cons(y, Project(xs, p)))) in

14 let _1 == (lemmaInsertSameElements(y, xs.tail, p)) in

15 asserting(Project(Cons(y, xs.tail), p) ==

16 Project(Insert(y, xs.tail), p))

17 :

18 unit()

19 :

20 lemmaDifferentElementsInserted(y, xs, p)

21 }

Figure 3.8: This function contains the proof deduced in the method with the same name shown
in Figure 3.6.

3.2 Bugs Found in Viper

Knowledge not used

1 function lemmaAtAppend(xs : List[Int], ys : List[Int], i : Int) : Unit

2 requires i >= 0

3 requires i < length(append(xs, ys))

4 ensures let _ == (lemmaLengthAppend(xs.tail, ys)) in

5 At(append(xs, ys), i) ==

6 ((i < length(xs)) ? At(xs, i) : At(ys, i - length(xs)))

7 decreases i

8 {

9 (i==0) ? unit() : let _ == (lemmaLengthAppend(xs.tail, ys)) in

10 lemmaAtAppend(xs.tail, ys, i-1)

11 }

Figure 3.9: This is a lemma in Viper that needed further knowledge to prove the postcondition.

While translating the examples from Dafny to Viper the problem arose
that certain knowledge needed to prove the postcondition of a function
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was not triggered and used by Viper. In this example 3.10 we need the
additional knowledge of lemmaLengthAppend which should be triggered by
the expression (let == (lemmaLengthAppend(xs.tail, ys)) in At(append(xs, ys), i)
== ((i ¡ length(xs)) ? At(xs, i) : At(ys, i - length(xs)))).

There was a suspicion that this problem arose due to a bug in Viper Silicon.
This suspicion was confirmed by the fact that Silicon could not prove the
lemmas, but Carbon was. The reason for this behavior was Silicon did not
instantiate the knowledge provided by the let expression. Silicon ignored
the call to the lemma as long as the variable did not appear in the body.
The knowledge was therefore only present once the variable assigned to
the statement was mentioned in the body. After opening an issue [12] on
the Viper GitHub repository the issue was resolved and knowledge from let
statements will now be triggered even if the variable is not mentioned in the
function body.

1 function TriggerLemma(x : Unit) : Unit

2 decreases

3
4 function F67(x : Int, y : Int) : Int

5 decreases

6
7 function L67() : Int

8 decreases

9
10 function R67() : Int

11 decreases

12
13 function lemmaLeftUnit67(x : Int) : Unit

14 ensures F67(L67(), x) == L67()

15 decreases

16
17 function lemmaRightUnit67(x : Int) : Unit

18 ensures F67(x, R67()) == R67()

19 decreases

20
21 function lemmaLEqualR67() : Unit

22 ensures L67() == R67()

23 decreases

24 {

25 let _0 == (F67(L67(), R67())) in

26 let _1 == (TriggerLemma(lemmaLeftUnit67(R67()))) in

27 let _2 == (TriggerLemma(lemmaRightUnit67(L67()))) in

28 unit()

29 }

Figure 3.10: This is a lemma in Viper that needed further knowledge to prove the postcondition.
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Before the issue was resolved by the Viper development team, a workaround
was implemented. A first fix implemented was to simply create a function
called TriggerLemma. This function took an argument of type Unit and
returned a Unit type. Due to this function call the lemma that was assigned
in the let statement was used by the SMT solver. After the issue on GitHub
was resolved all the TriggerLemma calls were removed from the final version
of the code.

Decreases Keyword Positioning

1 import <decreases/int.vpr>

2
3 function sum(n : Int) : Int

4 requires n >= 0

5 ensures result == n*(n+1)/2

6 decreases n

7 {

8 ((n==0) ? 0 : n + sum(n-1))

9 }

10
11 method lemmasum(n : Int)

12 //decreases n

13 requires n >= 0

14 ensures n != 0 ==> sum(n) == sum(n-1) + n

15 decreases n

16 {}

Figure 3.11: This Figure shows a method and function written in Viper. The method lemmasum
illustrates the problem with the decreases clause found in Viper.

Another problem encountered in Chapter 6 was that the ”decreases” clause
could only be used at the beginning of the method and not after the pre-
conditions and postconditions. The error message generated is ”Verification
aborted exceptionally” and it is confusing. After carefully analysing the
examples we could concluded that the message was generated due to the
”decreases” clause being at the wrong position in the method specification.

This was a bug of Viper and after opening an Issue on the GitHub [13]
page the problem was resolved and the decreases clause can now be written
anywhere in the specification of the method.
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3.3 Errors during translation

Abstract Loops

In Dafny we can use abstract loops. Abstract loops are loops where we do not
need to provide a loop body, This can be seen in Figure 3.12. The verification
language can assume the invariant is not violated and use the invariant and
loop condition to prove further statements. In Viper we do not have a feature
that allows the use of abstract loops. This made it very confusing at the
beginning.

1 method Example0() {

2 var x := 0;

3
4 while x < 300

5 invariant x % 2 == 0

6 }

Figure 3.12: This code example shows a code written in Dafny. It shows an abstract loop.

We created examples as seen in Figure 3.13 as we wanted to mimic the Dafny
code as best as possible. We then realized it is not possible since we could
prove assertions that should not be provable, as seen in Figure 3.14. Therefore,
we started to write simple loop bodies for each of the loops that would not
violate the invariant and would still allow us to continue with the translation
of the examples.

1 method Loop11020(x : Int)

2 requires x % 2 == 0

3 {

4 var y : Int

5 y := x

6 while(y < 300)

7 invariant y % 2 == 0

8 {

9
10 }

11 }

Figure 3.13: This code example shows a method written in Viper containing a while loop and an
invariant. In this case the while loop does contain an empty loop body which is not sound in
Viper.
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1 method Loop11020(x : Int)

2 requires x % 2 == 0

3 {

4 var y : Int

5 y := x

6 assume y < 300

7 while(y < 300)

8 invariant y % 2 == 0

9 {

10 y := y + 2

11 }

12 assert false

13 }

Figure 3.14: This code shows the same loop again as in Figure 3.13. Here, a simple loop body
solves the unsoundness of the method.

3.4 Chapter Discussion

The first chapter of part 1 introduces the basic ways of specifying and
reasoning about inductively defined data structures. List are introduced and
used to explain algebraic data structures in chapter 6. In this first chapter,
there were a lot of initial challenges that had to be resolved. Those challenges
included creating a translation for the lemma type discussed in section 3.1.
After introducing the new data type List we also needed to find a way to
create a well-founded order as discussed in section 3.1. We also encountered
bugs in Viper during the translation of the 6th chapter. Those include the
bugs discussed in section 3.2 and section 3.2.

Chapter 7 of the book follows up on inductively defined data types with
the inductive representation of Unary numbers. Here we again use ADTs to
define our data type Unary. In chapter 7 we encountered less problems as we
have already resolved most of them in chapter 6. We still encountered one
major challenge, this challenged included creating a Pair data type which we
implemented as a domain type. This challenge is described in section 3.1.

1 adt Unary {

2 Zero()

3 Suc(pred: Unary)

4 }

Figure 3.15: This code shows the definition in Viper of the data type Unary.

Just as in Chapter 6 we also needed to define a well-founded order on the

31



3. Translation

Unary data type. Thanks to our already defined order for Lists the task of
creating such an order was straight forward.

1 /**

2 * Just like in chapter 6.1, we will define

3 * the well-founded order of this data

4 * type using a Domain.

5 */

6 domain UnaryWellFoundedOrder {

7
8 /**

9 * This axiom tells us that for each element of

10 * type Unary, there exists a

11 * lower bound. The lowest bound for each

12 * Unary element is zero().

13 */

14 axiom {

15 forall y : Unary ::

16 bounded(y)

17 }

18
19 /**

20 * This axiom defines the order of the Unary elements.

21 * As we see here, x.pred

22 * is smaller than x. We could have also

23 * defined to order to be

24 * decreasing(x, Suc(x)).

25 */

26 axiom {

27 forall x : Unary ::

28 decreasing(x.pred, x)

29 }

30
31 /**

32 * This axiom adds the transitivity of the Unary data type.

33 */

34 axiom {

35 forall x : Unary, y : Unary, z : Unary ::

36 {decreasing(x, y), decreasing(y, z)}

37 decreasing(x, y) && decreasing(y, z) ==> decreasing(x, z)

38 }

39 }

Figure 3.16: This code shows the definition of the well-founded order of the Unary data type
using Viper domains.

Chapter 8 specifies and verifies two algorithms, both for sorting. The ADT
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List which was created in Chapter 6 is reused in this chapter to educate the
reader about sorting in verification-aware programming languages. The two
sorting algorithms used in this chapter are Insertion Sort and Merge Sort.

While translating the pedagogical examples from Dafny to Viper a big chal-
lenge arose that took some time to solve. We realised that in Viper we needed
to assert certain properties explicitly to make Viper aware of those facts that
are necessary to conclude the proofs. The problem and the solution we came
up with are further described in subsection 3.1.

Chapter 10 introduces us to the Dafny feature Invariants. These invariants
relate to the characteristics of immutable data structures. The topic of invari-
ants is covered in more detail later in chapter 11 as the state prior to loop
iterations. This chapter did not provide too much difficulty in translating
and there was no major feature or bug that needed further attention.

In imperative programming, one of the most prominent programming con-
structs is the loop. Chapter 11 focuses on the process of reasoning about
loops using loop invariants, a feature that often poses challenges to beginners.
This makes the code examples of chapter 11 very important.

In chapter 11 we encountered a problem regarding abstract loops. In Dafny,
loop bodies do not have to be provided. We can prove methods with loops
simply by analyzing the invariant and assuming it will hold at all times.
Viper does not provide such a syntax and we need to specify a loop body at
all times. This problem is further described in section 3.3.

Following the introduction of loops and loop invariants in Chapter 11, Chap-
ter 12 brings into focus another important feature. This chapter transitions
from recursively defined specifications to iteratively defined methods. An
example of such a method can be seen in Figure 3.17.
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1 method ComputeFib(n : Int) returns (x : Int)

2 requires 0 <= n

3 ensures 0 <= x

4 ensures x == Fib(n)

5 decreases

6 {

7 x := 0

8 var i : Int := 0

9 var y : Int := 1

10 var tmp : Int := x

11 while(i != n)

12 invariant 0 <= i && i <= n

13 invariant x == Fib(i) && y == Fib(i + 1)

14 decreases n - i

15 {

16 tmp := x

17 x := y

18 y := tmp + y

19 i := i + 1

20 }

21 }

Figure 3.17: This code shows a function in Viper that computes the Fibonacci sequence. It is
one of the examples translated from chapter 12.
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Evaluation

In this chapter, we analyse and evaluate the code examples and exercises
created in Viper. Those examples are compared to the ones written in Dafny.
We look at the annotation overhead of the Viper files as well as the Dafny
files. To evaluate the code, we will be analyzing the performance of Dafny
and the Viper files and comparing them to each other. This will give us an
intuition on which verification language runs more optimized.

4.1 Annotation Overhead

There are many reasons for different annotation overheads in Dafny and
Viper. A few examples for such overheads are the decreases clause that
has to be added to every function or method in Viper in order to check
for termination. Another reason for such an overhead is also the automatic
induction where we have to specify the induction step for Viper every time
and Dafny is able to automatically generate simple induction proves.

Before looking at the results of the analysis it is helpful to give the reader
a clear understanding of how the annotation was evaluated. To analyse the
annotation overhead we created a Python script. The script analysed the code
examples as follows. All the comments in the files were ignored, meaning all
lines that started with ” * ”, ”/**” or ” */” were ignored. We also removed
all the empty lines and did not count lines containing only ”” or ””. In this
thesis we analysed the annotation overhead in two different settings. First we
just counted all the code lines and compared the Dafny and Viper chapters
individually to each others. In the second version we focused on the lemmas
and their bodies. We counted the lines of code contained in the lemma bodies
and compared the Dafny and Viper chapter to each other.

The motivation for this approach is that we wanted to see the effectiveness
of the Dafny automatic induction. This type of induction is mostly applied
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in lemmas. By counting the lines of code in lemma bodies, we can assess
the impact of the automatic induction in Dafny. We choose to analyse the
total lines of code as well, as we can compare them to the lines of code in the
lemma bodies. By this, we see whether the difference in lines needed to solve
the exercises can be attributed to mostly the automatic induction or whether
other factors need to be considered.

Figure 4.1: This graphic shows the total number of lines of code needed to complete each
chapter. The blue bars show the total lines of code needed by Dafny and the orange lines show
the total lines needed by Viper.

Figure 4.1 shows that Viper always needs more lines of code to encode the
same amount of functions, methods, and lemmas. As we can see in Figure 4.2
Chapter 11 and Chapter 12 have no and almost no lemmas. Therefore, we can
conclude that the difference in annotation has to come from something other
than automatic induction. In chapter 11 Dafny uses a lot of simultaneous
assignments. At the point of the code translation Viper did not support
simultaneous assignments and we therefore had to assign the values on
separate lines. Another reason for the higher amount of lines of code needed
is the decreases clause for termination, as we have to add the termination
measure to each Viper function or method.

Those different reasons account for the difference in lines of code needed for
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the different chapters.

Figure 4.2: This graphic shows the lines of code in lemma bodies. The blue bars show the sizes
of the lemma bodies of the Dafny lemmas, while the orange bars show the size of our created
lemma bodies in Viper.

The lemma body is defined as the code of the lemma not including pre-
condition, postcondition, and termination measure as well as the function
signature. Evaluating Figure 4.2 we see a few interesting chapters. The differ-
ence in Chapter 6 and Chapter 7 between Dafny and Viper can be attributed
to automatic induction being able to prove simple lemmas automatically in
Dafny, while in Viper we have to provide the induction. In Chapter 8 there
is a bigger difference. This is mostly due to four lemmas needing a lot of
additional steps to be proven in Viper while Dafnys automatic induction is
able to prove them with very little help. The difference in Chapter 10 is due to
the same reasons as in Chapter 6 and Chapter 7. Chapter 11 does not contain
any lemmas as it deals with loops and loop invariants. Chapter 12 only
contains two lemmas, one of which can be solved by automatic induction in
Dafny and the other that has to be proven manually in Dafny. Both of these
lemmas need manual prove in Viper.
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4.2 Performance Differences

The code was run on a PC using the Operating System Ubuntu 22.04.3 LTS,
Graphics Card NVIDIA Corporation GA106 [GeForce RTX 3060], Processor
AMD Ryzen 7 3700x-8core, RAM Corsair Vengeance LPX 2 x 16 GB 3200 MHz
and Storage Samsung 970 EVO Plus 1 TB. We also used the commit 8fdb9d
of Viper Silicon, commit 063de1 of Viper Carbon and the Dafny version 4.2.0
to analyze the performance of the different verification languages. In order
for those verifiers to work a few other programs were needed, such as z3
satisfiability modulo theories (SMT) solver version 4.8.12 and the boogie
modeling language 2.15.9.

In order to analyse the performance we created a Python script that used
the function subprocess to invoke the different verifiers on the code. The
script executed each file 10 times and in the end took the average of those
executions.

Figure 4.3: This graph shows the performance of the Dafny verifier. The y-Axis is measured
in seconds. The error bar indicates the maximum and minimum value reached over the ten
iterations.

This Figure 4.3 shows how much time each of the different chapters took to
verify.
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Figure 4.4: This graph shows the performance of the Viper Silicon verifier. The y-Axis is
measured in seconds.The error bar indicates the maximum and minimum value reached over the
ten iterations.

Figure 4.5: This graph shows the performance of the Viper Carbon verifier. The y-Axis is
measured in seconds.The error bar indicates the maximum and minimum value reached over the
ten iterations.
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Figure 4.6: This graph shows the performance of all verifiers separately. The y-Axis is measured
in seconds.

This Figure 4.6 shows the comparison of verification time between the differ-
ent verifiers. A few interesting things to point out are related to chapter 6,
chapter 7, chapter 10, and chapter 12. In the other chapters the three verifiers
have similar verification times. Dafny seems to be slower in verifying chapter
6, chapter 7, and chapter 12, while Viper Carbon seems to be much slower in
verifying chapter 10 than the other verifiers.

Unfortunately, we do not have a clear idea as to why the verifiers have so
much slower verification times in certain chapters compared to the others.
We can however speculate to why this might be the case.

As for most chapters, such as Chapter 6, Chapter 7 and Chapter 8 we provide
a termination condition for all the functions written in Viper. In Dafny, all
those conditions have to be generated. This might increase the performance
overhead of Dafny to a degree in Chapter 6 and 7. It does however not
explain why, in Chapter 8, Dafny seems to take an equal amount of time to
verify the examples.

In chapter 10, Dafny and Silicon both take around the same time to verify the
examples, while Carbon uses double the time. Dafny and Viper both have
a similar amount of lines of code which supports the fact that Dafny and
Silicon take similar time to verify. We understand the Silicon and Carbon
backend not enough to reason about why Carbon takes double the time of
Silicon.

In chapter 11 we have similar code line counts in both Dafny and Viper. Most
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of the methods and loops are also annotated with the same specifications.
In this chapter, Dafny also annotates decreases clauses which removes the
overhead generated by searching for an appropriate termination condition.

In Chapter 12, we again have termination conditions provided in the Viper
code examples while they are omitted in the Dafny code. Other than the
termination conditions the code is equivalent.

4.3 Possible Extensions

In this section, we suggest possible extensions that could be done to improve
the Viper intermediate verification language. We would like to mention a
few concepts of Dafny that would improve Viper.

Automatic Induction

As we have seen in the examples, Dafny supports automatic induction. This
enables Dafny to prove postconditions automatically if the induction is basic.
If such a tool is implemented in Viper it decreases the difficulty of proofing
postconditions for the programmer. It reduces the complexity of certain
proofs as it automates verification for simple recursive functions. It also
decreases the annotation overhead for Viper code.

Default Termination Measures

Another useful implementation from our point of view would be to make
termination proofs the default setting. Meaning Viper would always prove
the total correctness of programs. It makes sense to prove total correctness
always as we want to guarantee that a program will terminate. This is im-
portant as for most programs we need a guarantee for termination. Without
the guarantee of termination most programs cannot be considered correct.
This would also improve the annotation overhead of Viper as we would no
longer have to specify the ”decreases” clause every time we want Viper to
prove total correctness. To aid with termination we could also include an
automated termination condition generator that would try to automatically
find termination conditions on which a termination proof could be done.

Lemmas

As Viper does not currently support a construct called lemmas, we would
argue that implementing such a construct would help in verification. During
this thesis lemmas were an essential part and helped a lot in proofing complex
postconditions and splitting them up into separate parts. This would also
help to differentiate between functions and lemmas, by not giving lemmas
a return value and therefore never trying to use a lemma as a function. In
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general, lemmas increased the readability of the proofs and made it possible
to state facts and equalities that should hold but needed proof.

If, Else conditions as expressions

In this thesis, we have used the ternary operator in almost all lemmas. It is
more difficult to structure a function written with multiple ternary operators
nested into each other and we can quickly lose the conditions on which
we are branching. Therefore, it would make it more readable and clear if
we could use if and else conditional branching in expressions as well. This
would allow us to use if and else conditions not only in methods but also in
functions.

Unnamed Binders

While proving postconditions, we used let bindings to introduce missing
knowledge to the functions. In some cases, we had to use up to 10 let
bindings, all of those bindings had to be named differently. This would
ensure that we would be able to refer to them in the function body. In our
case, however, we would have only needed to trigger the knowledge and
not actually refer to it in the function body. Regarding this, we would not
have needed distinct names for all let binders. A universal binder such as ” ”
would have sufficed for our purposes.

Calc Blocks

In chapter Background we have introduced the concept of calc blocks in Dafny
2.2. In the book Program Proofs they were used to write proof derivations
steps. While translating those lemmas to Viper and proving the postcondition
with the help of the derivation steps we used let statements. However, such
calc blocks make the proof more readable and help the programmer keeping
the proof clean. This can be seen by comparing the code in Dafny of Figure
4.7 to the code in Viper of Figure 4.8.
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1 lemma ReverseCorrect<T>(xs: List<T>)

2 ensures Reverse(xs) == SlowReverse(xs)

3 {

4 calc {

5 Reverse(xs);

6 == // def. Reverse

7 ReverseAux(xs, Nil);

8 == { ReverseAuxSlowCorrect(xs, Nil); }

9 Append(SlowReverse(xs), Nil);

10 == { AppendNil(SlowReverse(xs)); }

11 SlowReverse(xs);

12 }

13 }

Figure 4.7: This code shows a lemma written in Dafny. To prove the postcondition a calc block
was used.

1 function lemmaReverseCorrect(xs : List[Int]) : Unit

2 ensures Reverse(xs) == SlowReverse(xs)

3 decreases xs

4 {

5 /**

6 * In order for Viper to prove this lemma, we

7 * again need to provide

8 * the solver with some additional facts and lemmas.

9 */

10 xs.isNil ? unit() : let _0 ==

11 (lemmaReverseAuxSlowCorrect(xs, Nil())) in

12 let _1 ==

13 (lemmaAppendNil(SlowReverse(xs))) in

14 lemmaReverseCorrect(xs.tail)

15 }

Figure 4.8: This code shows the same lemma as in Figure 4.7 written in Viper.

Simultaneous Assignements

As we have seen in chapter Background subsection about simultaneous
assignemnts 2.2, simultaneous assignments can help in reducing the lines
needed to operate a switch between the values of two variables. In general, it
makes sense to introduce simultaneous assignments. There are many cases
where this would reduce the amount of code that has to be written. This can
be seen in example 4.9 compared to the Viper version seen in Figure 4.10.

Fortunately, this has now already been implemented in Viper, and as of now,
we are able to use simultaneous assignments [14].
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1 method DivMod7() {

2 var x, y;

3
4 x, y := 0, 191;

5 while 7 <= y

6 invariant 0 <= y && 7 * x + y == 191

7 decreases y

8 {

9 y := y - 7;

10 x := x + 1;

11 }

12 }

Figure 4.9: This method written in Dafny tries to illustrate the use of simultaneous assignemtns.

1 method Loops11200()

2 decreases

3 {

4 var x : Int

5 var y : Int

6 x := 0

7 y := 191

8 while(7 <= y)

9 invariant 0 <= 7 && 7 * x + y == 191

10 decreases y

11 {

12 y := y -7

13 x := x + 1

14 }

15 }

Figure 4.10: This method written in Viper is equivalent to the method of Figure 4.9. It shows the
increased amount of lines needed in Viper due to Viper not supporting simultaneous assignments.
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Chapter 5

Conclusion

This thesis handled 3 core goals. Those core goals are:

• Translating Pedagogical Verification code examples to Viper.

• Identifying examples that are difficult to implement in Viper.

• Comparing the annotation overhead and verification time between
Viper and Dafny.

The main goal of this thesis was to develop code examples that help enhance
the learning experience for people getting newly acquainted with program
verification languages. For the first core goal we translated the examples
and exercises from the book Program Proofs written in Dafny to Viper.
The translation of the examples was mostly simple. It also included some
implementations of features from Dafny in Viper that had no equivalent in
Viper as described in section 3.1. Translating and solving the exercises took
more time as certain proofs were extensive. At the end, all the material has
been created. They are well documented to make them easy to understand
and read, making them suitable pedagogical material.

While analysing and evaluating the annotation overhead between Dafny
and Viper we created quantifiable numbers to show that Dafny has a slight
advantage regarding the extra annotations that have to be made in order to
verify code. We evaluated the performance of Dafny, Silicon and Carbon. By
referring to Figure 4.6 we see that Viper Silicon mostly performs better or
equally as good as Dafny or Carbon.

The core goals of this thesis regarding the translation of the examples and
exercises, identifying examples that are difficult to implement in Viper as
comparing the annotation overhead, verification time of Dafny and Viper,
and creating pedagogical material for Viper have been met.

After the translation we can confidently say that at the moment, Dafny sup-
ports more features than Viper that make it more convenient to program in

45



5. Conclusion

Dafny. However, we have to mention that we translated examples specifically
designed and tailored to the Dafny verification language and the result of
our evaluation might therefore be biased towards the Dafny verification
language.
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Appendix

This section contains the code examples that are useful to have in the thesis
but would disrupt the flow, if they would be place in the thesis.
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1 /**

2 * Viper does not have built-in support for

3 * tuples (pairs, triples, ...), but we can

4 * still define them via domains or ADTs.

5 *

6 * The type ‘Pair‘ takes two type parameters

7 * and creates a data type pair out of

8 * those two parameters.

9 */

10 domain Pair[T, G] {

11 /**

12 * This is the constructor of a pair type.

13 * The constructor takes two elements

14 * of different types or the same type and

15 * returns a pair element.

16 */

17 function pair(T, G) : Pair[T, G]

18
19 /**

20 * These functions define the destructors.

21 * One is used to get the left element

22 * or zero element of the pair and the

23 * other one is used to get the right

24 * element or one element of the pair.

25 */

26 function getLeft(Pair[T, G]) : T

27 function getRight(Pair[T, G]) : G

28
29 /**

30 * This axiom defines the behavior of the

31 * function get0. This defines that

32 * get0 will always return the left element

33 * of the tuple.

34 */

35 axiom axgetLeft {

36 forall x : T, y : G ::

37 getLeft(pair(x, y)) == x

38 }

39
40 /**

41 * This second axiom defines the get1

42 * function. This defines that get1

43 * will always return the right element of

44 * the tuple.

45 */

46 axiom axgetRight {

47 forall x : T, y : G ::

48 getRight(pair(x, y)) == y

49 }

50 }

Figure 1: This Figure shows a new type Pair created in Viper using the domain concept.50
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