
Error Reporting forUniverse Types with Transfer
Benjamin Lutz

Semester Projet Report
Software Component Tehnology GroupDepartment of Computer SieneETH Zurih

http://sct.inf.ethz.ch/

May 2008
Supervised by:Arsenii RudihProf. Dr. Peter MüllerSoftware Component Tehnology Group

http://sct.inf.ethz.ch/

2

Abstrat
The Universe Type System is a type system for use in object-oriented programming, whose pur-
pose it is to model relationships between objects in more detail. It introduces the concept of
object ownership, through which object modification is controlled. With the universe type sys-
tem, it is possible to catch programming errors such as unintended concurrent data modification
from different objects within a program at compile time. The Universe Type System has been
implemented in the MultiJava compiler.

The Universe Type System has in previous work been extended to allow transferring of objects
from one owner to another. While this feature is very useful, and indeed, required for many
problems, it can make analyzing programming mistakes difficult. This work tries to assist with
that analysis by improving the information that is returned by the MultiJava compiler if there
is a universe type error. Is does this by providing a backtrace through a program, similar in
appearance to a classic framestack backtrace, that explains the circumstances that lead to the
type error.

The backtrace method relies mostly on information already required by the existing Universe
Type System analysis, although some of the data structures have been extended. Care has been
taken so that the memory scalability of the MultiJava compiler does not become notably worse,
i.e. that it is still quadratically bound.

3

4

Contents1. Introdution 7
1.1. The Universe Type System . 7
1.2. Universe Types with Transfer . 7

1.2.1. Uniqueness . 8
1.2.2. Clusters . 9

1.3. UTT Implementation and Project Goal . 10
1.3.1. Motivation . 11
1.3.2. Project Goal . 122. Simple Graph Baktraking 15

2.1. Flow Analysis Overview . 15
2.2. Error Formula . 16
2.3. Statement Backtracking . 18

2.3.1. Break . 18
2.3.2. Consume . 19
2.3.3. Continue . 19
2.3.4. Exit . 19
2.3.5. Invariant Restore . 19
2.3.6. Merge . 20
2.3.7. Move . 20
2.3.8. New . 20
2.3.9. Restore Fields . 21
2.3.10. Skip . 21

2.4. Linear Backtracking Algorithm . 21
2.5. Dealing with Branches . 22
2.6. Worst-Case Scenarios . 25

2.6.1. Arbitrarily Large Error Formulas . 25
2.6.2. Arbitrarily Many Backtraces . 263. Graph Unfolding 31

3.1. Problem Description . 31
3.2. Generations and Edge Traces . 32
3.3. Alias Matrix Compression . 334. Implementation 37
4.1. Mapping Type Errors to Error Formulas . 37
4.2. Presenting the Backtrace . 39
4.3. Scalability . 40

4.3.1. Memory Requirements . 40
4.3.2. Processing Requirements . 41

4.4. Nonfunctional Changes . 425. Conlusion and Future Work 45
5.1. Conclusion . 45
5.2. Future Work . 45

5

6 ContentsA. Bibliography 47B. Example Baktrae 49

1. Introdution
This chapter first gives a brief overview over the Universe type system and its extension with
ownership transfer, which serve as the basis for this work. They are explained in much more
detail in [1].1.1. The Universe Type System
The Universe type system is a type system which models ownership relation between objects, with
the ultimate goal of restricting modification of objects. In the Universe type system, references
are extended with a universe type, which is orthogonal to the standard object type. The following
universe types are available to express the ownership relationship between an object x holding a
reference to an object o:

rep expresses that x is the owner of o,

peer expresses that x has the same owner as o, and

any1 expresses that o may have any owner; x may thus not modify o.

A rep reference is essentially the same as a standard reference as it is known from many pro-
gramming languages. As the owner of o, x may call any method and access any field of o (of
course, visibility restrictions still apply).

If x has a peer reference to o, x may also call any method and access any field of o, even though it
does not own o. Having peer references is useful with data structures, in which the objects that
make up the data structure can modify each other. This allows such a data structure to change
it’s internal structure, even though it is owned by another object that is unaware of that internal
structure and therefore unable to change it.

Last, if x has an any reference to o, x may only call side-effect free (pure) methods of o, and it may
read (but not write to) fields of o (again, within the existing visibility constraints.)

The example in listing 1.1 demonstrates the use of universe types by showing how they can be
applied to a very common data structure, the linear linked list.1.2. Universe Types with Transfer
In previous work [1, 2], the Universe type system was extended to allow ownership of an object
to be transferred. This extended version of the Universe type system is called Universe Types with
Transfer, or UTT. It adds several new concepts: uniqueness, clusters and the actual ownership
transfer mechanism.

1in previous texts and some tools, readonly was used in place of any

7

8 1 Introduction

1 class LinkedList {

2 rep Node first = null;

3
4 void append(any Object o) {

5 if (first == null) {

6 first = new Node();

7 first.element = o; // this owns first, so modification is allowed
8 } else {

9 Node node = first;

10 while (node.next != null) {

11 node = node.next; // node.next is a peer of node/first, so this owns node.next too...
12 }

13 node.next = new Node(); // ... and may therefore modify it
14 node.next.element = o;

15 }

16 }

17 }

18
19 class Node {

20 any Object element = null;

21 peer Node next = null;

22 }

Listing 1.1: Linked List Example1.2.1. Uniqueness
The idea of using a uniqueness invariant to control aliasing of an object has been previously pro-
posed and discussed in several works [3–6]. A uniqueness invariant, in it’s purest form, expresses
that an object may only have a single reference pointing to it. A unique reference must therefore
either be null, or it must be the sole reference to an object. In the context of the Universe type
system this definition is relaxed slightly: only rep and peer references are considered when de-
termining uniqueness, since an object may not be modified through any references.

Note that we only consider uniqueness as an attribute of references to objects; we do not statically
declare the objects themselves as unique. Therefore, the uniqueness invariant applies to an object
only for as long as it is referenced by a unique reference.

In order to maintain the uniqueness invariant, the semantics of reading a reference must be
changed. Consider what happens when a unique reference is copied into another reference. One
possible way to handle the situation is the implementation of destructive reads: at the moment an
unique reference is read, it is atomically set to null. The new reference may or may not actually
be unique; if it is not, the uniqueness invariant no longer applies to the referenced object.

While destructive reads prevent unique reference aliasing and are relatively easy to understand,
the change in the semantics of the programming language is severe. Another solution is known
as alias burying. It allows unique references to be aliased freely, however, as soon as the unique
reference is dereferenced, the aliases may no longer be used; this is enforced by marking them as
unusable. The slightly strange name comes from the following image: if an alias is for the last time
used sometime before the moment when a unique reference is first used after the creation of that
alias, it is at that moment dead, and may be buried safely (marked unusable). It is a programming
error to read (for dereferencing or aliasing2) an unusable reference.

2while it is not strictly required to forbid aliasing an unusable reference, such an action would serve no purpose, as the

1.2 Universe Types with Transfer 9

1 class ClusterExample {

2 uniq Object x; // create a new cluster, Cx, and have x point into it
3 rep[x] Object y; // y points into Cx too
4 }

Listing 1.2: Defining Clusters1.2.2. Clusters
To allow some design patterns, it is useful to split the representation of an object into distinct
clusters. The factory pattern is a good example for this: when a factory has created a new object
x, ownership of x is passed away from the factory, and the factory should no longer hold any rep

references to x, its representation, or any peer objects of x. Such behavior is possible by splitting
the representation of the factory into disjoint clusters, one of which contains x and the peers of
x.

The notion of unique references is extended: it applies no longer just to a single object, but to the
whole cluster which contains the object. Thus, if the factory passes ownership of x away, and the
new owner holds a unique reference to x, the factory no longer holds a rep or peer reference to
x or the peers of x. In this way, clusters become the unit of ownership transfer, and allow (and
enforce for all objects in the same cluster) several objects to be transferred simultaneously.Delaration
Clusters are declared in two ways. They may be defined explicitly using the uniq keyword with
a field definition, as shown in listing 1.2. This will create a new cluster and place the field inside
it. The uniq keyword may only be used for field definitions. Note that uniq references are not a
new type of reference, they are also rep references. We shall label the cluster defined by the uniq

field x Cx

An invariant condition applies to classes containing uniq references: no two uniq references may
point into the same cluster.

The second way to create clusters is implicit: Whenever a new object is created and assigned to
a local variable, a new, anonymous cluster is created for that object; the new cluster may then be
merged into an existing cluster.Referening
Once a cluster Cx has been defined, other fields may be placed inside it. by declaring them as be-
ing of type rep[x]. The implication is that only the names of fields declared as uniq may be used
as parameter of the rep[x] keyword. Only the names of uniq fields declared in the enclosing class
(not a superclass) may be used for rep[x] declarations; this restriction exists to facilitate modular
checking. The rep[x] keyword may be used for field declarations and in method signatures.

Every object contains a special cluster, the this-cluster. The this-cluster contains all fields de-
clared with plain rep.

No universe type specifier needs to be given for local variable declarations; their universe type
and the cluster they refer to is statically inferred.

created alias would be unusable too

10 1 Introduction

It is allowed to have several rep-references to objects in the same cluster, as long as there is only
a single rep-reference when the cluster is transferred to a different owner. References which have
been marked unusable by this point are ignored.Operations
Clusters support three types of operation:MakeNew Clusters may be created inside of method bodies by creating a new object and storing

it in a local variable; a new, anonymous cluster is created for it. In most cases, the cluster
will then be merged with an existing cluster.Merge Two clusters may be merged, unless they are this-clusters.Move An object may be moved from one cluster to another. With this operation, the this-cluster
may be modified.

These operations suffice to add and remove objects from clusters, and to transfer clusters. When
two clusters with different owners are merged, one owner will give up ownership; this mecha-
nism for ownership transfer is described in more detail below.Ownership Transfer
Transferring of a cluster to a new owner happens in a two step release-capture process. It can
happen implicitly with an assignment:

• x = y, where x is of type peerand y is of type rep[g]: The cluster pointed into by y is
released and then captured by the owner of this. This means that the cluster pointed into
by y is merged into the cluster in which this (and x) resides.

• x.f = y, where x is of type rep[g], f is of type peer and y is of type rep[h] with Cg 6= Ch.
Again, the cluster pointed to by y is released; the cluster is then captured into the the cluster
of x.

Ownership transfer may also happen in a more explicit way: the old owner release a cluster by
passing it as a free parameter to a method, or returning it as a free return value from one. The
keyword free specifies a unique rep-reference into a released cluster, which may be captured.
free may only be specified in method signatures.

The new owner captures a free-reference by assigning it to a field, which merges the cluster than
is being transferred into another cluster.

The reference which was passed as free parameter, or returned as free return value, is marked
unusable.1.3. UTT Implementation and Projet Goal
In previous work, UTT has been implemented in a modified version of the MultiJava compiler.
The standard MultiJava compiler already supports universe types; in the modified version, sup-
port for ownership transfer based on clusters and alias burying, as outlined in the previous sec-
tions, has been added. These modifications include a static (compile-time), intraprocedural data
flow analysis which tracks the universe types of local variables, including the cluster they point
to.

1.3 UTT Implementation and Project Goal 11

Note: further references to “MultiJava” in this text shall always refer to the modified MultiJava version,
which served as platform for this thesis.

The results of this thesis will also be implemented in MultiJava, specifically in the version inher-
ited from Annetta Schaad [2]; she in term inherited the code base from Yoshimi Takano [1].1.3.1. Motivation
Experimentation with the ownership transfer features of MultiJava has created the wish for better
analysis tools when it comes to universe type errors. MultiJava by default gives rather terse
descriptions of universe type errors. For example, the following program:

1 class Consumer {

2 void consume(free Object o) { }

3 }

4
5 class Example {

6 uniq Object a;

7 rep Consumer consumer;

8
9 void error() {

10 consumer.consume(a);

11
12 Object l = a;

13 }

14 }

Will produce the following error message by default:

File "Example.java", line 12 error: Field "a" is unusable. [Universes (Uniqueness)]

This project tries to provide more information about such errors by providing a backtrace through
the method, outlining the ownership relations that led to to the errors in the hope that this infor-
mation will be useful to the programmer in understanding and fixing the type errors.

In the above example, such a backtrace would look like this3:

Backtrace:

File "Example.java", line 12, move(variable "l", field "a")

[cluster "unusable" = field "a"]

File "Example.java", line 10, merge(field "a", ANY/UNUSABLE)

[]

The backtrace says: a is unusable because it has been merged with the unusable-cluster.Of course,
this is a rather trivial example, where the error is easily spotted without a backtrace. Listing 1.3
shows a more complex example, where it’s more difficult to pinpoint the error. The correspond-
ing backtrace is shown in listing 1.4, and is to be understood as follows:

• a is unusable, because

• f has been merged with the unusable cluster, and a and f were in the same cluster before
that, because

3The backtrace has been redacted slightly; the lines related to expression flattening were removed. The full backtrace is
shown in appendix B

12 1 Introduction

• e and d have been merged, and a and d as well as e and f were in the same cluster before
that, because

• b and c have been merged, and a and b, c and d as well as e and f were in the same cluster
before that, because

– there is a path in which a and b have been merged,

– there is a path in which c and d have been merged,

– there is a path in which e and f have been merged

and these paths are joined together.

Fixing the error can happen in any line that the backtrace mentions. For example, the program-
mer might realize that in line 20, he meant to write a.f = a, which fixes the type error. Alterna-
tively, he might change line 28 to d.f = a, which fixes the error too.1.3.2. Projet Goal
The goal of this thesis is to develop an algorithm for producing error backtraces, whose memory
consumption is quadratically bound, and to implement it in the MultiJava compiler.

1.3 UTT Implementation and Project Goal 13

1 class Consumer {

2 void consume(free Object o) { }

3 }

4
5 class Foo {

6 peer Object f;

7 }

8
9 class Example {

10 uniq Foo a;

11 uniq Foo b;

12 uniq Foo c;

13 uniq Foo d;

14 uniq Foo e;

15 uniq Foo f;

16 rep Consumer consumer;

17
18 void error(boolean t, boolean u, boolean v) {

19 if (t) {

20 a.f = b;

21 } else if (u) {

22 c.f = d;

23 } else if (v) {

24 e.f = f;

25 }

26
27 b.f = c;

28 d.f = e;

29
30 consumer.consume(f);

31
32 Object l = a;

33
34 a = new Foo();

35 b = new Foo();

36 c = new Foo();

37 d = new Foo();

38 e = new Foo();

39 f = new Foo();

40 }

41 }

Listing 1.3: complex introductory example

14 1 Introduction

Backtrace:

File "Example.java", line 32, move(variable "l", field "a")

[cluster "unusable" = field "a"]

File "Example.java", line 30, merge(field "f", ANY/UNUSABLE)

[field "f" = field "a"]

File "Example.java", line 28, merge(field "e", field "d")

[field "f" = field "e" ^ field "d" = field "a"]

File "Example.java", line 27, merge(field "c", field "b")

[field "f" = field "e" ^ field "d" = field "c" ^ field "b" = field "a"]

JOIN:

/

| [field "b" = field "a"]

| File "Example.java", line 20, merge(field "b", field "a")

| []

\

/

| [field "d" = field "c"]

| File "Example.java", line 22, merge(field "d", field "c")

| []

\

/

| [field "f" = field "e"]

| File "Example.java", line 24, merge(field "f", field "e")

| []

\

Listing 1.4: backtrace for the example in listing 1.3

2. Simple Graph Baktraking
This chapter shows how a universe type error can be backtraced through simple programs that
do not contain branches or loops. We will use it to introduce several key concepts, which serve
as the basis for later chapters.2.1. Flow Analysis Overview
The universe type checking method implemented in the MultiJava compiler employs a code flow
analysis to find type errors in programs. As it traces a method, it builds a flow graph represent-
ing the discrete steps in a method’s execution. The analysis calculates the cluster state for each
node in the graph. In the following work, we will always look at only a single method, and
not at the interaction between individual methods. We will use the terms method and program as
synonyms.

In his Master’s thesis [1], Takano evaluates three different algorithms for flow analysis. Only one
of them, the alias matrix-based one, was chosen for enhancement in this work, as the other two
algorithms can be inefficient; their complexity and memory requirements may be exponential.
The alias matrix-based flow analysis is relatively memory efficient: the memory requirements are
in O(mn2), where m is the size of the method under analysis, and n is the number of references
used in a method; the algorithm complexity is quadratically bound too. It is a goal of this work
to not worsen the scalability of the memory requirements with the introduction of new features,
and as often as possible to rely on data structures already created by the data flow analysis.

A cluster state is a data structure containing for each pair of reference variables that exist at the
given point in the method, information about whether they point into the same cluster. To handle
branching and looping, tri-state logic is used: the question of whether reference x and reference
y are in the same cluster may have the answer TRUE, FALSE or UNKNOWN1 at a given point in the
method. We will use the following syntax in this text to describe such relations:

• x =C y: x and y are in the same cluster, or (x =C y) = TRUE,

• x 6=C y: x and y are not in the same cluster, or (x =C y) = FALSE,

• x
?
=C y: x and y may or may not be in the same cluster, or (x =C y) = UNKNOWN.

The situation where x
?
=C y may appear after two branches rejoin: If at the end of one branch,

x =C y is true, while at the end of the other branch, x 6=C y is true, these two relations will be

merged into x
?
=C y at the point where the branches join. This behavior is defined by the alias

matrix-based flow analysis algorithm. Other algorithms are feasible that have no need for a
?
=C

relation; in [1] two more methods are presented, and it is shown that the alias matrix method is
the most practical of them. In the rest of this work, we will always assume an alias matrix-based
flow analysis.

In addition to the references defined by the program, the flow analysis adds markers to the cluster
state to identify special clusters.:

1The value UNKNOWN is also called DONT_KNOW in other works

15

16 2 Simple Graph Backtracking

• Cunusable: the cluster containing those references that have been marked unusable,

• Cany: the cluster containing any-references,

• Cthis: the this-cluster, and

• Cpeer: the peer-cluster.

We will use two notation to visualize cluster states in this work. A matrix will be shown to
accurately depict a cluster state. For example, the following diagram shows the cluster state s
involving the four variables a, b, c and d, in which a and b are in the same cluster, and c and d
may be in the same cluster.

s a b c d
a ⊤ ⊤ ⊥ ⊥
b ⊤ ⊥ ⊥
c ⊤ ?
d ⊤

We leave the lower half of the matrix empty for clarity. Since (a =C b) = (b =C a), the full matrix
is symmetrical. The values on the diagonal are trivially true, since a reference always points into
the same cluster as itself.

We will also express cluster states using the following notation:

s = {a b | c d}

All the relevant variables in a cluster state are listen in curly braces, and clusters are separated by
bars. Iff two variables a and b are not separated by a bar, they are in the same cluster. This second

notation does not allow us to express the relation a
?
=C b, however it does have the advantage of

being more concise. We shall only use if the cluster state contains no
?
=C relations.2.2. Error Formula

We represent universe type errors in an error formula. It serves as an integral part of the error
backtrace, both for calculating the backtrace and for showing its results to the user. The error
formula is a logic formula consisting of a conjunction of terms. Each term in the error formula
consists of a statement expressing that two variables are in the same cluster; this statement is
made using the =C operator.

The error formula in the following example represents the error that the reference a has been
marked unusable. Cunusable means the “unusable cluster” marker:

a =C Cunusable

An error formula expressing that it is an error that the references a and b point into the same
cluster, and that c and d point into the same cluster, looks like this:

(a =C b) ∧ (c =C d)

To check whether an error specified by an error formula F exists at some point i in the program,
we evaluate F against the cluster state s, which will have previously been determined by the flow

2.2 Error Formula 17

analysis. In this way, the error formula becomes a function which maps cluster states to tri-state
logic values. We will use the following syntax to express that F is evaluated against s:

F(s)3

Evaluating F against s is defined as evaluating each term of F in s, and AND-ing the results.
Evaluating a term t means simply looking up the statement contained in t in the cluster state s,
which will result in a tri-state logic value. We will use the syntax t(s) for this operation. The
function AND which operates on tri-state logic values is defined as folllows:

AND(a, b)
b

TRUE FALSE UNKNOWN

a
TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

If F = t1 ∧ t2 ∧ · · · ∧ tn−1 ∧ tn, then we define:

F(s)3 := AND(t1(s), AND(t2(s), . . . , AND(tn−1(s), tn(s))))

We interpret F(s)3 as follows:

• F(s)3 = FALSE: The type error is not present.

• F(s)3 = UNKNOWN: There is at least one path through the program which leads to the type
error.

• F(s)3 = TRUE: All paths through the program lead to the type error.

If an error formula evaluates to TRUE or UNKNOWN with a given cluster state, there exists a pro-
gram error. Since the distinction is not important to us (after all, even if just one of many paths
through a program contains an error, the whole program is incorrect). We shall therefore define a
simplified evaluation F(s) which returns standard binary logic values, and define it as follows:

F(s) :=

{

f alse, if F(s)3 = FALSE

true, otherwise

We shall impose some restrictions on the terms that may be added to an error formula:

• The variables mentioned in them shall be ordered according to some arbitrary (but consis-
tent) ordering. In this text, lexical ordering shall be used, thus (a =C b) is allowed, but
(b =C a) is not. The expressiveness of error formulas is not reduced by this restriction, as
(a =C b) = (b =C a) always.

• The variables mentioned in a term must be different. Thus, the term (a =C a) is not allowed.
In other words, we don’t allow error formulas to contain tautologies. If any algorithm pro-
duces an error formula which contains terms that are tautologies, these terms are removed
from the error formula immediately.

• An error formula may not contain duplicate terms. The error formula (a =C b) ∧ (a =C b)
is therefore invalid.

The purpose of these restrictions is to allow more efficient handling of error formulas, and the fol-
lowing definition: the empty error formula denoted by F∅, i.e. the error formula which contains
no terms, evaluates to false always:

F∅(s)3 := FALSE ∀s

⇔ F∅(s) := f alse ∀s

18 2 Simple Graph Backtracking2.3. Statement Baktraking
To calculate the cluster states, the flow graph analysis maps a program to a flow graph containing
different types of nodes. In the context of the flow graph analysis, the nodes are also called analy-
sis statements or just statements. There are two sorts of statements: control flow related statements
and elementary statements. The control flow statements consist of the breakable, do, if, labeled, loop,
sequence, switch, try-catch-finally and while statements. They create the structure of the flow graph
and serve as containers for elementary statements. The flow graph analysis uses them to build a
list of edges linking elementary statements; for backtracking, we shall rely on those edges only
and ignore the control flow statements altogether.

The elementary statements are used to calculate the cluster states. Each elementary statement
has a transfer function which cluster states to cluster states. It is used to calculate the cluster state
at the next node give the cluster state at the current node. For example, a merge statement might
do the following:

{a b | c} −→ merge(b, c) −→ {a b c}

To allow backtracking of errors, we equip each elementary statement with a backtrace function. It
can be understood as a reverse analog of the transfer function: in the same way that the cluster
state at node ni is mapped to the cluster state at node ni+1 by the transfer function, the error
formula at the node ni+1 is mapped to the error formula at node ni by the backtrace function.
Given the above example, this might look like this:

(a =C b) ←− merge(b, c)←− (a =C c)

The above example would mean the following: after the merge statement, the type error is that a
points into the same cluster as c. a came to point into the same cluster as c when b was merged
with c at the shown merge statement, because a pointed into the same cluster as b before. If we
change the program so a no longer points into the same cluster as b before the merge statement,
then a will not point into the same cluster as c afterwards2 , and the error will be fixed.

In this section, we will discuss the elementary statements and show how their backtrace functions
are defined. We will use the following symbols:

• F: The error formula after the current statement; this is a parameter to the backtrace func-
tions,

• t1, . . . , tn: The terms in F,

• s: The cluster state before the current statement; this is a parameter to the transfer functions,2.3.1. Break
The break statement’s transfer function is the identity function, i.e. it does not change the cluster
state. Therefore, the backtrace function is also the identity function:

backtracebreak(F, s) := F

2of course, a 6=C c must hold too!

2.3 Statement Backtracking 192.3.2. Consume
The consume(a) statement is essentially the same as the merge(a, Cunusable) statement (see sec-
tion 2.3.6.) The only difference is that after the merge, the consume statement moves any cluster
markers that have been merged into the unusable-cluster into a new cluster of their own. That
difference is not relevant for a backtrace, since a cluster marker Cm that is in a cluster of its own
cannot appear in an error formula term: The only non-false term would be Cm =C Cm, which
is a tautology and is therefore not permitted in an error formula. The consume(a) statement is
therefore treated as a merge(a, Cunusable) statement:

backtraceconsume(a)(F, s) := backtracemerge(a,Cunusable)
(F)2.3.3. Continue

The continue statement’s transfer function is the identity function, i.e. it does not change the clus-
ter state. Therefore, the backtrace function is also the identity function:

backtracecontinue(F, s) := F2.3.4. Exit
The exit statement’s transfer function is the identity function, i.e. it does not change the cluster
state. Therefore, the backtrace function is also the identity function:

backtraceexit(F, s) := F2.3.5. Invariant Restore
The invariant_restore(x) statement checks whether x is of type peer. If it isn’t, nothing happens.
Otherwise, all local variables that point into the same cluster as a field are marked as pointing
into the any-cluster instead, and the restore field statement’s transfer function is executed (see
section 2.3.9.) We define the backtrace function as follows:

backtraceinvariant_restore(x)(F, s) :=

F if F(s)

(x =C peer) ∧

(

∧

i

{

ti if ti(s) 6= FALSE

h(ti, s) otherwise

)

otherwise

The helper function h accepts terms of the form (l =C ANY) and is defined as follows:

h((l =C ANY), s) := (f =C l) | (f =C l)(s) 6= FALSE, f is a field

All terms that are ever passed to the helper function x are of the form (l =C ANY): All terms in
F are true after the invariant restore statements, and we replace only those terms that are false
before. The transfer function of the invariant restore statement only moves local variables into the
any-cluster. The only terms in the error formula which can be false in s are those which contain
a local variable that has been moved. Since the term is true after the statement, it must be of the
form (l =C ANY).

There will always be a field f for which (f =C l)(s) is not FALSE since l is only moved if it points
into the same cluster as a field. If there are several such fields, any one of them may be used.

20 2 Simple Graph Backtracking2.3.6. Merge
The merge(a, b) statement merges the two clusters containing a and b. We define the backtrace
function as follows:

backtracemerge(a,b)(F, s) :=
∧

i

ti if ti(s) 6= FALSE

(a =C x) ∧ (b =C y) if ((a =C x) ∧ (b =C y))(s) | ti = (x =C y)

(a =C y) ∧ (b =C x) otherwise | ti = (x =C y)

If ti(s) = (x =C y)(s) = FALSE, then either ((a =C x) ∧ (b =C y))(s) or ((a =C y) ∧ (b =C x))(s)
(but not both) will always be TRUE or UNKNOWN: Since (x =C y)(s) is FALSE, x and y were in
different clusters. However, x =C y is TRUE or UNKNOWN after the cluster merge effected by this
merge statement, so x and y have to be in the two clusters containing a and b respectively, which
are the two clusters affected by the merge.

Note that in the cases where one or both of x and y is the same as a and b, we get terms that are
tautologies that are not added to the error formula. It is therefore possible that a merge statement
removes terms from the formula without adding any new terms.2.3.7. Move
The move(a, b) statement moves a into the cluster containing b. We define the backtrace function
as follows:

backtracemove(a,b)(F, s) :=
∧

i

ti if ti(s) 6= FALSE

(b =C y) if (a =C x)(s) 6= FALSE | ti = (x =C y)

(b =C x) otherwise | ti = (x =C y)

If ti(s) = (x =C y)(s) = FALSE, then a will be the same as either x or y: Since (x =C y)(s) = FALSE,
x and y were in different clusters. However, x =C y is TRUE or UNKNOWN after a has moved into b’s
cluster. Since no variable other than a has changed clusters, a has to be the same as one of x and
y.

a cannot be the same as both x and y: This would imply that x = y, which would mean that t is
a tautology, and tautologies are never added to the error formula. Of course, it would also mean
that ti never evaluates to FALSE, so it would be skipped when looking for terms to replace in this
statement’s backtrace function.2.3.8. New
The new(a) statement creates a new cluster and moves a into it. The backtrace function is the
identity function: since after the new(a) statement, a is in a cluster of its own, the error formula
cannot contain any term (other than a tautology, which would not be added to the error formula)
which contains a and is not FALSE. Therefore we define:

backtracenew(F, s) := F

2.4 Linear Backtracking Algorithm 212.3.9. Restore Fields
The restore fields statement restores proper field types my merging fields that point into different
clusters but are declared as pointing into the same cluster. This may result in several merges, or
none at all.

To backtrace the restore fields statement, we backtrace each of its merges in reverse order (see
section 2.3.6). Thus, if a restore fields statement’s transfer function effects the merge operations
merge(a1, b1), . . . , merge(an, bn), we define the backtrace function as follows. Let s1, . . . , sn be the
results of the transfer functions of the successive merge(a1, b1), . . . , merge(an, bn) operations:

backtracerestore_fields(F, s) :=

backtracemove(a1,b1)
(. . . backtracemove(an−1,bn−1)

(backtracemove(an,bn)(F, sn), sn−1), . . . , s1)2.3.10. Skip
The skip statement’s transfer function is the identity function, i.e. it does not change the cluster
state. Therefore, the backtrace function is also the identity function:

backtraceskip(F, s) := F2.4. Linear Baktraking Algorithm
We now present a simplified version of the backtracking algorithm. It backtraces an error in a
linear flow graph, i.e. a flow graph without branches3 or loops. It has the following parameters:

• n: The node in the flow graph where the error is found, and

• F: The error formula describing the type error.

Note that this algorithm does not concern itself with reporting or presenting the trace it creates.
We discuss the presentation of a backtrace in section 4.2.

linear_backtrace(F, n) :

1. If F = F∅ (f is empty, i.e. contains no terms), return.

2. If n has no incoming edges, return.

3. For the edge (nfrom, nto) with nto = n do:

i) Let s be the cluster state at nfrom.

ii) Let F′ := backtracenfrom
(F, s). The backtrace function that is one of the backtrace func-

tions defined in section 2.3: We choose the one that corresponds to the type of nfrom
4.

iii) Call linear_backtrace(F′, nfrom). This is a recursive call.

The recursion is always of finite depth: eventually the first node in the flow graph will be reached.
This node has no incoming edges, so the recursion stops at step 2 of the algorithm.

3Actually, the algorithm handles branches that do not rejoin.
4Edges only point from one elementary statement to another, so nfrom will always be an elementary statement and thus

will always have a backtrace function.

22 2 Simple Graph Backtracking

{ a | b | c | d } F∅

merge(a, b)

��
{ a b | c | d } a =C b

backtracemerge(a,b)

WW

merge(b, c)

��
{ a b c | d } a =C c

backtracemerge(b,c)

WW

skip

��
{ a b c | d } a =C c

backtraceskip

WW

move(d, a)

��
{ a b c d }

��

c =C d

backtracemove(d,a)

WW

test(c 6=C d)⇒ Error!
call linear_backtrace

==

︸ ︷︷ ︸

error formulas

Figure 2.1: backtracing a program without branches

Figure 2.1 shows a small example that demonstrates the linear_backtrace backtracking algorithm.
The left column shows the flow graph that was created by the flow graph analysis. At the end of
the flow graph, we have a test that fails; a backtrace is initiated according to the linear_backtrace
algorithm. Eventually, the backtrace leads to the empty formula F∅, and stops.

Note that a backtrace always backtrace to the top of a method. The backtrace will stop earlier if
there’s nothing that can be changed from that point on that would prevent the error. A trivial
example is shown in figure 2.2.2.5. Dealing with Branhes
We will now present an extended version of linear_backtrace which is also capable of dealing
with programs that contain branches:

2.5 Dealing with Branches 23

{ a | b }

skip

��
{ a | b } F∅

merge(a, b)

��
{ a b}

��

a =C b

backtracemerge(a,b)

WW

test(a 6=C b)⇒ Error!
call linear_backtrace

??

Figure 2.2: a backtrace that stops before it reaches the top of the method.

simple_branching_backtrace(F, n) :

1. If F = F∅ (f is empty, i.e. contains no terms), return.

2. If n has no incoming edges, return.

3. For every edge (nfrom, nto) with nto = n do:

i) Let s be the cluster state at nfrom.

ii) Let s′ := transfernfrom
(s).

iii) If F(s′) = f alse, continue at step 3 with the next edge.

iv) Let F′ := backtracenfrom
(F, s). The backtrace function that is one of the backtrace func-

tions defined in section 2.3: We choose the one that corresponds to the type of nfrom.

v) Call simple_branching_backtrace(F′, nfrom). This is a recursive call.

vi) Return.

The difference between simple_branching_backtrace and simple_backtrace is that the former can
deal with programs that have rejoining branches. The node in the flow graph at the point where
n branches join will have n incoming edges, and it is possible that the error was caused by some,
but not all of the branches. Therefore, simple_branching_backtrace will try to find an edge which
leads to a node where the error still exists, and once it does, continues the backtrace at that
node.

Since we are interested in only one path through the program that shows the error, we add
step 3.vi.

Figure 2.3 shows a program that contains two rejoining branches. When the backtrace gets to the
branch join point, the left branch is evaluated but not taken because the error formula evaluates
to f alse in it.

simple_branching_backtrace does not handle all situations correctly. If a program contains two
rejoining branches, but no single branch contains the error, the simple_branching_backtrace algo-
rithm will stop the backtrace prematurely. An example for this behavior is shown in figure 2.4.

24 2 Simple Graph Backtracking

If we encounter such a situation, to accurately present an explanation for the error, the backtrace
must evolve into a tree and trace both branches, splitting the terms of the error formula between
the branches. We present the algorithm branching_backtrace, and and apply it to the previous ex-
ample. Figure 2.5 shows how branching_backtrace succeeds where simple_branching_backtrace
failed.

At this point, we need to make explicit the distinction between entry and exit states, or more
specifically, the distinction between a node’s entry cluster state, and the parent node’s exit cluster
state. Up until now, whenever we’ve referred to a node’s cluster state, we were referring to the
node’s entry cluster state, i.e. the cluster state as it exists before the node’s transfer function is
applied to it. In the figures 2.1–2.5, this is the cluster state above each node. Now, let us define:

• A node’s entry state is the cluster state that is used as parameter for the node’s transfer
function.

• A node’s exit state is the cluster state that is the result of calling the node’s transfer function
with the entry state as parameter.

Inside a linear (non-branching) part of a program, a node’s entry state equals to its parent node’s
exit state. If a node has more than one parent, i.e. it is a branch join point, this is no longer true:
the node’s entry state is the result of all its parents’ exit states joined together.

In the following backtracing algorithm, we will use the expression false parent. A node’s parent is
a false parent, if the node’s error formula evaluates to false against the parent’s exit state.

branching_backtrace(F, n) :

1. If F = F∅ (f is empty, i.e. contains no terms), return.

2. If n has no incoming edges, return.

3. Let Pf be the list of false parents, initialized to ∅.

4. For every edge (nfrom, nto) with nto = n do:

i) Let s be the entry state at nfrom.

ii) Let s′ := transfernfrom
(s).

iii) If F(s′) = f alse, add nfrom to Pf and continue at step 4 with the next edge.

iv) Let F′ := backtracenfrom
(F, s). The backtrace function that is one of the backtrace func-

tions defined in section 2.3: We choose the one that corresponds to the type of nfrom.

v) Call branching_backtrace(F′, nfrom). This is a recursive call.

vi) Return.

5. Let A : pf −→ Fp be a mapping from false parents to error formulas, initialized with A(pf) =
F∅ ∀ pf ∈ Pf

6. For every term t in f do:

i) Find the first pf ∈ Pf, which has an exit state s′ and t(s′) 6= FALSE. Add t to A(pf).

7. For every pf ∈ Pf do:

i) If A(pf) = F∅, continue at step 7 with the next pf.

ii) Let s be the entry state at pf.

iii) Let F′ := backtracepf
(A(pf), s).

iv) Call branching_backtrace(F′, pf). This is a recursive call.

2.6 Worst-Case Scenarios 252.6. Worst-Case Senarios2.6.1. Arbitrarily Large Error Formulas
Since the merge statement’s backtrace function can add new terms to the error formula, it is pos-
sible to construct programs which, when backtraced, lead to a large error formulas that contain
every single variable in the program. Consider the following situation:

{ a b | c d | e f | g h} (a =C b) ∧ (c =C d) ∧ (e =C f) ∧ (g =C h)

merge(b, c)

��
{ a b c d | e f | g h} (a =C d) ∧ (e =C f) ∧ (g =C h)

backtracemerge(b,c)

WW

merge(f , g)

��
{ a b c d | e f g h} (a =C d) ∧ (e =C h)

backtracemerge(f ,g)

WW

merge(d, e)

��
{ a b c d e f g h}

��

a =C h

backtracemerge(d,e)

WW

test(a 6=C h)⇒ Error!

77

If we have N variables, then this program can be described in the following way:

Error Formula Blow-Up(N)

1. Let there be N
2 pairs of variables, and let each pair be in a distinct cluster.

2. While there is more than 1 cluster:

i) Select two of the smallest clusters, and merge them using variables that have not been
mentioned in merge statements before.

3. Let a and b be the two variables that have not yet been mentioned in merge statements
before. Test for a 6=C b.

Such a program will contain log2(N) merge statements and result in a backtrace containing N
2

terms. This is well within our goal of having quadratic bounds for the memory requirements of
the backtracing algorithm.

26 2 Simple Graph Backtracking2.6.2. Arbitrarily Many Baktraes
Since at branch join points, a backtrace can split into two backtraces, it is possible to construct
programs which, when backtraced, lead to a large number of backtraces. Consider the following
program with 8 variables:

{a | b | c | d | e | f | g | h }

iiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUU

merge(a, b)

��

merge(g, h)

��
{a b | c | d | e | f | g | h }

��

{a | b | c | d | e | f | g h }

��
merge(e, f)

��

merge(c, d)

��
{a b | c | d | e f | g | h }

**UUUUUUUUUUUUUUUU
{a | b c | d | e f | g | h }

ttiiiiiiiiiiiiiiii

{a b | c d | e f | g h }

iiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUU

merge(b, c)

��

merge(f , g)

��
{a b c d | e f | g h }

**UUUUUUUUUUUUUUUU
{a b | c d | e f g h }

ttiiiiiiiiiiiiiiii

{a b c d | e f g h }

merge(d, e)

��
{a b c d e f g h }

test(a, h)⇒ Error!

We’ll show the corresponding error backtrace separately:

2.6 Worst-Case Scenarios 27

F∅ F∅

(a =C b)

backtracemerge(a,b)

[[

F∅ F∅ (g =C h)

backtracemerge(g,h)

[[

(a =C b)

ZZ

(c =C d)

backtracemerge(c,d)

[[

(e =C f)

backtracemerge(e, f)

[[

(g =C h)

ZZ

(a =C b) ∧ (c =C d)

ZZ ??

(e =C f) ∧ (g =C h)

ZZ ??

(a =C d)

backtracemerge(b,c)

ZZ

(e =C h)

backtracemerge(f ,g)

ZZ

(a =C d) ∧ (e =C h)

ZZ 66

a =C h

backtracemerge(d,e)

ZZ

To generalize: it is possible to construct a program that contains 2N variables and 2N− 1 merges,
and splits the backtrace into a tree with N leaves. This results in an exponential runtime, however,
since we can develop the error backtrace tree depth-first, storage requirements are still quadrati-
cally bounded.

28 2 Simple Graph Backtracking

{ a | b | c | d | e } F∅

merge(a, b)

��
{ a b | c | d | e }

kkkkkkkkkkkkkk

SSSSSSSSSSSSSS
a =C b

backtracemerge(a,b)

WW

merge(d, e)

��

merge(b, c)

��
f alse { a b | c | d e }

))SSSSSSSSSSSSSS
{ a b c | d | e }

uukkkkkkkkkkkkkk
a =C c

backtracemerge(b,c)

ee

{ a b c | d e } a =C c choose edge

DD

do not choose edge

dd

skip

��
{ a b c | d e } a =C c

backtraceskip

WW

move(d, a)

��
{ a b c d e }

��

c =C d

backtracemove(d,a)

WW

test(c 6=C d)⇒ Error!
call simple_branching_backtrace

<<

︸ ︷︷ ︸

error formulas

Figure 2.3: backtracing a program with branches

2.6 Worst-Case Scenarios 29

{ a | b | c | d }

mmmmmmmmmmmm

SSSSSSSSSSSSSS

merge(a, b)

��

merge(c, d)

��
f alse { a b | c | d }

((QQQQQQQQQQQQ
{ a | b | c d }

uukkkkkkkkkkkkkk
f alse

{ a b | c d } (a =C b) ∧ (c =C d)
do not choose edge

CC

do not choose edge

cc

merge(b, c)

��
{ a b c d }

��

a =C d

backtracemerge(b,c)

VV

test(a 6=C d)⇒ Error!
call simple_branching_backtrace

<<

Figure 2.4: Backtracing a program with branches, where no single branch contains the error. The
simple_branching_backtrace algorithm stops early.

F∅ { a | b | c | d }

mmmmmmmmmmmm

SSSSSSSSSSSSSS
F∅

merge(a, b)

��

merge(c, d)

��
a =C b

backtracemerge(a,b)

::

{ a b | c | d }

((QQQQQQQQQQQQ
{ a | b | c d }

uukkkkkkkkkkkkkk
c =C d

backtracemerge(c,d)

gg

{ a b | c d } (a =C b) ∧ (c =C d)
choose edge

CC

choose edge

cc

merge(b, c)

��
{ a b c d }

��

a =C d

backtracemerge(b,c)

VV

test(a 6=C d)⇒ Error!
call simple_branching_backtrace

<<

Figure 2.5: Backtracing a program with branches, where no single branch contains the error. The
branching_backtrace algorithm returns a backtrace that is a tree.

30 2 Simple Graph Backtracking

3. Graph Unfolding
Previously, we excluded programs containing loops from type error backtraces. In this chapter,
we will present a method for unrolling loops in a memory efficient fashion, which allows us to
backtrace programs with loops using the branching_backtrace algorithm.3.1. Problem Desription
The universe type flow analysis as implemented in MultiJava handles loops and branches with
a fixpoint analysis. A loop is executed1 for as long as the cluster states of nodes inside the loop
change. This means that the nodes in the flow graph can possibly be visited several times. Fig-
ure 3.1 shows an example for such a situation.

n1

��
n2

��
n3

}}||
||

||

!!B
BB

BB
B

n4

!!B
BB

BB
B

n5

}}||
||

||

n6

��
n7

��

::

n8

Figure 3.1: a program containing a loop; because of the branching, the loop is possibly executed
twice during the flow graph analysis.

The following is a path through the graph:

n1 → n2 → n3 → n4 → n6 → n7 → n2 → n3 → n5 → n6 → n7 → n8

The nodes n2, n3, n6 and n7 are each visited twice. Since at each node, only the latest cluster state
is stored, this path cannot be backtraced: the second time we reach e.g. n2 in the backtrace, the
cluster state with which to evaluate the error formula is no longer accessible.

1By execute we mean that the node’s transfer functions are called; we’re purely within the flow analysis here; the actual
program is not run.

31

32 3 Graph Unfolding3.2. Generations and Edge Traes
We equip each alias matrix representing a cluster state with a value called generation. The gener-
ation acts as a counter: Whenever a node is visited during the flow graph analysis, and its cluster
state would change, we increase the the generation, and store the new cluster state as a separate
object. The previous cluster state (indeed, all previous cluster states) remain accessible and can
be identified by their generation value. If when a node is revisited, the cluster state does not
change, the generation is not incremented.

Note: When we refer to a node’s generation, we refer to the node with it’s cluster state at the
given generation.

By observing the flow analysis process, we can define a new graph, the unrolled flow graph where
the nodes consist of all unique 〈n, g〉 tuples where n is a node in the original flow graph and g is
a generation, and the edges are the edges followed by the flow graph analysis. We will call such
an edge in the unrolled flow graph, which is a tuple (〈nfrom, gfrom〉, 〈nto, gto〉) an edge trace.

Figure 3.2 shows the unrolled flow graph for the program shown in figure 3.1.

〈n1, 1〉

��
〈n2, 1〉

��
〈n3, 1〉

zzttt
tt

tt

%%JJ
JJ

JJ
J

〈n4, 1〉

%%JJ
JJ

JJ
J

〈n5, 1〉

zzttt
tt

tt

〈n6, 1〉

��
〈n7, 1〉

��
〈n2, 2〉

��
〈n3, 2〉

zzttt
tt

tt

%%JJ
JJ

JJ
J

〈n4, 2〉

%%JJ
JJ

JJ
J

〈n5, 2〉

zzttt
tt

tt

〈n6, 2〉

��
〈n7, 2〉

��
〈n8, 1〉

Figure 3.2: The unrolled flow graph for the previous program.

3.3 Alias Matrix Compression 33

An unrolled flow graph will contain no loops, and since each node 〈n, g〉 corresponds to exactly
one cluster state, the cluster state of n at generation g, the unrolled flow graph satisfies all pre-
conditions for the branching_backtrace algorithm.3.3. Alias Matrix Compression
Unrolling the flow graph to deal with loops has one drawback: The number of cluster states we
need to store for the backtrace can be large, if loops are iterated over several times during the
flow graph analysis. However, it is possible to compress all generations of the cluster state of a
single node into a single alias matrix. In this section, we will assume that all cluster states are
always represented by alias matrices.

The JOIN(a, b) function, which takes two tri-state logic values and returns one tri-state logic
value, has been defined in [1] as:

JOIN(a, b)
b

TRUE FALSE UNKNOWN

a
TRUE TRUE UNKNOWN UNKNOWN

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

We observe:

Corollary 3.1. Let ai+1 := JOIN(ai, b). ai+1 is either equal to a or UNKNOWN.

The JOIN(a, b) function is used to define the JOIN(s, t) function, which takes as parameter two
cluster states with n elements and returns the cluster state u with n elements:

ui := JOIN(si, ti) | i ∈ [1, n]

Theorem 3.1. As the generation of a cluster state increases, its values may change in a monotonous
fashion from TRUE or FALSE to UNKNOWN only.

Proof. Let the node n in a flow graph be a node which is visited more than once by the flow graph
analysis, and let the i’th visit result in the cluster state s〈n,i〉. In the i + 1’th iteration, let the chosen
parent node n be m with generation j. The new cluster state at n is defined as follows:

s〈n,i+1〉 := JOIN(s〈n,i〉, transferm(s〈m,j〉)),

where JOIN(s〈n,i〉, transferm(s〈m,j〉)) is the function that applies JOIN(a, b) in an element-wise

manner to the elements of s〈n,i〉 and transferm(s〈m,j〉). As per corollary 3.1, each element in s〈n,i+1〉
is either equal to the same element in s〈n,i〉 or UNKNOWN.

A series of tri-state logic values a1, . . . , an that change in a monotonous fashion from TRUE or
FALSE to UNKNOWN can be compressed to just the two values aprevious and g:

aprevious := a1

g :=

{

i | ai 6= ai−1 if ∃ai 6= ai−1

0 otherwise

The series can be reconstructed as follows:

ai =

{

aprevious if i < g ∨ g = 0,

UNKNOWN otherwise

34 3 Graph Unfolding

By compressing each series of values in a cluster state alias matrix in this way, we can represent
an arbitrary number of cluster state generations in a compressed alias matrix. Each element of
the compressed alias matrix contains the previous value and the value generation; the current value
is implied. To reconstruct a generation i of the cluster state from the compressed alias matrix, we
reconstruct the generation i of each value.

Note that the values of any generation of the cluster state can be accessed in constant time, i.e.
element access is an O(1) operation. Therefore, using a compressed alias matrix instead of a
series of alias matrices does not have any negative impact on the scalability of the algorithm in
which it is used, processing time-wise. As for memory-wise scalability, using compressed alias
matrices to store all generations of all cluster states has the same scalability as storing just the
latest generation with standard alias matrices.

An example showing matrix compression is presented in figure 3.1.

3.3 Alias Matrix Compression 35

current value�
�

�
��9

value generation�

previous valueX
X

X
X

XXy

generation = 3

=C b c d

a

b

c

UNKNOWN
3

FALSE

UNKNOWN
3

FALSE

UNKNOWN
3

FALSE

0
TRUE

UNKNOWN
2

FALSE

UNKNOWN
2

FALSE

generation = 2

=C b c d

a

b

c

UNKNOWN
3

FALSE

UNKNOWN
3

FALSE

UNKNOWN
3

FALSE

0
TRUE

UNKNOWN
2

FALSE

UNKNOWN
2

FALSE

generation = 1

=C b c d

a

b

c

UNKNOWN
3

FALSE

UNKNOWN
3

FALSE

UNKNOWN
3

FALSE

0
TRUE

UNKNOWN
2

FALSE

UNKNOWN
2

FALSE

Figure 3.1.: Compressed alias matrix. The generation number inside each box specifies at which
the generation the current value is used; at earlier generations, the previous value is
used. The unused value is printed in gray. Note that the data structure is exactly the
same in all three generations; what changes is only which values are used.

36 3 Graph Unfolding

4. Implementation4.1. Mapping Type Errors to Error Formulas
This section lists the universe type errors found by MultiJava, and their respective mappings
to error formulas. We will refer to the errors by their message names as defined in the class
org.multijava.mjc.CUniverseUniqMessages. Any program variables they refer to will be ap-
pended to the name in parentheses. Every universe type error that launches a backtrace is
mapped to an error formula F which evaluates to TRUE or UNKNOWN at the node and generation
where the error is detected.

Most error backtraces are launched from the org.multijava.mjc.JMethodDeclaration class, un-
less otherwise noted. The errors are actually detected by the flow analysis solver however, i.e. a
subclass of org.multijava.universes.uniqueness.Solver.

In this section, the symbols a and b will refer to variables, while Cx and Cy will refer to cluster
identification markers.

The following type errors launch a backtrace:

• REP_CLUSTER_INCOMPATIBLE_VARIABLE_IS_IS(a, Cx, b, Cy)
Illegal attempt to merge a, which points into Cx, and b, which points into Cy.
⇒ F := (a =C Cx) ∧ (b =C Cy)

• REP_CLUSTER_INCOMPATIBLE_VARIABLE_IS_MAY(a, Cx, b, Cy)
Illegal attempt to merge a, which points into Cx, and b, which may point into Cy.
⇒ F := (a =C Cx) ∧ (b =C Cy)

• REP_CLUSTER_INCOMPATIBLE_VARIABLE_MAY_IS(a, Cx, b, Cy)
Illegal attempt to merge a, which may point into Cx, and b, which points into Cy.
⇒ F := (a =C Cx) ∧ (b =C Cy)

• REP_CLUSTER_INCOMPATIBLE_VARIABLE_MAY_MAY(a, Cx, b, Cy)
Illegal attempt to merge a, which may point into Cx, and b, which may point into Cy.
⇒ F := (a =C Cx) ∧ (b =C Cy)

• REP_CLUSTER_INCOMPATIBLE_CLUSTER_IS(Cx, b, Cy)
Illegal attempt to merge Cx with b, which points into Cy.
⇒ F := b =C Cy

• REP_CLUSTER_INCOMPATIBLE_CLUSTER_MAY(Cx, b, Cy)
Illegal attempt to merge Cx with b, which may point into Cy.
⇒ F := b =C Cy

• NON_UNIQUE_CLUSTER_IS_CONSUMED(a)
Illegal attempt to transfer the this-cluster; a points into this-cluster.
⇒ F := a =C Cthis

• NON_UNIQUE_CLUSTER_MAY_BE_CONSUMED(a)
Illegal attempt to transfer the this-cluster; a may point into this-cluster.
⇒ F := a =C Cthis

37

38 4 Implementation

• VARIABLE_IS_UNUSABLE(a)
Variable a is unusable.
⇒ F := a =C Cunusable

• VARIABLE_MAY_BE_UNUSABLE(a)
Variable a may be unusable.
⇒ F := a =C Cunusable

• DIFFERENT_TYPE_FIELDS_IN_SAME_CLUSTER(a, b)
The fields a and b are declared to be of different types and should therefore point to different
clusters at the end of the method.
⇒ F := a =C b

The following errors are no longer used by MultiJava. These errors will therefore not result in a
backtrace, and are not mapped to an error formula:

• FIELD_IS_UNUSABLE_BEFORE_NON_PURE_PEER_CALL

• FIELD_MAY_UNUSABLE_BEFORE_NON_PURE_PEER_CALL

• FIELD_IS_UNUSABLE_BEFORE_NON_PURE_PEER_CONSTRUCTOR_CALL

• FIELD_MAY_UNUSABLE_BEFORE_NON_PURE_PEER_CONSTRUCTOR_CALL

• FIELD_IS_UNUSABLE_UPON_NON_PURE_EXIT

• FIELD_MAY_UNUSABLE_UPON_NON_PURE_EXIT

• INFERRED_FIELDTYPE_NOT_ASSIGNABLE_TO_DECLARED

• MERGE_TWO_NONTRANSFERABLE_CLUSTERS

The following errors are type declaration errors or result from implementation limitations, and
will not result in a backtrace. They are therefore not mapped to an error formula:

• UNIQ_FORBIDDEN_HERE

• FREE_FORBIDDEN_HERE

• REP_CLUSTER_FORBIDDEN_HERE

• REP_CLUSTER_FIELD_UNKNOWN

• REP_CLUSTER_FIELD_UNKNOWN_IN_CLASS

• REP_CLUSTER_FIELD_NOT_UNIQUE

• ILLEGAL_CAST

• PURE_METHOD_PARAMETER_CHANGED

• PURE_METHOD_RETURN_CHANGED

• PURE_METHOD_PARAMETER_ERROR

• PURE_METHOD_RETURN_ERROR

• NON_FREE_REP_PARAM_OF_NON_PURE_THROUGH_PIVOT_FORBIDDEN

• CONSTRUCTOR_NON_FREE_REP_IN_SIGNATURE_FORBIDDEN

• METHOD_PARAMETER_MISMATCH

• RETURN_TYPE_MISMATCH

• ILLEGAL_ARRAY_WRITING

• ARRAY_WRITING_THROUGH_READONLY

4.2 Presenting the Backtrace 39

• NO_DYNAMIC_UNIQUENESS_YET

• MODIFIER_BEFORE_LOCAL

• MODIFIER_FOR_LOCAL_OBJECT_CREATION4.2. Presenting the Baktrae
An error backtrace produces a great deal of information, not all of which is useful to the pro-
grammer encountering a universe type error. In general, we add the following information to
an error message: For the nodes in the backtrace, we show their operation and parameters, and
their entry error formula, i.e. the error formula that matches the node’s entry cluster state. For
example, a merge statement that looks like this:

{ a | b c }

merge(a, b)

��
{ a b c }

Would result in the following output, assuming the error formula after the merge statement is
a =C c:

File "Example.java", line 30, merge(field "a", field "b")

[field "b" = field "c"]

Note that the order of the information in the error message is reversed with regard to the pro-
gram. The point at which the type error was detected will form the first line of the error message,
and as we backtrace upwards through the program, output is appended to the error message.

If a join point in the program causes the backtrace to split into branches, we mention explicitly
that there is a join point, we show the exit formulas for each branch, then continue the backtrace
in each branch. For example, a join that looks like this:

merge(a, b)

��

merge(c, d)

��
{ a b | c | d }

''NNNNNNNNNNN
{ a | b | c d }

wwppppppppppp

{ a b | c d }

would produce the following segment in the error message, assuming the error formula is (a =C

b) ∧ (c =C d):

40 4 Implementation

JOIN:

/

| [field "a" = field "b"]

| File "Example.java", line 10, merge(field "a", field "b")

| []

\

/

| [field "c" = field "d"]

| File "Example.java", line 12, merge(field "c", field "d")

| []

\

There are two exceptions to this procedure: if at a join point, the backtrace splits into several
branches, we don’t print any branches which have an empty exit formula. And if a node does
not cause a change in the error formula, we usually don’t show it in the error message. This
behavior can be changed by switching MultiJava into verbose mode using the v command line
parameter. Printing all nodes can be helpful when trying to verify the exact path taken through
a program by the backtrace.

There remain two minor issues with the presentation of an error backtrace in the described form.
The restriction to plain text means that the wealth of information in a backtrace can make it
somewhat difficult to read; debugging tools which create a graphic representation of a backtrace
might be helpful here. And the mechanism of expression flattening leads to the appearance of
many temporary variables which show up in the backtrace, increasing its size and making it
harder to read. An unedited backtrace is shown in appendix B; the temporary variables created
by expression flattening show up as sub expressions.4.3. Salability
It is one goal of this work to implement universe type error backtracking in such a way that it
scales well enough to allow error analysis in any real life program, and on commodity hardware.
The uniqueness extension of MultiJava with the alias matrix solver is quadratically bounded in
memory and processing (time) requirements [1, p.101]. In this chapter, we show that the memory
requirements with the additional information required for error backtracking is still quadratically
bounded, and that the runtime is quadratically bounded in most cases.

We define the scalability of universe type error backtracking in a given method m in terms of

• s, the size of the method, i.e. the number of nodes in its flow graph,

• f , the number of fields in the class containing m, and

• l, the number of local variables in m.

Note that non-reference fields and variables, i.e. those containing basic Java types such as float
or int, are not considered for defining f and l.4.3.1. Memory Requirements
The following information relevant to an universe type error backtrace is stored:

4.3 Scalability 41

• At each of the s nodes, an alias matrix containing the current cluster and all previous cluster
states at s is stored. The alias matrix has (f + l) columns and rows. Each element (i, j) of
the alias matrix contains three values: the current value of (i =C j), the generation at which
this value was set, and the previous value.

The space requirements for all cluster states in a method are therefore O(s(f + l)2).

It is possible to reduce space usage for this item by a constant factor: since the alias matrix
is symmetric, only one half of the matrix needs to be stored. And because the current value
at a given position in the alias matrix is always UNKNOWN for any non-zero generation, the
current generation value can be made implicit:

current_valuei,j =

{

previous_valuei,j if generationi,j = 0

UNKNOWN otherwise

• Edge traces are stored in an array of linear linked lists, with the array index associating
each list of edge traces with an edge id. Whenever an edge is walked during the flow graph
analysis, a tuple of the form (generationsource, generationdestination) is appended to the list
thus associated with the edge.

The number of edges in a method is proportional to its size s. If the method contains no
loops, each edge is walked once during the flow analysis, so the number of edge traces is
also proportional to s. If the method does contain loops, then the edges inside the loops
may be walked several times, until the cluster states at the nodes inside the loop no longer
change. Because of monotony, each cluster state value can only change once (see theo-
rem 3.1), so there are at most (f + l)2 loop iterations. A loop can be no bigger than the
method that contains in, the number of edge traces is in O(s(f + l)2). Nested loops cannot
cause more edge walks because of the monotony theorem.

• Typically, the error formula will be small, containing only a handful of terms. However, it
is possible to construct a program that contains every variable once, so the size of the error
formula is in O(f + l).4.3.2. Proessing Requirements

The flow graph analysis was extended in two ways:

• For each edge that is walked during the analysis, create and store an edge trace. All op-
erations involved (looking up the current generation of the source and destination node,
looking up the list associated with an edge and appending the edge trace to that list) are
constant time operations.

• Storing the previous value and the generation of the current value for each value in a cluster
state. This involves copying the current value to the previous value, and copying the cur-
rent cluster state generation to the value generation. These are constant time generations.

Since all extensions to the flow graph analysis run in constant time, its processing time is still
quadratically bounded.

Once an error is detected, a backtrace is started. Many operations are proportional to the size of
the error formula, which is in O(f + l).

The following operations are involved in an universe type error backtrace:

• Adding terms to the error formula: since terms are stored in a HashSet, it is in O(1).

• Removing terms from an error formula: also in O(1).

42 4 Implementation

• Evaluating an error formula against a given cluster state: For each term in the error formula,
we look up one value in the cluster state, then apply the operations in the error formula.
The look-up takes constant time, so the evaluation is proportional to the size of the error
formula, and therefore in O(f + l).

• Backtracking through break, continue, exit, skip and new statements: Since the backtrace
methods of these statements are empty, they are in O(1).

• Backtracking through consume statements: As this is handled like a MergeStmt, it is in
O(f + l).

• Backtracking through InvRestoreStmt: The transfer function() can create as many merges
as there are local variables, which each need to be backtraced. The backtrace is therefore in
O(l(f + l)).

• Backtracking through merge statements: This operation evaluates each term in the error
formula. If a term evaluates to FALSE, it is replaced with at most two other terms, which
takes constant time. The operation is thus in O(f + l).

• Backtracking through move statements: This operation evaluates each term in the error
formula. If a term evaluates to FALSE, it is replaced with exactly one term, which takes
constant time. The operation is thus in O(f + l).

• Backtracking through restore fields statements: Duplicating the cluster state is in O((f +
l)2), as is simulating the transfer function. Backtracking through the up to f − 1 merges is
in O(f 2 + l), so the whole operation is in O((f + l)2).

• Looking up an edge trace: Since edge traces are stored in a linear list, and the number of
edge traces for an edge is in O((f + l)2), looking up an edge trace is in O((f + l)2) too1.

• Switch to a previous generation of a cluster state: Every value in a cluster state is checked
against the wanted generation, and possibly switched to its previous value. This operation
is therefore in O((f + l)2).

The full backtrace in a linear (branch and loop free) program consists of up to s repetitions of the
operations looking up an edge trace, following an edge, restoring a cluster state to a previous
generation and calling a backtrace function. The processing times of these operations are all in
O((f + l)2), therefore the universe type error backtrace’s processing time is in O(s(f + l)2)

Since a branch join point can cause each half of the branch to be backtraced, scalability is worse
for programs with branching. It is possible to construct a program with approximately s

3 join
points, that causes two backtraces at each such point. The number of backtraces launched will be

2
s
3 , however as backtraces are launched nearer to the top of the program, they will be shorter. The

total number of statement backtraces is approximately 3(2
s
3 +1− 1), so the backtrace’s processing

time is in O(2s(f + l)2).4.4. Nonfuntional Changes
An attempt was made to modernize and clean up the MultiJava code without changing its be-
havior:

1Using another data structure than a linear linked list would allow for a speed-up here; however we feel that the
occurrence that a loop is iterated more than a couple of times is too rare to warrant the added complexity.

4.4 Nonfunctional Changes 43

• Since some parts of the universe type code already used Java 5-only features, generics para-
maters were added to collections throughout the code base in order to increase type safety.
In some isolated areas, this was not possible because it would have lead to covariance er-
rors. Where possible, iterator-based loops have been replaced with Java 5’s new enhanced
for-loop, making the code clearer and more concise.

• The constants used for tri-state logic, TRUE, FALSE and UNKNOWN, were previously values of
type int. To increase type safety and code clarity, their type was changed to TriValue, a
new enum class.

• Similarly, the internals of the AliasMatrix implementation were modified for more type
safety. The external interface remains unchanged.

• Some of the algorithms used in the AliasMatrix class were replaced with more efficient
versions. This was only done if the new algorithm stayed true to the idea and spirit of the
previous one.

• The flow analysis code contained some parts which apparently were created in earlier ver-
sions of the code base, but then fell into disuse. Such parts were removed to improve code
clarity.

44 4 Implementation

5. Conlusion and Future Work5.1. Conlusion
An algorithm has been presented that allows backtracing of universe type errors through any
program. We have shown how loops can be unrolled by working with cluster state generations,
and how this additional information can be stored efficiently, so that the algorithm’s memory
requirements are quadratically bound, even when the program contains an arbitrarily complex
arrangement of branches and loops. The backtracking algorithm has been implemented in Mul-
tiJava and connected to the existing universe type checking code.5.2. Future Work
We present a list of ideas of how future work may develop the concepts presented in this thesis
further.

Technical future work:

• When backtracing a program with branches which rejoin and split several times, it is pos-
sible that several paths through the backtrace tree visit the same node more than once with
the same error formula. In such a case, the remaining part of the paths will be identical; the
backtrace can be sped up by caching the first path.

• At the moment, the universe type checking framework of MultiJava may report errors that
are “shadowed” by another error, i.e. that are subsequent errors. Implementing a reach-
ability analysis and suppressing error reports in such cases reduces the amount of error
messages given by MultiJava, while the relevant information remains the same and thus
stands out more.

• Because of flattening, backtraces are longer and less intuitive to understand than they could
be. If the effects of flattening could be at least partially hidden from the programmer, the
backtraces would be easier to understand.

Theoretical future work:

• The backtracking algorithms ought to be generalizable to any flow graph framework with
per-node monotony.

45

46 5 Conclusion and Future Work

A. Bibliography
[1] Yoshimi Takano. Implementing Uniqueness and Ownership Transfer in the Universe Type System.

Master’s thesis, ETH Zurich, 2007.
URL: http://www.sct.ethz.ch/projects/student_docs/Yoshimi_Takano .

[2] Annetta Schaad. Inferring Universe annotations in the presence of ownership transfer. Master’s
thesis, ETH Zurich, 2007.
URL: http://sct.ethz.ch/projects/student_docs/Annetta_Schaad/ .

[3] Philip Wadler. Linear Types Can Change the World! In IFIP TC 2 Working Conference on Program-
ming Concepts and Methods, pp. 347–359. North Holland, 1990.

[4] John Hogg. Islands: aliasing protection in object-oriented languages. ACM SIGPLAN Notices,
26(11):271–285, November 1991. ISSN 0362-1340.

[5] Henry G. Baker. “Use-once” variables and linear objects: storage management, reflection and multi-
threading. ACM SIGPLAN Notces, 30(1):45–52, 1995. ISSN 0362-1340.

[6] Naftaly H. Minsky. Towards Alias-Free Pointers. In ECCOP ’96: Proceedings of the 10th European
Conference on Object-Oriented Programming, pp. 189–209. Springer Verlag, 1996. ISBN 3-540-
61439-7.

47

http://www.sct.ethz.ch/projects/student_docs/Yoshimi_Takano
http://sct.ethz.ch/projects/student_docs/Annetta_Schaad/

48 A. Bibliography

B. Example Baktrae
The following is the full, unredacted backtrace for the example program shown in listing 1.3.
Some line breaks have been added because of width constraints.

File "Example.java", line 32 error: Field "a" is unusable. [Universes (Uniqueness)]

Backtrace:

File "Example.java", line 32, move(variable "l", field "a")

[cluster "unusable" = field "a"]

File "Example.java", line 30, merge(sub expression "f", ANY/UNUSABLE)

[field "a" = sub expression "f"]

File "Example.java", line 30, move(sub expression "f", field "f")

[field "f" = field "a"]

File "Example.java", line 28, merge(sub expression "e", sub expression "d")

[field "f" = sub expression "e" ^ field "a" = sub expression "d"]

File "Example.java", line 28, move(sub expression "e", field "e")

[field "a" = sub expression "d" ^ field "f" = field "e"]

File "Example.java", line 28, move(sub expression "d", field "d")

[field "f" = field "e" ^ field "d" = field "a"]

File "Example.java", line 27, merge(sub expression "c", sub expression "b")

[field "f" = field "e" ^ field "d" = sub expression "c"

^ field "a" = sub expression "b"]

File "Example.java", line 27, move(sub expression "c", field "c")

[field "f" = field "e" ^ field "a" = sub expression "b"

^ field "d" = field "c"]

File "Example.java", line 27, move(sub expression "b", field "b")

[field "f" = field "e" ^ field "d" = field "c" ^ field "b" = field "a"]

JOIN:

/

| [field "b" = field "a"]

| File "Example.java", line 20, merge(sub expression "b",

| sub expression "a")

| [field "b" = sub expression "b" ^ field "a" = sub expression "a"]

| File "Example.java", line 20, move(sub expression "b", field "b")

| [field "a" = sub expression "a"]

| File "Example.java", line 20, move(sub expression "a", field "a")

| []

\

/

| [field "d" = field "c"]

| File "Example.java", line 22, merge(sub expression "d",

| sub expression "c")

| [field "d" = sub expression "d" ^ field "c" = sub expression "c"]

| File "Example.java", line 22, move(sub expression "d", field "d")

| [field "c" = sub expression "c"]

| File "Example.java", line 22, move(sub expression "c", field "c")

| []

\

49

50 B Example Backtrace

/

| [field "f" = field "e"]

| File "Example.java", line 24, merge(sub expression "f",

| sub expression "e")

| [field "f" = sub expression "f" ^ field "e" = sub expression "e"]

| File "Example.java", line 24, move(sub expression "f", field "f")

| [field "e" = sub expression "e"]

| File "Example.java", line 24, move(sub expression "e", field "e")

| []

\

	1 Introduction
	1.1 The Universe Type System
	1.2 Universe Types with Transfer
	1.2.1 Uniqueness
	1.2.2 Clusters

	1.3 UTT Implementation and Project Goal
	1.3.1 Motivation
	1.3.2 Project Goal

	2 Simple Graph Backtracking
	2.1 Flow Analysis Overview
	2.2 Error Formula
	2.3 Statement Backtracking
	2.3.1 Break
	2.3.2 Consume
	2.3.3 Continue
	2.3.4 Exit
	2.3.5 Invariant Restore
	2.3.6 Merge
	2.3.7 Move
	2.3.8 New
	2.3.9 Restore Fields
	2.3.10 Skip

	2.4 Linear Backtracking Algorithm
	2.5 Dealing with Branches
	2.6 Worst-Case Scenarios
	2.6.1 Arbitrarily Large Error Formulas
	2.6.2 Arbitrarily Many Backtraces

	3 Graph Unfolding
	3.1 Problem Description
	3.2 Generations and Edge Traces
	3.3 Alias Matrix Compression

	4 Implementation
	4.1 Mapping Type Errors to Error Formulas
	4.2 Presenting the Backtrace
	4.3 Scalability
	4.3.1 Memory Requirements
	4.3.2 Processing Requirements

	4.4 Nonfunctional Changes

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	A Bibliography
	B Example Backtrace

