
� ��������� 	�
������� �������������������� � �� ��!�"�#�%$
& 	(')���+* �, +�"� 	��-/.0

1/2"3545687:9;3 <�=?>5@

ACBED�B�FHGHBJI"K?IMLON�BQP�G�RSBETEL5IUG

AVLEWXGZY\[JIXB^]_LVD%T`LVaJBJabG\c_BQPJd5aeLVfgLEh`i+j!IkLClmTn BETE[eIUGoD�BEapGqLJW"]rLCD%TslbGHBJItAuPevwBEaePpBx czy|{}lsI;v~PJd
http://sct.inf.ethz.ch/

AuBETpGHBJD%��BJIt�5�`�J�

�p�o�o�H����� �X���!���o��5�w�U���������b����� ����p�~ �¡£¢p¤s��¢��¥�§¦¨���`©tªH«�« ���

¬mE®k¯Z°²±E³k´¶µr¸·#¹�mº»´Eºb¯!¼½´p¾»¿sº»¸ÀgEÁEÂ�ÃÄ³k¸Å�¹

http://sct.inf.ethz.ch/

2

& �+�Ä��C ���

Spec# is a programming system by Microsoft Research that extends the C# programming lan-
guage with specification and verification capabilities. An important part of Spec# is Boogie, a
tool for static verification of a given program’s specification. With Boogie it is possible to auto-
matically prove the correctness of a program.

This case study is about applying Spec# to code from Mono’s System.Collections classes, the
emphasis being on learning about today’s specification and verification possibilities as well as
determining how well Spec# works with real life code.

As part of this case study, a tutorial for turning C# programs into Spec# ones is developed.

3

4

����������� �

���������§�
	�� �����X�	�� �

��������� ���H� �H� ����	 ���H�m�p�o����� �
2.1. The Spec# Programming Language . 9
2.2. Boogie . 14

�����»���H�����5���! "	��¥� ��#
3.1. Conventions Used in this Chapter . 15
3.2. BitArray . 15
3.3. Queue . 24
3.4. Stack . 31

$ ���»���Z�&%'�k� ��#
4.1. Bug in Mono’s System.Collections.Queue Class . 35
4.2. Bugs in Spec# . 37

#(�) *	�����%g��� �'	�� � �&�
5.1. Advantages of Using Spec# . 39
5.2. Conceptual Issues . 40

+���,-	��.�/	�0e�
1&���2%'1��M�3 4�5 *	��O�6�/	Ä�p�o����� $ �
6.1. Introduction . 41
6.2. Getting the Spec# Compiler to Compile the Code . 41
6.3. Making Use of Non-Null Types . 43
6.4. Observing Library Code Contracts . 44
6.5. Creating My Own Contracts . 52
6.6. Summary . 58

�7�- *	 �¥� #��

A.1. BitArray . 59
A.2. Queue . 69
A.3. Stack . 79
A.4. SimpleStack, C# Version . 90
A.5. SimpleStack, Spec# Version . 94

8 � 8 � ��% �'	�9 �
1O��:�� ��;��

5

6 Contents

� � �»�¶��¸��. -/�� �����

A big problem in software construction these days is that of correctness. The programs we have
today are enormously complex, ranging into millions of lines of code, yet the methods we use
today for ensuring the correctness of that software seem weak and arcane. There are “safe pro-
gramming guidelines”, libraries that present safe interfaces and often code is thoroughly tested,
yet it can be observed every day by computer users everywhere that these methods are woefully
inadequate: programs keep crashing and are plagued by security issues.

Static verification offers a better approach: the programmer, instead of being diligent and testing
his code until he’s reasonably confident that it’s error free, can prove his code to be correct. He
does so by augmenting his program with specifications and running it through a static verifier
which attempts to prove that the program, in all conditions, obeys that specification.

One such specification and verification system is the Spec# programming system by Microsoft Re-
search [1]. Spec# is an extension of the popular C# programming language, so it is possible to
enhance a given C# program with specifications with little effort, turning it into a Spec# pro-
gram which can then be verified. Spec# also comes with Boogie, a verifier that allows proving the
correctness of Spec# programs.

As a case study of how well the Spec# programming system can be applied to existing, real life
C# code, I have selected three classes from the Mono Project’s [2] System.Collections framework,
and after turning them into Spec# code, tried to prove their correctness. Mono is an open source
implementation of Microsoft’s .NET that has been selected for this case study because the source
code is freely available. The System.Collections framework contains container classes and inter-
faces like lists, stacks and queues. It is part of the Mono and Microsoft .NET core libraries and
thus is widely used in many different programs.

The goals of this case study are:

1. Learning about current specification and verification technology. Spec# is an active research
project which includes and develops many novel and modern ideas that go beyond what
was previously thought of when talking about adding specifications to programs. It is
interesting to see what we can do today, and where Spec# still falls short.

2. Verifying that the analyzed Mono code is correct, or finding and fixing errors. Being part of
the Mono/.NET core libraries, the System.Collections classes are very well tested. I expect
no obvious errors and mistakes, however until there is proof, we cannot be sure that the
code is totally correct. Using Spec# I will either prove that the code is correct, or find bugs
that have remained despite intensive testing.

3. Testing Spec# and finding and reporting bugs. Spec# is still in heavy development, there-
fore many issues have to be expected. By analyzing and reporting them, I hope to help
improve it.

4. Developing a systematic methodology for finding and applying specifications to existing
C# code. The intention is to find a set of guidelines that make the process of finding Spec#
specifications for a given program easier and faster. The results will be presented in tutorial
form that is hopefully useful for other Spec# programmers.

7

8 1 Introduction

� � & � � � � ��� ����� ����� � 	(')���+*

�	��
����������������� ����� �!��"�#$#&%(')�+*�"�'��-,�"�� �

Spec# is a C# extension that introduces several new concepts and language features. This is a
non-exhaustive overview over the most important ones. More details are available in [3, 4, 5].

. mº0/ . ÅsÀ À¸¼½ÂJ¹`´21
A simple yet effective feature for improving program correctness are non-null types. Reference
types may be marked as non-null, which prevents null from being assigned to objects of such
a type, and therefore, null-dereference errors. This is an extension of the type system: Non-null
types are a static type, and their type-safety is enforced by the compiler. Non-null types are
“backwards compatible”: a non-null type object may be assigned to a possibly-null type object,
but the reverse is prohibited.

A type is marked as non-null by appending a ! character to it. See listing 2.1 for an example.

3 ´Q¯ ¿»54 µr¸ºb¯ ³M±J¾ ¯61
Putting method contracts in the actual program code is an old idea that has been most promi-
nently implemented by Bertrand Meyer in his programming language Eiffel, under the name
Design by Contract [6]. Class methods are provided with pre- and postconditions, which check
for program errors. Preconditions make sure that the context a method runs in is valid. It is
the responsibility of the caller to establish the precondition, and thus any precondition violation
points to an error in the calling code.

Postconditions are guaranteed by the method to hold at method exit. A postcondition violation
thus points to an error in the method.

In Spec#, preconditions are given using the requires keyword, while postconditions are given
with the ensures keyword. Optionally, a custom exception may be specified to be thrown if a
precondition is violated using the otherwise keyword. In postconditions, one may refer to the
return value with the result keyword, and to the values that parameters had at the beginning of
the method with the old keyword. See listing 2.2 for an example.

object a; // standard possibly−null type
object! b; // non−null type

a = b; // ok
b = a; // type error, doesn’t compile

Listing 2.1: Non-null Types

9

10 2 An Overview over Spec#

public int modulo(int dividend, int divisor)

requires divisor != 0 otherwise ArgumentNullException; // precondition
ensures result < divisor; // postcondition
ensures dividend == old(dividend); // bogus postcondition, just shows the old keyword

{

return dividend % divisor;

}

Listing 2.2: Method Contracts

The Spec# compiler will insert code that checks pre- and postconditions at runtime, however it is
also possible to use them for static verification with Boogie.

An important aspect of pre- and postconditions is that they are inherited from base classes and
interfaces. Also, at the time of this writing, a child class may not modify the preconditions for
an inherited method (even those that it overrides). This implementation is stricter than other
implementations which allow overriding methods to weaken the precondition.

There are restrictions in what pre- and postconditions may refer to. Only pure methods may be
called in them, i.e., methods that don’t modify the object state1. Also, since they are part of the
interface of a method, pre- and postconditions may not refer to methods or fields with a higher
access level than their containing method: pre- and postconditions in a public method may not
refer to methods or fields marked as protected or private.

� º��p±J³��w±sºb¯61
Invariants are similar to postconditions in that they ensure the correctness of the code that equips
them. Invariants are used in class context and specify conditions that must hold throughout the
lifetime of an instance of that class. They are not part of a class’ public interface, and therefore
may refer to private fields and methods of a class.

Spec# adds a special, boolean field, inv, to classes which specifies whether the invariant currently
holds. If the invariants of an object holds, it is said to be consistent. While inv is true, the fields
of an object may not be modified, since that could break an invariant. If an update of those fields
is necessary, Spec# requires the programmer to expose the object. At the beginning of an expose

block, inv is set to false. At the end of the expose block, the invariant is checked. If it holds, inv
is reset to true, otherwise an exception is thrown. It is not possible to return from a method while
this is exposed, nor can methods be called that require this to be consistent. This system ensures
that outside of methods that modify it, an object is always in a consistent state, i.e., its invariants
hold. For more details on expose, see the description of the [Additive] attribute below.

A second type of invariant is the loop invariant. It specifies conditions that must hold during
the execution of a loop. A small but important detail is that loop invariants are validated before
the loop condition is checked. It is therefore not possible to specify the loop condition as loop
invariant, since after the last iteration of the loop, when the loop condition is false, the invariant
is still required to hold.

Both types of invariants are specified with the invariant keyword. See listing 2.3 for an example
that shows the use of invariants. See listing 2.4 for an expose example.

1The reason for this is that pre- and postconditions may be omitted by the compiler – the program should not change
its behaviour in this case. The same applies to assert statements, which may or may not be executed.

2.1 The Spec# Programming Language 11

public class Example {

private int a;

private int b[];

invariant a < 0; // a is always negative

public Example() {

a = -1; // constructor must establish invariant

b = new int[10];

for (int i = 0; i < 10; i++)

invariant i > 0 && i <= 10; // different from loop condition
{

b[i] = i + 1;

}

}

}

Listing 2.3: Invariant

public class Example {

private int a;

private int b;

invariant a == b;

// increment both a and b
private increment() {

// incrementing a and b sequentially would break the invariant.
// Spec# offers the expose mechanism to handle this.
expose (this) {

a++;

b++;

}

}

}

Listing 2.4: expose Blocks

12 2 An Overview over Spec#

������´p¾ ¯��"°8º»´J³ 1o¿ � ¹
Spec# has the concept of object ownership. The idea is that every object has at most one owner,
and only the owner may effect modifications of that object. References are therefore augmented
with a type classification that expresses the ownership relationship between the two involved
objects. There are three types of references:��� �

Rep (for representation) references express that the object holding the reference is the owner
of the referenced object. An owner is free to do anything it wants with an object it owns. It
may also transfer the ownership. In Spec#, rep is the default reference type for class fields.����1H��� 	��&%��

An object may also hold references to objects that it doesn’t itself own. These refer-
ences are readonly references; they restrict method calls to pure methods and prevent field
assignments. Read-only references are marked with [Owned(false)].�o�����
If a group of objects have the same owner, they are considered peers. Peer objects may
reference each other with peer references, and they are allowed to modify each other. Peer
references are marked with [Owned("peer")].

An object may be unowned, which means that all references to it are read-only references. An
unowned object has no peers.

Spec# uses the concept of peer consistency. An object is peer consistent, if it is consistent, and all
of its peer objects are consistent.

� 1 1H´J³k¯ �wmº 1q±sº 4 � 1�1¥Ås· ¹b¯ �~mº 1
Spec# adds support for assertions with the assert keyword. Assertions are boolean expressions
that are meant to evaluate to true. The Spec# compiler optionally generates code for assertions
that checks their expression at runtime. Since evaluating assertions is optional, the same rule
applies to them that applies to method contracts: they must not modify anything.

Assumptions are instructions meant for Boogie (see section 2.2). They express “facts” that Boogie
will then assume as valid. Once Boogie is complete, assumptions will probably not be used much
anymore, but in the meantime it is sometimes necessary to give Boogie certain hints about the
code it’s trying to prove. Assumptions use the assume keyword, and as with assertions, they may
not modify anything.

Assumptions have to be specified carefully, since they can prevent Boogie from correctly proving
the code. It is for example possible to specify assume false, after which anything is correct, as
far as Boogie is concerned.

See listing 2.5 for an example that demonstrates the use of assert and assume. The ==> operator
the example uses is the implication operator. p ==> q is equivalent to p || !q.

� ¯�¯ ³��	�sÅb¯�´01
Spec# introduces a number of attributes. I will present an overview over the ones of consequence
to this case study. There are other attributes that I don’t describe here, some of which are used
only internally by the Spec# compiler and Boogie.

2.1 The Spec# Programming Language 13

public int modulo(int dividend, int divisor)

requires divisor != 0 otherwise ArgumentNullException; // precondition
ensures result < divisor; // postcondition

{

int result;

assert divisor != 0; // redundant assertion
result = dividend % divisor;

// this assumption may or may not actually be true − Boogie
// will accept it as true either way.
assume dividend >= 0 ==> result >= 0 && result < divisor;

}

Listing 2.5: Assertions and Assumptions

� ���o�o� �§� �����
There are two ways to expose an object, additive and non-additive exposes. An ob-

ject is divided into class frames. A class frame contains all fields and methods defined in
a class, and the class frame of the class’ base class. expose only exposes a single class
frame. For a class frame to be exposable for an additive expose, its containing class frame
needs to be exposed. The syntax for this type of expose is expose (object) { ... }. Non-
additive exposes do not have this requirement, they may expose any class frame, as long
as the object being exposed is peer consistent. The syntax for a non-additive expose is:
expose (object at classname) { ... }. To express which sort of expose will be used in
them, methods may be marked with [Additive(true)] or [Additive(false)]. The de-
fault currently is [Additive(true)], however the Microsoft Spec# team plans to change
the default for virtual methods to [Additive(false)]. For a more detailed explanation of
additive versus non-additive exposes, see [7].

� "1O� � �¥�������
By default, objects passed as method parameters are passed as read-only references.

When an ownership change is necessary, for example to make this a peer of the object
passed as parameter, the method needs to be marked with [Captured].

��� 	����¸��%1�� �����
By default, non-null field initialisation in Spec# is delayed, so constructors may

not read from non-null fields, but only assign to them. If it is nevertheless necessary to read
from non-null fields, the constructor must be marked as [NotDelayed], and the fields being
read need to be statically initialized.

� � � � �����
The three ownership modes described earlier are expressed in the Spec# code with

[Owned(true)] for rep references, [Owned("peer")] for peer objects, and [Owned(false)]

for read-only objects. [Owned(true)] is the default and may therefore be omitted.
��	 �¥�����

Pure methods are methods that have no observable side effects. Methods that are referred
to in assertions, pre- and postconditions must be pure, since these constructs may or may
not be executed at runtime.

� �p�o��� 	 �¥��% �'���
For the purposes of verifying a class, it is possible to modify the access level of

fields. A private field marked as [SpecPublic] may be referred to in method contracts of
public methods. At the moment this is mostly used to work around deficiencies in Spec#.
The Spec# team says that [SpecPublic] might also be used when a field has been marked
as private to prevent a client from updating it, but the client should still know about the
field. Since C# features accessors, this seems unnecessary.

��
 ���¨� �����
Boogie (see section 2.2) can take a long time to verify a given class. When methods

of that class are marked as [Verify(false)], Boogie will skip them, thereby reducing the
time needed for the verification of the class. I’ve used this during development to skip

14 2 An Overview over Spec#

methods that have already been proved correct. The default for all methods is of course
[Verify(true)].

�	� �	��� �!� � % �

Boogie is one of the most interesting aspects of the Spec# programming system. It is a static
verifier that attempts to statically prove a program to be correct by translating a given Spec# pro-
gram into first order logic code, BoogiePL (BPL), and running a theorem prover. For the program
to pass this static validation, the specification of every method of the program has to be observed
wherever the method is called, and with all possible arguments.

Boogie’s analysis is complete. This means that wherever a certain value is unknown because it’s
determined at runtime, Boogie considers all possible values. A program verified in this way will
always observe its specifications when running, barring any abnormal conditions. With this it is
possible to detect program errors that might otherwise go unnoticed for a long time, since they
might be very hard to come across in testing. Take for example a routine that divides an number
by a random 32 bit integer. If the programmer has forgotten the check for zero, this error might
slip through testing because the probability of it manifesting itself is very low. Boogie however
will do an analysis of the possible range of values of that integer number, find that the value
could possibly be zero at the division, and therefore give an error message.

Boogie takes compiled code that is equipped with debugging information as input. The Boo-
giePL program it creates can optionally be output, since it might give the programmer addi-
tional insight. At the moment, the theorem prover that Boogie employs is Simplify, the theorem
prover from ESC/Java [8], however the Microsoft Research team is currently developing their
own prover to replace it.

� � � ��� ����� ��. � � . �

�	��
������-'���� '�� % �-'	��
�� �� % '�� � %���� ��" ���2�)�

Most of the code that I’ll show in this section comes from Mono’s System.Collection classes. Since
one of my goals was not to change the original code if possible, and to only add specifications,
I’ve used the following convention in the code.

All C#-compatible code is code coming directly from Mono’s source distribution, version 1.1.15
(released in April 2006); this includes all comments. Spec# constructs like assume, ensures,
invariant, requires, etc., were added by me. Comments starting with // ! were also added by
me. If it was necessary to change the original Mono code, this is noted in // ! comments.

This chapter will present many excerpts from the code. To find the full, uninterrupted files, see
appendix A. The line numbers in both places correspond.

A note: two new Spec# versions were released while I was working on this case study. Each
brought new features and enhancements, but unfortunately also changed the behaviour of the
compiler and Boogie slightly. Therefore, future Spec# versions might not compile this code
cleanly. The last Spec# version that I used and verified the code with is 1.0.6404, the correspond-
ing Boogie version is 0.80.

�	� �	��� %���� � � "��

� �w´JÀ 4 1\±sº 4 � º��p±J³��w±sº»¯
BitArray is a class that stores arrays of bits. It uses an integer array, m_array, for storage and
therefore packs 32 bits into each element of the array. There is an integer variable, m_length,
which tracks the length of the bit array, that is, the number of bits currently stored. See listing 3.1
for the definition of these fields.

42 public sealed class BitArray : ICollection, ICloneable {

43 // ! initialisation necessary because of not−delayed constructors.
44 // ! old code was: int [] m_array;
45 int []! m_array = new int[0];

46 [SpecPublic] int m_length;

47 int _version = 0;

48
49 invariant m_length >= 0;

50 invariant m_array.Length >= (m_length + 31) / 32;

51 invariant m_array != null;

Listing 3.1: BitArray Fields and Invariant

15

16 3 Reviewed Code

68 [NotDelayed]

69 public BitArray (bool []! values)

70 {

71 // ! if (values == null)
72 // ! throw new ArgumentNullException ("values");
73
74 m_length = values.Length;

75 m_array = new int [(m_length + 31) / 32];

76 assume m_array.Length == (m_length + 31) / 32;

77
78 // ! Added temp vars to express that m_length and m_array.Length remain
79 // ! constant through the for loop.
80 int temp1 = m_length;

81 int temp2 = m_array.Length;

82
83 for (int i = 0; i < values.Length; i++)

84 invariant temp1 == m_length;

85 invariant temp2 == m_array.Length;

86 {

87 this [i] = values [i];

88 }

89 }

Listing 3.2: Constructor

Based on this, I defined the invariant: m_length must be non-negative, and the storage array
m_array must always have enough room for m_length bits. This links m_array and m_length

together so that it is always ensured that one variable’s value makes sense given the other’s
value. The third clause, saying that m_array cannot be null is redundant, since m_array was
declared as a non-null type, however, without it, Boogie claims that m_array.Length, used inside
for loop conditions, may cause a null-dereference. This is a fault in Boogie, and will be corrected
in a future version.

Please note one change for m_array that I’ve introduced: I have added an initialisation. Since
there are not-delayed constructors, it is required that m_array be initialized at the beginning of
the constructors. Because there is no default constructor for non-null array references, I have to
explicitly specify one.

Another thing to note is that m_length has been marked [SpecPublic]. A deficiency of the current
Spec# tools prevents methods from being used in method contracts. Since I will need to refer to
the length of the bit array in public method contracts later on, using m_length works too, and
the [SpecPublic] attribute relaxes the permissions enough so that Spec# lets me do that. In the
future, the correct way to do this would be to use the Count member instead.

µr¸º 1�¯ ³ZÅJ¾ ¯��³ 1
BitArray comes with a number of constructors that are very similar. I will therefore just show
three representative ones here.

This first constructor (listing 3.2) takes values from a boolean array. The check for null-ness
of values is unnecessary now, since I made its type non-null. Calling this constructor with a
standard, possibly-null array would not even compile, therefore this runtime check has been
made redundant by the Spec# system.

3.2 BitArray 17

126 [NotDelayed]

127 public BitArray (int length)

128 requires length >= 0 otherwise ArgumentOutOfRangeException;

129 {

130 // ! if (length < 0)
131 // ! throw new ArgumentOutOfRangeException ("length");
132
133 m_length = length;

134 m_array = new int [(m_length + 31) / 32];

135 }

Listing 3.3: Constructor

137 [NotDelayed]

138 public BitArray (int length, bool defaultValue) : this (length)

139 requires length >= 0;

140 {

141 if (defaultValue) {

142 for (int i = 0; i < m_array.Length; i++)

143 m_array[i] = ~0;

144 }

145 }

Listing 3.4: Constructor

I also added two temporary variables to be used in the loop invariant. Boogie does not infer as
much information into loops at the moment as one would hope, therefore I use this technique
to help it along a bit. What the temporary variables do is express that the array lengths remain
constant. Since I’m calling methods on both this (with this [i] = values[i]) and values (with
values.Length), Boogie makes no assumptions about some fields of the objects not changing. By
defining this loop invariant however, I establish that information inside the loop. Note that this
invariant is not an assumption: Boogie does check whether it holds.

In listing 3.3 you see a classical example of how an implicit precondition in the form of a runtime
check can be made explicit. Instead of checking whether length is negative, I can require that it
is non-negative. The compiler will generate code that checks this condition at runtime. There are
two advantages to using proper Spec# preconditions here: First, Given suitable documentation-
generating tools, this precondition becomes part of the method documentation in an automatic
way that prevents code/documentation desynchronization. Second, with Boogie’s help can now
prove that a given program always observes this precondition, without actually having to test
it.

In the last constructor (listing 3.4), I specify the same precondition, but the C# code didn’t explic-
itly check for it. In this case, the precondition comes from the initializer this (length). Since
I call the BitArray(int length) constructor, I must comply with its precondition. length is a
parameter of this constructor, so the right way to do this is to repeat the precondition here.

For three of the constructors, BitArray(bool[]! values), BitArray(byte[]! bytes) (not shown
here) and BitArray(int, bool), Boogie currently returns the an error message saying that the
constructor should leave the receiver object in an unshared state. I have not been able to deter-
mine the cause for this message, or how to suppress it. While I believe that this error message is
bogus and can be disregarded, there is one unfortunate consequence: after an error, Boogie stops
checking the function that the error appeared in. It is therefore possible that these errors mask
further errors.

18 3 Reviewed Code

157 [Pure]

158 byte getByte (int byteIndex)

159 requires byteIndex >= 0 && byteIndex < (m_length + 7) / 8;

160 {

161 int index = byteIndex / 4;

162 int shift = (byteIndex % 4) * 8;

163
164 int theByte = m_array [index] & (0xff << shift);

165
166 return (byte)((theByte >> shift) & 0xff);

167 }

168
169 void setByte (int byteIndex, byte value)

170 requires byteIndex >= 0 && byteIndex < m_length / 8;

171 {

172 int index = byteIndex / 4;

173 int shift = (byteIndex % 4) * 8;

174
175 // clear the byte
176 m_array [index] &= ~(0xff << shift);

177 // or in the new byte
178 m_array [index] |= value << shift;

179
180 _version++;

181 }

Listing 3.5: getByte and setByte Methods

ÁE´�¯��rÂ�¯�´^±sº 4 1�´�¯��rÂ�¯�´ 3 ´�¯ ¿e 4 1

In the C# code, the getByte and setByte (see listing 3.5) methods don’t contain checks for the
validity of the byteIndex parameter, since the two methods only used internally and the author
of the class appears to have sufficient confidence in his programming skills. I have added pre-
conditions that constrain the range of byteIndex to the indices of used bytes in of m_array. For
proving that getByte and setByte calls never cause an IndexOutOfRange Exception, this is not
actually necessary since Boogie sees how byteIndex is used and infers its range constraints itself.
However m_array may be bigger than the bit array stored in it, so the byteIndex constraints need
to be stricter.

Boogie verifies that all getByte and setByte calls indeed always use valid parameters, so the
class author’s confidence is justified.

The difference in the upper limit for byteIndex between getByte and setByte exists because the
bit array may contain a number of bits not divisible by 8. In that case, the last byte will only
be partially filled with valid bits. When reading bits with getByte, this is OK: the returned byte
will have some valid bits and some with an undefined state. When writing bits however, there
would be “surplus bits” that would likely be overwritten at a later point. Since this means a
loss of information in the case where the programmer is unaware that some of his bits might be
discarded, my precondition does not allow that. This is my decision, the original code does not
specifically handle surplus bits: they would simply be written to the storage array, past the logical
size of the bit array. Using the same precondition in setByte as in getByte would therefore work
too, technically. However, I prefer the semantically safer precondition, and Boogie proves that it

3.2 BitArray 19

183 [Pure]

184 void checkOperand (BitArray! operand)

185 requires operand.m_length == m_length otherwise ArgumentException;

186 {

187 // ! not necessary because operand is non−nullable.
188 // ! if (operand == null)
189 // ! throw new ArgumentNullException ();
190
191 // ! if (operand.m_length != m_length)
192 // ! throw new ArgumentException ();
193 }

Listing 3.6: checkOperand Method

is satisfied everywhere; the Mono code does not assume or require that writing to partially-used
bytes is allowed.

¾»¿e´p¾�� ��¹�´J³k±sº 4 3 ´�¯ ¿e 4
The checkOperand method, presented in listing 3.6, beautifully demonstrates the ideas behind
Spec#. In the C# version of BitArray, it was deemed necessary to write a dedicated function to
check the validity of a value. These checks can be removed in Spec#, instead I use a non-null type
and specify a precondition. The result is less explicit error checking cluttering the code (without
giving up any robustness), implicit documentation, and of course, verifiability.

The method could easily be removed altogether: when checkOperand is called, it is always at
the beginning of a function and with a parameter of that function. To call checkOperand and
observe its preconditions, those functions therefore require at least the same preconditions as
checkOperand itself, so the actual call of checkOperand is redundant, since checkOperand is now
empty.

� º 4`´�� � ºeÁ � ¹`´J³M±»¯�`³
Since the indexing operator (listing 3.7) only forwards the get and set calls to the Get and Set

methods (see listing 3.10), and it must observe the preconditions of those two functions, these
preconditions apply to it as well. They are therefore simply repeated here.

The getter can be marked as [Pure] because the Get method is pure too, and no other (possibly
non-[Pure]) method is called.

� ´JºeÁJ¯ ¿ � ¾�¾�´01 1H`³ 1
In the Length setter (listing 3.8) we have the first example of an expose block. As explained
in section 2.1, an object needs to be explicitly exposed for write access. The rules Spec# uses
to determine where expose blocks are necessary are somewhat unclear. In some cases, Boogie
complains when the expose block is missing, other times it’s fine. The default contract for public
methods in Spec# exposes objects by default, however here Boogie complains if it’s missing. It
seems that this is not exposed with setters.

20 3 Reviewed Code

212 public bool this [int index] {

213 [Pure]

214 get

215 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

216 requires IsPeerConsistent;

217 {

218 return Get (index);

219 }

220 set

221 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

222 {

223 Set (index, value);

224 }

225 }

Listing 3.7: Indexing Operator

227 public int Length {

228 [Pure]

229 get { return m_length; }

230 set

231 requires value >= 0 otherwise ArgumentOutOfRangeException;

232 {

233 // ! if (value < 0)
234 // ! throw new ArgumentOutOfRangeException ();
235
236 int newLen = value;

237 if (m_length != newLen) {

238 int numints = (newLen + 31) / 32;

239 int [] newArr = new int [numints];

240 int copylen = (numints > m_array.Length) ? m_array.Length : numints;

241 expose (this) {

242 assume m_array.IsPeerConsistent;

243 Array.Copy (m_array, newArr, copylen);

244
245 // set the internal state
246 m_array = newArr;

247 m_length = newLen;

248 _version++;

249 }

250 }

251 }

252 }

Listing 3.8: Length Accessors

3.2 BitArray 21

There also in an assume m_array.IsPeerConsistent inside the expose block. m_array being peer
consistent is a precondition of Array.Copy. Boogie isn’t able to prove this though, so I’ve pro-
vided this assume statement so that Boogie can proceed with checking the method.

µr¸¹QÂp¼S 3 ´�¯ ¿e54
The CopyTo Method (see listing 3.9) looks fairly complex, since it consists of four different func-
tions rolled into one. Again, a lot of error checking code can be removed in favor of precondi-
tions.

There are a number of invariants and assumptions inside for loops again, which are required
because Boogie, at the moment, is poor at inferring properties of variables inside loops. For
example, the loop invariant in line 306 expresses that numbytes remains constant. This is obvious
since there is no write access to it, however Boogie doesn’t figure that out yet.

Having to use an assume in line 308 is unfortunate, since in contrast to loop invariants, assump-
tions are not checked, but accepted in “blind faith”. As explained in section 2.1, the reason for
this is that loop invariants must hold even after the last iteration of the loop, when the loop con-
dition no longer is true. In other words, a loop invariant of i < numbytes would fail, since after
the last loop iteration i is equal to numbytes. A loop invariant of i <= numbytes would fail too,
because it would allow out-of-bounds access to barray.

The else block at line 314 can be omitted altogether because it follows from the precondition in
line 269 that if execution of the method body begins (the precondition was observed), one of the
if blocks will be chosen.

Boogie returns one error message about CopyTo whose meaning is unclear:

Call of System.Collections.BitArray.CopyTo(System.Array! array, int index), unsatis-
fied precondition: requires index < array.Length;

Since CopyTo is never called inside the BitArray class, I’m suspecting that this error message is
bogus.

Ãt´�¯"±�º 4�¬m´Q¯ 3 ´�¯ ¿»54 1
Boogie is unaware of the mathematics of bitshifts, so it was necessary to add assumptions to the
Get and Set methods (see listing 3.10) which explain their behaviour. With these, the code vali-
dates. I’ve tried to find the weakest possible preconditions so as not to hide any possibly incorrect
code from the verifier. I could also have said, as a somewhat extreme example, assume false;
Boogie would then have gladly accepted the code – as it would have any other code, no matter
how wrong it would have been.

22 3 Reviewed Code

265 public void CopyTo (Array! array, int index)

266 requires index >= 0 otherwise ArgumentOutOfRangeException;

267 requires array.Rank == 1 otherwise ArgumentException;

268 requires index < array.Length otherwise ArgumentException;

269 requires array is bool[]! || array is byte[]! || array is int[]!;

270 requires array is bool[]! ==> array.Length - index >= m_length;

271 requires array is byte[]! ==> array.Length - index >= (m_length + 7) / 8;

272 requires array is int[]! ==> index + (m_length + 31) / 32 <= array.Length;

273 {

274 // ! if (array == null)
275 // ! throw new ArgumentNullException ("array");
276 // ! if (index < 0)
277 // ! throw new ArgumentOutOfRangeException ("index");
278 // ! if (array.Rank != 1)
279 // ! throw new ArgumentException ("array", "Array rank must be 1");
280 // ! if (index >= array.Length)
281 // ! throw new ArgumentException ("index", "index is greater than array.Length");
282
283 // in each case, check to make sure enough space in array
284 if (array is bool []!) {

285 // ! if (array.Length − index < m_length)
286 // ! throw new ArgumentException ();
287
288 bool []! barray = (bool []!) array;

289
290 // Copy the bits into the array
291 for (int i = 0; i < m_length; i++)

292 invariant array.Length - index >= m_length; //! precondition
293 {

294 assume i < m_length; //! loop stop condition
295 barray[index + i] = this [i];

296 }

297 } else if (array is byte []!) {

298 int numbytes = (m_length + 7) / 8;

299
300 // ! if ((array.Length − index) < numbytes)
301 // ! throw new ArgumentException ();
302
303 byte []! barray = (byte []!) array;

304 // Copy the bytes into the array
305 for (int i = 0; i < numbytes; i++)

306 invariant numbytes == (m_length + 7) / 8;

307 {

308 assume i < numbytes; //! loop stop condition
309 barray [index + i] = getByte (i);

310 }

311 } else if (array is int []!) {

312 assume m_array.IsPeerConsistent;

313 Array.Copy (m_array, 0, array, index, (m_length + 31) / 32);

314 // ! } else {
315 // ! throw new ArgumentException ("array", "Unsupported type");
316 }

317 }

Listing 3.9: CopyTo Method

3.2 BitArray 23

384 [Pure]

385 public bool Get (int index)

386 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

387 {

388 // ! if (index < 0 || index >= m_length)
389 // ! throw new ArgumentOutOfRangeException ();
390
391 assume index >= 0 ==> (index >> 5) >= 0;

392 assume (index >> 5) == (index / 32);

393 return (m_array [index >> 5] & (1 << (index & 31))) != 0;

394 }

395
396 public void Set (int index, bool value)

397 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

398 {

399 // ! if (index < 0 || index >= m_length)
400 // ! throw new ArgumentOutOfRangeException ();
401
402 assume index >= 0 ==> (index >> 5) >= 0;

403 assume (index >> 5) == (index / 32);

404 if (value)

405 m_array [index >> 5] |= (1 << (index & 31));

406 else

407 m_array [index >> 5] &= ~(1 << (index & 31));

408
409 _version++;

410 }

Listing 3.10: Get and Set Methods

24 3 Reviewed Code

44 public class Queue : ICollection, IEnumerable, ICloneable {

45
46 private object[]! _array;

47 private int _head = 0; // points to the first used slot
48 [SpecPublic] private int _size = 0;

49 private int _tail = 0;

50 private int _growFactor;

51 private int _version = 0;

52
53 invariant _head >= 0;

54 invariant _array.Length > 0 ==> _head < _array.Length;

55 invariant _array.Length == 0 ==> _head == 0;

56 invariant _tail >= 0;

57 invariant _array.Length > 0 ==> _tail < _array.Length;

58 invariant _array.Length == 0 ==> _tail == 0;

59 invariant _size >= 0 && _size <= _array.Length;

60 invariant _array.GetType() == typeof(object[]);

Listing 3.11: Queue Fields and Invariant

�	� �	��� ,)� ,��

� �w´JÀ 4 1\±sº 4 � º��p±J³��w±sº»¯
The Queue class implements a queue of objects on top of an array, _array (see listing 3.11). There
are two pointers, _head and _tail, that point to the elements on _array that are the head and tail
of the queue. As elements are added and removed from the queue, these pointers continuously
move forward on the array, wrapping around to its beginning if they reach its end. If the storage
array is full, but additional elements are added to the queue, a new, larger array is allocated (how
much larger is influenced by _growFactor), and the existing elements are copied to it. There is
further a field _size which keeps track of the number of elements stored in the queue.

The invariant first defines the valid range of _head and _tail. They are always non-negative, but
smaller than _array’s length only when there are elements in the queue. If the queue is empty,
and thus there are no elements, _head and _tail don’t really make sense; the Mono code just sets
them to 0 in this case.

The last part of the invariant which refers to _array.GetType is there for Boogie’s benefit. Arrays
in C# (and thus in Spec#) are covariant, so a reference to an object[] array might really hold a
string[] array, in which case assigning an object to it isn’t allowed. Boogie at the moment does
not infer the real type of _array from its initialisations in the constructors, so I state the real type
in the invariant here.

µr¸º 1�¯ ³ZÅJ¾ ¯��³ 1
Most Queue constructors (see listing 3.12) take an initialCapacity argument, which must be
non-negative. This is easily expressed as a precondition, making an explicit check unnecessary.

There are two problems with the constructors. First, as with BitArray, Boogie returns an error
message saying that the constructor Queue(ICollection! col) should leave the receiver object in
an unshared state. Also, Boogie currently does not handle floating point numbers. I’ve therefore
replaced assignment to _growFactor (line 92) with a default, integer expression.

3.3 Queue 25

62 public Queue () : this (32, 2.0F) {}

63 public Queue (int initialCapacity) : this (initialCapacity, 2.0F)

64 requires initialCapacity >= 0;

65 {}

66 public Queue(ICollection! col) : this (col == null ? 32 : col.Count)

67 requires col.IsPeerConsistent;

68 {

69 // ! if (col == null)
70 // ! throw new ArgumentNullException ("col");
71
72 // We have to do this because msft seems to call the
73 // enumerator rather than CopyTo. This affects classes
74 // like bitarray.
75 foreach (object o in col)

76 Enqueue (o);

77 }

78
79 public Queue (int initialCapacity, float growFactor)

80 requires initialCapacity >= 0 otherwise ArgumentOutOfRangeException;

81 {

82 // ! if (initialCapacity < 0)
83 // ! throw new ArgumentOutOfRangeException("capacity", "Needs a non−negative

number");
84
85 // ! Can’t run this code, since Boogie currently doesn’t know anything about floats
86 // ! if (!(growFactor >= 1.0F && growFactor <= 10.0F))
87 // ! throw new ArgumentOutOfRangeException("growFactor", "Queue growth factor

must be between 1.0 and 10.0, inclusive");
88
89 _array = new object[initialCapacity];

90
91 // ! Can’t run this code, since Boogie currently doesn’t know anything about floats
92 // ! this._growFactor = (int)(growFactor ∗ 100);
93 this._growFactor = 200;

94 }

Listing 3.12: Queue Constructors

26 3 Reviewed Code

122 [Additive(false)]

123 public virtual void CopyTo (Array! array, int index)

124 {

125 // ! if (array == null)
126 // ! throw new ArgumentNullException ("array");
127
128 if (index < 0)

129 throw new ArgumentOutOfRangeException ("index");

130
131 if (array.Rank > 1

132 || (index != 0 && index >= array.Length)

133 || _size > array.Length - index)

134 throw new ArgumentException ();

135
136 int contents_length = _array.Length;

137 int length_from_head = contents_length - _head;

138 // copy the _array of the circular array
139 // ! Boogie can’t handle Math.Min(), replace with equivalent code
140 // ! Array.Copy (_array, _head, array, index,
141 // ! Math.Min (_size, length_from_head));
142 int len = (_size < length_from_head ? _size : length_from_head);

143 assume _array.IsPeerConsistent;

144 Array.Copy (_array, _head, array, index, len);

145
146 if (_size > length_from_head)

147 Array.Copy (_array, 0, array,

148 index + length_from_head,

149 _size - length_from_head);

150 }

Listing 3.13: CopyTo Method

µr¸¹QÂp¼S 3 ´�¯ ¿e54
In the CopyTo method (see listing 3.13), there are again several explicit checks for preconditions
in the C# code that look like they can be turned into Spec# preconditions. However, the CopyTo

method is defined in the ICollection interface, so it’s just being implemented here. This means
that I can’t add any additional preconditions, and thus the explicit checks have to stay.

Since Boogie currently doesn’t know the properties of Math.Min, I have replaced it with an equiv-
alent expression using the (?:) operator. This Boogie can handle.

Ãt´�¯�� º�Ås·z´J³k±»¯��³ 3 ´�¯ ¿e54
The GetEnumerator method (see listing 3.14), although it is very short, unfortunately demon-
strates two bugs in the Spec# compiler. First, the method is supposed to return an object that is
a peer of this, and thus should get the [Owned("peer")] attribute. Unfortunately, the compiler
currently gives the following bogus error message when specifying this attribute for methods:

error CS2692: Methods without return value or with value-type return value must
not be marked Owned.

3.3 Queue 27

154 // ! currently prevented by compiler bug
155 // ! [Owned("peer")]
156 public /∗virtual∗/ IEnumerator! GetEnumerator () //! virtual causes CS0029 error
157 {

158 return new QueueEnumerator (this);

159 }

Listing 3.14: GetEnumerator Method

However, GetEnumerator obviously does return a reference-type value. Removing the attribute
makes the Spec# compiler compile the code, but then Boogie will give the following error mes-
sage:

unsatisfied postcondition: ensures Owner.Same(this, result)

At the moment, there is no way around this. The bug is confirmed and will be fixed in a future
release of Spec#.

The second problem lies with the virtual keyword, which currently causes the following com-
piler warning:

error CS0029: Cannot implicitly convert type ’System.Collections.Queue’ to ’T’

As a consequence of removing the virtual keyword here, I’ve completely commented out the
GetEnumerator method in the SyncQueue class (see below).

µ}Àwmºe´ 3 ´Q¯ ¿»54
The clone method (see listing 3.15) returns a peer object, as shown by the [Owned("peer")] at-
tribute. Unfortunately, due to the mentioned compiler bug, this doesn’t work at the time of
writing.

There are several assume statements before the Array.Copy call. Boogie does not infer the nec-
essary properties itself, so I have to help it along. That newQueue._array’s length is indeed the
same as the length of _array follows from the constructor, and is therefore a valid assumption.

µ}Àw´Q±J³ 3 ´Q¯ ¿»54
The clear method (see listing 3.16) is interesting for its loop invariant. Boogie does not realize that
_head, _size and _tail remain unchanged inside the for loop. Without the loop invariant that
states this, it would complain that it can’t prove the invariant at the end of the expose block.

The other part of the loop invariant expresses that length remains smaller than _array’s length,
and therefore is a valid index. Again, Boogie requires me to explicitly state this a loop invariant.
Interestingly, it does not require a statement about whether length is non-negative.

Ám³Mp° 3 ´�¯ ¿»54
The grow method (see listing 3.17) needs an IsPeerConsistent precondition, so that I can locally
expose it. This precondition is not needed in the other methods shown here, since marking them
as non-additive adds that precondition as a default.

Note also the postcondition, which uses the old keyword to refer to the value of _array.Length
at method entry.

28 3 Reviewed Code

163 // ! currently prevented by compiler bug
164 [Additive(false)] //! [Owned("peer")]
165 public virtual object! Clone ()

166 ensures result is Queue;

167 {

168 Queue newQueue;

169
170 newQueue = new Queue (this._array.Length);

171 newQueue._growFactor = _growFactor;

172
173 // ! This is established by the constructor
174 assume newQueue._array.Length == this._array.Length;

175 assume _array.IsPeerConsistent;

176 assume newQueue._array.IsPeerConsistent;

177 Array.Copy (this._array, 0, newQueue._array, 0,

178 this._array.Length);

179 expose (newQueue) {

180 newQueue._head = this._head;

181 newQueue._size = this._size;

182 newQueue._tail = this._tail;

183 }

184
185 return newQueue;

186 }

Listing 3.15: Clone Method

188 [Additive(false)]

189 public virtual void Clear ()

190 ensures _size == 0;

191 {

192 expose (this at Queue) {

193 _version++;

194 _head = 0;

195 _size = 0;

196 _tail = 0;

197 for (int length = _array.Length - 1; length >= 0; length--)

198 invariant length < _array.Length;

199 invariant _head == _size && _head == _tail && _head == 0;

200 {

201 _array [length] = null;

202 }

203 // ! Boogie can’t infer this in/after loop
204 assume _array.GetType() == typeof(object);

205 }

206 }

Listing 3.16: Clear Method

3.3 Queue 29

322 private void grow ()

323 requires IsPeerConsistent;

324 ensures _array.Length > old(_array.Length);

325 {

326 int newCapacity = (_array.Length * _growFactor) / 100;

327 if (newCapacity < _array.Length + 1)

328 newCapacity = _array.Length + 1;

329 object[] newContents = new object[newCapacity];

330 CopyTo (newContents, 0);

331 expose (this at Queue) {

332 _array = newContents;

333 _head = 0;

334 _tail = _head + _size;

335 }

336 }

Listing 3.17: grow Method

340 private class SyncQueue : Queue {

341 [Owned("peer")] Queue queue;

342 invariant queue != null;

343
344 [Captured] [NotDelayed]

345 internal SyncQueue (Queue! queue)

346 requires queue.IsPeerConsistent;

347 ensures IsPeerConsistent;

348 {

349 Owner.AssignSame(this, queue);

350 this.queue = queue;

351 }

Listing 3.18: Start of SyncQueue Class

¬mÂEºe¾�� Å»´EÅ»´�µ}Àg± 1�1
SyncQueue is a class that is private to Queue. It has a Queue object as a peer field, and forwards
all method calls to this queue object after locking it. The reason for having this class is that it
allows concurrent access to a single Queue without having to worrying about locking, as the
SyncQueue class does that for the user. Unfortunately, this design doesn’t work well with the
current Spec# version for several reasons.

In the constructor (see listing 3.18), I need to “capture” the parameter to store in a peer ref-
erence field. I do this with the Owner.AssignSame call. Since this means referring to this in
the constructor, I have to mark it with [NotDelayed]. You might be surprised to find the in-
variant queue != null, after all this could be expressed by using Queue! as the type for queue.
However this would require me to initialize queue, which would then confuse Boogie in the
Owner.AssignSame call - it’s not clear which of the two object’s owner should be the assigned as
the other object’s owner. (Implicitely) initializing it as null, and having an invariant to state the
non-null-ness of queue works around this.

Furthermore, a number of assume statements are required for Boogie to be able to handle the
code. Queue’s Clear method (see listing 3.19) has queue._size == 0 as a postcondition. In the
context of SyncQueue, this postcondition can’t be fulfilled, however: SyncQueue doesn’t actually

30 3 Reviewed Code

407 [Additive(false)]

408 public override void Clear () {

409 lock (queue) {

410 queue.Clear ();

411 }

412 assume queue._size == 0 ==> _size == 0;

413 }

Listing 3.19: SyncQueue.Clear Method

429 [Additive(false)]

430 public override object Dequeue () {

431 assume queue._size >= 1;

432 lock (queue) {

433 return queue.Dequeue ();

434 }

435 }

Listing 3.20: SyncQueue.Dequeue Method

have a _size field! If the postcondition were to refer to Count instead of _size, it would make
sense in SyncQueue’s context too, unfortunately, as mentioned before, this is not possible at the
moment. I have therefore chosen to use a weak assume statement to help Boogie prove this code:
if queue._size is zero after the Clear call (and it is, that’s the postcondition of Clear), assume
that SyncQueue._size is zero too.

I can refer to SyncQueue._size, even though it doesn’t actually exist, because I’ve marked _size

(in the Queue class) as [SpecPublic]. For the purposes of proving the code, _size is thus regarded
as a public field, and SyncQueue inherits it.

SyncQueue.Dequeue is another example (see listing 3.20). Here we need an assume statement to
establish Dequeue’s precondition (please refer to appendix A.2 to see the code for Dequeue). This
is needed because I’ve referred to _size in that precondition, not Count. Had I referred to Count,
the same precondition would apply to SyncQueue.Queue as well, which would mean the right
thing here. However, since Boogie doesn’t evaluate method calls in method contracts, I can’t
refer to Count and still have it prove the code correct.

3.4 Stack 31

42 public class Stack : ICollection, IEnumerable, ICloneable {

43
44 // properties
45 private object[]! contents;

46 private int current = -1;

47 [SpecPublic] private int count;

48 private int capacity;

49 private int modCount;

50
51 const int default_capacity = 16;

52
53 invariant capacity == contents.Length;

54 invariant 0 <= count && count <= capacity;

55 invariant current == count - 1;

Listing 3.21: Stack Fields and Invariant

�	����� � �2")���

The Stack class is generally quite similar to the Queue class discussed in the previous section.
I will therefore not go into it in as much detail, but only look at details that do not appear in
Queue.

� �w´JÀ 4 1\±sº 4 � º��p±J³��w±sº»¯
The Stack class uses an object array, contents for storage. It comes with a counter count, and an
index into the array, current. As expressed by the invariant, current is always one smaller than
count. Further there is a capacity, which equals the length of the storage array. I’ve restricted
count to numbers between 0 and capacity.

I’ve marked count as [SpecPublic] to be able to refer to it in method contracts. There is a public
accessor for it, Count, but as discussed before I can’t use it in method contracts due to deficiencies
in Boogie.

� ´01 ��� ´ 3 ´�¯ ¿e54
The Resize method is used to enlarge the storage array. It creates a new array and copies the
existing elements into it. Since stack elements should not be lost when resizing its underlying
representation, I’ve specified the precondition that the user may not request the array to be re-
sized to a length smaller than the number of elements currently stored. In turn the method will
guarantee that the stack has a capacity of at least as many elements as requested (in some cases
the capacity will be larger), and that the Stack functionally remains unchanged.

This is a case where I can give a full, functional contract for a non-trivial method, describing
exactly what it does, and Boogie is actually able to prove that the code is correct. This is still a
somewhat rare occurence, since often such contracts would require references to other methods
(for example, the Push method of the stack should have the postcondition that the pushed object
is the same as the one returned by Peek), which currently doesn’t work. Let this method therefore
be a preview of what Spec# will do in the future.

Note that Boogie doesn’t know the properties of Math.Max. I’ve therefore replaced that line with
equivalent code. With this change, Boogie can prove the method to be correct.

32 3 Reviewed Code

57 private void Resize(int ncapacity)

58 requires count <= ncapacity;

59 requires IsPeerConsistent;

60 ensures capacity >= ncapacity;

61 ensures count == old(count);

62 ensures forall { int i in (0:count - 1), contents[i] == old(contents[i])

};

63 {

64 // ! This was the original code here. However, it appears that
65 // ! Math.Max() does not have any specifications, so I replaced
66 // ! it with equivalent code that Boogie can handle.
67 // !ncapacity = Math.Max (ncapacity, 16);
68 if (ncapacity < 16) { ncapacity = 16; }

69
70 object[]! ncontents = new object[ncapacity];

71
72 assume contents.IsPeerConsistent;

73 Array.Copy(contents, ncontents, count);

74
75 expose (this at Stack) {

76 capacity = ncapacity;

77 contents = ncontents;

78 }

79 }

Listing 3.22: Resize Method

� ºsÅs· ´E³k±»¯��³ µ}Àg± 1�1
Stack provides an enumerator class (see listing 3.23) that enumerates the stack elements in a top-
to-bottom manner. For this purpose it uses the field current as an index into the stack. When the
enumerator is first used, current will be set to the topmost element index, and then decremented,
until −1 is reached.

This behaviour unfortunately evades Boogie completely, requiring a curious amount of assumes
in Enumerator’s Current method (see listing 3.24). It is unclear why Boogie fails here. For exam-
ple, if I add the assertion

assert current >= -2 && current != -2 && current != -1; ,

it will pass Boogie’s check. However the assertion

assert current >= 0; ,

which follows logically from the above assertion might not hold in Boogie’s opinion.

3.4 Stack 33

360 private class Enumerator : IEnumerator, ICloneable {

361
362 const int EOF = -1;

363 const int BOF = -2;

364
365 [Owned("peer")] Stack stack;

366 private int modCount;

367 private int current;

368
369 invariant stack != null;

370 invariant current >= -2;

371
372 [Captured] [NotDelayed]

373 internal Enumerator(Stack! s)

374 ensures IsPeerConsistent;

375 {

376 Owner.AssignSame(this, s);

377 stack = s;

378 modCount = s.modCount;

379 current = BOF;

380 }

Listing 3.23: Start of Enumerator Class

387 public virtual object Current {

388 get {

389 if (modCount != stack.modCount

390 || current == BOF

391 || current == EOF

392 || current > stack.count)

393 throw new InvalidOperationException();

394 assert current >= 0;

395 // ! preceding if
396 assume current >= 0 && current <= stack.count;

397 // ! current starts at stack.current, then is only decremented
398 // ! stack.current stays constant while modCount == stack.modCount
399 assume current <= stack.current;

400 assume stack.current == stack.count - 1; //! stack invariant
401 assume stack.count <= stack.contents.Length; //! stack invariant
402 assume stack.contents[current] != null ==> stack.contents[current].

IsPeerConsistent;

403 return stack.contents[current];

404 }

Listing 3.24: Enumerator.Current accessor

34 3 Reviewed Code

� � � �#��- �;²�

����
���� ,�� %('�� �-'���� � � ��� �2� # � ������� ��� � % � '�� � � ,�� ,�� ��� "	� �

As expected, the Mono code was of high quality. With the help of Boogie, I did however find
one bug in the System.Collections.Queue class. Under a certain condition, Queue objects throw
an unexpected IndexOutOfRangeException because the code tries to write to a non-existant array
element. Listing 4.1 shows a C# program that crashes with that exception.

	 ´21�¾»³�� ¹»¯ �wmº
System.Collection.Queue stores its data in an array. It uses a head and a tail pointer (_head and
_tail) to mark the array positions where elements are removed and added to the queue with the
Dequeue and Enqueue methods. The head and tail pointer wrap around at the end of the storage
array, so the array is effectively being used as cyclic storage area.

As the queue grows, larger storage arrays are allocated automatically, however the array size
is never being automatically reduced. Instead, the Queue class offers the TrimToSize method
which replaces the storage array with whose length equals the number of elements in the queue.
When such an array reallocation happens, the queue elements are inserted into the array in order,
ie., the oldest queue element (the queue head) is inserted at array position 0, and the newest
queue element (the element one position below the queue tail) is inserted at the largest array
position used. Since the position of queue elements on the storage array changes, the head and
tail pointers need to be updated as well.

In the original TrimToSize() method however, the tail pointer is not set correctly. As line 210 of
listing 4.2 shows, the tail pointer is being set to the array size. That number is not a valid array
element however since it is outside of the array boundaries. When Enqueue is called, and there
is at least one empty element in the storage array, the write to object[_tail] therefore fails. The
correct value for _tail after TrimToSize is 0.

The bug is difficult to find with mere runtime tests, since it only manifests itself if the sequence
TrimToSize, Dequeue, Enqueue (or a variation thereof with an arbitrary number of Dequeue calls)
is called. If Enqueue is called after a TrimToSize, the storage array is again reallocated, _tail is
set to a valid value and the problematic condition is corrected.

static void Main(string[] args) {

Queue queue = new Queue();

queue.Enqueue(null);

queue.TrimToSize();

queue.Dequeue();

queue.Enqueue(null); // throws IndexOutOfRangeException
}

Listing 4.1: Triggering the System.Collections.Queue Bug

35

36 4 Results

43 public class Queue : ICollection, IEnumerable, ICloneable {

45 private object[] _array;

46 private int _head = 0; // points to the first used slot
47 private int _size = 0;

48 private int _tail = 0;

49 private int _growFactor;

51
52 public Queue () : this (32, 2.0F) {}

66 public Queue (int initialCapacity, float growFactor) {

67 if (initialCapacity < 0)

68 throw new ArgumentOutOfRangeException("capacity", "Needs a non-negative

number");

69 if (!(growFactor >= 1.0F && growFactor <= 10.0F))

70 throw new ArgumentOutOfRangeException("growFactor", "Queue growth

factor must be between 1.0 and 10.0, inclusive");

71
72 _array = new object[initialCapacity];

73
74 this._growFactor = (int)(growFactor * 100);

75 }

162
163 public virtual object Dequeue ()

164 {

166 if (_size < 1)

167 throw new InvalidOperationException ();

168 object result = _array[_head];

169 _array [_head] = null;

170 _head = (_head + 1) % _array.Length;

171 _size--;

172 return result;

173 }

174
175 public virtual void Enqueue (object obj) {

177 if (_size == _array.Length)

178 grow ();

179 _array[_tail] = obj;

180 _tail = (_tail+1) % _array.Length;

181 _size++;

183 }

203
204 public virtual void TrimToSize() {

206 object[] trimmed = new object [_size];

207 CopyTo (trimmed, 0);

208 _array = trimmed;

209 _head = 0;

210 _tail = _head + _size;

211 }

377 }

Listing 4.2: Parts of Mono’s System.Collections.Queue. The line numbers correspond to the ones
in the original file, Queue.cs as it appeared in Mono version 1.1.15.

4.2 Bugs in Spec# 37

In the Spec# version of the code I’ve specified the following invariant (see listing 3.11):

invariant _array.Length > 0 ==> _head < _array.Length;

Which catches this bug quickly. However, Boogie flagged the error even before I had set this
invariant, as it determined that _tail might be used as array index despite being outside of the
valid index boundaries.

��� �	��� ,�� � % ' ���������

While doing this case study, I’ve come across a number of bugs in Spec#. This was to be expected,
given that Spec# is under heavy development, and nowhere near ready for production use. I’ve
tried to track the bugs down when I found them and reported them to the Spec# team, unless
they were already known. I’ll give an overview over those bugs in this section.

There are also a number of features that are simply not yet implemented, for example the hand-
ling of floating point numbers or the bit-shift operators. I don’t consider those bugs, and have
not reported them to the Spec# team. Where such missing features affect this case study, I’ve
mentioned it during the discussion of the reviewed code; I will therefore not repeat them here.

• Using the identifiers _count, _exists, _exists1 and _forall did not work due to a bug in
the serialization format. This has been fixed.

• Boogie produced wrong BPL code for the Owner.Is, Owner.Same and Owner.None functions:
it writes $Heap when it should write $h. This has been fixed.

• The virtual keyword, when used with the GetEnumerator function of a class implementing
the IEnumerable interface, caused the Spec# compiler to throw a CS2621 error. This has been
fixed.

• The virtual keyword, when used with the GetEnumerator function of a class implementing
the IEnumerable interface, currently causes the Spec# compiler to throw a CS0029 error.
This is probably a follow-up bug of the previous bug.

• The System.Array.Clear method had a wrong precondition. It said

requires array.Length - (index + array.GetLowerBound(0)) < length;

when it should have said

requires array.Length - (index + array.GetLowerBound(0)) >= length; .

This has been fixed.

• A constructor that has not been marked as [NotDelayed], but reads from this, doesn’t
always produce a compiler error. This has been fixed.

• Returning peer objects, ie. having functions with the attribute [Owned("peer")] will cause
the compiler to throw a CS2692 error. This has been reported and will be fixed in a future
release.

38 4 Results

� � �����/� ��-+� �����+�

� ��
�� � ��"�'��2"�� ��� ���
�� %(')� � ��� ���

During the process of doing this case study, and in particular after finding the bug in Mono’s
Queue class (see section 4.1), I’ve been able to confirm my hopes that computer-assisted proving
of code is an effective way to increase the correctness and thus reliability of software. Since it is
up to the software developer, how much use he wishes to make of the features offered by Spec#,
there are different ways of using the language:

The most basic way to use Spec# is using the Spec# compiler as a drop-in replacement for the
C# compiler, This only requires minimal changes to existing C# code; for example, some calls
will now use non-null types as parameters or result types, as the compiler will link the program
against the Spec# version of the Microsoft core library. While this approach is easy, and the
conversion done quickly, the advantages are limited; existing code barely gains any reliability.
The calls to the Spec# library must now observe the Spec# preconditions, but these preconditions
will have been checked explicitly in the C# version of the core library anyway. It is very likely that
the C# version of the Microsoft core library is just as correct as the Spec# version: any bugs found
during the translation to Spec# will have been fixed in the C# version as well. Any preconditions
are only checked at runtime, so it may be possible for the program to encounter situations where
core library functions are called with parameters that violate those functions’ preconditions.

The next step is making use of the features that Spec# offers. Changing types to non-null types
is very easy, and can completely prevent null-references. This probably won’t do much though.
Adding method contracts, invariants and the ownership model allows for real improvements.
In my opinion, a large part of the correctness improvement comes not so much from the error
checking that these features allow, but simply from the fact that they lead the software designer
to a different way of thinking about the code. To write low-level specifications, he has to become
aware of the environment a function runs in (the preconditions), what might be considered a
successful result of the function (the postcondition and invariant), and how objects relate to each
other (the ownership model). Preconditions are probably the most important part here. For-
mulating a precondition means realizing that there might be states where the function does not
make sense, and defining the states in which it does. Since preconditions are subject to inheri-
tance, these considerations can affect more than just a single function, which introduces a certain
amount of abstraction. This alone might lead the software designer to discover flaws in existing
code, and to increase the reliability of the code he produces.

Since method contracts are inherited, it is not necessary to repeat them when subclassing. This
removes clutter from the code, making it more maintainable, particularly when the contracts are
made part of an interface definition. At the same time, there is a danger that the programmer of
the inheriting class may be unaware of details of the given specifications; good tools to extract
those specifications, and to display them in an easily accessible form, are therefore required.

Using Boogie gives the largest correctness boost of the methods presented yet. By proving code
to be correct, as opposed to testing that it works in given cases, which is what unit testing does,
Boogie can not only replace a lot of unit testing, it can surpass it. When it comes to using code
that has been fully equipped with Spec# contracts, such as the Microsoft core library, Boogie
can make sure that this code is always used correctly, that is, in a manner that will not lead
to unexpected behaviour at runtime. As I’ve shown in section 3, at the moment this is mostly

39

40 5 Conclusions

limited to relatively trivial behaviour, like making sure that array accesses always happen within
the array’s boundaries.

Is it possible to prove more? At this time, I can only speculate how complex a behaviour specifica-
tion Boogie will be able to handle. The inability to properly process method calls in specifications
with the current Boogie version is quite limiting. It seems likely though that such calls will work
eventually, which will make it possible to prove, for example, that the element just pushed onto
a stack is the one that is returned when the Peek method is called. Whether proving complex,
non-trivial behaviour is feasible remains to be seen.

� � �	�����-')�5� �	� ,�" ��� � � ,)� �

Spec# currently has a number of conceptual issues that make using it difficult. The most ob-
vious of these is documentation. Spec# adds many things to the C# language, both complex
features and little details, some of which are undocumented, while for others the documentation
is spread over papers and mailing lists. This does not come unexpected, seeing how Spec# is still
in development, and neither feature-complete nor feature-stable1, however it is an issue when
getting started with Spec# now. I have been able to gain some insight from looking at the Spec#
source code, however the source code made accessible to me unfortunately did not include the
out-of-band contracts for the Microsoft core library, which would have been instructive.

Another issue is that of proving speed. At the moment, it is not unusual for Boogie (in conjunc-
tion with Simplify) to require minutes to prove a single, medium-complexity class even on a fast
system. This seriously slows down the fast program-compile cycles that are common today. It is
possible to reduce the proving time by giving methods the [Verify(false)] attribute, but this
is user-unfriendly and of limited effectiveness. However, even if Boogie is too slow to be part
of the program-compile cycle, it is fast enough to make proving code feasible at less frequent
intervals.

I am unsure how this situation will change in the future. Provers are a field of active research and
development, so I expect them to become faster and more efficient. Also, the processing speed
of computers is growing exponentially (“Moore’s Law”). Unfortunately, program complexity is
growing too, and upcoming expected features of Boogie (like methods calls in method contracts)
will likely introduce a speed hit. Boogie does not use threading at the moment, so it is constrained
to a single CPU. Finding ways to parallelize the proving into several threads will allow it to make
much better use of modern processors.

The biggest issue that I currently see however is that of language complexity. Spec#, as it is
now, is considerably more difficult to understand than a common language like C#, probably too
difficult for the average programmer. One part of that is because some of the features themselves
are complex (like the ownership model), but the other part of it is that Boogie currently requires
to programmer to use all features. It is not possible to use only some features, for example non-
null types, which are very easy to understand yet useful, while omitting more advanced ones
like the ownership model.

One possible way to solve this and make Spec# more accessible is to allow it for different fea-
tures of Spec# to be used independently, so that it is for example possible to use only non-null
types, pre- and postconditions, and to omit invariants and the ownership model. This seems to
indeed be what the Spec# team plans to do. Another possibility is to restructure software engi-
neering teams so that a team of “average programmers” is assigned a software developer that
understands Spec# well and handles the proving for them, while they write the code.

1The way some features work in Spec# is still subject to change.

� � � � � �� � �C �+� �� ��� � * � � . � �� 	 ')���+*

�	��
�� � '�� ��� 	, � � % �-'

In this chapter I’ll show how to convert a given C# program into a Spec# one. There are, unfor-
tunately, a few caveats. First, Spec# is currently changing at a relatively rapid pace as it is being
developed, so some information here might become outdated quickly. Also, I will use in my
examples code that is similar to the one presented earlier in this report. For programs that use
different concepts and structures, different techniques might be necessary.

I will use as an example a simplified version of the Stack class, SimpleStack. The difference
between them is that I’ve removed many methods in SimpleStack which are not necessary for
this tutorial. SimpleStack’s code is shown in appendix A.4. What remains is a minimal stack
implementation whose member fields and methods include Resize, Count, Clear, GetEnumerator
and the associated Enumerator class, Peek, Pop and Push.

�	� �	��� ��� � % '�� � ���$� ��� ��� ���-#&��%�� �)� �2� ���-#&��%�� � � ��� � � �

So let’s start with taking the existing file, SimpleStack.cs, renaming it to SimpleStack.ssc and
compiling it with the Spec# compiler. I use this command:

> ssc /debug /target:library SimpleStack.ssc

The compiler will give a number of error messages, most of them saying that either SimpleStack
does not implement a certain interface member, or that some methods are not pure enough.
What’s going on? SimpleStack will no longer be compiled against the standard C# core library,
but against the Spec# version of it. In the Spec# version, many interfaces are slightly differ-
ent, as they make use of Spec#’s features. As SimpleStack implements the ICollection and
IEnumerable interfaces, it needs to be adapted to those differences.

Since the Spec# core library lacks documentation at the moment, I simply go by the compiler
error and warning messages for now. Let’s look at each error message in turn:

• SimpleStack.ssc(42,15): error CS0535: ’System.Collections.SimpleStack’ does

not implement interface member ’System.Collections.ICollection.CopyTo(

System.Array!, int)’

In the Spec# core library, the type of the first argument in CopyTo(Array, int) has been
changed to a non-null type, Array! (notice the !, which is part of the type) so I modify
SimpleStack’s CopyTo method to use a non-null type too.

• SimpleStack.ssc(42,15): error CS0536: ’System.Collections.SimpleStack’ does

not implement interface member ’System.Collections.ICollection.SyncRoot.

get’. ’System.Collections.SimpleStack.SyncRoot.get’ is either static, not

public, or has the wrong return type.

41

42 6 How to Translate C# Code to Spec#

The main cause for this error message is that the return value type has been changed to
a non-null type in the Spec# version of the interface. Therefore, I change the return value
type of the SyncRoot getter to object!.

• SimpleStack.ssc(42,15): error CS0536: ’System.Collections.SimpleStack’ does

not implement interface member ’System.Collections.IEnumerable.

GetEnumerator()’. ’System.Collections.SimpleStack.GetEnumerator()’ is

either static, not public, or has the wrong return type.

The return value type of the GetEnumerator method is now a non-null type too. I change
its return value type to IEnumerator!.

• SimpleStack.ssc(72,4): error CS2681: ’System.Collections.SimpleStack.Count.get

’ is not pure enough. It either overrides or implements ’System.

Collections.ICollection.Count.get’ which is marked as ’Microsoft.Contracts

.PureAttribute’

The Count getter has been marked as [Pure] in the Spec# version of the ICollection in-
terface. When implementing interfaces or inheriting, member attributes must be repeated.
Therefore, I add the [Pure] attribute to the Count getter. As the [Pure] attribute has been
defined in the Microsoft.Contracts namespace, I add a using Microsoft.Contracts at
the beginning of the file to be able to use it.

• SimpleStack.ssc(76,4): error CS2681: ’System.Collections.SimpleStack.

IsSynchronized.get’ is not pure enough. It either overrides or implements

’System.Collections.ICollection.IsSynchronized.get’ which is marked as ’

Microsoft.Contracts.PureAttribute’

Same as above for the IsSynchronized getter.

With these changes, I run the Spec# compiler again. Unfortunately, I get two new error mes-
sage:

• error CS0029: Cannot implicitly convert type ’SimpleStack’ to ’T’

This is a tricky one. The error message given is unhelpful, as it does not contain a reference
to a line or a method in the code. Also, I don’t use T anywhere. So how can I fix this?

By compiling out parts of the code, method-by-method, and recompiling, I can find the
method which causes this error. It turns out to be GetEnumerator. Unfortunately, due to a
bug in Spec#, using the virtual keyword with GetEnumerator doesn’t work at the moment.
By commenting out just that keyword, the compiler can proceed with the compilation.

• SimpleStack.ssc(74,3): error CS2681: ’SimpleStack.SyncRoot.get’ is not pure

enough. It either overrides or implements ’System.Collections.ICollection.

SyncRoot.get’ which is marked as ’Microsoft.Contracts.PureAttribute’

The error I’ve received before for SyncRoot has masked another error: the SyncRoot getter
also needs to be marked with [Pure].

With these further changes, the code finally compiles.

6.3 Making Use of Non-Null Types 43

�	� �	� � " ��% '��
�� � ����� �-'���� , ���- � ��� �

While the Spec# compiler compiles the code, it also gives a number of warning messages, which
are all related to possible null-dereferences. Let’s have a look at the first one of each type:

• SimpleStack(53,14): warning CS2613: Conversion to ’object[]!’ fails if the

value is null

This refers to the following line of code:

53 Array.Copy(contents, ncontents, count);

The problem here is that Array.Copy uses object[]! as type for its first parameter, but
contents is only an object[], and therefore, possibly null. If it is null, the conversion will
be aborted with an exception.

• SimpleStack(120,15): warning CS2614: Receiver might be null (of type ’

SimpleStack’)

This warning message refers to the Enumerator constructor, shown here:

119 internal Enumerator(SimpleStack s) {

120 stack = s;

121 modCount = s.modCount;

122 current = BOF;

123 }

The parameter s is of a possibly-null type. If it is null, then s.modCount would be a null-
dereference, causing an exception.

• SimpleStack(81,4): warning CS2638: Using possibly null pointer as array

This refers to the following line of code:

81 contents[i] = null;

The field contents is of type object[], which is a possibly-null type. If contents is null,
an access to its array elements is a null-dereference and will cause an exception.

All of this warnings seem to refer to situations where a value being null could cause a problem. It
is clear from the surrounding code, that in most situations, this can’t actually happen. contents
for example is being initialized in the constructor, and after that is never assigned null, so it al-
ways contains an array object. However, what if the code contained a mistake that could produce
a null-dereference? I’d only find it in testing, or maybe not at all. Spec# allows me to do better: I
can change my types to non-null types, which makes sure, at compilation time, that a reference
cannot refer to null.

Lets look at the fields of the SimpleStack and Enumerator classes, to see where it makes sense to
use non-null types. In SimpleStack I have the contents field, which clearly must not be null, so
I change its type to object[]!. Note that this does not mean that the array elements must not be
null, but only that contents will always refer to a valid array. Other than that, there are only int

fields, which are value types and therefore can’t be null anyway.

In the Enumerator class, the stack field should be changed to a non-null type, since the enumer-
ator can only function if it has an object to operate on.

As a consequence of these two changes, I need to make two more: ncontents’s type in the Resize

method needs to be changed to object[]! too, and the type of the Enumerator constructor’s
parameter needs to be changed to SimpleStack!.

44 6 How to Translate C# Code to Spec#

These changes promptly remove all warnings, since null-dereferences can now no longer happen.
If contents is now assigned null in error, the compiler will mark it as such at compile-time.

There is another place where using non-null types is advantageous. I previously changed the
type of the first parameter of the CopyTo method to a non-null type. The beginning of CopyTo
now looks like this:

88 public virtual void CopyTo (Array! array, int index) {

89 if (array == null) {

90 throw new ArgumentNullException("array");

91 }

The check for array == null is redundant, since the type system guarantees that array is never
null. I can therefore remove those three lines (89-91) with no ill effect, making the code shorter
and easier to read.

�	��������� � � � � %('�� *�%�� � ")� � � � � � �-'�� ��")� � �

The code in the Spec# core library has been equipped with contracts. Let’s see if SimpleStack
actually observes them everywhere, or whether it is possible to create situations that cause unex-
pected runtime errors. One possibility would be to write a test suite and try to test every possible
situation. A more elegant solution however is to use Boogie to prove that the contracts are always
observed. I simply run Boogie on the dll file that was produced by the compiler (note that Boogie
requires that the /debug flag was used during compilation):

> Boogie SimpleStack.dll

Boogie will give a number of error messages, which can be classified into errors related to array
boundaries, errors related to peer consistency, and errors related to unsatisfied postconditions.
Let’s look at the the first of these.

One of the array boundary errors is this one:

SimpleStack.ssc(82,4): Error: Array index possibly above upper bound

Which refers to this code in the Clear method:

81 for (int i = 0; i < count; i++) {

82 contents[i] = null;

83 }

Boogie thinks that i could grow larger than the largest allowed array index. This is because it
does not infer by itself that count can never be larger than the array length. I can state this fact
in the code by writing an invariant. An invariant is a boolean expression that is supposed to be
true throughout the lifetime of an object1. Boogie will not only use the invariant as a basis for
analyzing code, it will also make sure that the invariant is never broken inadvertently.

In this case, I add the following code in class context:

48 invariant count <= contents.Length;

After running Boogie again, I notice that it no longer things that the array index is possibly above
the upper bound, however, it gives me a new error message for the Clear method:

1Not quite true, actually: it is possible (and sometimes necessary) to violate the invariant by using expose blocks.
However, it must be reestablished at the end of such expose blocks.

6.4 Observing Library Code Contracts 45

SimpleStack.ssc(86,3): Error: Target of field assignment might not be sufficiently

exposed

This refers to the following lines of code (note that it has been shifted by 2 lines from the code in
appendix A.4, as I’ve inserted the invariant and a blank line):

86 count = 0;

87 current = -1;

Now that I’ve mentioned count in an invariant, Boogie will no longer allow it to be updated
without the object being exposed. What does this mean? To make sure that the invariant, once
established, keeps on holding, Boogie does not allow any of the variables mentioned in the invari-
ant to be changed. If such a change is necessary, it is necessary to wrap that change in an expose

block. While an object is exposed, the invariant is not required to hold, so any changes are OK.
At the end of the expose block however, the invariant is checked, and only if it is reestablished,
execution (or verification) will proceed.

What I do therefore is to rewrite the two previous lines like this:

86 expose (this at SimpleStack) {

87 count = 0;

88 current = -1;

89 }

I also add the [Additive(false)] attribute to the Clear method. This will no longer be necessary
in future Spec# versions, as non-additive exposes will be the default for virtual methods. See the
discussion of [Additive] in section 2.1.

It is not necessary to include current in the expose block at this time, since it is not yet mentioned
in an invariant. I will however add a clause about current to the invariant in a moment. Having
“too much” code inside an expose block is not a problem.

With this change, the Clear method can be verified successfully. One thing is noteworthy: now
that I’ve added count to the invariant, Boogie should give errors for every method where it’s
changed (for example, inside Push), since I don’t have any other expose blocks yet, but it doesn’t.
This is because these methods still give error messages; Boogie will abort verification of a method
after the first error, so it is possible for an error to mask others. I will have to fix the existing errors
first to see the remaining ones, and keep doing this until there are no more errors.

So let’s look at another Boogie error message:

SimpleStack.ssc(132,5): Error: Array index possibly below lower bound

This refers to the Current getter inside the Enumerator class, specifically, this code:

127 if (modCount != stack.modCount

128 || current == BOF

129 || current == EOF

130 || current > stack.count)

131 return stack.contents[current];

Looking through the code of the Enumerator class, I see that current is indeed assigned negative
numbers sometimes, but only -1 and -2 (EOF and BOF respectively). These values are checked
for with the if, so by the time stack.contents is accessed, current is at least 0. Boogie at the
moment doesn’t know that current is always at least -2, so lets add an invariant (inside the
Enumerator class) to express this:

119 invariant current >= -2;

46 6 How to Translate C# Code to Spec#

Running Boogie again, I notice to my surprise that the error message doesn’t change, even though
current is now guaranteed to be at least 0 after the if. To check whether Boogie knows this, I
can add an assertion:

134 assert current >= 0;

Verifying the assertion promptly fails. Even after changing the assertion to

134 assert current >= -2 && current != -2 && current != -1 ==> current >= 0;

which is a tautology, verification fails. So I’ve run into a situation here where Boogie can’t prove
the code, even though it is correct. These situations are still common, given that Boogie is still un-
der heavy development. There are ways to work around it, however: I could replace the assert

keyword above with assume, which will make Boogie blindly believe the stated assumption. Or
I can try to find another assertion, which will point Boogie in the right direction. This requires
guesswork and trial & error most of the time, but I’ve been able to find such an assertion for this
case:

134 assert current >= -1 && current != -1 ==> current >= 0;

Now the previous error message is gone, Boogie no longer believes that current could be below
the lower array bound. However, I get a new, similar error message:

SimpleStack.ssc(135,5): Error: Array index possibly above upper bound

(Note that this is the same line of code as in the above error message; the line numbers have
changed because of the code I’ve inserted in the meantime.) I can add a clause to the invari-
ant which says that current will always be smaller than stack.contents.Length. This is not
correct however: After an Enumerator object has been created, elements could be popped from
the stack. The next time Current on that enumerator is accessed, it is possible that current is
larger than stack.contents.Length! So what I should state instead is that current is smaller
than stack.contents.Length as long as the stack object on which the enumerator operates isn’t
modified:

120 invariant modCount == stack.modCount ==> current < stack.contents.Length;

Unfortunately, there are problems with that at the moment. This invariant will cause errors for
code in SimpleStack, caused by Boogie’s limited ability for cross-class analysis of invariants. So
I scrap that invariant for now, and instead add an assumption to the Current getter:

135 assume current < stack.contents.Length;

Now the previous error message is gone. There is one last error message that Boogie gives for the
Current getter: it requires the returned object to be peer consistent. Since I don’t know anything
about the owners or consistency of the objects stored in the stack (I can require that they are peer
consistent when pushed onto it, but they might be changed in the meantime), I decide for now
to simply shut Boogie up with an assumption:

136 assume stack.contents[current] != null ==>

137 stack.contents[current].IsPeerConsistent;

The comparison against null is there so that I don’t end up calling IsPeerConsistent on a null

object. The Spec# compiler will give a warning about that anyway, but it’s safe to ignore it. Now
Boogie completely verifies the Current getter without errors.

Because of adding the invariant to Enumerator, Boogie now gives errors for the methods MoveNext
and Reset where current is changed, since the expose blocks are missing. Therefore, I add the

6.4 Observing Library Code Contracts 47

[Additive(false)] attribute to those methods, and wrap the changes to current into expose

blocks.

The MoveNext method now looks like this:

142 [Additive(false)]

143 public virtual bool MoveNext() {

144 if (modCount != stack.modCount)

145 throw new InvalidOperationException();

146
147 switch (current) {

148 case BOF:

149 expose (this at Enumerator) {

150 current = stack.current;

151 }

152 return current != -1;

153
154 case EOF:

155 return false;

156
157 default:

158 expose (this at Enumerator) {

159 current--;

160 }

161 return current != -1;

162 }

163 }

Boogie gives an error message for the end of the first expose block inside MoveNext:

SimpleStack.ssc(151,5): Error: Object invariant possibly does not hold: invariant

current >= -2;

I’ve specified that Enumerator’s current is always at least -2, but so far I’ve said nothing about
the range of values that SimpleStack’s current can have. Boogie assumes that stack.current
might have a value lower than -2, which, when assigned to Enumerator’s current, would break
Enumerator’s invariant. So let’s look at SimpleStack’s current. When analyzing the code I see
that it is always at least -1, and more than that, it always points to the top of stack. This gives
the relation current + 1 == count. I decide thus to specify the following additional invariant
clauses for SimpleStack:

49 invariant current >= -1;

50 invariant current + 1 == count;

Unfortunately, Boogie still gives the same error for MoveNext. Invariants are private to their con-
taining class, so Enumerator doesn’t have access to SimpleStack’s invariant. What I can do here
is to repeat all three clauses of SimpleStack’s invariant as assume statements here:

152 assume stack.count <= stack.contents.Length;

153 assume stack.current >= -1;

154 assume stack.current + 1 == stack.count;

Now Boogie is happy with MoveNext, and with it, all of Enumerator.

I turn my attention the next error message, with refers to the Resize method:

SimpleStack.ssc(55,3): Error: Array size possibly negative;

48 6 How to Translate C# Code to Spec#

Why does Boogie complain that the array size, ncapacity is possibly negative when it is set to a
number of at least 16? At the moment, Boogie doesn’t know what the Math.Max statement means.
It just sees Math.Max as some function which returns a value about which nothing is known, other
than that it is an int. I could now either say assume ncapacity >= 16 after the Math.Max call, or
I could replace Math.Max altogether with something that Boogie can understand. In this case, I
decide to do the latter and change the assignment to:

54 ncapacity = ncapacity < 16 ? 16 : ncapacity;

Now new object[ncapacity] is valid, as far as Boogie is concerned. However there now is an
error for the Array.Copy call two lines below:

SimpleStack.ssc(57,3): Error: Call of System.Array.Copy(System.Array! sourceArray,

System.Array! destinationArray, int length), unsatisfied precondition: requires

length <= destinationArray.GetLowerBound(0) + destinationArray.Length;

Array.Copy has several preconditions, and Boogie cannot prove that they are always observed.
What is required here is that the length of ncontents, which is ncapacity, is no smaller than
count. I can state that as a precondition of the Resize method:

52 private void Resize(int ncapacity)

53 requires ncapacity >= count;

This precondition can be taken for granted inside Resize (since, if it doesn’t hold, the body of
Resize isn’t actually executed), so Boogie can now prove that the mentioned precondition of
Array.Copy is observed.

Boogie will now give an error about another precondition of Array.Copy which requires that
sourceArray be peer-consistent. To solve this (locally as we’ll see), I specify another precondition
for Resize, requires contents.IsPeerConsistent.

There is one remaining problem with the Resize method. I can’t assign a new objects to contents,
without exposing this. I therefore add an expose block, using a non-additive expose because
Resize will be called from virtual methods in this:

52 [Additive(false)]

53 private void Resize(int ncapacity)

54 requires ncapacity >= count;

55 requires contents.IsPeerConsistent;

56 {

57 ncapacity = ncapacity < 16 ? 16 : ncapacity;

58 object[]! ncontents = new object[ncapacity];

59
60 Array.Copy(contents, ncontents, count);

61
62 capacity = ncapacity;

63 expose (this at SimpleStack) { contents = ncontents; }

64 }

The next error message is:

Object returned by method SimpleStack.SyncRoot.get must be peer consistent

Since SyncRoot simply returns this, The easy solution here would be to add IsPeerConsistent

as a precondition of the getter. Unfortunately, that doesn’t work, since SyncRoot is an interface
method implementation, which means that additional preconditions are not allowed (and this
precondition apparently is not given in the interface definition). What remains is using an assume
statement:

6.4 Observing Library Code Contracts 49

80 public virtual object! SyncRoot {

81 [Pure] get {

82 assume IsPeerConsistent;

83 return this;

84 }

85 }

On to the next error message:

SimpleStack.ssc(113,4): Error: Array index possibly below lower bound

This refers to the array access inside this for loop in the CopyTo method:

112 for (int i = current; i != -1; i--) {

113 array.SetValue(contents[i],

114 count - (i + 1) + index);

115 }

Boogie is still quite bad at inferring properties of objects and values inside loops. In this case,
it does realize that, inside the loop, i is at least 0 when accessing contents[i]. This follows
from the invariant, which specifies that current is always equal to or larger than -1, and the loop
condition, which prevents the loop body from being executed if i is -1. I can help Boogie out by
specifying a loop invariant which expresses that i >= -1. Why not i >= 0? Loop invariants have
to hold after the last iteration of the loop, when the loop condition is false. This loop invariant is
already enough, together with the loop condition, Boogie is able to prove that i is at least 0 inside
the loop.

112 for (int i = current; i != -1; i--)

113 invariant i >= -1

114 {

115 array.SetValue(contents[i],

116 count - (i + 1) + index);

117 }

Rerunning Boogie, I get a similar error message for the same code:

SimpleStack.ssc(114,4): Error: Array index possibly above lower bound

Boogie also can’t infer that i is always smaller than contents’ length. This I can easily specify by
extending the loop invariant:

112 for (int i = current; i != -1; i--)

113 invariant i >= -1 && i <= current;

114 {

115 array.SetValue(contents[i],

116 count - (i + 1) + index);

117 }

Still at the same line, Boogie now gives the following error message:

SimpleStack.ssc(115,4): Error: Call of System.Array.SetValue(object value, int

index), unsatisfied precondition: requires index <= this.GetUpperBound(0);

This is exactly the condition that is being checked with the preceding if. I can add it to the loop
invariant as well.

Boogie will now give one last error message for CopyTo, again in the same place:

50 6 How to Translate C# Code to Spec#

SimpleStack.ssc(116,4): Error: Call of ’System.Array.SetValue(object value, int

index)’: the object passed as value of parameter ’value’ must be peer

consistent

The parameter in question is contents[i]. Unfortunately, I don’t know anything about the own-
ership of the objects stored in the stack, so all I can do at this time is give an assumption, saying
contents[i].IsPeerConsistent, unless it is null.

112 for (int i = current; i != -1; i--)

113 invariant i >= -1 && i <= current;

114 invariant count <= array.Length - index;

115 {

116 assume contents[i] != null ==> contents[i].IsPeerConsistent;

117 array.SetValue(contents[i],

118 count - (i + 1) + index);

119 }

As before, this will prompt the Spec# compiler to display another warning with the intention of
making me aware of the fact that contents[i] might be null when I access IsPeerConsistent

on it, but of course this is bogus.

With the next error message I have the same problem:

Object returned by method SimpleStack.Peek() must be peer consistent

Peek returns contents[current]. Again, I can do nothing but specify the assumption that if
contents[current] is not null, it is peer consistent.

The next error message refers to the change of count in Pop:

SimpleStack(214,4): Error: Target object of field assignment might not be

sufficiently exposed

Since I’ve made count part of the invariant, I need to expose this when changing it. Because
Pop is a virtual method, I need to use a non-additive expose, so I also add [Additive(false)] as
Pop’s attribute. While here, I do the same for Push.

Next I get errors for the two Resize calls in Pop and Push:

SimpleStack(226,6): Error: Call of SimpleStack.Resize(int ncapacity), unsatisfied

precondition: requires contents.IsPeerConsistent;

SimpleStack(240,5): Error: Call of SimpleStack.Resize(int ncapacity), unsatisfied

precondition: requires contents.IsPeerConsistent;

I’m not sure why I get these. As I haven’t changed contents inside those methods, it is still con-
sistent, and, because it has no peers (as SimpleStack contains no other owned objects), also peer
consistent. I therefore give two more assumptions saying that contents.IsPeerConsistent.

The next error message is the similar to the ones I’ve seen before:

Object returned by method SimpleStack.Pop() must be peer consistent

The fix is the same as well.

The next error message is more interesting:

SimpleStack.ssc(248,3): Error: Object invariant possibly does not hold:

invariant count <= contents.Length;

6.4 Observing Library Code Contracts 51

This refers to the end of the expose block in Push. Boogie says that the invariant might be vi-
olated because count is incremented, which might put it above contents.Length. This clearly
can’t happen, because the array size is doubled with the Resize call if count is already equal to
contents.Length.

Possible solutions would be to adding a clause to the invariant which says that capacity is equal
to contents.Length, and adding a postcondition to Resize saying that contents.Length is now
at least as large as the argument given. Unfortunately, Boogie fails here; even when doing these
things, the error message remains. Therefore, the only option is to give another assumption:

245 assume count < contents.Length;

The next error message I can fix properly. It says:

SimpleStack.ssc(242,3): Error: RHS might not be a subtype of the element type of

the array being assigned

This error refers to the assignment at the end of Push. It is a result of the covariance of C#/Spec#
which allows an array declared as object[] to actually be an array of any type. If contents were
to be an array of a type other than object however, assigning an object to it would fail. What I
need to do here is to specify that contents will always only contain object arrays. I do this by
adding the following invariant clause to SimpleStack:

51 invariant contents.GetType() == typeof(object[]);

Now Push is verified and deemed correct.

The next error message is:

Method SimpleStack.System.Collections.ICollection.Icollection.get_Count(),

unsatisfied postcondition: ensures result >= 0;

Since the Count getter simply returns count, I can extend the existing invariant clause for it. I’ve
already specified the upper limit for count, and it makes sense (and is required by the postcon-
dition mentioned in above error message) to specify a lower limit too. I therefore change the
invariant clause to:

48 invariant count >= 0 && count <= contents.Length;

This allows me to repeat the postcondition in the Count implementation, which now looks like
this:

73 public virtual int Count {

74 [Pure] get

75 ensures result >= 0;

76 {

77 return count;

78 }

79 }

Now Boogie is able to prove Count to be correct.

I have now two error messages from Boogie which remain:

Method SimpleStack.System.Collections.IEnumerable.IEnumerable.GetEnumerator(),

unsatisfied postcondition: ensures Owner.Same(this, result);

Object returned by method SimpleStack.Systems.Collections.ICollection.ICollection.

get_SyncRoot() must be peer consistent

52 6 How to Translate C# Code to Spec#

The first of these I can’t fix, as it is caused by a bug in Spec#, as discussed earlier. I would have
to specify the attribute [Owned("peer")] for the GetEnumerator method, but unfortunately, this
causes other errors. So for now, I ignore it.

The second error is related to one I’ve received before. I already gave the assumption in the
SyncRoot getter saying that the returned object, this, is peer consistent. By also specifying this
as a postcondition, Boogie accepts this properly:

85 public virtual object! SyncRoot {

86 [Pure] get

87 ensures result.IsPeerConsistent

88 {

89 assume IsPeerConsistent;

90 return this;

91 }

92 }

So what have I achieved now? By giving the code specifications (and the occasional assumption),
I can have Boogie prove that all calls to to the Spec# core library are correct, that is, they observe
the specifications given for it. This means, for example, that no matter how the code is abused, I
will never see any IndexOutOfRangeExceptions when accessing arrays. If the code were incorrect,
Boogie would produce errors that I would not be able to “fix” by adding specification (I could
of course add assumptions to silence Boogie, but then I would not be able to explain why those
assumptions are valid).

�	� � ��� � � "�� % '���� � �
�
' � �-'�� ��")� � �

I can do more. Using Spec#, I can show that not only does SimpleStack use the core library
correctly, SimpleStack itself also does what it claims it does. But... what exactly does SimpleStack
claim to do? So far, not much: the code is completely undocumented, and the only hint as to
its functionality is given through the name of the class and its methods. Let’s change that by
adding specifications. Once I have these, I can use Boogie to prove that the code does behave in
accordance with the specifications, or, in other words, that it does what it claims it does.

When adding specifications, I can mostly ignore methods I inherit or which are given by inter-
faces, as I can’t specify additional preconditions for them. Having proper specifications for those
methods is something that needs to be done in the context of the original base class, or the inter-
face. In SimpleStack, there are only five methods which are “new”, that is, neither inherited nor
part of interfaces: Clear, Peek, Pop, Push and Resize. Last but not least, there is the constructor.

µ}Àw´Q±J³
Let’s start with Clear. Clear removes all elements for SimpleStack’s storage array and sets count
to 0, and current to -1. Here’s the code:

94 [Additive(false)]

95 public virtual void Clear() {

96 modCount++;

97
98 for (int i = 0; i < count; i++) {

99 contents[i] = null;

100 }

101

6.5 Creating My Own Contracts 53

102 expose(this at SimpleStack) {

103 count = 0;

104 current = -1;

105 }

106 }

An easy way to document that Clear empties the stack is to say that after Clear, Count will be 0.
Unfortunately, accessing Count really means a method call (to Count’s getter), and Boogie doesn’t
currently support method calls in method contracts. However, there is an alternative: Since the
Count getter only returns the private field count, I can just refer to that instead. To be able to refer
to private fields in public method contracts, I need to mark them as [SpecPublic]. The beginning
of the Count method now looks like this:

94 [Additive(false)]

95 public virtual void Clear()

96 ensures count == 0;

97 {

This postcondition clearly, if very concisely, documents what the Clear method does. To be
consistent and create the connection between count and Count (which is documented in the
ICollection interface), I also add the following postcondition to the Count getter:

76 ensures result == count;

� ´Q´ �
The Peek method currently looks like this:

206 public virtual object Peek() {

207 if (current == -1) {

208 throw new InvalidOperationException();

209 } else {

210 assume contents[current] != null ==> contents[current].IsPeerConsistent;

211 return contents[current];

212 }

213 }

The Peek method returns the last object pushed onto the stack, without modifying the stack.
The first part is difficult to express in the context of Peek: how exactly do I specify “the last ob-
ject pushed onto the stack”? Making more internal variables [SpecPublic] is not helpful: while I
could express that Peek always returns the array element with the largest index, it is not clear that
there is a correlation between the order of array elements and the order of stack elements. More-
over, if the internal representation is changed to another data structure, the external specification
would have to be changed too. Clearly, this should be avoided. Instead, Peek can be defined in
terms of the other stack functions, Pop and Push. Therefore, I postpone the specification of this
part of Peek for a moment.

The second part of Peek’s behaviour, ie. that it doesn’t change the stack can be expressed easily: I
simply mark the method as [Pure].

There is another thing about Peek that the user of SimpleStack should know about: He can’t call
Peek if there are no elements on the stack. This condition is currently checked for with the if.
If there are no elements on the stack, an InvalidOperationException is thrown. This check can
be easily turned into a precondition by requiring that count be larger than 0 (which implies that

54 6 How to Translate C# Code to Spec#

current is larger or equal to 0 because of the invariant), which automatically also documents this
requirement.

With these changes, Peek’s code now is:

206 [Pure]

207 public virtual object Peek()

208 requires count > 0 otherwise InvalidOperationException;

209 {

210 assume contents[current] != null ==> contents[current].IsPeerConsistent;

211 return contents[current];

212 }

As a side effect of these changes, the code has become shorter and easier to read, which is always
welcome. From a functional point of view, it is still the same. What is Boogie able to prove with
these changes? First, it will prove that the restrictions given by the [Pure] attribute, ie. that this
isn’t observably changed, are obeyed. Second, if SimpleStack is used in other code, and that code
is verified with Boogie, it will prove that Peek is never called on an empty stack (and give errors
if it can’t).

� m¹
Next I’ll have a look at Pop. It currently looks like this:

214 [Additive(false)]

215 public virtual object Pop() {

216 if (current == -1) {

217 throw new InvalidOperationException();

218 } else {

219 modCount++;

220
221 object ret = contents[current];

222 contents [current] = null;

223
224 expose (this at SimpleStack) {

225 count--;

226 current--;

227 }

228
229 // if we’re down to capacity/4, go back to a
230 // lower array size. this should keep us from
231 // sucking down huge amounts of memory when
232 // putting large numbers of items in the Stack.
233 // if we’re lower than 16, don’t bother, since
234 // it will be more trouble than it’s worth.
235 if (count <= (capacity/4) && count > 16) {

236 assume contents.IsPeerConsistent;

237 Resize(capacity/2);

238 }

239
240 assume ret != null ==> ret.IsPeerConsistent;

241 return ret;

242 }

243 }

6.5 Creating My Own Contracts 55

Pop removes the topmost element from the stack and returns it. This implies three things: The
element that is returned is the same as the one that used to be returned by Peek before, it defines
the “topmost element” as “the element returned by Peek”, and last, the sentence says that the
stack’s element count is decreased by one. All of this can be specified as a precondition.

As does Peek, Pop requires that the stack not be empty when called. I specify the same precondi-
tion that I have for Peek and remove the if. This is Pop after these changes:

214 [Additive(false)]

215 public virtual object Pop()

216 requires count > 0 otherwise InvalidOperationException;

217 ensures result == old(Peek());

218 ensures count == old(count) - 1;

219 {

220 modCount++;

221
222 object ret = contents[current];

223 contents [current] = null;

224
225 expose (this at SimpleStack) {

226 count--;

227 current--;

228 }

229
230 // if we’re down to capacity/4, go back to a
231 // lower array size. this should keep us from
232 // sucking down huge amounts of memory when
233 // putting large numbers of items in the Stack.
234 // if we’re lower than 16, don’t bother, since
235 // it will be more trouble than it’s worth.
236 if (count <= (capacity/4) && count > 16) {

237 assume contents.IsPeerConsistent;

238 Resize(capacity/2);

239 }

240
241 assume ret != null ==> ret.IsPeerConsistent;

242 return ret;

243 }

Unfortunately, since method calls in specifications don’t work (yet), Boogie can’t actually prove
that result == old(Peek()), but instead gives an error message. So for now I comment out line
217 to have it at least verify the rest of the method. I expect this postcondition to work in future
Spec# versions though.

Boogie will prove that count decreases, and it will also prove that code that uses SimpleStack

doesn’t call Pop on an empty stack.

� Å 1¥¿
The Push method currently looks like this:

245 [Additive(false)]

246 public virtual void Push(Object o) {

247 modCount++;

248

56 6 How to Translate C# Code to Spec#

249 if (capacity == count) {

250 assume contents.IsPeerConsistent;

251 Resize(capacity * 2);

252 }

253
254 assume count < contents.Length;

255
256 expose (this at SimpleStack) {

257 count++;

258 current++;

259 }

260
261 contents[current] = o;

262 }

Push adds a new element to the top of the stack. In other words, it increases the count of elements
by one, and the added element is the one that will now be returned by Peek. Since there is no
defined upper limit on the number of elements on the stack, Push can at least theoretically always
be called. There is therefore no precondition, and all I need to add are the two postconditions.
The Push method now starts like this:

245 [Additive(false)]

246 public virtual void Push(Object o)

247 ensures o == Peek();

248 ensures count == old(count) + 1;

249 {

Again, the postcondition o == Peek() can’t actually be proved by Boogie at the moment, so I
comment it out. The other postcondition is proved to hold.

� ´01 ��� ´
Even though Resize is private, it makes sense to add specifications to it. They act as internal doc-
umentation by recording design decisions, and allow checking whether these design decisions
are being followed.

Resize currently looks like this:

53 [Additive(false)]

54 private void Resize(int ncapacity)

55 requires ncapacity >= count;

56 requires contents.IsPeerConsistent;

57 {

58 ncapacity = ncapacity < 16 ? 16 : ncapacity;

59 object[]! ncontents = new object[ncapacity];

60
61 Array.Copy(contents, ncontents, count);

62
63 capacity = ncapacity;

64 expose (this at SimpleStack) { contents = ncontents; }

65 }

An important part of Resize is that it doesn’t change the stack. I can express this in two precon-
ditions: One, the total count of stack elements remains the same, and two, every element on the

6.5 Creating My Own Contracts 57

stack remains the same. For this I use, for the first time in this class, a forall quantifier. Resize
now starts like this:

53 [Additive(false)]

54 private void Resize(int ncapacity)

55 requires ncapacity >= count;

56 requires contents.IsPeerConsistent;

57 ensures count == old(count);

58 ensures forall { int i in (0:count - 1), contents[i] == old(contents[i]) };

59 {

Boogie successfully proves that both postconditions are observed, so the code is correct.

µr¸º 1�¯ ³ZÅJ¾ ¯��³

Last, I have the very simple constructor:

69 public SimpleStack ()

70 {

71 contents = new object[default_capacity];

72 capacity = default_capacity;

73 }

Since the constructor takes no parameters, there are no preconditions that would make sense.
However, there is one important postcondition that should be specified: after creating a stack, it
is empty (as opposed to, say, filled with random data), or in other words, the element count is 0.
With this postcondition, the constructor becomes:

69 public SimpleStack ()

70 ensures count == 0;

71 {

72 contents = new object[default_capacity];

73 capacity = default_capacity;

74 }

And of course, Boogie is able to prove that the postcondition holds.

�\¯ ¿»´J³ 	 ´21 �~Ámº 	 ´p¾ � 1 �~mº 1

There are a number of other design decisions that could be specified. For example, I could add an
invariant saying that capacity is never larger than contents.Length. Doing this makes sense, as
capacity is in various places in the code for storage calculation, which could potentially contain
errors. After adding capacity to the invariant, I would also have to enclose modifications to it in
expose blocks.

I could also add assert statements in various places. The difference to other languages that also
have assertions is that Boogie will try to prove that the assertions hold.

58 6 How to Translate C# Code to Spec#

�	� �	� � ,�#$# "�� �

I’ve shown in this tutorial now how to turn a C# program into a Spec# one and have it proved
correct. These are the steps I’ve taken:

1. Make the C# code compile with the Spec# compiler by adding non-null types and attributes
as dictated by the inheritance, interface implementation and method call rules.

2. Add non-null types whereever it makes sense in order to more easily catch null-dereference
errors.

3. Make sure the code observes the specifications of inherited and called methods, as well as
the methods defined in interfaces by adding enough specification so that Boogie can prove
it. This ensures that third-party code is used correctly.

4. Add specifications for the rest of the code to ensure the correctness of the implementation,
as well as correct use of the code.

Please see appendix A.5 for the full Spec# version of SimpleStack.

& � ����. �

Comments starting with // ! are comments added by me. Other comments are part of the original
Mono code. Only Spec# language constructs have been added, the existing code has not been
modified except where absolutely necessary; in such cases this has been noted in the comments.

� �
���� % ��� � � " �

1 //
2 // Bit Array.cs
3 //
4 // Authors:
5 // Ben Maurer (bmaurer@users.sourceforge.net)
6 //
7 // (C) 2003 Ben Maurer
8 //
9

10 //
11 // Copyright (C) 2004 Novell, Inc (http://www.novell.com)
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining
14 // a copy of this software and associated documentation files (the
15 // "Software"), to deal in the Software without restriction, including
16 // without limitation the rights to use, copy, modify, merge, publish,
17 // distribute, sublicense, and/or sell copies of the Software, and to
18 // permit persons to whom the Software is furnished to do so, subject to
19 // the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be
22 // included in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE
28 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31 //
32
33 using System;

34 using System.Runtime.InteropServices;

35 using Microsoft.Contracts;

36
37 namespace System.Collections {

59

60 A Code

38 #if NET_2_0

39 [ComVisible(true)]

40 #endif

41 [Serializable]

42 public sealed class BitArray : ICollection, ICloneable {

43 // ! initialisation necessary because of not−delayed constructors.
44 // ! old code was: int [] m_array;
45 int []! m_array = new int[0];

46 [SpecPublic] int m_length;

47 int _version = 0;

48
49 invariant m_length >= 0;

50 invariant m_array.Length >= (m_length + 31) / 32;

51 invariant m_array != null;

52
53 #region Constructors

54 [NotDelayed]

55 public BitArray (BitArray! bits)

56 requires bits.IsConsistent;

57 {

58 // ! if (bits == null)
59 // ! throw new ArgumentNullException ("bits");
60
61 m_length = bits.m_length;

62 m_array = new int [(m_length + 31) / 32];

63
64 assume bits.m_array.IsPeerConsistent; //! follows from precondition
65 Array.Copy(bits.m_array, m_array, m_array.Length);

66 }

67
68 [NotDelayed]

69 public BitArray (bool []! values)

70 {

71 // ! if (values == null)
72 // ! throw new ArgumentNullException ("values");
73
74 m_length = values.Length;

75 m_array = new int [(m_length + 31) / 32];

76 assume m_array.Length == (m_length + 31) / 32;

77
78 // ! Added temp vars to express that m_length and m_array.Length remain
79 // ! constant through the for loop.
80 int temp1 = m_length;

81 int temp2 = m_array.Length;

82
83 for (int i = 0; i < values.Length; i++)

84 invariant temp1 == m_length;

85 invariant temp2 == m_array.Length;

86 {

87 this [i] = values [i];

88 }

89 }

90
91 [NotDelayed]

A.1 BitArray 61

92 public BitArray (byte []! bytes)

93 {

94 // ! if (bytes == null)
95 // ! throw new ArgumentNullException ("bytes");
96
97 m_length = bytes.Length * 8;

98 m_array = new int [(m_length + 31) / 32];

99 assume m_array.Length == (m_length + 31) / 32;

100
101 // ! Added temp vars to express that m_length and m_array.Length remain
102 // ! constant through the for loop.
103 int temp1 = m_length;

104 int temp2 = m_array.Length;

105
106 for (int i = 0; i < bytes.Length; i++)

107 invariant temp1 == m_length;

108 invariant temp2 == m_array.Length;

109 {

110 setByte (i, bytes [i]);

111 }

112 }

113
114 [NotDelayed]

115 public BitArray (int []! values)

116 {

117 // ! if (values == null)
118 // ! throw new ArgumentNullException ("values");
119
120 int arrlen = values.Length;

121 m_length = arrlen*32;

122 m_array = new int [arrlen];

123 Array.Copy (values, m_array, arrlen);

124 }

125
126 [NotDelayed]

127 public BitArray (int length)

128 requires length >= 0 otherwise ArgumentOutOfRangeException;

129 {

130 // ! if (length < 0)
131 // ! throw new ArgumentOutOfRangeException ("length");
132
133 m_length = length;

134 m_array = new int [(m_length + 31) / 32];

135 }

136
137 [NotDelayed]

138 public BitArray (int length, bool defaultValue) : this (length)

139 requires length >= 0;

140 {

141 if (defaultValue) {

142 for (int i = 0; i < m_array.Length; i++)

143 m_array[i] = ~0;

144 }

145 }

62 A Code

146
147 private BitArray (int []! array, int length)

148 requires length >= 0;

149 requires array.Length >= (length + 31) / 32;

150 {

151 m_array = array;

152 m_length = length;

153 }

154 #endregion

155 #region Utility Methods

156
157 [Pure]

158 byte getByte (int byteIndex)

159 requires byteIndex >= 0 && byteIndex < (m_length + 7) / 8;

160 {

161 int index = byteIndex / 4;

162 int shift = (byteIndex % 4) * 8;

163
164 int theByte = m_array [index] & (0xff << shift);

165
166 return (byte)((theByte >> shift) & 0xff);

167 }

168
169 void setByte (int byteIndex, byte value)

170 requires byteIndex >= 0 && byteIndex < m_length / 8;

171 {

172 int index = byteIndex / 4;

173 int shift = (byteIndex % 4) * 8;

174
175 // clear the byte
176 m_array [index] &= ~(0xff << shift);

177 // or in the new byte
178 m_array [index] |= value << shift;

179
180 _version++;

181 }

182
183 [Pure]

184 void checkOperand (BitArray! operand)

185 requires operand.m_length == m_length otherwise ArgumentException;

186 {

187 // ! not necessary because operand is non−nullable.
188 // ! if (operand == null)
189 // ! throw new ArgumentNullException ();
190
191 // ! if (operand.m_length != m_length)
192 // ! throw new ArgumentException ();
193 }

194 #endregion

195
196 public int Count {

197 [Pure]

198 get

199 ensures result == m_length;

A.1 BitArray 63

200 { return m_length; }

201 }

202
203 public bool IsReadOnly {

204 get { return false; }

205 }

206
207 public bool IsSynchronized {

208 [Pure]

209 get { return false; }

210 }

211
212 public bool this [int index] {

213 [Pure]

214 get

215 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

216 requires IsPeerConsistent;

217 {

218 return Get (index);

219 }

220 set

221 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

222 {

223 Set (index, value);

224 }

225 }

226
227 public int Length {

228 [Pure]

229 get { return m_length; }

230 set

231 requires value >= 0 otherwise ArgumentOutOfRangeException;

232 {

233 // ! if (value < 0)
234 // ! throw new ArgumentOutOfRangeException ();
235
236 int newLen = value;

237 if (m_length != newLen) {

238 int numints = (newLen + 31) / 32;

239 int [] newArr = new int [numints];

240 int copylen = (numints > m_array.Length) ? m_array.Length : numints;

241 expose (this) {

242 assume m_array.IsPeerConsistent;

243 Array.Copy (m_array, newArr, copylen);

244
245 // set the internal state
246 m_array = newArr;

247 m_length = newLen;

248 _version++;

249 }

250 }

251 }

64 A Code

252 }

253
254 public object! SyncRoot {

255 [Pure]

256 get { return this; }

257 }

258
259 public object! Clone ()

260 {

261 // LAMESPEC: docs say shallow, MS makes deep.
262 return new BitArray (this);

263 }

264
265 public void CopyTo (Array! array, int index)

266 requires index >= 0 otherwise ArgumentOutOfRangeException;

267 requires array.Rank == 1 otherwise ArgumentException;

268 requires index < array.Length otherwise ArgumentException;

269 requires array is bool[]! || array is byte[]! || array is int[]!;

270 requires array is bool[]! ==> array.Length - index >= m_length;

271 requires array is byte[]! ==> array.Length - index >= (m_length + 7) / 8;

272 requires array is int[]! ==> index + (m_length + 31) / 32 <= array.Length;

273 {

274 // ! if (array == null)
275 // ! throw new ArgumentNullException ("array");
276 // ! if (index < 0)
277 // ! throw new ArgumentOutOfRangeException ("index");
278 // ! if (array.Rank != 1)
279 // ! throw new ArgumentException ("array", "Array rank must be 1");
280 // ! if (index >= array.Length)
281 // ! throw new ArgumentException ("index", "index is greater than array.Length");
282
283 // in each case, check to make sure enough space in array
284 if (array is bool []!) {

285 // ! if (array.Length − index < m_length)
286 // ! throw new ArgumentException ();
287
288 bool []! barray = (bool []!) array;

289
290 // Copy the bits into the array
291 for (int i = 0; i < m_length; i++)

292 invariant array.Length - index >= m_length; //! precondition
293 {

294 assume i < m_length; //! loop stop condition
295 barray[index + i] = this [i];

296 }

297 } else if (array is byte []!) {

298 int numbytes = (m_length + 7) / 8;

299
300 // ! if ((array.Length − index) < numbytes)
301 // ! throw new ArgumentException ();
302
303 byte []! barray = (byte []!) array;

304 // Copy the bytes into the array
305 for (int i = 0; i < numbytes; i++)

A.1 BitArray 65

306 invariant numbytes == (m_length + 7) / 8;

307 {

308 assume i < numbytes; //! loop stop condition
309 barray [index + i] = getByte (i);

310 }

311 } else if (array is int []!) {

312 assume m_array.IsPeerConsistent;

313 Array.Copy (m_array, 0, array, index, (m_length + 31) / 32);

314 // ! } else {
315 // ! throw new ArgumentException ("array", "Unsupported type");
316 }

317 }

318
319 public BitArray Not ()

320 {

321 int ints = (m_length + 31) / 32;

322 assert ints <= m_array.Length;

323 for (int i = 0; i < ints; i++) {

324 assume i < ints && ints <= m_array.Length;

325 m_array [i] = ~m_array [i];

326 }

327
328 _version++;

329 return this;

330 }

331
332 public BitArray And (BitArray! value)

333 requires value.m_length == m_length otherwise ArgumentException;

334 {

335 checkOperand (value);

336
337 int ints = (m_length + 31) / 32;

338 assert ints <= m_array.Length && ints <= value.m_array.Length;

339 for (int i = 0; i < ints; i++)

340 {

341 assume i < ints; //! loop stop condition
342 assume ints <= m_array.Length && ints <= value.m_array.Length; //!

asserted
343 m_array [i] &= value.m_array [i];

344 }

345
346 _version++;

347 return this;

348 }

349
350 public BitArray Or (BitArray! value)

351 requires value.m_length == m_length otherwise ArgumentException;

352 {

353 checkOperand (value);

354
355 int ints = (m_length + 31) / 32;

356 assert ints <= m_array.Length && ints <= value.m_array.Length;

357 for (int i = 0; i < ints; i++) {

358 assume i < ints; //! loop stop condition

66 A Code

359 assume ints <= m_array.Length && ints <= value.m_array.Length; //!
asserted

360 m_array [i] |= value.m_array [i];

361 }

362
363 _version++;

364 return this;

365 }

366
367 public BitArray Xor (BitArray! value)

368 requires value.m_length == m_length otherwise ArgumentException;

369 {

370 checkOperand (value);

371
372 int ints = (m_length + 31) / 32;

373 assert ints <= m_array.Length && ints <= value.m_array.Length;

374 for (int i = 0; i < ints; i++) {

375 assume i < ints; //! loop stop condition
376 assume ints <= m_array.Length && ints <= value.m_array.Length; //!

asserted
377 m_array [i] ^= value.m_array [i];

378 }

379
380 _version++;

381 return this;

382 }

383
384 [Pure]

385 public bool Get (int index)

386 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

387 {

388 // ! if (index < 0 || index >= m_length)
389 // ! throw new ArgumentOutOfRangeException ();
390
391 assume index >= 0 ==> (index >> 5) >= 0;

392 assume (index >> 5) == (index / 32);

393 return (m_array [index >> 5] & (1 << (index & 31))) != 0;

394 }

395
396 public void Set (int index, bool value)

397 requires index >= 0 && index < m_length otherwise

ArgumentOutOfRangeException;

398 {

399 // ! if (index < 0 || index >= m_length)
400 // ! throw new ArgumentOutOfRangeException ();
401
402 assume index >= 0 ==> (index >> 5) >= 0;

403 assume (index >> 5) == (index / 32);

404 if (value)

405 m_array [index >> 5] |= (1 << (index & 31));

406 else

407 m_array [index >> 5] &= ~(1 << (index & 31));

408

A.1 BitArray 67

409 _version++;

410 }

411
412 public void SetAll (bool value)

413 {

414 if (value) {

415 for (int i = 0; i < m_array.Length; i++)

416 m_array[i] = ~0;

417 }

418 else {

419 // ! XXX this is an erroneous precondition in System.Array.Clear
420 assume m_array.Length < m_array.Length;

421 Array.Clear (m_array, 0, m_array.Length);

422 }

423
424 _version++;

425 }

426
427 public IEnumerator! GetEnumerator ()

428 {

429 return new BitArrayEnumerator (this);

430 }

431
432 [Serializable]

433 class BitArrayEnumerator : IEnumerator, ICloneable {

434 BitArray! _bitArray;

435 bool _current;

436 int _index, _max, _version;

437
438 invariant _index >= -1;

439
440 public object! Clone () {

441 return MemberwiseClone ();

442 }

443
444 public BitArrayEnumerator (BitArray! ba)

445 {

446 _index = -1;

447 _bitArray = ba;

448 _max = ba.m_length;

449 _version = ba._version;

450 }

451
452 public object Current {

453 get {

454 assume _bitArray.IsPeerConsistent;

455 if (_index == -1)

456 throw new InvalidOperationException ("Enum not started");

457 if (_index >= _bitArray.Count)

458 throw new InvalidOperationException ("Enum Ended");

459
460 return _current;

461 }

462 }

68 A Code

463
464 public bool MoveNext ()

465 {

466 checkVersion ();

467
468 assume _bitArray.IsPeerConsistent;

469 if (_index < (_bitArray.Count - 1)) {

470 expose (this) {

471 assume _bitArray.IsPeerConsistent;

472 _current = _bitArray [++_index];

473 }

474 return true;

475 }

476 else

477 expose (this) {

478 assume _bitArray.IsPeerConsistent;

479 _index = _bitArray.Count;

480 }

481
482 return false;

483 }

484
485 public void Reset ()

486 {

487 checkVersion ();

488 expose (this) {

489 _index = -1;

490 }

491 }

492
493 void checkVersion ()

494 {

495 if (_version != _bitArray._version)

496 throw new InvalidOperationException ();

497 }

498 }

499 }

500 }

A.2 Queue 69

� �(�	��� ,�� ,��

1 //
2 // System.Collections.Queue
3 //
4 // Author:
5 // Ricardo Fernández Pascual
6 //
7 // (C) 2001 Ricardo Fernández Pascual
8 //
9

10 //
11 // Copyright (C) 2004 Novell, Inc (http://www.novell.com)
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining
14 // a copy of this software and associated documentation files (the
15 // "Software"), to deal in the Software without restriction, including
16 // without limitation the rights to use, copy, modify, merge, publish,
17 // distribute, sublicense, and/or sell copies of the Software, and to
18 // permit persons to whom the Software is furnished to do so, subject to
19 // the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be
22 // included in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE
28 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31 //
32
33 using System;

34 using System.Collections;

35 using System.Runtime.InteropServices;

36 using Microsoft.Contracts;

37
38 namespace System.Collections {

39
40 #if NET_2_0

41 [ComVisible(true)]

42 #endif

43 [Serializable]

44 public class Queue : ICollection, IEnumerable, ICloneable {

45
46 private object[]! _array;

47 private int _head = 0; // points to the first used slot
48 [SpecPublic] private int _size = 0;

49 private int _tail = 0;

50 private int _growFactor;

70 A Code

51 private int _version = 0;

52
53 invariant _head >= 0;

54 invariant _array.Length > 0 ==> _head < _array.Length;

55 invariant _array.Length == 0 ==> _head == 0;

56 invariant _tail >= 0;

57 invariant _array.Length > 0 ==> _tail < _array.Length;

58 invariant _array.Length == 0 ==> _tail == 0;

59 invariant _size >= 0 && _size <= _array.Length;

60 invariant _array.GetType() == typeof(object[]);

61
62 public Queue () : this (32, 2.0F) {}

63 public Queue (int initialCapacity) : this (initialCapacity, 2.0F)

64 requires initialCapacity >= 0;

65 {}

66 public Queue(ICollection! col) : this (col == null ? 32 : col.Count)

67 requires col.IsPeerConsistent;

68 {

69 // ! if (col == null)
70 // ! throw new ArgumentNullException ("col");
71
72 // We have to do this because msft seems to call the
73 // enumerator rather than CopyTo. This affects classes
74 // like bitarray.
75 foreach (object o in col)

76 Enqueue (o);

77 }

78
79 public Queue (int initialCapacity, float growFactor)

80 requires initialCapacity >= 0 otherwise ArgumentOutOfRangeException;

81 {

82 // ! if (initialCapacity < 0)
83 // ! throw new ArgumentOutOfRangeException("capacity", "Needs a non−negative

number");
84
85 // ! Can’t run this code, since Boogie currently doesn’t know anything about floats
86 // ! if (!(growFactor >= 1.0F && growFactor <= 10.0F))
87 // ! throw new ArgumentOutOfRangeException("growFactor", "Queue growth factor

must be between 1.0 and 10.0, inclusive");
88
89 _array = new object[initialCapacity];

90
91 // ! Can’t run this code, since Boogie currently doesn’t know anything about floats
92 // ! this._growFactor = (int)(growFactor ∗ 100);
93 this._growFactor = 200;

94 }

95
96 // from ICollection
97
98 public virtual int Count {

99 [Pure]

100 get

101 ensures result >= 0;

102 {

A.2 Queue 71

103 return _size;

104 }

105 }

106
107 public virtual bool IsSynchronized {

108 [Pure]

109 get { return false; }

110 }

111
112 public virtual object! SyncRoot {

113 [Pure]

114 get

115 ensures result.IsPeerConsistent;

116 {

117 assume IsPeerConsistent; //! should be precondition
118 return this;

119 }

120 }

121
122 [Additive(false)]

123 public virtual void CopyTo (Array! array, int index)

124 {

125 // ! if (array == null)
126 // ! throw new ArgumentNullException ("array");
127
128 if (index < 0)

129 throw new ArgumentOutOfRangeException ("index");

130
131 if (array.Rank > 1

132 || (index != 0 && index >= array.Length)

133 || _size > array.Length - index)

134 throw new ArgumentException ();

135
136 int contents_length = _array.Length;

137 int length_from_head = contents_length - _head;

138 // copy the _array of the circular array
139 // ! Boogie can’t handle Math.Min(), replace with equivalent code
140 // ! Array.Copy (_array, _head, array, index,
141 // ! Math.Min (_size, length_from_head));
142 int len = (_size < length_from_head ? _size : length_from_head);

143 assume _array.IsPeerConsistent;

144 Array.Copy (_array, _head, array, index, len);

145
146 if (_size > length_from_head)

147 Array.Copy (_array, 0, array,

148 index + length_from_head,

149 _size - length_from_head);

150 }

151
152 // from IEnumerable
153
154 // ! currently prevented by compiler bug
155 // ! [Owned("peer")]
156 public /∗virtual∗/ IEnumerator! GetEnumerator () //! virtual causes CS0029 error

72 A Code

157 {

158 return new QueueEnumerator (this);

159 }

160
161 // from ICloneable
162
163 // ! currently prevented by compiler bug
164 [Additive(false)] //! [Owned("peer")]
165 public virtual object! Clone ()

166 ensures result is Queue;

167 {

168 Queue newQueue;

169
170 newQueue = new Queue (this._array.Length);

171 newQueue._growFactor = _growFactor;

172
173 // ! This is established by the constructor
174 assume newQueue._array.Length == this._array.Length;

175 assume _array.IsPeerConsistent;

176 assume newQueue._array.IsPeerConsistent;

177 Array.Copy (this._array, 0, newQueue._array, 0,

178 this._array.Length);

179 expose (newQueue) {

180 newQueue._head = this._head;

181 newQueue._size = this._size;

182 newQueue._tail = this._tail;

183 }

184
185 return newQueue;

186 }

187
188 [Additive(false)]

189 public virtual void Clear ()

190 ensures _size == 0;

191 {

192 expose (this at Queue) {

193 _version++;

194 _head = 0;

195 _size = 0;

196 _tail = 0;

197 for (int length = _array.Length - 1; length >= 0; length--)

198 invariant length < _array.Length;

199 invariant _head == _size && _head == _tail && _head == 0;

200 {

201 _array [length] = null;

202 }

203 // ! Boogie can’t infer this in/after loop
204 assume _array.GetType() == typeof(object);

205 }

206 }

207
208 [Pure] [Additive(false)]

209 public virtual bool Contains (object obj)

210 requires obj == null || obj.IsPeerConsistent;

A.2 Queue 73

211 {

212 int tail = _head + _size;

213 if (obj == null) {

214 for (int i = _head; i < tail; i++)

215 invariant i >= 0;

216 {

217 // ! valid assumption: if the _array.Length is 0,
218 // ! _head == tail, and the loop isn’t executed.
219 assume _array.Length > 0;

220 if (_array[i % _array.Length] == null)

221 return true;

222 }

223 } else {

224 for (int i = _head; i < tail; i++)

225 invariant i >= 0;

226 invariant obj.IsPeerConsistent;

227 {

228 // ! valid assumption: if the _array.Length is 0,
229 // ! _head == tail, and the loop isn’t executed.
230 assume _array.Length > 0;

231 // ! It ’s impossible to say whether Queue elements are
232 // ! peer consistent or not. We know nothing about their
233 // ! owner, we only hold read−only references to them!
234 assume _array[i % _array.Length].IsPeerConsistent;

235 if (obj.Equals (_array[i % _array.Length]))

236 return true;

237 }

238 }

239 return false;

240 }

241
242 [Additive(false)]

243 public virtual object Dequeue ()

244 requires _size >= 1 otherwise InvalidOperationException;

245 ensures _size == old(_size) - 1;

246 {

247 expose (this at Queue) {

248 _version++;

249 }

250 // ! if (_size < 1)
251 // ! throw new InvalidOperationException ();
252 object result = _array[_head];

253 expose (this at Queue) {

254 _array [_head] = null;

255 _head = (_head + 1) % _array.Length;

256 _size--;

257 }

258 assume result.IsPeerConsistent;

259 return result;

260 }

261
262 [Additive(false)]

263 public virtual void Enqueue (object obj)

264 ensures _size == old(_size) + 1;

74 A Code

265 {

266 expose (this at Queue) {

267 _version++;

268 }

269 if (_size == _array.Length) {

270 grow ();

271 }

272
273 expose (this at Queue) {

274 _array[_tail] = obj;

275 _tail = (_tail+1) % _array.Length;

276 _size++;

277 }

278 }

279
280 [Pure] [Additive(false)]

281 public virtual object Peek ()

282 requires _size >= 1 otherwise InvalidOperationException;

283 {

284 // ! if (_size < 1)
285 // ! throw new InvalidOperationException ();
286 assume _array[_head].IsPeerConsistent;

287 return _array[_head];

288 }

289
290 public static Queue Synchronized (Queue! queue) {

291 // ! if (queue == null) {
292 // ! throw new ArgumentNullException ("queue");
293 // ! }
294 return new SyncQueue (queue);

295 }

296
297 [Additive(false)]

298 public virtual object[]! ToArray ()

299 {

300 object[] ret = new object[_size];

301 CopyTo (ret, 0);

302 return ret;

303 }

304
305 [Additive(false)]

306 public virtual void TrimToSize()

307 {

308 expose (this at Queue) {

309 _version++;

310 }

311 object[] trimmed = new object [_size];

312 CopyTo (trimmed, 0);

313 expose (this at Queue) {

314 _array = trimmed;

315 _head = 0;

316 _tail = 0;

317 }

318 }

A.2 Queue 75

319
320 // private methods
321
322 private void grow ()

323 requires IsPeerConsistent;

324 ensures _array.Length > old(_array.Length);

325 {

326 int newCapacity = (_array.Length * _growFactor) / 100;

327 if (newCapacity < _array.Length + 1)

328 newCapacity = _array.Length + 1;

329 object[] newContents = new object[newCapacity];

330 CopyTo (newContents, 0);

331 expose (this at Queue) {

332 _array = newContents;

333 _head = 0;

334 _tail = _head + _size;

335 }

336 }

337
338 // private classes
339
340 private class SyncQueue : Queue {

341 [Owned("peer")] Queue queue;

342 invariant queue != null;

343
344 [Captured] [NotDelayed]

345 internal SyncQueue (Queue! queue)

346 requires queue.IsPeerConsistent;

347 ensures IsPeerConsistent;

348 {

349 Owner.AssignSame(this, queue);

350 this.queue = queue;

351 }

352
353 public override int Count {

354 [Pure] [Additive(false)]

355 get {

356 lock (queue) {

357 return queue.Count;

358 }

359 }

360 }

361
362 public override bool IsSynchronized {

363 [Pure]

364 get {

365 return true;

366 }

367 }

368
369 public override object! SyncRoot {

370 [Pure] [Additive(false)]

371 get {

372 return queue.SyncRoot;

76 A Code

373 }

374 }

375
376 [Additive(false)]

377 public override void CopyTo (Array! array, int index) {

378 lock (queue) {

379 queue.CopyTo (array, index);

380 }

381 }

382
383 // ! public override IEnumerator! GetEnumerator () {
384 // ! assume queue.IsPeerConsistent;
385 // ! lock (queue) {
386 // ! return queue.GetEnumerator ();
387 // ! }
388 // ! }
389
390 [Additive(false)]

391 public override object! Clone () {

392 lock (queue) {

393 return new SyncQueue((Queue!) queue.Clone ());

394 }

395 }

396
397 /∗
398 public override bool IsReadOnly {
399 get {
400 lock (queue) {
401 return queue.IsReadOnly;
402 }
403 }
404 }
405 ∗/
406
407 [Additive(false)]

408 public override void Clear () {

409 lock (queue) {

410 queue.Clear ();

411 }

412 assume queue._size == 0 ==> _size == 0;

413 }

414
415 [Additive(false)]

416 public override void TrimToSize () {

417 lock (queue) {

418 queue.TrimToSize ();

419 }

420 }

421
422 [Pure] [Additive(false)]

423 public override bool Contains (object obj) {

424 lock (queue) {

425 return queue.Contains (obj);

426 }

A.2 Queue 77

427 }

428
429 [Additive(false)]

430 public override object Dequeue () {

431 assume queue._size >= 1;

432 lock (queue) {

433 return queue.Dequeue ();

434 }

435 }

436
437 [Additive(false)]

438 public override void Enqueue (object obj) {

439 lock (queue) {

440 queue.Enqueue (obj);

441 }

442 }

443
444 [Pure] [Additive(false)]

445 public override object Peek () {

446 assume queue._size >= 1;

447 lock (queue) {

448 return queue.Peek ();

449 }

450 }

451
452 [Additive(false)]

453 public override object[]! ToArray () {

454 lock (queue) {

455 return queue.ToArray ();

456 }

457 }

458 }

459
460 [Serializable]

461 private class QueueEnumerator : IEnumerator, ICloneable {

462 [Owned("peer")] Queue queue;

463 private int _version;

464 private int current;

465
466 invariant queue != null;

467
468 [Captured] [NotDelayed]

469 internal QueueEnumerator (Queue! q)

470 requires q.IsPeerConsistent;

471 ensures IsPeerConsistent;

472 {

473 Owner.AssignSame(this, q);

474 queue = q;

475 _version = q._version;

476 current = -1; // one element before the _head
477 }

478
479 public object! Clone ()

480 requires IsPeerConsistent;

78 A Code

481 {

482 assume queue.IsPeerConsistent;

483 QueueEnumerator! q = new QueueEnumerator (queue);

484 q._version = _version;

485 q.current = current;

486 return q;

487 }

488
489 public virtual object Current {

490 get {

491 if (_version != queue._version

492 || current < 0

493 || current >= queue._size)

494 throw new InvalidOperationException ();

495
496 // ! Valid assumption: An exception is thrown above if queue._size is 0,
497 // ! which implies that if we get here, the array Length is > 0, and
498 // ! current is non−negative.
499 assume queue._array.Length > 0;

500 assume current >= 0;

501 // ! original code
502 // ! return queue._array[(queue._head + current) % queue._array.Length];
503 int i = (queue._head + current) % queue._array.Length;

504 assume i >= 0; //! queue._head is non−negative (invariant), as is current
505 assume i < queue._array.Length; //! obvious!
506 assume queue._array[i].IsPeerConsistent;

507 return queue._array[i];

508 }

509 }

510
511 public virtual bool MoveNext () {

512 if (_version != queue._version) {

513 throw new InvalidOperationException ();

514 }

515
516 if (current >= queue._size - 1) {

517 current = Int32.MaxValue; // to late!
518 return false;

519 } else {

520 current++;

521 return true;

522 }

523 }

524
525 public virtual void Reset () {

526 if (_version != queue._version) {

527 throw new InvalidOperationException();

528 }

529 current = -1;

530 }

531 }

532 }

533 }

A.3 Stack 79

� � �	� � �2")� �

1 //
2 // System.Collections.Stack
3 //
4 // Author:
5 // Garrett Rooney (rooneg@electricjellyfish.net)
6 //
7 // (C) 2001 Garrett Rooney
8 //
9

10 //
11 // Copyright (C) 2004 Novell, Inc (http://www.novell.com)
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining
14 // a copy of this software and associated documentation files (the
15 // "Software"), to deal in the Software without restriction, including
16 // without limitation the rights to use, copy, modify, merge, publish,
17 // distribute, sublicense, and/or sell copies of the Software, and to
18 // permit persons to whom the Software is furnished to do so, subject to
19 // the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be
22 // included in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE
28 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31 //
32
33 using System.Runtime.InteropService;

34 using Microsoft.Contracts;

35
36 namespace System.Collections {

37
38 #if NET_2_0

39 [ComVisible(true)]

40 #endif

41 [Serializable]

42 public class Stack : ICollection, IEnumerable, ICloneable {

43
44 // properties
45 private object[]! contents;

46 private int current = -1;

47 [SpecPublic] private int count;

48 private int capacity;

49 private int modCount;

50

80 A Code

51 const int default_capacity = 16;

52
53 invariant capacity == contents.Length;

54 invariant 0 <= count && count <= capacity;

55 invariant current == count - 1;

56
57 private void Resize(int ncapacity)

58 requires count <= ncapacity;

59 requires IsPeerConsistent;

60 ensures capacity >= ncapacity;

61 ensures count == old(count);

62 ensures forall { int i in (0:count - 1), contents[i] == old(contents[i])

};

63 {

64 // ! This was the original code here. However, it appears that
65 // ! Math.Max() does not have any specifications, so I replaced
66 // ! it with equivalent code that Boogie can handle.
67 // !ncapacity = Math.Max (ncapacity, 16);
68 if (ncapacity < 16) { ncapacity = 16; }

69
70 object[]! ncontents = new object[ncapacity];

71
72 assume contents.IsPeerConsistent;

73 Array.Copy(contents, ncontents, count);

74
75 expose (this at Stack) {

76 capacity = ncapacity;

77 contents = ncontents;

78 }

79 }

80
81 public Stack ()

82 ensures count == 0;

83 {

84 contents = new object[default_capacity];

85 capacity = default_capacity;

86 }

87
88 public Stack(ICollection col) : this (col == null ? 16 : col.Count)

89 requires col != null otherwise ArgumentNullException;

90 requires col.IsPeerConsistent;

91 {

92 // ! if (col == null)
93 // ! throw new ArgumentNullException("col");
94
95 // We have to do this because msft seems to call the
96 // enumerator rather than CopyTo. This affects classes
97 // like bitarray.
98 foreach (object o in col)

99 Push (o);

100 }

101
102 public Stack (int initialCapacity)

103 requires initialCapacity >= 0 otherwise ArgumentOutOfRangeException;

A.3 Stack 81

104 {

105 // ! if (initialCapacity < 0)
106 // ! throw new ArgumentOutOfRangeException ("initialCapacity");
107
108 capacity = initialCapacity;

109 contents = new object[capacity];;

110 }

111
112 [Serializable]

113 private class SyncStack : Stack {

114
115 [Owned("peer")] Stack stack;

116 invariant stack != null;

117
118 [Captured] [NotDelayed]

119 internal SyncStack(Stack! s)

120 ensures IsPeerConsistent;

121 {

122 Owner.AssignSame(this, s);

123 stack = s;

124 }

125
126 public override int Count {

127 [Pure] [Additive(false)]

128 get {

129 lock (stack) {

130 return stack.Count;

131 }

132 }

133 }

134
135 /∗
136 public override bool IsReadOnly {
137 get {
138 lock (stack) {
139 return stack.IsReadOnly;
140 }
141 }
142 }
143 ∗/
144
145 public override bool IsSynchronized {

146 [Pure]

147 get { return true; }

148 }

149
150 public override object! SyncRoot {

151 [Pure] [Additive(false)]

152 get

153 {

154 return stack.SyncRoot;

155 }

156 }

157

82 A Code

158 [Additive(false)]

159 public override void Clear() {

160 lock(stack) {

161 stack.Clear();

162 }

163 assume stack.count == 0 ==> count == 0;

164 }

165
166 [Additive(false)]

167 public override object! Clone() {

168 lock (stack) {

169 return Stack.Synchronized((Stack!)stack.Clone());

170 }

171 }

172
173 [Pure] [Additive(false)]

174 public override bool Contains(object obj) {

175 lock (stack) {

176 return stack.Contains(obj);

177 }

178 }

179
180 [Additive(false)]

181 public override void CopyTo(Array! array, int index) {

182 lock (stack) {

183 stack.CopyTo(array, index);

184 }

185 }

186
187 // ! public override IEnumerator! GetEnumerator() {
188 // ! lock (stack) {
189 // ! return new Enumerator(stack);
190 // ! }
191 // ! }
192
193 [Pure] [Additive(false)]

194 public override object Peek() {

195 // ! required because using Count in a precondition doesn’t work
196 assume stack.count > 0;

197 lock (stack) {

198 return stack.Peek();

199 }

200 }

201
202 [Additive(false)]

203 public override object Pop() {

204 // ! required because using Count in a precondition doesn’t work
205 assume stack.count > 0;

206 lock (stack) {

207 return stack.Pop();

208 }

209 }

210
211 [Additive(false)]

A.3 Stack 83

212 public override void Push(object obj) {

213 lock (stack) {

214 stack.Push(obj);

215 }

216 }

217
218 [Additive(false)]

219 public override object[] ToArray() {

220 lock (stack) {

221 return stack.ToArray();

222 }

223 }

224 }

225
226 public static Stack! Synchronized(Stack! s) {

227 // ! if (s == null) {
228 // ! throw new ArgumentNullException();
229 // ! }
230
231 return new SyncStack(s);

232 }

233
234 public virtual int Count

235 {

236 [Pure] get { return count; }

237 }

238
239 /∗
240 public virtual bool IsReadOnly {
241 get { return false; }
242 }
243 ∗/
244
245 public virtual bool IsSynchronized {

246 [Pure]

247 get { return false; }

248 }

249
250 public virtual object! SyncRoot {

251 [Pure] [Additive(false)]

252 get {

253 return this;

254 }

255 }

256
257 [Additive(false)]

258 public virtual void Clear()

259 ensures count == 0;

260 {

261 expose (this at Stack) {

262 modCount++;

263
264 for (int i = 0; i < count; i++)

265 invariant count <= capacity;

84 A Code

266 invariant capacity == contents.Length;

267 {

268 contents[i] = null;

269 }

270
271 count = 0;

272 current = -1;

273 }

274 }

275
276 [Additive(false)]

277 public virtual object! Clone()

278 ensures result is Stack;

279 {

280 assume contents.IsPeerConsistent;

281 Stack stack = new Stack (contents);

282 // ! should ideally be a postcondition of the constructor, but
283 // ! that doesn’t work yet.
284 assume stack.count == count;

285
286 // ! The follwing code is not necessary because the count is
287 // ! set correctly automatically through the constructor.
288 // ! However it is the original Mono code.
289 expose (stack) {

290 stack.current = current;

291 stack.count = count;

292 }

293 return stack;

294 }

295
296 [Pure] [Additive(false)]

297 public virtual bool Contains(object obj)

298 requires obj != null ==> obj.IsPeerConsistent;

299 {

300 if (count == 0)

301 return false;

302
303 if (obj == null) {

304 for (int i = 0; i < count; i++) {

305 if (contents[i] == null)

306 return true;

307 }

308 } else {

309 for (int i = 0; i < count; i++) {

310 // ! guaranteed by invariant and precondition
311 assume contents[i] != null ==> contents[i].IsPeerConsistent;

312 if (obj.Equals (contents[i]))

313 return true;

314 }

315 }

316
317 return false;

318 }

319

A.3 Stack 85

320
321 // ! These would be the preconditions. They’re not allowed here though
322 // ! since this is an interface implementation. Consider them internal
323 // ! documentation therefore:
324 // !
325 // ! requires index >= 0 otherwise ArgumentOutOfRangeException;
326 // ! requires array.Rank == 1 otherwise ArgumentException;
327 // ! requires array.Length == 0 || index < array.Length otherwise ArgumentException;
328 // ! requires count <= array.Length − index otherwise ArgumentException;
329 // ! requires array.IsPeerConsistent;
330 // !
331 [Additive(false)]

332 public virtual void CopyTo (Array! array, int index)

333 {

334 if (array == null) {

335 throw new ArgumentNullException("array");

336 }

337
338 if (index < 0) {

339 throw new ArgumentOutOfRangeException("index");

340 }

341
342 if (array.Rank > 1 ||

343 array.Length > 0 && index >= array.Length ||

344 count > array.Length - index) {

345 throw new ArgumentException();

346 }

347
348 for (int i = current; i != -1; i--)

349 invariant i <= current && i >= -1;

350 invariant array.IsPeerConsistent;

351 invariant array.Length >= count + index;

352 {

353 assert i >= 0;

354 // ! precondition and invariant
355 assume contents[i] != null ==> contents[i].IsPeerConsistent;

356 array.SetValue(contents[i], count - (i + 1) + index);

357 }

358 }

359
360 private class Enumerator : IEnumerator, ICloneable {

361
362 const int EOF = -1;

363 const int BOF = -2;

364
365 [Owned("peer")] Stack stack;

366 private int modCount;

367 private int current;

368
369 invariant stack != null;

370 invariant current >= -2;

371
372 [Captured] [NotDelayed]

373 internal Enumerator(Stack! s)

86 A Code

374 ensures IsPeerConsistent;

375 {

376 Owner.AssignSame(this, s);

377 stack = s;

378 modCount = s.modCount;

379 current = BOF;

380 }

381
382 public object! Clone ()

383 {

384 return MemberwiseClone ();

385 }

386
387 public virtual object Current {

388 get {

389 if (modCount != stack.modCount

390 || current == BOF

391 || current == EOF

392 || current > stack.count)

393 throw new InvalidOperationException();

394 assert current >= 0;

395 // ! preceding if
396 assume current >= 0 && current <= stack.count;

397 // ! current starts at stack.current, then is only decremented
398 // ! stack.current stays constant while modCount == stack.modCount
399 assume current <= stack.current;

400 assume stack.current == stack.count - 1; //! stack invariant
401 assume stack.count <= stack.contents.Length; //! stack invariant
402 assume stack.contents[current] != null ==> stack.contents[current].

IsPeerConsistent;

403 return stack.contents[current];

404 }

405 }

406
407 public virtual bool MoveNext() {

408 if (modCount != stack.modCount)

409 throw new InvalidOperationException();

410
411 switch (current) {

412 case BOF:

413 expose (this) {

414 // ! Stack invariant
415 assume stack.current >= -1 && stack.current < stack.count;

416 current = stack.current;

417 }

418 return current != -1;

419
420 case EOF:

421 return false;

422
423 default:

424 expose (this) {

425 current--;

426 }

A.3 Stack 87

427 return current != -1;

428 }

429 }

430
431 public virtual void Reset() {

432 if (modCount != stack.modCount) {

433 throw new InvalidOperationException();

434 }

435
436 expose (this) {

437 current = BOF;

438 }

439 }

440 }

441
442 // ! currently prevented by compiler bug
443 // ! [Owned("peer")]
444 public /∗virtual∗/ IEnumerator! GetEnumerator() { //! virtual causes CS0029 error
445 return new Enumerator(this);

446 }

447
448 [Pure] [Additive(false)]

449 public virtual object Peek()

450 requires count > 0 otherwise InvalidOperationException;

451 requires IsPeerConsistent;

452 {

453 if (current == -1) {

454 throw new InvalidOperationException();

455 } else {

456 assume contents[current] != null ==> contents[current].IsPeerConsistent

;

457 return contents[current];

458 }

459 }

460
461 [Additive(false)]

462 public virtual object Pop()

463 requires count > 0;

464 requires IsPeerConsistent;

465 ensures count == old(count) - 1;

466 //ensures result == old(Peek());
467 {

468 if (current == -1) {

469 throw new InvalidOperationException();

470 } else {

471 object ret;

472
473 expose (this at Stack) {

474 modCount++;

475
476 ret = contents[current];

477 contents [current] = null;

478
479 count--;

88 A Code

480 current--;

481 }

482 // if we’re down to capacity/4, go back to a
483 // lower array size. this should keep us from
484 // sucking down huge amounts of memory when
485 // putting large numbers of items in the Stack.
486 // if we’re lower than 16, don’t bother, since
487 // it will be more trouble than it’s worth.
488 if (count <= (capacity/4) && count > 16) {

489 Resize(capacity/2);

490 }

491
492 // ! invariant and precondition
493 assume ret != null ==> ret.IsPeerConsistent;

494 return ret;

495 }

496 }

497
498 [Additive(false)]

499 public virtual void Push(Object o)

500 requires IsPeerConsistent;

501 requires o == null || o.IsPeerConsistent;

502 ensures count == old(count) + 1;

503 ensures Peek() == o;

504 {

505 modCount++;

506
507 if (capacity == count) {

508 Resize(capacity * 2);

509 assert capacity >= count * 2;

510 }

511 else { //! else block added for illustration
512 assert capacity > count;

513 }

514 // ! even though both asserts above hold, Boogie doesn’t
515 // ! infer this property here.
516 assume capacity > count;

517
518 expose (this at Stack) {

519 count++;

520 current++;

521
522 assume contents.IsPeerConsistent; //! invariant and precondition
523 assume o != null ==> o.IsPeerConsistent; //! precondition
524 contents.SetValue(o, current);

525 }

526
527 // ! because o and Peek() both are contents[current]
528 assume o == Peek();

529 }

530
531 public virtual object[] ToArray()

532 requires IsPeerConsistent;

533 {

A.3 Stack 89

534 object[] ret = new object[count];

535
536 assume contents.IsPeerConsistent; //! precondition
537 Array.Copy(contents, ret, count);

538
539 // ret needs to be in LIFO order
540 Array.Reverse(ret);

541
542 return ret;

543 }

544 }

545 }

90 A Code

� � ��� ��% #&� � ��� �2")����� � � � �)� � % � '

1 // SimpleStack, based on Mono’s System.Collections.Stack,
2 // the copyright notice of which is below.
3 //
4 // System.Collections.Stack
5 //
6 // Author:
7 // Garrett Rooney (rooneg@electricjellyfish.net)
8 //
9 // (C) 2001 Garrett Rooney

10 //
11 // Copyright (C) 2004 Novell, Inc (http://www.novell.com)
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining
14 // a copy of this software and associated documentation files (the
15 // "Software"), to deal in the Software without restriction, including
16 // without limitation the rights to use, copy, modify, merge, publish,
17 // distribute, sublicense, and/or sell copies of the Software, and to
18 // permit persons to whom the Software is furnished to do so, subject to
19 // the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be
22 // included in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE
28 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31 //
32
33 using System;

34 using System.Collections;

35
36 public class SimpleStack : ICollection, IEnumerable {

37
38 // properties
39 private object[] contents;

40 private int current = -1;

41 private int count;

42 private int capacity;

43 private int modCount;

44
45 const int default_capacity = 16;

46
47 private void Resize(int ncapacity)

48 {

49 ncapacity = Math.Max (ncapacity, 16);

50 object[] ncontents = new object[ncapacity];

A.4 SimpleStack, C# Version 91

51
52 Array.Copy(contents, ncontents, count);

53
54 capacity = ncapacity;

55 contents = ncontents;

56 }

57
58 public SimpleStack ()

59 {

60 contents = new object[default_capacity];

61 capacity = default_capacity;

62 }

63
64 public virtual int Count {

65 get { return count; }

66 }

67
68 public virtual bool IsSynchronized {

69 get { return false; }

70 }

71
72 public virtual object SyncRoot {

73 get { return this; }

74 }

75
76 public virtual void Clear() {

77 modCount++;

78
79 for (int i = 0; i < count; i++) {

80 contents[i] = null;

81 }

82
83 count = 0;

84 current = -1;

85 }

86
87 public virtual void CopyTo (Array array, int index) {

88 if (array == null) {

89 throw new ArgumentNullException("array");

90 }

91
92 if (index < 0) {

93 throw new ArgumentOutOfRangeException("index");

94 }

95
96 if (array.Rank > 1 ||

97 array.Length > 0 && index >= array.Length ||

98 count > array.Length - index) {

99 throw new ArgumentException();

100 }

101
102 for (int i = current; i != -1; i--) {

103 array.SetValue(contents[i],

104 count - (i + 1) + index);

92 A Code

105 }

106 }

107
108 private class Enumerator : IEnumerator {

109
110 const int EOF = -1;

111 const int BOF = -2;

112
113 SimpleStack stack;

114 private int modCount;

115 private int current;

116
117 internal Enumerator(SimpleStack s) {

118 stack = s;

119 modCount = s.modCount;

120 current = BOF;

121 }

122
123 public virtual object Current {

124 get {

125 if (modCount != stack.modCount

126 || current == BOF

127 || current == EOF

128 || current > stack.count)

129 throw new InvalidOperationException();

130 return stack.contents[current];

131 }

132 }

133
134 public virtual bool MoveNext() {

135 if (modCount != stack.modCount)

136 throw new InvalidOperationException();

137
138 switch (current) {

139 case BOF:

140 current = stack.current;

141 return current != -1;

142
143 case EOF:

144 return false;

145
146 default:

147 current--;

148 return current != -1;

149 }

150 }

151
152 public virtual void Reset() {

153 if (modCount != stack.modCount) {

154 throw new InvalidOperationException();

155 }

156
157 current = BOF;

158 }

A.4 SimpleStack, C# Version 93

159 }

160
161 public virtual IEnumerator GetEnumerator() {

162 return new Enumerator(this);

163 }

164
165 public virtual object Peek() {

166 if (current == -1) {

167 throw new InvalidOperationException();

168 } else {

169 return contents[current];

170 }

171 }

172
173 public virtual object Pop() {

174 if (current == -1) {

175 throw new InvalidOperationException();

176 } else {

177 modCount++;

178
179 object ret = contents[current];

180 contents [current] = null;

181
182 count--;

183 current--;

184
185 // if we’re down to capacity/4, go back to a
186 // lower array size. this should keep us from
187 // sucking down huge amounts of memory when
188 // putting large numbers of items in the Stack.
189 // if we’re lower than 16, don’t bother, since
190 // it will be more trouble than it’s worth.
191 if (count <= (capacity/4) && count > 16) {

192 Resize(capacity/2);

193 }

194
195 return ret;

196 }

197 }

198
199 public virtual void Push(Object o) {

200 modCount++;

201
202 if (capacity == count) {

203 Resize(capacity * 2);

204 }

205
206 count++;

207 current++;

208
209 contents[current] = o;

210 }

211 }

94 A Code

� � � � ��% #&� � ��� �2")����� � ��� ��� � � � � % �-'

1 // SimpleStack, based on Mono’s System.Collections.Stack,
2 // the copyright notice of which is below.
3 //
4 // System.Collections.Stack
5 //
6 // Author:
7 // Garrett Rooney (rooneg@electricjellyfish.net)
8 //
9 // (C) 2001 Garrett Rooney

10 //
11 // Copyright (C) 2004 Novell, Inc (http://www.novell.com)
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining
14 // a copy of this software and associated documentation files (the
15 // "Software"), to deal in the Software without restriction, including
16 // without limitation the rights to use, copy, modify, merge, publish,
17 // distribute, sublicense, and/or sell copies of the Software, and to
18 // permit persons to whom the Software is furnished to do so, subject to
19 // the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be
22 // included in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE
28 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31 //
32
33 using System;

34 using System.Collections;

35 using Microsoft.Contracts;

36
37 public class SimpleStack : ICollection, IEnumerable {

38
39 // properties
40 private object[]! contents;

41 private int current = -1;

42 [SpecPublic] private int count;

43 private int capacity;

44 private int modCount;

45
46 const int default_capacity = 16;

47
48 invariant count >= 0 && count <= contents.Length;

49 invariant current >= -1;

50 invariant current + 1 == count;

A.5 SimpleStack, Spec# Version 95

51 invariant contents.GetType() == typeof(object[]);

52
53 [Additive(false)]

54 private void Resize(int ncapacity)

55 requires ncapacity >= count;

56 requires contents.IsPeerConsistent;

57 ensures count == old(count);

58 ensures forall { int i in (0:count - 1), contents[i] == old(contents[i]) };

59 {

60 ncapacity = ncapacity < 16 ? 16 : ncapacity;

61 object[]! ncontents = new object[ncapacity];

62
63 Array.Copy(contents, ncontents, count);

64
65 capacity = ncapacity;

66 expose (this at SimpleStack) { contents = ncontents; }

67 }

68
69 public SimpleStack ()

70 {

71 contents = new object[default_capacity];

72 capacity = default_capacity;

73 }

74
75 public virtual int Count {

76 [Pure] get

77 ensures result >= 0;

78 ensures result == count;

79 {

80 return count;

81 }

82 }

83
84 public virtual bool IsSynchronized {

85 [Pure] get { return false; }

86 }

87
88 public virtual object! SyncRoot {

89 [Pure] get

90 ensures result.IsPeerConsistent;

91 {

92 assume IsPeerConsistent;

93 return this;

94 }

95 }

96
97 [Additive(false)]

98 public virtual void Clear()

99 ensures count == 0;

100 {

101 modCount++;

102
103 for (int i = 0; i < count; i++) {

104 contents[i] = null;

96 A Code

105 }

106
107 expose(this at SimpleStack) {

108 count = 0;

109 current = -1;

110 }

111 }

112
113 public virtual void CopyTo (Array! array, int index) {

114 if (index < 0) {

115 throw new ArgumentOutOfRangeException("index");

116 }

117
118 if (array.Rank > 1 ||

119 array.Length > 0 && index >= array.Length ||

120 count > array.Length - index) {

121 throw new ArgumentException();

122 }

123
124 for (int i = current; i != -1; i--)

125 invariant i >= -1 && i <= current;

126 invariant count <= array.Length - index;

127 {

128 assume contents[i] != null ==> contents[i].IsPeerConsistent;

129 array.SetValue(contents[i],

130 count - (i + 1) + index);

131 }

132 }

133
134 private class Enumerator : IEnumerator {

135
136 const int EOF = -1;

137 const int BOF = -2;

138
139 SimpleStack! stack;

140 private int modCount;

141 private int current;

142
143 invariant current >= -2;

144
145 internal Enumerator(SimpleStack! s) {

146 stack = s;

147 modCount = s.modCount;

148 current = BOF;

149 }

150
151 public virtual object Current {

152 get {

153 if (modCount != stack.modCount

154 || current == BOF

155 || current == EOF

156 || current > stack.count)

157 throw new InvalidOperationException();

158 assert current >= -1 && current != -1 ==> current >= 0;

A.5 SimpleStack, Spec# Version 97

159 assume current < stack.contents.Length;

160 assume stack.contents[current] != null ==>

161 stack.contents[current].IsPeerConsistent;

162 return stack.contents[current];

163 }

164 }

165
166 [Additive(false)]

167 public virtual bool MoveNext() {

168 if (modCount != stack.modCount)

169 throw new InvalidOperationException();

170
171 switch (current) {

172 case BOF:

173 expose (this at Enumerator) {

174 assume stack.count <= stack.contents.Length;

175 assume stack.current >= -1;

176 assume stack.current + 1 == stack.count;

177 current = stack.current;

178 }

179 return current != -1;

180
181 case EOF:

182 return false;

183
184 default:

185 expose (this at Enumerator) {

186 current--;

187 }

188 return current != -1;

189 }

190 }

191
192 [Additive(false)]

193 public virtual void Reset() {

194 if (modCount != stack.modCount) {

195 throw new InvalidOperationException();

196 }

197
198 expose (this at Enumerator) {

199 current = BOF;

200 }

201 }

202 }

203
204 public /∗virtual∗/ IEnumerator! GetEnumerator() {

205 return new Enumerator(this);

206 }

207
208 [Pure]

209 public virtual object Peek()

210 requires count > 0 otherwise InvalidOperationException;

211 {

212 assume contents[current] != null ==> contents[current].IsPeerConsistent;

98 A Code

213 return contents[current];

214 }

215
216 [Additive(false)]

217 public virtual object Pop()

218 requires count > 0 otherwise InvalidOperationException;

219 //ensures result == old(Peek());
220 ensures count == old(count) - 1;

221 {

222 modCount++;

223
224 object ret = contents[current];

225 contents [current] = null;

226
227 expose (this at SimpleStack) {

228 count--;

229 current--;

230 }

231
232 // if we’re down to capacity/4, go back to a
233 // lower array size. this should keep us from
234 // sucking down huge amounts of memory when
235 // putting large numbers of items in the Stack.
236 // if we’re lower than 16, don’t bother, since
237 // it will be more trouble than it’s worth.
238 if (count <= (capacity/4) && count > 16) {

239 assume contents.IsPeerConsistent;

240 Resize(capacity/2);

241 }

242
243 assume ret != null ==> ret.IsPeerConsistent;

244 return ret;

245 }

246
247 [Additive(false)]

248 public virtual void Push(Object o)

249 //ensures o == Peek();
250 ensures count == old(count) + 1;

251 {

252 modCount++;

253
254 if (capacity == count) {

255 assume contents.IsPeerConsistent;

256 Resize(capacity * 2);

257 }

258
259 assume count < contents.Length;

260
261 expose (this at SimpleStack) {

262 count++;

263 current++;

264 }

265
266 contents[current] = o;

A.5 SimpleStack, Spec# Version 99

267 }

268 }

100 A Code

� � � � � �o����� �V '��¶

[1] Microsoft Research. Spec#. URL http://research.microsoft.com/specsharp/.

[2] The Mono Project. Mono. URL http://www.mono-project.com/.

[3] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An Overview. In Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, volume 3362 of Lecture Notes in Computer Science, pp. 49–69. Springer, January 2005. ISBN
978-3-540-24287-1. ISSN 0302-9743. doi:10.1007/b105030. URL http://research.microsoft.com/specsharp/papers/krml136.pdf.

[4] Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology, 3(6):27–56, June 2004. URL http://www.jot.fm/issues/issue_2004_06/article2.

[5] K. Rustan M. Leino and Peter Müller. Modular Verification of Static Class Invariants. In FM 2005: Formal Methods, volume 3582 of
Lecture Notes in Computer Science, pp. 26–42. Springer, July 2005. ISBN 978-3-540-27882-5. ISSN 0302-9743. doi:10.1007/b27882. URL
http://research.microsoft.com/~leino/papers/krml153.pdf.

[6] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997. ISBN 0-13-629155-4.

[7] Microsoft Research. Spec# 1.0.6404 Release Notes. URL http://research.microsoft.com/specsharp/1.0.6404/relnotes.htm.

[8] Compaq Systems Research Center. ESC/Java. URL http://research.compaq.com/SRC/esc/.

101

http://research.microsoft.com/specsharp/
http://www.mono-project.com/
http://research.microsoft.com/specsharp/papers/krml136.pdf
http://www.jot.fm/issues/issue_2004_06/article2
http://research.microsoft.com/~leino/papers/krml153.pdf
http://research.microsoft.com/specsharp/1.0.6404/relnotes.htm
http://research.compaq.com/SRC/esc/

	1 Introduction
	2 An Overview over Spec#
	2.1 The Spec# Programming Language
	2.2 Boogie

	3 Reviewed Code
	3.1 Conventions Used in this Chapter
	3.2 BitArray
	3.3 Queue
	3.4 Stack

	4 Results
	4.1 Bug in Mono's System.Collections.Queue Class
	4.2 Bugs in Spec#

	5 Conclusions
	5.1 Advantages of Using Spec#
	5.2 Conceptual Issues

	6 How to Translate C# Code to Spec#
	6.1 Introduction
	6.2 Getting the Spec# Compiler to Compile the Code
	6.3 Making Use of Non-Null Types
	6.4 Observing Library Code Contracts
	6.5 Creating My Own Contracts
	6.6 Summary

	A Code
	A.1 BitArray
	A.2 Queue
	A.3 Stack
	A.4 SimpleStack, C# Version
	A.5 SimpleStack, Spec# Version

	B Bibliography

