
Abstract Read Permission Support for an Automatic
Python Verifier

Bachelor Thesis Project Description

Benjamin Schmid
Supervised by Vytautas Astrauskas, Marco Eilers, Prof. Dr. Peter Müller

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Abstract Read Permissions

In program verification there are a lot of cases where
one needs to reason about access to memory locations.
Two such cases are data races and the framing problem.

Data races occur in a concurrent program if several
threads access the same memory location in an unsynchro-
nized way and at least one of them is a write operation.
The program behaviour depends on the exact order of
memory accesses and will be different for different runs
of the program. This results in hard to find bugs.

Framing is the problem of what assumptions can be
preserved across a method call. When calling a method
the caller does not know which values are not modified
by a method call. Therefore, it has to drop all assump-
tions about all global variables and fields of objects.
The only thing the caller can assume after the call is
the postcondition of the method. For example a method
with x.f = x.g + 1 && x.g == old(x.g) as a postcondi-
tion only makes a statement about the value of x.f and
x.g. The caller does not have any information about any
other field (e.g. x.h) and whether it was modified by the
method.

Both problems can be solved by using verification based
on permissions. Methods specify in their pre- and postcon-
ditions the needed permissions to fields. If they lack the
read or write permission to a field they are not allowed
to read or write this field. The verifier then knows which
memory locations might have been changed and which still
hold the same value. If a thread holds a partial permission
it can be sure that no other thread can change this value.

For each heap location there exists in total at most a
permission amount of 1. The permission for a location
can be split, transferred between methods and recombined
again. To write to a heap location a method needs the
full permission (i.e. a permission amount of 1). To read
it needs any positive amount of the permission. As soon
as no permission is left within a method all assumptions
about the location will be dropped. This allows to preserve
assumptions about heap state across method calls and to
prove the absence of data races in concurrent programs.

We will use the example in Listing 2 from [1] to illustrate
the problem we will be working with in this project. In
the example, we have a class Expr representing a node in
an arithmetic expression and a method eval(s: State) to
evaluate the expression in the given state (Listing 1).
class Expr {

...
method eval(s: State)
requires acc(s.map, π) && s.map != null
ensures acc(s.map, π)

...
}

Listing 1: Class Expr

This method requires read permission to the field s.map,
which is denoted by acc(s.map, π). The precondition
transfers π permissions from the caller to the callee while
the postcondition will transfer it back to the caller. For
simplicity we assume the fields left and right are im-
mutable and thus no permission is needed to access them.
class Add extends Expr {

var left, right: Expr

method eval(s: State)
requires acc(s.map, π) && s.map != null
ensures acc(s.map, π)

{
leftVal := call left.eval(s)
rightVal := call right.eval(s)
return leftVal + rightVal

}
}

Listing 2: Example illustrating problem: Class Add

The problem is how to choose π. Using concrete fractions
(e.g. π = 1/2) does not work. The first recursive call would
give up all permissions the method held and the caller
can not prove s.map != null any more as knowledge about
s.map was havocked. Further it is not possible to call eval
in a context where the caller only holds a permission of



for example 1/4. As the callee only needs to be able to
read the location and the caller has a positive amount
this should be possible. But due to the concrete fractions
it is not. Moreover the concrete value of π does not hold
any additional information and could be any other positive
amount less than 1 as we just want to denote any read
permission.

Another approach is to use counting permissions [2].
The permission is split into infinitesimally small, indivis-
ible units. Having such a unit grants read access. This
allows to call the method from any context which has the
necessary read permissions and the user does not need to
choose a concrete fraction. But the first call will still use
up all permission held and thus will not allow us to verify
the example.

A third approach uses ghost parameters. This is an
additional parameter being passed to a method (see list-
ing 3) which is only used for verification and does not
exist at runtime. The programmer would need to explicitly
choose what permission amount to give to the callee (e.g.
call left.eval(s, π/4)). But how the permission is split
does again not give any additional information. While this
allows to verify our example it is cumbersome for the
programmer and should not be necessary.

method eval(s: State, ghost π: rational)
requires 0 < π && π <= 1 && acc(s.map, π)
ensures acc(s.map, π)

Listing 3: Ghost parameter

In [1] abstract read permissions (abbreviated as ARP)
are presented. The concrete values in the code are replaced
by rd (see listing 4). When verifying a method the rd qual-
ifier within this method always represents the same value.
When the method is called the qualifier can be instantiated
with a suitable value but it might be different for each
invocation. This allows to specify that the postcondition
will return the same amount of permission the method got
in the precondition. ARPs solve the drawbacks mentioned
above.
method eval(s: State)

requires acc(s.map, rd) && s.map != null
ensures acc(s.map, rd)

Listing 4: Abstract read permissions

For the encoding of ARP it is not needed to choose a
concrete value for rd at any point. The verifier can con-
strain its value according to pre- and postconditions [3] [4].

II. Nagini
Nagini is a verifier for statically typed Python programs

currently being developed at ETH. It uses the Viper
verification framework [5], a verification infrastructure for
permission-based reasoning. Viper provides an intermedi-
ate language which can be used to implement front ends

for different languages (e.g. Nagini for Python). The Viper
language is human readable and can be written manually.
This allows for fast prototyping of new verification ap-
proaches. Viper and Nagini do not support abstract read
permissions at the moment. The goal of this project is
to implement ARP in an extension to the Viper language.
Nagini will then be updated to use this extension and thus
have support for ARP.

III. Core Goals

1) Design an extension to the Viper language which
supports ARP. The extension has to support
the rd qualifier in standard acc(x.f, rd) ac-
cess predicates, counting permissions rd(n), per-
mission expressions containing those terms (e.g.
acc(x.f, 1/2 + 3*rd - rd(2)) and wildcard permis-
sions (acc(x.f, rd*), rd* denotes a different value in
each occurrence). It does not need to support ARP in
quantified expressions (see extension goals). Design-
ing the extension consists of specifying syntax and
describing how the added features can be modeled
in the Viper language.

2) Specify new syntax for Nagini to make it possible
and easy to use ARP in Python. The new syntax
should enable use of all features added in the ex-
tended Viper language.

3) Develop a translation from the extended Viper lan-
guage to the Viper language. The translation gets as
input a source file using features from the extended
Viper language and produces as output a semanti-
cally equivalent source file in the Viper language.
Further it allows to map errors occurring in the
translated program back to the input source code. In
his Master’s thesis [6] Simon Fritsche implemented a
framework which simplifies this kind of translations
as well as the mapping of error messages back to
the original source code. We aim for a composable
implementation of the translation such that several
extensions to Viper can be combined. Depending on
the design of the extension and the details of the
mentioned framework this might not be achievable.
Furthermore, the implementation should not dupli-
cate code of the Viper language implementation. The
performance of this translation and the verification
of the translated program has to be monitored.
Found performance issues should be fixed if possible.

4) Make ARP available in Nagini by designing and
implementing a mapping from Nagini to the ex-
tended Viper language. For this the syntax specified
in 2 will be used. One should be able to model
the first example from [3] and all ARP tests from
the Chalice2Viper1 test suite. Errors occurring in
the verification of the generated Viper code can

1https://bitbucket.org/viperproject/chalice2silver



be mapped back to the originating code snippet in
Python.

5) Evaluate the implementation using typical examples
from the implementation of SCION [7] and from
the Chalice test suite. This comprises testing speed
and completeness of the implementation. Moreover,
the performance difference between using concrete
fractions and using ARP for the same example will
be evaluated.

IV. Extension Goals
• Enhance the extended Viper lan-

guage to support quantified abstract
read permissions (that is for example
forall x:Ref :: x in S ==> acc(x.first, rd))

• Make quantified abstract read permissions available
in Nagini by further extending the syntax designed in
core goal 2 and enhancing the implementation written
during core goal 4.

• Integrate ARPs for permission inference in Sample2,
a static analyzer being developed at ETH.

V. Schedule
18.09.2017 Start
05.10.2017 Initial Presentation
20.10.2017 Design of extension to Viper language
27.10.2017 Specify new syntax for Nagini
24.11.2017 Translation to extended language
15.12.2017 Update Nagini
05.01.2018 Evaluate implementation
22.01.2018 Start extension goals
29.01.2018 Start writing report
18.03.2018 Deadline

References
[1] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers,

“Abstract read permissions: Fractional permissions without the
fractions,” in International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 2013, pp. 315–
334.

[2] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, “Permis-
sion accounting in separation logic,” in ACM SIGPLAN Notices,
vol. 40, no. 1. ACM, 2005, pp. 259–270.

[3] J. T. Boyland, P. Müller, M. Schwerhoff, and A. J. Summers,
“Constraint semantics for abstract read permissions,” in Pro-
ceedings of 16th Workshop on Formal Techniques for Java-like
Programs. ACM, 2014, pp. 1–6.

[4] V. Astrauskas, “Encoding of chalice permissions in viper,” un-
published, 2017.

[5] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verifi-
cation infrastructure for permission-based reasoning,” in Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

[6] S. Fritsche, “A framework for bidirectional program transforma-
tions,” Master’s Thesis, ETH Zurich, 2017.

[7] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szala-
chowski, “The scion internet architecture,” Communications of
the ACM, vol. 60, no. 6, pp. 56–65, 2017.

2https://bitbucket.org/viperproject/sample


	Abstract Read Permissions
	Nagini
	Core Goals
	Extension Goals
	Schedule
	References

