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Introduction

Higher-order functions take other functions as parameters. Thus, higher-order functions
can leave parts of their functionality open for later customization or extension. Exam-
ples from the functional programming paradigm are map, filter and fold. Being able to
customize the functionality of those utilities yields powerful tools for working with lists.
However, they require that at least their parameter variables can be bound to functions.
The possibility to bind variables to functions introduces a lot of flexibility to a program-
ming language, but also complicates program verification. Given that a variable could
be bound to any function, the precondition and postcondition of that function may only
be known at runtime.

Closures are functions (named or anonymous) that may have captured variables. They
increase flexibility since functions are given access to variables that may be relevant
to their functionality. From a verification perspective, closures complicate reasoning
because they can capture local variables. It is then unclear how to refer to those captured
local variables in a closure’s contracts. In particular, when functions can mutate those
captured variables, it is often essential that their contracts can refer to those variables.

Viper and Nagini

Viper [6] is an automatic, deductive verification infrastructure developed at the Chair of
Programming Methodology at ETH Zürich. Verification is done through its intermediate
verification language: the Viper language. There are several front ends for Viper which
translate programs written in programming languages and annotated with verification
constructs to the Viper language. Nagini is a front end dedicated to Python programs
with static type annotations.

This Master’s thesis aims to extend Nagini with the necessary means to allow for
formal verification of lambda functions and closures.
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Motivating Examples

1 de f func (g , a , b , c ) :
2 Requires (True )
3 Ensures (True )
4 whi l e a . parameter < b + c :
5 a . parameter = a . parameter ∗ a . parameter
6 # g reads a . parameter and wr i t e s to a . r e s u l t
7 e , f = g (a , b , c )
8 re turn 1/a . r e su l t , s q r t ( e ) , l og ( f )

(a) Specification usage.

1 de f f ( setup , compute ) :
2 setup ( )
3 compute ( )

(b) Unknown specifications.

1 de f f a c t o r y ( ) :
2 x = 0
3
4 de f increment ( ) :
5 non loca l x
6 x += 1
7 return x
8
9 return increment

(c) Hidden variables.

Figure 1: Examples demonstrating challenges of closure verification.

Given the examples in Figure 1, we would like to verify that those methods adhere to
some provided specifications. Additionally, we want to verify other correctness properties
such as memory safety or concurrency safety.

In example 1a, at line 7 we can only establish that a.parameter ≥ b + c. Therefore,
g’s precondition must be implied solely by a.parameter ≥ b+ c. In order to verify line
8, it must hold that a.result 6= 0∧ e ≥ 0∧ f > 0. Thus, g’s postcondition has to imply
that expression. These restrictions on g should be expressible in func’s precondition.

One way to verify example 1b, is to specify a precondition for method f that implies the
precondition of setup. The postcondition of setup could be required to imply compute’s
precondition. Finally, we could specify a postcondition for method f that is implied by
compute’s postcondition. To increase flexibility, the contracts of f should be generic
w.r.t. setup and compute while still allowing to impose the mentioned restrictions on
setup and compute.

In Figure 1c, we need to be able to specify increment which gets returned from
factory as a closure. In particular, factory’s specification has to be able to specify
the returned closure. In this case, the semantics of increment depend on the captured
local variable x which is only visible inside factory’s scope. Because increment is
returned and thus made accessible outside of factory’s scope, it is unclear how to
specify increment without referring to the hidden variable x.
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Core Goals

1. Explore the state of the art regarding verification of closures

The first core goal consists of various steps to increase the understanding of verification
of closures in the Viper setting. The state of the art should be reviewed to get an idea
of what has already been done in this direction of research and to find out what worked
well in particular. This includes research papers (e.g., [3, 5] among others) as well as
concrete implementations (e.g., Why3 [1], VeriFast [2], Chalice [4], Viper [6] and others).
Motivating examples should be gathered that highlight aspects of closures which need
to be taken into consideration for verification thereof. Each motivating example should
highlight exactly one of such aspects.

2. Develop a methodology for specification and verification of Python
functions (as first-class citizens)

In this core goal, we want to create a methodology to specify and verify Python func-
tions that can be bound to variables, which means that their contracts are no longer
known statically. Figure 1 highlights some of the challenges that we want to overcome.
Supporting variable capturing is excluded from this core goal (see extension goal 1).

As a first step, the methodology should focus only on side-effect free functions. In a
second step, support for heap modifying functions should be added.

3. Encoding and verifying closure specifications in Viper

In parallel to developing a methodology for verification and specification of Python
closures (core goal 2), an encoding of that methodology to the Viper language has to be
created. That is, the constructs used in that methodology have to be expressed in the
Viper language. The encoding should strive to allow for automation during verification.

4. Design the necessary syntactic elements for reasoning about closures for
Nagini

Viper and Nagini aim to be practical and user friendly. These properties are affected
by the syntax of the annotations used for verification. In particular, the syntax should
allow for a concise and readable expression of program semantics. It should fit well into
the existing syntax and one should be able to combine it with the already established
features of Nagini.

5. Implement the translation from the Python code with specifications to
the Viper language within Nagini

The previous core goals naturally lead to this last core goal: The actual implementation
within Nagini. The implementation should work well with the existing code. Further-
more, error messages from Viper should be translated back into the context of the Python
code.
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Extension Goals

1. Enable verification and specification of closures with capturing

Example 1c demonstrates how closures that capture local variables complicate verifica-
tion. In this extension goal, the methodology from core goal 2 should be extended to
support closures that capture variables. The extension should then also be implemented
as part of Nagini.

2. Verify SCION’s use of closures and lambda functions

SCION [9] is a clean-slate approach to internet architecture addressing many issues of
today’s internet. In a joint effort the Network Security Group, the Information Security
Group and the Chair of Programming Methodology will try to verify SCION’s properties
from the high-level design all the way down to its implementation. Since its implemen-
tation is written in Python, Nagini will play a crucial role in the verification of that
implementation. One of the motivations for this Master’s thesis is, in fact, the use of
closures and lambda functions in its codebase. As such, a suitable extension goal would
be to verify the components that make use of closures and lambda functions.

3. Combine verification of closures with other advanced features

Closure verification and specification may or may not be compatible with other advanced
verification features such as quantified permissions [7] or magic wands [8].

In this extension goal, we want to explore whether closure verification and specifica-
tion is compatible with other advanced features, how they could be made compatible
and whether it would be beneficial to have closure verification and specification in com-
bination with other advanced features.
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