
Reasoning about Nondeterministic
Collections

Bachelor Thesis

Bogdan Gadzhylov

April 12, 2021

Advisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Zürich

Abstract

The Java platform provides the Java collections framework, which al-
lows to represent and manipulate groups of objects. Different imple-
mentations ensure different properties and have different advantages
and disadvantages. In particular, some collection implementations, ac-
cording to the documentation, do not guarantee deterministic traversal-
order of their elements. This can potentially lead to nondeterministic
output, which could cause confusion and complicate testing of the soft-
ware. In order to generate deterministic output, users can avoid nonde-
terministic collections altogether or they can sort the data before gener-
ating output. Both strategies, however, are potentially costly in terms
of performance.

In this thesis we developed a tool for a small subset of Java that can find
nondeterministic collection traversals using static analysis, and warn
users about potentially nondeterministic output. Our tool is using the
Soot framework in order to perform abstract interpretation on the Jim-
ple intermediate representation. We evaluated our tool by running
its determinism analysis on example programs of different complexity
and comparing with expected results.

i

Contents

Contents iii

1 Introduction 1
1.1 Background . 1

1.1.1 Java collections framework 1
1.1.2 Soot framework . 2
1.1.3 Abstract Interpretation 5

1.2 Subset of Java . 6

2 Definitions of Determinism 11
2.1 Notation . 11
2.2 Definitions . 12
2.3 Implications of the Definitions 15

3 Abstract Interpretation 17
3.1 Abstract Domain . 17
3.2 Abstract State . 18
3.3 Abstract Transformers . 19

3.3.1 Notation . 19
3.3.2 Abstract Transformers 20

3.4 Reaching a Fixed Point . 25

4 Implementation 27
4.1 Monotone Framework . 27
4.2 Generating Nondeterminism Warnings 28
4.3 Programs outside our Java Subset 29
4.4 Challenges . 30

5 Evaluation 31
5.1 Test Suite . 31
5.2 Precision . 34

iii

Contents

5.3 Performance . 36

6 Conclusion and Future Work 37
6.1 Conclusion . 37
6.2 Future Work . 37

6.2.1 Expressiveness . 37
6.2.2 Usability . 39

Bibliography 41

iv

Chapter 1

Introduction

Reasoning about properties of a program is generally a difficult task due to
high complexity of modern software systems. One very important property
is determinism. Intuitively, a program is said to be deterministic, if for a
given state and a fixed input, it always yields the same observable effect.
This property is often desired at a point in the program where output is
generated. It could be very confusing for users, if rerunning the program
without changing any input would result in different output.

In this thesis, we focus only on nondeterminism introduced by the Java
collections framework [4]. The main goal of this thesis is to develop a tool
that detects potentially nondeterministic output using static analysis, and
produces warnings for the user. For this, we will define different types
of nondeterminism and instantiate the abstract interpretation technique to
perform a determinism analysis. We will implement the tool using the Soot
framework [10].

1.1 Background

1.1.1 Java collections framework

The Java collections framework is a commonly used framework that allows
to represent and manipulate groups of objects, independently of implemen-
tation details. Figure 1.1 shows an overview of the framework where the
different interfaces are represented in red and the implementations in green.

1

1. Introduction

Figure 1.1: Example interfaces (red) and implementing classes (green) of the Java collections
framework

The Set interface, for example, could be implemented as a HashSet [1] or as
a LinkedHashSet [2]. Different implementations ensure different properties
and have different strong and weak points. In particular, the LinkedHashSet

implementation uses a doubly-linked list to guarantee deterministic traversal-
order, whereas the HashSet implementation does not guarantee that the
traversal-order will remain constant over time. This happens because the
HashSet implementation relies on the hashCode() function, which in its
turn does not guarantee the same integer for the same object across mul-
tiple executions [5]. But there are also other collection implementations that
do not guarantee any particular traversal-order, e.g. PriorityQueue [3].

1.1.2 Soot framework

Soot [10] was originally developed by the the Sable Research Group from
McGill University as a Java optimisation framework, but is now widely
used to analyse, instrument, optimise and visualise Java and Android ap-
plications.

One of the main benefits of Soot is that it provides four different interme-
diate representations for analysis purposes. Each of the intermediate repre-
sentations has different levels of abstraction that give different benefits [11].
The most important intermediate representation is Jimple. Soot generates
Jimple code from the Java bytecode of the analysed programs.

Jimple

Jimple is a typed intermediate representation of Java source code based on
three-address code [8]. This means that in each assignment statement there
is only one address on the left side and at most two addresses on the right

2

1.1. Background

side of the assignment. Hence, complicated statements with nested expres-
sions are split up into multiple simple statements using additional local
variables to store intermediate results. This makes it a lot easier to analyse
Jimple code instead of Java source code. Moreover, Jimple has 15 differ-
ent operations in total, as opposed to over 200 possible operations in Java
bytecode, which makes it a lot easier to analyse Jimple code instead of Java
bytecode.

The following is an example of a simple Java program and its corresponding
Jimple representation:

1 public static void main(String[] args){

2

3 Set<String> hs = new HashSet<String>();

4

5 hs.add("abc");

6

7 System.out.println(hs);

8

9 }

Listing 1.1: Java source code of a simple program

1 public static void main(java.lang.String[]){

2

3 java.util.HashSet $stack2;
4 java.io.PrintStream $stack6;
5 java.lang.String[] args;

6

7 args := @parameter0: java.lang.String[];

8

9 $stack2 = new java.util.HashSet;

10

11 specialinvoke $stack2.<java.util.HashSet: void <init>()>();

12

13 interfaceinvoke $stack2.<java.util.Set: boolean

add(java.lang.Object)>("abc");

14

15 $stack6 = <java.lang.System: java.io.PrintStream out>;

16

17 virtualinvoke $stack6.<java.io.PrintStream: void

println(java.lang.Object)>($stack2);
18

19 return;

20 }

Listing 1.2: Jimple code corresponding to the program from Listing 1.1

3

1. Introduction

Soot provides a lot of interfaces and classes to manage the analysed Jimple
code. Here are the most important components for our analysis:

• Stmt: Represents a statement in Jimple. Since Jimple is based on three-
address code, we can assume that each statement uses at most three
operands. Jimple has 15 different statement types in total, but the most
relevant for us are:

– DefinitionStmt: Represents an assignment statement. In Jimple
there are two types of assignments:

* IdentityStmt: Parameters of a method and references to
this are explicitly stored in local variables, using the := op-
erator

* AssignStmt: Represents all other assignments

– IfStmt: Represents an if-statement, and is used together with
GotoStmt for intraprocedural control-flow

– InvokeStmt: Represents a method invocation statement, and is
used together with ReturnStmt and ReturnVoidStmt for interpro-
cedural control-flow

• Value: Represents a single datum. The most important examples of
values are:

– Local: Represents a local variable. The name of a Jimple local
variable starts with a $ if this variable was created artificially dur-
ing the ”Jimplification” and was not present as a local variable in
the Java source code itself.

– Constant: Represents a constant value. It includes usual numer-
ical, boolean and String literals, but also the null pointer.

– Expr: Represents an expression. Most important expressions are:

* BinopExpr: Represents an expression with two operands
* UnopExpr: Represents an expression with one operand
* CastExpr: Represents a cast expression
* InstanceOfExpr: Represents a check via instanceof opera-

tor
* InvokeExpr: Represents an invocation of a method inside an

expression
* NewExpr: Represents an instantiation via the new operator

4

1.1. Background

SPARK

SPARK [19] is a flexible framework based on Soot that provides a lot of pos-
sibilities to perform different points-to analyses. A points-to analysis allows
to statically determine which pointer variables may point to which objects
during program execution. We will use this information to get possible con-
crete types that a collection instance might have during execution.

SPARK comes together with Soot and can be turned on by setting the corre-
sponding Soot options. SPARK does not only compute points-to information
but is also used for call graph construction. Even though SPARK computes
context-insensitive points-to information, it is still quite precise. The reason
for this is that, unfortunately, context-sensitive points-to information is quite
expensive to compute and even trivial Java programs could take a long time.
Hence, in order to be able to analyse even large programs in a short time,
we will use SPARK’s points-to information in our determinism analysis.

The points-to information is accessible through Soot’s PointsToAnalysis

interface. This interface provides a method reachingObjects(Local l),
which returns a PointsToSet, a set of abstract objects the Jimple local l may
point to. We could then call the method possibleTypes() on a PointsToSet

instance and get a set of Types of the objects in the PointsToSet. This essen-
tially gives us a set of concrete Types that the Local l could have at runtime.
For example, a Local l of Type java.util.Set could have a set of possible
concrete types [java.util.HashSet, java.util.TreeSet].
The PointsToSet interface also has a method
hasNonEmptyIntersection(PointsToSet other), which can be used for
alias detection.

1.1.3 Abstract Interpretation

Abstract interpretation [15] is a static analysis technique that is used to
overapproximate all possible behaviours of a program. The main idea of
abstract interpretation is to represent possibly infinitely many concrete pro-
gram states with finitely many abstract program states. For this, an abstract
domain is defined, which is then used to represent an abstract program state.
Usually, the abstract state of a program, at a program point, is a mapping
from all the variables of a program to some abstract values from the abstract
domain. The abstract domain is chosen according to the kind of property
one wants to analyse. The abstract domain should be a complete lattice. All
the possible behaviours of the program are captured using abstract trans-
formers. Abstract transformers define how the abstract state changes when
an arbitrary statement is executed. Abstract transformers are based on the
analysis one wants to perform and are defined once for the whole program-
ming language. This means that abstract transformers must cover all possi-
ble statements that a program might have, such that the analysis can run on

5

1. Introduction

any example program. Abstract transformers must also be sound, i.e. the
abstract state change must represent all possible concrete state changes
When abstract domain, abstract program state and abstract transformers are
defined, the analysed program can be executed in an abstract way. The exe-
cution will proceed until all the abstract states at all program points do not
change anymore, i.e. a fixed point is reached.
To ensure termination of the analysis, it is necessary to define how the ab-
stract state should be overapproximated in case the abstract state keeps
changing without reaching a fixed point. This is usually done through
widening [16].
After the abstract execution we can then use the abstract states for each
program point to reason about the analysed property.

1.2 Subset of Java

Java is an expressive and complex programming language with a huge
amount of different features and possibilities. This makes it impossible, in
the scope of a bachelor’s thesis, to create a reasonably precise static analy-
sis tool that covers all possible Java programs. Hence, we will describe the
subset of Java programs that our tool will be able to analyse. This allows
us to get a working determinism analysis without having to cover all the
numerous details.

We will describe the subset of Java programs that we consider in a grammar
on the next page.

Legend for the grammar shown next:

• P = Program

• MC = Main Class

• CD = Class Declaration

• VD = Variable Declaration

• MD = Method Declaration

• S = Statement

• E = Expression

• T = Type

• ID = Identifier

• LIT = Java literals, including integers, floats, booleans, Strings and
null

• op = Basic binary Java operators for arithmetical, relational and logical
operations

6

1.2. Subset of Java

Grammar

P ::= MC CD

MC ::= class ID {public static void main (String [] args){S}}

CD ::= class ID extends ID{VD MD}

VD ::= T ID ;

MD ::= public T ID (T ID) {VD S return E ; }

S ::= { S }
| if(E) S else S
| while(E) S
| for(S;E;S) S
| VD ;
| ID = E ;
| ID(E) ;

E ::= E op E
| ! E
| (T) E
| (E)

| ID(E)

| new T (E)

| ID
| this

| LIT

T ::= String | int | double | boolean | ID

ID ::= legal Java identifiers

Notes:

• Overline denotes repetition, zero or more times. For a better overview
we avoided commas in the repetition.

• For simplicity we represent method calls as ID(E). But we also
allow method calls like System.out.println(), Collections.sort()
or var.foo(), for a variable var.

7

1. Introduction

Not all constraints can be expressed in a grammar, and even those that
can may not be immediately noticed, so we will explicitly mention some
constraints here.

Constraints

• We do not include arrays and fields.

– Why? Arrays and fields would introduce a whole new complexity
layer to our analysis. In general, it is a challenging task to also
reason about the heap in a static analysis.

• We do not include recursion.

– Why? Our determinism analysis will be interprocedural, i.e. we
will analyse the source code of the called methods (if it is not a
Java library method and if we have the source code for it). Both
direct and indirect recursion would introduce loops into our anal-
ysis, which would make our analysis run until there is no more
memory to maintain the analysis information. To ensure termi-
nation we would need to stop analysing methods which we al-
ready analysed and make some sound assumptions on the effect
of these methods. But since a method call could theoretically
change the whole abstract state of a program at a particular point,
we would need to assume the most general abstract state and ba-
sically lose all the previously computed information.
Another option could be to build procedure summaries for each
method, but this would again add a whole complexity layer [17].

• We do not analyse dynamically-dispatched method calls.

– Why? To statically find out which concrete method implementa-
tion could be called during program execution is also a challeng-
ing task in itself. One could also analyse all possible implemen-
tations and compute an overapproximation of the effect of the
method call, but this could result in poor performance and us-
ability of our tool. For methods that we do not analyse we make
assumptions on the effect of the method call and allow users to
configure these assumptions.

8

1.2. Subset of Java

• We allow methods to only have one return statement at the end.

– Why? For simplicity. Theoretically, any program could be rewrit-
ten to this form by just introducing a local variable in the begin-
ning of the method. This local variable would store potentially
different return values, which are finally returned at the very end
of the method.

• We do not include exceptions.

– Why? Also for simplicity. We want to keep the main focus of our
work on the actual determinism analysis.

• We only consider sequential Java programs.

– Why? Parallelism would introduce another complexity layer to
the analysis.

9

Chapter 2

Definitions of Determinism

In this chapter we will provide our definitions of different types of deter-
minism, show examples to help understand the definitions and describe the
implications that these definitions have.

2.1 Notation

Before we define different types of determinism, we introduce some nota-
tion:

• Let P denote our program that we analyse. P is fixed.

• Let e denote an arbitrary execution of our program P.

• Let I denote all of the input that the program gets during one execu-
tion. As input we consider not only the statically known arguments,
but also any information that is arriving dynamically during the exe-
cution, from outer sources. This helps us to focus on nondeterminism
introduced by the Java collections framework.
I is fixed.

• Let p denote a program location in the program P.

11

2. Definitions of Determinism

2.2 Definitions

In this thesis we distinguish between two types of determinism:
traversal-order determinism and content determinism. Here we provide intuitive
definitions of these concepts. Since we are interested in finding potentially
nondeterministic output, we define determinism by comparing the output
in different executions.

Definition 2.1 (Traversal-order determinism). A collection instance is determinis-
tic in its traversal-order, at the point p in the program P, if for all possible executions
e that have the same input I outputting the collection instance at the point p would
yield the same result. This means that if we introduced an output operation on this
collection instance at point p, it would always have exactly the same observable
effect. Otherwise, the collection instance is nondeterministic in its traversal-order
at the point p.

The following is a simple example of a HashSet instance, which is nondeter-
ministic in its traversal-order at the point in the program where output is
produced, i.e. at line 7.

1 Set<String> hs = new HashSet<String>();

2

3 hs.add(" a ");

4 hs.add(" b ");

5 hs.add(" c ");

6

7 System.out.println(hs);

Listing 2.1: The HashSet instance hs is nondeterministic in its traversal-order at line 7

According to the documentation of the HashSet class [1], the traversal-order
of its elements is not guaranteed to remain constant, i.e. it could be different
in different executions with the same input.
Note that, according to our definition, hs is also nondeterministic in its
traversal-order at lines 5 and 6, since we could introduce another print state-
ment there and potentially see different output in different executions.

One might think that traversal-order nondeterminism is inherent to some
collection classes whose documentation does not guarantee a particular or-
der, but this is not the case, as the next example shows.

1 // let hs be defined and filled as in Listing 2.1

2

3 List<String> list = new LinkedList<String>(hs);

4

5 System.out.println(list);

Listing 2.2: The LinkedList instance list is nondeterministic in its traversal-order at line 5

12

2.2. Definitions

Since the order of the elements in hs is nondeterministic, the order of the
elements in list is also nondeterministic. Even though the LinkedList class
inherently provides a strict order of the elements, the actual LinkedList

instance list is nondeterministic in its traversal-order at line 5, since the
output could be different in different executions.

Note: In some cases it is possible to recover traversal-order determinism.
For example, if we sorted the collection instance list at line 4 of Listing 2.2,
then the traversal-order would become deterministic, thus always producing
the same output at line 5. Recovering content determinism, on the other
hand, seems highly unlikely to happen in practice.

Definition 2.2 (Content determinism). A collection instance is deterministic in its
content, at the point p in the program P, if for all possible executions e that have
the same input I, the collection instance has the same content at the point p. With
”same content” we mean that the multisets of values of the contained objects are
equal, so the traversal-order does not matter.

Going back to previous examples, we can see that both the hs from List-
ing 2.1 and the list from Listing 2.2 are deterministic in their content at the
points where output is produced.

The following example shows a collection instance that is nondeterministic
in its content.

1 Set<String> hs = new HashSet<String>();

2

3 hs.add(" a ");

4 hs.add(" b ");

5 hs.add(" c ");

6

7 List<String> list = new LinkedList<String>();

8

9 Iterator<String> it = hs.iterator();

10

11 list.add(it.next());

12 list.add(it.next());

13

14 System.out.println(list);

Listing 2.3: The LinkedList instance list is nondeterministic in its content at line 14

In Listing 2.3 the list is filled with two elements from hs. But since the
traversal-order of the elements in hs is nondeterministic, different elements
could be added to list in different executions with the same input.

Note that sorting does not change the content of a collection and would
not help to restore determinism in this case. In general, restoring content

13

2. Definitions of Determinism

determinism of a collection would include overwriting all of the elements
with some deterministic values, which seems rather unlikely to happen in
practice. Note also that the list from Listing 2.3 is nondeterministic in its
traversal-order at line 14 according to our definitions.

Definition 2.3 (Nondeterministic collection instance). For simplicity, we say that
a collection instance is nondeterministic if it is nondeterministic in its traversal-
order or content.

So far we have defined determinism only as a property of a collection in-
stance at a particular point in the program. But since the ultimate goal of
this project is to develop a tool that warns users about potentially nondeter-
ministic output, we also need to define determinism of the output.

Definition 2.4 (Potentially nondeterministic output). Output is potentially non-
determinsitic if it is generated from a nondeterministic collection instance. In gen-
eral, any user-observable behaviour could be viewed as output. For simplicity, we
consider the standard System.out.println() to be the canonical output function.

Going back to previous examples we can see that in Listing 2.1, Listing 2.2
and Listing 2.3 there is potentially nondeterministic output.

Finally, we want to also reason about determinism of other elements that are
not collection instances. This will be useful for our determinism analysis.
For example, in order to see that the list from Listing 2.3 is nondeterminis-
tic in its content at line 14, we have to reason about the determinism of the
iterator it and the elements returned by it.next().

Remark 2.5 We consider elements that are not collection instances, i.e. do not
come from the Java collections framework, as collections with only one element. This
allows us to apply our determinism definitions to all elements in our program. This
also means that the determinism of such elements boils down to content determinism,
since there is only one element in these collections.

Remark 2.6 Iterators are a special case. Determinism of an iterator depends on the
determinism of the collection instance it is attached to. If this collection instance
is deterministic in its traversal-order, then also the iterator is deterministic. If the
collection instance is nondeterministic in its traversal-order, then also the iterator is
nondeterministic in its traversal-order. Calling next() on this iterator would then
return an element with nondeterministic content.

14

2.3. Implications of the Definitions

2.3 Implications of the Definitions

Choosing definitions this way has an important consequence:

• If a collection instance is nondeterministic in its content, it is automati-
cally nondeterministic in its traversal-order, since we defined traversal-
order determinism in terms of identical output. Equivalently, if a col-
lection instance is deterministic in its traversal-order, it must also be
deterministic in its content. Traversal-order is a stronger property in
this perspective.

We also address some open questions here.

Question 1: What if an output point is reached within nondeterministic
control flow?

This would mean that not all executions with the same inputs will reach that
output point. The following example illustrates such a case:

1 //HashSet with elements 1,2,3,4,5

2 HashSet<Integer> hs = new HashSet<Integer>(Arrays.asList(1,2,3,4,5));

3

4 int n = hs.iterator().next();

5

6 LinkedList<String> list = Arrays.asList("a", "b", "c");

7

8 if(n > 3) {

9 System.out.println(list);

10 }

Listing 2.4: Output point (line 9) lies within a nondeterministic control flow because of the
condition n > 3 and the fact that n is nondeterministic in its content

Note that in Listing 2.4 we use that hs.iterator().next() is nondeterminis-
tic to introduce nondeterministic control flow. Even though the entire input
of our program might be completely identical, it could happen that some
executions reach the output point at line 9 and some do not. This would
lead to different overall output of the program.

To deal with this we would need to statically determine whether each branch
condition of our program is deterministic for the same input, but this would
require reasoning about all possible nondeterminisms, which is a much
more difficult task than reasoning about nondeterministic collections. In-
stead we make a decision:

• Decision 1: Given two executions e1, e2, input I and output point p, in
our analysis we assume that we reach p in both executions. This means,
to analyse determinism of the output, we only consider executions that

15

2. Definitions of Determinism

are comparable at the point p, i.e. both reach point p and both have
the same input I. Hence we do not consider the overall output of
the program. The overall output size could vary between different
executions, but for the same overall output it should be deterministic.

With this decision our analysis for the program in Listing 2.4 should not
result in a warning, since the output only uses a LinkedList instance, which
is deterministic in its content and traversal-order at the output point.

Question 2: What if we had an output point in a loop?

In a loop, a program point p could be reached multiple times and thus
some collections could be deterministic in one iteration at the point p and
nondeterministic in another iteration at the point p.

1 //HashSet with elements "a", "b"

2 HashSet<String> hs = new HashSet<String>(Arrays.asList("a", "b"));

3

4 LinkedList<String> list = Arrays.asList("c", "d");

5

6 for(int i = 0; i < 5; i++){

7 if(i == 3){

8 list.add(hs.iterator().next());

9 }

10 System.out.println(list);

11 }

Listing 2.5: Output point (line 10) lies in a loop and is deterministic in some iterations and
nondeterministic in other iterations

To deal with this we make another decision:

• Decision 2: We overapproximate in our analysis and say that if a col-
lection is nondeterministic at the point p at least once, then it is con-
sidered nondeterministic at the point p overall.

With this decision our analysis for the program in Listing 2.5 should result
in a warning, since the list has nondeterministic content in some iterations.

16

Chapter 3

Abstract Interpretation

In this chapter we will describe how we instantiate the abstract interpre-
tation technique to perform our determinism analysis. We will define the
abstract domain, abstract transformers and abstract state for our analysis.

3.1 Abstract Domain

For our determinism analysis we choose the abstract domain as

(S,v,u,t)

with S := {⊥, DoDc, NoDc, No Nc = >}, where

Do stands for deterministic traversal-order,

Dc stands for deterministic content,

No stands for nondeterministic traversal-order,

Nc stands for nondeterministic content,

according to our definitions of (non)determinism. This abstract domain is
the set of possible abstract values that our abstract objects could have dur-
ing abstract interpretation. An abstract object is either a concrete object
abstracted using its allocation site or a variable of primitive type. If an ab-
stract object has the abstract value DoDc, it means that it is deterministic in
both traversal-order and content. This holds for other abstract values analo-
gously. ⊥ represents the abstract value of abstract objects that were not yet
initialised. > is the most general and imprecise abstract value an abstract
object could have, which, according to our definitions, is equivalent to No Nc.

17

3. Abstract Interpretation

The partial order between the elements (v), as well as the least upper bound
(t) and the greatest lower (u) bound can be seen in the following Hasse
diagram:

No Nc

NoDc

DoDc

⊥

Note: We do not consider Do Nc as a possible value in our abstract domain,
since our definitions imply Do =⇒ Dc, thus making Do Nc unreachable.

3.2 Abstract State

Having defined the abstract domain for our abstract interpretation, we need
to describe what an abstract state at a program point looks like. For this, let
us introduce some definitions:

• Let O be the set of all abstract objects of our program. We abstract
concrete objects using their allocation sites. We abstract variables of
primitive types using their names. We consider variables of primitive
types as abstract objects in order to be able to represent their abstract
values. For example, if we get the first element of a HashSet of integers
and store it in a variable of type int, we want that variable to have the
abstract value No Nc, since a HashSet is nondeterministic in its traversal-
order.

• Let V be the set of all variables of our program.

• Let p be an arbitrary program point.

An abstract state at a program point p in our abstract interpretation consists
of three mappings:

m1 : V → P(O)

m2 : O → S

m3 : V → S

• m1 is a mapping from variables to sets of abstract objects they could
point to. This mapping is given by the points-to analysis. Since we
also consider variables of primitive types as abstract objects, we make
these variables point to themselves.

18

3.3. Abstract Transformers

• m2 is a mapping from abstract objects to abstract values. This map-
ping actually contains the determinism information and is computed
during our analysis.

• m3 is a mapping from all variables to abstract values. This mapping
has the following meaning:
Let x ∈ V be an arbitrary variable. m1(x) is the set of abstract objects
x could point to. Since a variable either points to an object or is of
primitive type and m1 maps variables of primitive types to themselves,
we know that m1(x) is non-empty.
Let possibleAbstractValues(x) := {m2(o) | o ∈ m1(x)}.
m3 maps variable x to tpossibleAbstractValues(x), i.e. to the least
upper bound of the abstract values of all abstract objects that x could
point to. m3 is computed by our determinism analysis using m2 and
m1.

At the beginning of our abstract execution the abstract state at each program
point is as follows: m2 maps every abstract object to ⊥ and m3 maps every
variable to ⊥. m1 is given by the points-to analysis at each program point
and is not changed by our determinism analysis. During abstract execution
the abstract state will change from program point to program point accord-
ing to our abstract transformers, which we define in the next section. After
abstract execution, our abstract state will represent an overapproximation of
all possible concrete states at each program point.

3.3 Abstract Transformers

Since our tool will analyse Jimple programs, we will define our abstract
transformers for the Jimple intermediate representation. But first we will
introduce some notation.

3.3.1 Notation

m1, m2, m3 : mappings of an abstract state at a program point (defined as
in the previous section)

x : a local variable

v : an abstract value, i.e. an element from S

m[x → v] : denotes a mapping obtained by replacing the abstract value of
x in m with v

stmt : denotes a statement in Jimple

JstmtK(m2, m3) = (m2, m3[x → v]) : denotes an abstract transformer, i.e.
how the mapping m3 changes after the effect of stmt takes place. In this case
the mapping m3 will change such that the new abstract value of x will be v.

19

3. Abstract Interpretation

de f aultValue(t) : denotes a function that returns the default abstract value
for a variable or an object of type t. If, at a program point, a new object is
created, we will assign a default abstract value to it. For example, if our
abstract interpretation encounters a statement like
x = new java.util.HashSet, we will assign de f aultValue(java.util.HashSet)
to the abstract object with this allocation site. In this case,
de f aultValue(java.util.HashSet) = NoDc, since a HashSet is nondeterminis-
tic in its traversal-order by documentation.
In general, we consider the default abstract value to be NoDc for the follow-
ing types:

• java.util.Set

• java.util.Map

• java.util.HashSet

• java.util.HashMap

• java.util.Hashtable

• java.util.IdentityHashMap

• java.util.PriorityQueue

For all other types, including primitive types, we consider the default ab-
stract value to be DoDc.

3.3.2 Abstract Transformers

We will now define abstract transformers, case by case, for each possible
Jimple statement that we could encounter during abstract interpretation.

We only describe how a statement changes the mappings m2 and m3 of an
abstract state from one program point to the next program point, according
to the control flow graph. m1 is already given by the points-to analysis
and is not modified by our analysis. The overall program state changes by
merging the new mappings at each program point with the old mappings
at that point. We merge two mappings by taking the least upper bound of
the abstract values they map to. Example:

• Let map1 and map2 be two mappings and let map1(x) = a and
map2(x) = b for some abstract values a, b ∈ S and a variable or object
x. Let map12 be the merged mapping. Then map12(x) = a t b, where t
is the least upper bound according to our abstract domain definition.

20

3.3. Abstract Transformers

DefinitionStmt

In Jimple a DefinitionStmt can be either an IdentityStmt or an AssignStmt.

• IdentityStmt: In Jimple, references to the this-object and references
to method parameters are explicitly stored in Jimple local variables.

– Jx := @this: typeK(m2, m3) =

(m2, m3[x → m2(thisObject)]),

where type is a placeholder for the type of the this-object and
thisObject is a placeholder for the abstract this-object. So after the
effect of the statement takes place in our abstract interpretation,
the local variable x will be mapped to the current abstract value
of the actual this-object.

– Jx := @parameter: typeK(m2, m3) =

(m2, m3[x → tm2(parameter)]) ,

where type also stands for the type of the parameter and parameter
stands for the actual parameter. Since parameter could point to
different abstract objects, we want x to map to the least upper
bound of the abstract values of all abstract objects parameter could
point to.

Note: If we encounter these statements in the main method, we
have no previously computed information about the this-object
and the parameters. In this case we will map x to defaultValue(type),
i.e.:

– Jx := @this: typeK(m2, m3) =

(m2, m3[x → de f aultValue(type)])

– Jx := @parameter: typeK(m2, m3) =

(m2, m3[x → de f aultValue(type)])

21

3. Abstract Interpretation

• AssignStmt:

– Jx = rK(m2, m3) = (m2, m3[x → m3(r)]) , if r is a Local

– Jx = constK(m2, m3) = (m2, m3[x → DoDc]) , if const is a Constant

– Jx = new typeK(m2, m3) =

(m2[obj → de f aultValue(type)], m3[x → de f aultValue(type)]),

where obj is the abstract object corresponding to this allocation
site. In Jimple, Java’s object instantiation is split up into two dif-
ferent statements: the first statement simply introduces a Jimple
local variable to reference the newly allocated object and the sec-
ond statement calls the constructor method on that object. For
example, the Java statement hs = new HashSet<String>() will
be represented as two Jimple statements:

1. hs = new java.util.HashSet

2. specialinvoke hs.<java.util.HashSet:void <init>()>()

In this abstract transformer we only handle the first Jimple state-
ment. The effect of the second statement is handled in InvokeStmt.

– Jx = binopExpr(op1, op2)K(m2, m3) =

(m2, m3[x → m3(op1) t m3(op2)]) ,

where binopExpr is a binary operation expression using two
operands op1 and op2. A binary operation is an arithmetical, re-
lational or logical operation on two operands. Since these oper-
ations neither introduce any additional nondeterminism nor re-
store determinism, the result of these operations can only be non-
deterministic if the operands are nondeterministic, hence the least
upper bound of their abstract values.

There are cases where this abstract transformer is imprecise, e.g.
when we compare two variables that point to the same object:
Let hs be a variable pointing to a HashSet. Then x = (hs ==

hs) will make x nondeterministic. But intuitively this expression
should be deterministic, since it always evaluates to true. So
in this example, our abstract transformer is sound but imprecise.
However, there are examples where this transformer is sound and
precise:
Let x be an int-typed variable that stores the first element of a
HashSet of integers. Since x is nondeterministic in its content,
a statement like z = (x + 5) should make z nondeterministic as
well.

22

3.3. Abstract Transformers

– Jx = unopExpr(op1)K(m2, m3) = (m2, m3[x → m3(op1)]) ,

where unopExpr is a unary operation expression using only one
operand op1. A unary operation, e.g. a logical negation, does nei-
ther introduce any additional nondeterminism nor restore deter-
minism. Thus, the result of a unary operation is nondeterministic
if and only if the operand is nondeterministic.

– Jx = (type) rK(m2, m3) = (m2, m3[x → m3(r)]) ,

where r is a Local and (type) is an expression that casts r to
type. Casting neither introduces nondeterminism nor restores de-
terminism, hence we can just propagate the abstract value of the
casted operand.

Method Invocation: When there is a method invocation inside
an assignment statement, we distinguish between three possible
cases:

a) We have a specification of the effect of the method call. This
specification will be stored in a JSON file and users will be
able to configure it. Here is an example:
Let the assignment statement be of the form
a = b.foo(c,d). A possible specification for the foo method
could be: If c or d have the abstract value NoDc, then b and
a will both have the abstract value No Nc after the method
call. So the specification tells what abstract values will ab-
stract objects (that participated in that method call) have after
the method call, conditioned on their abstract values before
the call. Since b,c and d could potentially point to different
abstract objects, we will apply the specification for each pos-
sible combination of abstract objects. We then update each
abstract object to the least upper bound of abstract values the
specification prescribed to that abstract object.

b) We do not have a specification, but we have an analysable
method body. In this case we will continue our analysis inter-
procedurally. For this, we will prepare the abstract entry-state
to start the analysis of the method body with the information
we have already computed.
Let the assignment statement be again of the form
a = b.foo(c,d). The entry-state will contain the abstract val-
ues of the arguments (c and d) and the abstract value of the
object on which the method was called if it exists (b in this
case). Other abstract objects and variables from the method
body of the called method will be initialised to ⊥. With this

23

3. Abstract Interpretation

entry-state we will then analyse the method body. When we
reach the return statement of that method body we end our
interprocedural analysis and transfer the abstract values of
the arguments (c and d), the base-object (b) and the returned
value (a) back to the caller’s site of our analysis.

c) We neither have a specification, nor a method body to anal-
yse. Since Soot generates Jimple code from Java bytecode, not
having a method body most probably means that the method
is native. In this case we allow users to decide between two
options: either to assume the worst case or the best case.
Let the assignment statement be again of the form
a = b.foo(c,d). If we assume the worst case, then a,b,c,d

will all have the abstract value No Nc after the method call. If
we assume the best-case, then b,c,d will preserve their ab-
stract values and a will get the abstract value DoDc after the
method call.

InvokeStmt

• We have already described the possible effects of a method call in the
AssignStmt case. An InvokeStmt is essentially the same, but without
an assignment, i.e. not considering the returned value of the method.

Other Statements

• For all other possible statements we propagate the abstract state with-
out changes, i.e.

– JstmtK(m2, m3) = (m2, m3),

where stmt ∈ {IfStmt,GotoStmt,ReturnStmt,ReturnVoidStmt}.

24

3.4. Reaching a Fixed Point

3.4 Reaching a Fixed Point

To complete the instantiation of abstract interpretation we also need to make
sure that the abstract interpretation will terminate, i.e. we will reach a fixed
point. A fixed point, in this context, will be a program state that, after
applying abstract transformers to it, will not change anymore.

For our instantiation of abstract interpretation it holds that:

• Our abstract domain is finite. This follows trivially from the definition.

• Our abstract domain is a complete lattice. This can easily be seen from
the Hasse diagram of our abstract domain.

• Each time after applying abstract transformers we join the resulting
program state with the old program state. We join by taking the least
upper bound of the abstract values of the variables and objects at a
program point.

• We currently do not handle Java programs with recursion, as we al-
ready mentioned in section 1.2. Hence, the only potential source of
non-termination are loops. But since we abstract objects using their
allocation site, there will be finitely many abstract objects, as there are
finitely many lines of code in the analysed program. Therefore, the
abstract program state can not grow infinitely. We also do not need
any widening in our analysis, since our abstract domain is finite and
only contains four elements.

From these facts we can follow that our abstract interpretation will termi-
nate.

25

Chapter 4

Implementation

In this chapter we describe how we implemented our determinism analy-
sis, which challenges we faced and how we solved them. For the develop-
ment we used the Eclipse IDE 2020-09 [6] with Java SE 8 [7] and Soot ver-
sion 4.1.0 [13].

4.1 Monotone Framework

Soot provides different implementations of data flow analyses that are based
on the monotone framework [18]. The monotone framework is a concep-
tual framework that allows to instantiate different data flow analyses in five
steps:

1. Decide whether the analysis should be a forward or a backward anal-
ysis.

• In our case, the analysis is definitely a forward analysis. To
reason about determinism of an object we might need the in-
formation about determinism of other objects that were intro-
duced earlier in the program. To implement this we extend Soot’s
ForwardBranchedFlowAnalysis<A> class.

2. Decide what domain should be used to represent the information in
the data flow analysis.

• In our case, the information of the data flow analysis is repre-
sented by our abstract program state as described in section 3.2.
We implemented a StateWrapper class that contains a map from
variables and abstract objects to their abstract values. Instances of
this class are then propagated by our forward data flow analysis
according to the control flow of the program. Our analysis is thus
of type ForwardBranchedFlowAnalysis<StateWrapper>.

27

4. Implementation

3. Decide how a statement changes the analysis information.

• Our abstract transformers in section 3.3.2 describe this. In the
implementation we override the flowThrough() method of the
ForwardBranchedFlowAnalysis class. In this method we define
how the outflowing analysis information changes, based on the
inflowing analysis information and the current statement.

4. Decide how inflowing analysis information should be merged.

• When there are different inflowing abstract states, we need to de-
cide how to combine them. In a must-analysis one usually takes
the intersection and in a may-analysis the union. In our case we
want the union, since we overapproximate all possible program
states at each program point. In the implementation we override
the merge() method of the ForwardBranchedFlowAnalysis class,
such that we return a StateWrapper that joins the two inflowing
StateWrappers. In the joined StateWrapper the abstract value of
each abstract object is the least upper bound of its abstract values
from the two inflowing StateWrappers.

5. Decide how the analysis should be initialised.

• We initialise our analysis with a StateWrapper entryState. Its
mapping maps all the variables and abstract objects to ⊥ in the
very beginning of the analysis. When we encounter a method
call and we have the body of that method, we can start a new
analysis recursively and initialise its entryState with the already
computed information.

4.2 Generating Nondeterminism Warnings

After implementing the actual determinism analysis, we can run it on ex-
ample programs and get the overapproximated determinism information at
each program point. Since we are interested in warning users about poten-
tially nondeterministic output, we can check if the output was created using
a nondeterministic argument. As already mentioned in Definition 2.4, we
consider System.out.println() to be our canonical output function.

In our warnings we tell the users at which line in the source code a poten-
tially nondeterministic output could happen, what the abstract value of the
outputted argument is and at what line in the source code this argument
became nondeterministic, i.e. where the last bad change to its abstract value
happened. Here is an example:

28

4.3. Programs outside our Java Subset

1 public class Example {

2 public static void main(String[] args){

3 Set<String> hs = new HashSet<String>();

4

5 hs.add(" a ");

6 hs.add(" b ");

7

8 List<String> list = new LinkedList<String>();

9

10 list.add(" c ");

11 list.add(hs.iterator().next());

12 list.add(" d ");

13

14 System.out.println(list);

15 }

16 }

Listing 4.1: A simple program that has potentially nondeterministic output at line 14. The list

is nondeterministic in its content, since we added a nondeterministic element to it at line 11.

1 WARNING: Your output in method

2 <Example: void main(java.lang.String[])>

3 at line 14 is potentially nondeterministic.

4 Argument of println() is N_N

5 Last bad change happened at line 11

Listing 4.2: Warning created by our tool after analysing the program from Listing 4.1

4.3 Programs outside our Java Subset

As we stated in section 1.2, our tool only analyses Java programs from our
predefined Java subset. Our implementation, however, does not explicitly re-
ject Java programs outside that subset. In the following, we briefly describe
how our tool will behave when the analysed program does not fulfill some
constraints:

• If the analysed program contains a recursive function of which we do
not have a specification, but we have an analysable method body, our
tool will try to analyse it and will not terminate. If we have a spec-
ification for such a function, our tool will just normally continue the
analysis as if it was an ordinary non-recursive function. If we neither
have a specification nor an analysable method body of the recursive
function, our tool will also continue the analysis assuming the most
general possible effect of that function, as it does for non-recursive
functions.

29

4. Implementation

• If the analysed program contains a dynamically-dispatched method
call, our tool will assume the most general possible effect of this method
call, as if we had no specification and no analysable method body.
Hence, we will remain sound but imprecise in these cases.

• If the analysed program contains arrays or fields, our tool will not
include them into the abstract state and will not track their abstract
values.

• Other unhandled features will be ignored during analysis.

4.4 Challenges

In this section we briefly describe what challenges we faced during the de-
velopment of our tool and how we dealt with them.

1. The first challenge was to get familiar with the Soot framework. Soot
is a powerful and complex framework and in order to understand how
it works I benefitted from various helpful resources, some of which I
will list here:

• Soot Survivor’s Guide [11]. This source really helped me to get
an overview of how Soot works and helped me to get started.

• PLDI03 Soot tutorial [9]. This is the official Soot tutorial given by
the developers at the PLDI conference.

• Soot Wiki [14]. Also helps to get a first overview and links to
other useful sources (some of which are unfortunately outdated).

• Soot Mailing List [12] together with the issues section on Soot’s
GitHub repository [10] help to find an answer by either searching
already asked questions or asking a new question.

2. When creating warnings for the users we initially wanted to tell users
the original name of the nondeterministic argument of the outputting
function. But despite setting the Soot option use-original-names to
true during Jimple code creation, only a few variables preserved their
original source code names. The reason for this is that Jimple is based
on a three-address-code. Thus, generating Jimple code will inevitably
break up complex expressions and introduce new Jimple variables to
hold the intermediate results. These Jimple variables will also be given
to the outputting function as arguments and there is no mapping to the
original names. This was a problem, since we wanted to create a useful
warning for the users. Fortunately, setting the keep-line-number op-
tion to true allows to get the source code line number of every Jimple
statement, which suffices to locate problematic output statements.

30

Chapter 5

Evaluation

In this chapter we describe how our tool performs on example programs
of different complexity. Since we can only analyse a subset of possible Java
programs, we created our own test suite. We manually analysed these pro-
grams to find potentially nondeterministic output, according to our defini-
tions, and compared the results of the tool with our expected results.

5.1 Test Suite

Example programs from our test suite are not complete applications from
the real world, but more like different unit tests that cover different features
of our Java subset and different cases of possible nondeterministic behaviour.
We start our analysis in the main method of the entry class of a program and
analyse methods of other classes when they are used in that program. We
also tried to cover the most important collection implementations from the
Java collections framework, which are:

• List: LinkedList, ArrayList, Stack, Vector

• Set: HashSet, LinkedHashSet, TreeSet

• Queue: PriorityQueue

– Deque: ArrayDeque

• Map: HashMap, Hashtable, LinkedHashMap, TreeMap

31

5. Evaluation

Table 5.1 shows the results of our analysis for each example.

Legend for the table shown next:

• Ex = Identifying number of the example

• LoC = Number of lines in the source code of the corresponding exam-
ple

• Stmts = Number of Jimple statements that were visited during our
determinism analysis. Our tool performs abstract interpretation on
the Jimple code of the analysed example and Stmts shows how many
steps our abstract interpretation had. Hence, if a statement is visited
multiple times it is also counted multiple times.

• S1 = Tells if our analysis was sound on that example, if we assumed the
worst case for the effect of unspecified and non-analysable methods.

• P1 = Tells if our analysis was precise on that example, if we assumed
the worst case for the effect of unspecified and non-analysable meth-
ods.

• S2 = Tells if our analysis was sound on that example, if we assumed
the best case for the effect of unspecified and non-analysable methods.

• P2 = Tells if our analysis was precise on that example, if we assumed
the best case for the effect of unspecified and non-analysable methods.

• T = Time needed to analyse this example assuming the worst case for
the effect of unspecified and non-analysable methods (in seconds).

32

5.1. Test Suite

Table 5.1: Results

Ex LoC Stmts S1 P1 S2 P2 T
1 26 9 yes yes yes yes 7 s
2 35 17 yes yes yes yes 7.6 s
3 27 9 yes yes yes yes 8 s
4 40 17 yes yes yes yes 7.2 s
5 37 12 yes yes yes yes 7.1 s
6 33 11 yes yes yes yes 7.4 s
7 31 22 yes no yes yes 7.5 s
8 74 45 yes no yes no 7.5 s
9 36 22 yes yes yes yes 7.3 s
10 32 17 yes yes yes yes 6.7 s
11 39 70 yes no yes yes 6.9 s
12 43 24 yes yes yes yes 6.9 s
13 35 19 yes no yes no 7 s
14 86 194 yes no yes yes 7.8 s
15 65 83 yes no yes yes 7.3 s
16 58 43 yes yes yes yes 5.9 s
17 35 22 yes yes yes yes 6 s
18 66 29 yes yes yes yes 5.6 s
19 43 18 yes yes yes yes 5.5 s
20 37 18 yes yes yes yes 5.7 s
21 40 34 yes yes yes yes 6.9 s
22 34 24 yes yes yes yes 6.8 s
23 52 25 yes yes yes yes 7.2 s

Code coverage: Running our tool on all these examples resulted in a 93.8%
code coverage of our determinism analysis code.

33

5. Evaluation

5.2 Precision

In this section we want to show one example where our tool is precise and
one example where our tool is imprecise in order to provide a quick glance
into what our tool is capable and not capable of doing.

The following is an example where our tool is precise:

1 public class Example {

2 public static void main(String[] args){

3 Set<String> s;

4

5 Scanner in = new Scanner(System.in);

6

7 if(in.nextInt() > 5) {

8 s = new LinkedHashSet<String>();

9 } else {

10 s = new TreeSet<String>();

11 }

12

13 s.add(" a ");

14 s.add(" b ");

15

16 foo(s);

17 }

18 public static void foo(Set<String> s) {

19 System.out.println(s);

20 }

21 }

Listing 5.1: Example program for which our tool is precise and does not create a warning

Thanks to the points-to analysis our tool can figure out that the Set s is
either a LinkedHashSet or a TreeSet, both of which are deterministic in the
traversal-order. Hence, the printed Set s is deterministic in its traversal-
order and no warning is created at line 19 of the program in Listing 5.1.
Without a reasonably precise points-to analysis, we would have assumed
the worst case and would produce a warning at line 19, since a Set could
also be a HashSet and thus nondeterministic.

34

5.2. Precision

The following is an example where our tool is imprecise, but still sound:

1 Set<String> hs = new HashSet<String>();

2

3 hs.add(" a ");

4 hs.add(" b ");

5

6 LinkedList<String> list = new LinkedList<String>();

7

8 list.add(hs.iterator().next());

9

10 if(list.get(0).equals(" a ")) {

11 System.out.println(list.get(0));

12 }

Listing 5.2: Example program for which our tool is imprecise

Our tool will produce a warning for the program from Listing 5.2. It will
say that a nondeterministic output is possible at line 11, since a nondeter-
ministic element was added to the list at line 8. However, according to our
definitions, the output at line 11 is deterministic because of the if-condition.
Since our tool does not track the path conditions and does not track the
possible content of the collections, it will be imprecise in these cases.

35

5. Evaluation

5.3 Performance

To evaluate performance of our tool we ran it on larger Java programs of
different size and measured the running time. We represent the size of a
Java program by the number of lines in the corresponding source code.

The program on which we tested the performance consists of a nested loop
with some if-statements, collection operations and a method call. We then
increased the number of lines of code by repeatedly appending this nested
loop to the end of the program. The following diagram demonstrates the
approximated results obtained by running the tool on Microsoft Windows
10 on a 4-core Intel i7-8550U CPU with 1.80 GHz.

Lines of code Running time

1000 16 s
2000 52 s
3000 124 s
4000 234 s
5000 413 s

0 1 2 3 4 5
0

100

200

300

400

500

Lines of code [Thousands]

R
un

ni
ng

ti
m

e
[s

]

As we can see from the diagram, the running time roughly doubles with
each additional thousand lines of code. This happens because the tool keeps
track of determinism of all variables and abstract objects of the program. The
more distinct variables and abstract objects a program has, the larger are
the analysis data-structures and the longer it takes to complete the analysis.
Nevertheless, the tool still takes a reasonable amount of time to analyse even
large programs.

36

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we developed a tool that helps programmers to discover poten-
tially nondeterministic output in their Java programs using static analysis.
The first challenge was to develop our own definitions of determinism in
order to pinpoint the underlying problem. Having defined the problem, we
decided to use the abstract interpretation technique to perform our deter-
minism analysis. For this, we have defined the abstract domain and abstract
transformers of the analysis. In order to keep the focus of this project on
developing a sound determinism analysis and not get lost in numerous fea-
tures of the Java language we limited our analysis to a subset of Java pro-
grams. We then implemented our analysis using the Soot framework and
evaluated it on example programs of different complexity.

6.2 Future Work

In general, we see two possible ways of improvement: increasing the ex-
pressiveness of the determinism analysis, and improving the usability of the
developed tool.

6.2.1 Expressiveness

• Cover arrays and fields. This would be very useful, since a lot of
real-world Java programs use arrays and fields. However, it will be a
challenging task, since it would include reasoning about the heap of
the program. One would also need to consider arrays of collections,
collections as fields of some objects and potential aliasing.

• Cover recursive functions. This would also be useful, since a lot of
real-world Java programs use recursive functions. To handle recursive

37

6. Conclusion and Future Work

functions in our analysis one would need to somehow break the cycles.
One option could be to treat recursive functions as a loop and only
continue analysing further down the recursion if the calling context
changes. To terminate the analysis, in case the calling context keeps
changing, one could perform some sort of widening, as it is done when
analysing loops.

• Implement the analysis of dynamically-dispatched methods. One idea
could be to analyse the underlying bootstrap method, i.e. the method
in which it is decided which concrete implementation of a method
will be called. This obviously only works if such a bootstrap method
is available. Another option would be to analyse all possible concrete
implementations of the dynamically-dispatched method and to over-
approximate its effect. This option, however, is potentially very costly
performance-wise.

• Include reasoning about determinism of branch conditions. This would
make the analysis more precise and help detect potentially nondeter-
ministic overall output of the program. The following example illus-
trates such a case:

1 //HashSet with elements 1,2,3,4,5

2 HashSet<Integer> hs = new

HashSet<Integer>(Arrays.asList(1,2,3,4,5));

3

4 int n = hs.iterator().next();

5

6 LinkedList<String> list = Arrays.asList("a", "b", "c");

7

8 if(n > 3) {

9 System.out.println(list);

10 }

Listing 6.1: Revisited example from Listing 2.4

Recall that our analysis does not produce a warning for this example
program, since the output at line 9 only uses a deterministic collection
instance list. Tracking determinism of a branch condition would al-
low to also warn users that the overall output of the program could
vary in different executions with the same input.

• Cover exceptions.

38

6.2. Future Work

6.2.2 Usability

• Allow users to configure which types of output should be checked for
determinism and extend the tool accordingly. It could be that the user
does not care about determinism of the printed output, but does care
about determinism of the data sent over a network or written into a
database. The tool should then only produce warnings for outputs of
specified types.

• Introduce special source-code annotations to allow users to explicitly
change the abstract state of the determinism analysis at a particular
point in the program. This could improve the precision of the analysis
in cases where, e.g. the user applied some custom sorting algorithm on
a collection making the traversal-order deterministic, but our analysis
could not figure this out.

• Implement an IDE plugin to make the tool more user-friendly and
highlight potentially nondeterministic output points in the source code.

39

Bibliography

[1] Class HashSet. https://docs.oracle.com/javase/8/docs/api/java/
util/HashSet.html.
(Accessed: 14.03.2021).

[2] Class LinkedHashSet. https://docs.oracle.com/javase/8/docs/

api/java/util/LinkedHashSet.html.
(Accessed: 14.03.2021).

[3] Class PriorityQueue. https://docs.oracle.com/javase/8/docs/api/
java/util/PriorityQueue.html#iterator--.
(Accessed: 14.03.2021).

[4] Collections Framework Overview. https://docs.oracle.com/

javase/8/docs/technotes/guides/collections/overview.html.
(Accessed: 14.03.2021).

[5] Default hashCode(). https://docs.oracle.com/javase/8/docs/api/

java/lang/Object.html#hashCode--.
(Accessed: 14.03.2021).

[6] Eclipse Version. https://www.eclipse.org/downloads/packages/

release/2020-09/r.
(Accessed: 14.03.2021).

[7] Java Version. https://docs.oracle.com/javase/8/docs/.
(Accessed: 14.03.2021).

[8] Jimple. https://en.wikipedia.org/wiki/Soot_(software)#Jimple.
(Accessed: 15.03.2021).

[9] PLDI03 Tutorial. https://www.sable.mcgill.ca/soot/tutorial/

pldi03/tutorial.pdf.
(Accessed: 14.03.2021).

41

https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html#iterator--
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html#iterator--
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
https://www.eclipse.org/downloads/packages/release/2020-09/r
https://www.eclipse.org/downloads/packages/release/2020-09/r
https://docs.oracle.com/javase/8/docs/
https://en.wikipedia.org/wiki/Soot_(software)#Jimple
https://www.sable.mcgill.ca/soot/tutorial/pldi03/tutorial.pdf
https://www.sable.mcgill.ca/soot/tutorial/pldi03/tutorial.pdf

Bibliography

[10] Soot. https://github.com/soot-oss/soot.
(Accessed: 14.03.2021).

[11] Soot guide. https://www.brics.dk/SootGuide/sootsurvivorsguide.
pdf.
(Accessed: 14.03.2021).

[12] Soot Mailing List. https://groups.google.com/g/soot-list.
(Accessed: 14.03.2021).

[13] Soot Version. https://soot-build.cs.uni-paderborn.de/public/

origin/master/soot/soot-master/4.1.0/.
(Accessed: 14.03.2021).

[14] Soot Wiki. https://github.com/soot-oss/soot/wiki.
(Accessed: 14.03.2021).

[15] Cousot, Patrick; Cousot, Radhia (1977). Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. https://www.di.ens.fr/~cousot/

publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.

pdf.
(Accessed: 27.03.2021).

[16] Cousot, Patrick; Cousot, Radhia (1992). Comparing the Galois Connec-
tion and Widening / Narrowing Approaches to Abstract Interpretation.
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/

CousotCousot-PLILP-92-LNCS-n631-p269--295-1992.pdf.
(Accessed: 27.03.2021).

[17] Jonathan Aldrich. Lecture Notes: Interprocedural Analysis.
https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/

resources/interprocedural.pdf.
(Accessed: 16.03.2021).

[18] Kam, John B.; Ullman, Jeffrey D. (1977). Monotone Data
Flow Analysis Frameworks. https://homes.luddy.indiana.

edu/achauhan/Teaching/B629/2006-Fall/CourseMaterial/

1977-acta-kam-monotone.pdf.
(Accessed: 31.03.2021).

[19] Ondr̆ej Lhoták. Spark : a flexible points-to analysis framework for Java.
Master’s thesis, McGill University, 2003.

42

https://github.com/soot-oss/soot
https://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
https://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
https://groups.google.com/g/soot-list
https://soot-build.cs.uni-paderborn.de/public/origin/master/soot/soot-master/4.1.0/
https://soot-build.cs.uni-paderborn.de/public/origin/master/soot/soot-master/4.1.0/
https://github.com/soot-oss/soot/wiki
https://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
https://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
https://www.di.ens.fr/~cousot/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-PLILP-92-LNCS-n631-p269--295-1992.pdf
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-PLILP-92-LNCS-n631-p269--295-1992.pdf
https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/interprocedural.pdf
https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/interprocedural.pdf
https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2006-Fall/CourseMaterial/1977-acta-kam-monotone.pdf
https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2006-Fall/CourseMaterial/1977-acta-kam-monotone.pdf
https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2006-Fall/CourseMaterial/1977-acta-kam-monotone.pdf

	Contents
	Introduction
	Background
	Java collections framework
	Soot framework
	Abstract Interpretation

	Subset of Java

	Definitions of Determinism
	Notation
	Definitions
	Implications of the Definitions

	Abstract Interpretation
	Abstract Domain
	Abstract State
	Abstract Transformers
	Notation
	Abstract Transformers

	Reaching a Fixed Point

	Implementation
	Monotone Framework
	Generating Nondeterminism Warnings
	Programs outside our Java Subset
	Challenges

	Evaluation
	Test Suite
	Precision
	Performance

	Conclusion and Future Work
	Conclusion
	Future Work
	Expressiveness
	Usability

	Bibliography

