
Counterexamples for a Rust Verifier

Bachelor’s Thesis Description

Hegglin Cedric
Supervised by Dr. Christoph Matheja, Aurel B́ılý

under Prof. Dr. Peter Müller

Version of October 23, 2020

1 Introduction

Prusti [1] is a verifier for the Rust programming language. It allows users
to specify functional properties within Rust programs and can then prove
whether these properties and all assertions hold. Internally, Prusti trans-
lates Rust programs to the Viper [2] intermediate language and uses the
Silicon backend to do symbolic execution and check whether certain safety
properties, assertions, and pre-/postconditions hold. While Silicon has the
functionality to produce counterexamples when verification fails, Prusti does
not yet process this information. The goal of this thesis is to enable the gen-
eration of counterexamples in Prusti and present them in a meaningful way
to Rust developers.

Counterexamples in the context of formal verification tools are values
for the program variables at various program points that explain how an
error state can be reached. They are highly useful for debugging since they
may allow a user to reproduce violations of specified properties. However,
finding them is non-trivial and the limitations of verification also affect the
generation of counterexamples. In particular, many tools may generate spu-
rious counterexamples when they fail to prove a property that is not actually
violated.

While some verification tools, such as Nagini [3] or Dafny [4] already
support the generation of counterexamples, Prusti does not yet implement
this functionality. To put this in context, consider, for example, a function
sum(x) that computes the sum of all integers from one to x. This function
also has a closed-form solution for positive arguments x(x+1)

2 . We try to
prove that sum(x) computes this solution with the mentioned verification
tools, but we intentionally forget the precondition that x has to be non-
negative, hoping to get a hint about this from our verification tools.

When running Prusti on a Rust implementation of this example (see
Listing 1), it simply tells us that verification fails, which pre-/postcondition

1

use prusti_contracts::*;

#[ensures(result == x*(x+1)/2)]

fn sum(x:i32) -> i32 {

if x <= 0 {

x

} else {

x + sum(x-1)

}

}

Listing 1: example program in Rust with Prusti annotations

or assertion might not hold and that the error results from the first if branch
(Listing 2). In the following, we will compare this to the two previously men-
tioned tools, Dafny and Nagini, and look at their outputs for an analogous
implementation of sum(x) in their supported programming language.

Verification of 2 items ...

error: [Prusti: verification error] postcondition might not

hold.

--> pure.rs:3:11

|

3 | #[ensures(result == x*(x+1)/2)]

| ^^^^^^^^^^^^^^^^^^^

|

note: the error originates here

--> pure.rs:4:1

|

4 | / fn sum(x:i32) -> i32 {

5 | | if x <= 0 {

6 | | x

7 | | } else {

8 | | x + sum(x-1)

9 | | }

10 | | }

| |_^

Verification failed

error: aborting due to previous error; 1 warning emitted

Listing 2: Prusti’s output when run on example

2

Figure 1: Dafny’s counterexample within written code

Verification failed

Errors:

Postcondition of sum might not hold. Assertion (Result () == ((x

* (x + 1)) // 2)) might not hold. (sum2.py@8 .12).

Store:

x -> -1

Heap: Empty.

Listing 3: Nagini’s output when run on example

In Dafny with its Visual Studio Code extension, counterexamples are
displayed within the written code showing the value of variables when en-
tering the function and when returning from it. For the given example in
Figure 1, the counterexample tells us that the property will be violated when
entering the function with x=-1 on line 3 and that the function will return
res=-1 in this case (line 5). Nagini outputs the input value that results in a
violation and the current state of the heap (Listing 3). From both examples,
it is easy to figure out that the function fails for negative inputs which was
our goal. This shows that there is room for improvement in Prusti and also
presents some options on how to present counterexamples.

2 Approach

Prusti is built on top of Viper which already implements some support for
counterexamples. The goal is to leverage this functionality by backtranslat-
ing Silicon’s generated counterexamples to the matching Rust variables for
the Viper programs generated by Prusti.

Since the translation from Rust to the Viper intermediate language done
by Prusti creates much more complex Viper programs, the counterexamples
are also harder to understand than the previous ones from other tools. The
counterexample that is generated by Silicon when letting Prusti translate
the program in Listing 1 to Viper (see Listing 4) has a lot more variables, but
the essential information that the program fails for negative inputs is still
conserved in variable 3 with value -1. For this simple example, our algo-

3

Silicon found 1 error in 4.04s:

[0] Assert might fail. Assertion (unfolding acc(i32(_0),

write) in _0.val_int) == old[pre]((unfolding acc(i32(_1),

write) in _1.val_int)) * (old[pre]((unfolding acc(i32(_1),

write) in _1.val_int)) + 1) / 2 might not hold. (pure.rs.

vpr@354 .3)

__t9 -> false

__t10 -> false

_1 -> $Ref!val!0
_4 -> 0

_5 -> $Ref!val!3
_6 -> $Ref!val!3
_7 -> 0

_8 -> $Ref!val!3
_9 -> $Ref!val!3
_3 -> (- 1)

_2 -> $Ref!val!2
__t8 -> true

_0 -> $Ref!val!3

Listing 4: Silicon’s output when ran on Prusti-generated code from previous
example

rithm should be able to map the variable 3 from the Viper program back to
x in our original Rust program. Extracting this information automatically,
even for more complex programs, is the main goal of this project.

Another important point is user-friendliness. Compared to other verifica-
tion tools, Prusti tends to require fewer user annotations as, thanks to Rust’s
strong type system, they can often be inferred automatically. Integrating
counterexamples into Prusti should comply with this design. In particular,
the counterexamples should be understandable by Rust programmers with-
out knowledge of Viper or a strong background in verification. Therefore
part of the effort will go into making the counterexamples easily readable
and making them available via the existing Visual Studio Code Extension
of Prusti.

2.1 Core Goals

• Identify examples where generating counterexamples in Rust through
backtranslation seems feasible. These examples will also serve as
benchmarks for evaluating the implementation.

• Discuss how the desired backtranslated counterexamples should look
like and design how they should be presented to the user.

• Design an algorithm that, given a Rust program that fails verification
and produces a counterexample in the backend, can process this coun-
terexample and output what the corresponding program variables in

4

Rust are. This algorithm should support programs processing the fol-
lowing types: primitive types (booleans, integers, chars), tuples, finite
non-recursive enumerations (including structs), and references.

• Implement the designed algorithm for counterexample generation in
Prusti.

• Evaluate the quality of the implementation based on the previously
collected set of examples.

• Extend Prusti-Assistant, the Visual Studio Code Extension, to also
display counterexamples in the previously discussed format to the user
without having to use the command-line.

2.2 Extension Goals

• Extend the designed algorithm and implementation to support a larger
set of types, such as boxes and recursive enumerations.

• When verification fails and Prusti outputs a counterexample, automat-
ically create a unit test to simplify reproducing and understanding the
violation or recognize spurious counterexamples.

• When Prusti finds a counterexample for a function, extend the precon-
dition of this function to a conjunction of the existing precondition and
“the negation of the counterexample” and retry verification. By doing
this and possibly repeating it a few times one might be able to distin-
guish missed corner cases in the precondition from more meaningful
violations.

3 Working Schedule

Analyze Prusti and Viper, find examples, and design
algorithm.

4 Weeks

Extend Prusti with the described algorithm. 5 Weeks

Extend Visual Studio Code Extension. 1-2 Weeks

Write thesis and prepare presentation. 6 Weeks

References

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging rust
types for modular specification and verification. Proc. ACM Program.
Lang., 3(OOPSLA):147:1–147:30, 2019.

5

[2] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract In-
terpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-
Verlag, 2016.

[3] M. Eilers and P. Müller. Nagini: A static verifier for python. In CAV
(1), volume 10981 of Lecture Notes in Computer Science, pages 596–603.
Springer, 2018.

[4] K. Rustan M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In LPAR (Dakar), volume 6355 of Lecture Notes in
Computer Science, pages 348–370. Springer, 2010.

6

