
Counterexamples for a Rust Verifier

Bachelor Thesis

Cedric Hegglin

May 5, 2021

Advisors: Prof. Dr. Peter Müller, Dr. Christoph Matheja, Aurel B́ılý

Department of Computer Science, ETH Zürich

Abstract

The Rust programming language is a more secure alternative to tradi-
tional systems programming languages like C or C++. Prusti is a de-
ductive verifier for Rust aiming to make verification lightweight and ac-
cessible. It allows programmers to annotate Rust programs with specifi-
cations and prove their functional correctness. However, in case of veri-
fication failures, the provided information is very limited, and figuring
out the reason for an error can be challenging. Counterexamples can
facilitate the debugging of a program and its specification by providing
concrete values that cause an error. The main contribution of this thesis
is an extension of Prusti, that generates meaningful counterexamples
if verification fails and presents them similar to Rust compiler errors.
The counterexamples are obtained by leveraging existing features of
the Viper verification infrastructure underlying Prusti. Specifically, we
translate the counterexamples generated by Viper’s back-end Silicon.
As part of this project, we also contributed an improved counterexam-
ple representation to Silicon.

i

Acknowledgements

Throughout the process of this project, I have received a great deal
of support and assistance. I would first like to thank my supervisors,
Dr. Christoph Matheja and Aurel Bı́lý, for their outstanding guidance.
Not only during our weekly meetings but also in our numerous con-
versations on Zulip, they would always give me valuable insights. I
would also like to thank Marco Eilers for sharing his knowledge of Sil-
icon’s counterexamples and helping me on several occasions, and Dr.
Malte Schwerhoff for his valuable reviews and suggestions. Finally, I
want to thank Prof. Dr. Peter Müller and the Programming Methodol-
ogy Group for giving me the opportunity to work on these interesting
projects and contribute something meaningful.

ii

Contents

1 Introduction 1

2 Background 5
2.1 Counterexamples . 5
2.2 Verification Pipeline . 8

3 Approach 13

4 Implementation 17
4.1 Improving Counterexamples in Silicon 17

4.1.1 Native Models . 17
4.1.2 ExtractedModel . 19
4.1.3 Evaluating Terms . 20
4.1.4 Heap Extraction . 22
4.1.5 Final Mapping . 23

4.2 Prusti Counterexamples . 25
4.2.1 Identifying the failing function 25
4.2.2 Variables . 25
4.2.3 Backtranslation . 26
4.2.4 Choosing Labels . 31
4.2.5 Presentation . 34

5 Evaluation 37
5.1 Qualitative Evaluation of Counterexamples 37
5.2 Timing Analysis . 45

6 Conclusion 47
6.1 Future Work . 48

Bibliography 49

iii

Chapter 1

Introduction

Software is all around us and, as our dependency on it is constantly growing,
ensuring its correctness is becoming ever more important. Unfortunately,
especially in systems programming writing correct programs is notoriously
difficult. The Rust programming language [1] is an alternative to languages
like C and C++ that prevents programmers from introducing some of the
most common errors such as data races by enforcing a strict typing discipline
and ownership model.

Prusti [3] is a deductive verifier for the Rust programming language, extend-
ing Rust’s existing safety properties to functional correctness. It leverages
Rust’s type system to allow users to annotate programs with specifications
that are mostly using Rust syntax while hiding the underlying complexity.
When verifying a Rust program using Prusti it tries to prove that each func-
tion can never reach an error state and that it always satisfies its specifica-
tions. An example of an annotated function with a post-condition is shown
in Listing 1.1.

Listing 1.1: Example of a Rust program with Prusti annotations

#[ensures(result == n*(n+1)/2)]

fn sum(n: i32) -> i32 {

if n <= 0 {

0

} else {

sum(n-1) + n

}

}

1

1. Introduction

For positive n this function computes ∑n
i=1 i, which is equal to n∗(n+1)

2 , but
for negative inputs it simply returns zero. Running Prusti1 on this function
will fail verification with the following message:

error: [Prusti: verification error] postcondition might not hold.

--> sum.rs:5:11

|

5 | #[ensures(result == n*(n+1)/2)]

| ^^^^^^^^^^^^^^^^^^^

The verification fails because the post-condition of this function does not
hold for a negative argument. However, if the user is unaware of the rea-
son for the failure, Prusti’s error message does not help him with figuring
out how this violation can be reached. Rather than manually figuring out
why the post-condition might not hold, it would be better if Prusti gave us
debugging hints in the form of counterexamples. A counterexample for our
previous function sum would be {n <- -1, result <- 0}, i.e. an assign-
ment of the variables leading to a violation. Given this information, figuring
out the cause of the verification error is straightforward. The given example
is rather simple and counterexamples become even more useful for more
complicated code.

The main goal of this thesis project is to add support for counterexamples in
Prusti to facilitate debugging of Rust programs and their specifications. Our
implementation of counterexamples exploits existing features of the Viper
verification infrastructure [8] underlying Prusti. Specifically, Prusti trans-
lates Rust programs to the Viper intermediate verification language and ver-
ifies them with Silicon, one of Viper’s back-ends. While Silicon already sup-
ports counterexample generation, Prusti initially did not take advantage of
this capability. The core idea for this project is to use Silicon’s counterexam-
ples in Prusti and to translate them to counterexamples for a Rust program.

However, Silicon’s counterexamples initially contained various Viper inter-
nal representations and its information was spread over various data struc-
tures. Therefore, part of the effort of this project went into making Silicon’s
representation of counterexamples more accessible and compact.

The main contributions of this project are the following:

• We improve the counterexample support of Silicon for both direct
users and front-ends by adding a simplified representation.

• We extended Prusti to make use of Silicon’s new representation to
generate counterexamples for Rust programs.

• We discuss several ways of presenting counterexamples.
1as of commit 9546a21

2

• We implement one way of presenting Rust counterexamples for Prusti.

• We discuss the current limitations of our implementation and their
source and explore some approaches on how to resolve them.

In the following chapter, we provide some information on Prusti, Silicon,
and counterexamples in general. Chapter 3 presents the high level idea
of our approach. Chapter 4 gives details on the implementation of both
the improved Silicon counterexamples and Prusti’s new counterexamples.
In Chapter 5, we evaluate our Rust counterexamples and showcase their
usefulness as well as their limitations. Finally, Chapter 6 summarizes our
findings and delves into some ideas for improvements and continuations of
our project in the future.

For the remainder of this thesis, the reader is assumed to have some basic
understanding of the Viper verification language (references, permissions
and predicates) [15] and the Rust programming language.

3

Chapter 2

Background

In this chapter, we give some necessary backgrounds on counterexamples
and the relevant parts of Prusti and Silicon. In particular, we look at two
existing implementations of counterexamples, Prusti’s encoding from Rust
to Viper and discuss Silicon’s1 generated counterexamples.

2.1 Counterexamples

When verifying a function, it can be challenging to determine the source of
a verification error. If we run Prusti [3] in its state before our project2 on the
function given in Listing 2.1, it only reports that its post-condition might not
hold as shown in Listing 2.2. The function computes the maximum of two
values and we try to prove that its result has to be larger than one of the
two values. Prusti fails to verify this function because it violates the post-
condition if the two values are equal. While it is easy to figure out why the
verification fails in this case, finding the source of an error becomes more
involved for larger, realistic programs.

Listing 2.1: Example Rust function with Prusti annotations

#[ensures(result > x || result > y)]

fn max(x: i32, y: i32) -> i32 {

if x > y {

x

} else {

y

}

}

1as of commit f930cf1
2as of commit 9546a21, i.e. before the implementation of counterexamples

5

2. Background

Listing 2.2: Output generated by Prusti in its initial state

error: [Prusti: verification error] postcondition might not hold.

--> max.rs:4:11

|

4 | #[ensures(result > x || result > y)]

| ^^^^^^^^^^^^^^^^^^^^^^^^

|

...

Verification failed

error: aborting due to previous error; 1 warning emitted

Ideally, Prusti should not only tell us that verification failed but justify the
failure with a counterexample. As already mentioned in Chapter 1, in the
context of SMT-based verifiers, counterexamples usually provide a model
containing the values of variables at various program points. We speak of
a valid counterexample if it does not violate any pre-condition, matches the
values of an actual execution of the program and leads to some error state.
If verification fails to prove the correctness of a certain program, this can
give us valuable information why it is failing. For the previous example
{x:2, y:2, result:2} is a valid counterexample because there are no pre-
conditions, executing the function with these arguments will always lead to
the given result and the result does violate the post-condition. {x:1, y:2,

result:2} is an invalid counterexample because even though it represents
a correct execution of the function it does not violate the post-condition.

To give an idea of different ways to present counterexamples we look at two
verifiers that already implement counterexamples. One of those verifiers
is Nagini [6], another Viper frontend but for the Python programming lan-
guage. If we run Nagini on the analogous Python function of our previously
considered example, we get the result presented in Listing 2.3. It provides
the values of the arguments when entering the function and the values of all

Listing 2.3: Counterexample given by Nagini

Old store:

x -> False,

y -> 0

Old heap: Empty.

Current store:

x -> False,

y -> 0,

Result() -> 0

Current heap: Empty.

6

2.1. Counterexamples

local variables when the function returns. The value False for x might be
confusing, but it stems from the fact that booleans are a subtype of integers
in Python and represent zero. Therefore this is a valid counterexample.

Another widely used verifier is Dafny [7]. When using Dafny with its Visual
Studio Code (VSCode) extension, it displays the values of the counterex-
ample directly within the code (in blue). It shows the values of the local
variables at the various points during execution and therefore also displays
which paths are taken. Its result for the same function as before is shown
in Figure 2.1. Additionally, even though it is not displayed in the given ex-
ample, Dafny also displays the values of variables at each point where their
values change and even displays the return values of function calls within
the method. This can be crucial in some cases, for example, if there is a
call to a nondeterministic function like a random number generator and the
verification error depends on its return value. It can potentially be very hard
to reproduce or understand the error without this information.

Figure 2.1: Method annotated with Dafny’s counterexample

On a more general note on counterexamples in the context of symbolic exe-
cution, we should know they can be spurious. Spurious counterexamples can
occur due to the abstractions performed during symbolic execution since it
is usually sound but not complete. They produce a variable assignment
proposing that the function reached some error state, but this state is not
reachable for a concrete execution of the function. An example where we
would expect this behavior is shown in Listing 2.4, where the function
use inc will always satisfy its post-condition. However, because of Prusti’s
modular verification and the weak specification for the function incr, the
verifier over-approximates the set of reachable states and fails verification.
Therefore we expect a spurious counterexample value for the function’s re-
sult, in this case meaning a value not equal to 20 and greater than 15.

7

2. Background

Listing 2.4: Example for expected spurious behavior

#[ensures(result > x + 5)]

fn incr(x: i32) -> i32 {

x + 10

}

#[ensures(result == 20)]

fn use_inc() -> i32 {

let x = 10;

incr(x)

}

2.2 Verification Pipeline

To be able to understand the approach and implementation of this project, a
basic understanding of Prusti and Silicon in their state before our contribu-
tion is necessary. In this section, we will cover the relevant parts of Prusti’s
verification process and Silicon’s available but unused counterexamples by
going through various parts of the verification process for our previous ex-
ample from Listing 2.1.

It is important to know that Prusti [3] is an extension of the Rust compiler
and has access to its internals. Given a Rust program, Prusti invokes the
Rust compiler on this program and mostly works with the mid-level inter-
mediate representation (MIR) of the program. The MIR encoding contains
an explicit control flow graph with a label for each basic block. In this repre-
sentation the result of a function is always stored in the variable 0 and the
arguments are the subsequent variables (1 and 2 in our example). Prusti
then proceeds to translate the generated MIR encoding to a Viper program.
This translation is quite complex but in the context of this project, we are
mostly focusing on the encoding of various types and the generated Viper
labels. Chapter 4 will delve more into this translation, but the resulting ar-
guments of the generated program for our considered example will have the
following structure:

_1 <- Ref {

val_int: Int

}

_2 <- Ref {

val_int: Int

}

8

2.2. Verification Pipeline

Additionally, we need to know that Prusti generates various labels in the
translated Viper program, according to the control flow graph of the gener-
ated MIR encoding. After the translation, Prusti runs Silicon to verify the
generated Viper program and uses its result. If the verification fails, Silicon’s
errors are mapped to their origin in the Rust program. In this case, Silicon is
able to produce a counterexample but Prusti did not take advantage of that
capability. Since this project heavily relies on the counterexamples provided
by Silicon, we need to understand them in their state before our contribu-
tion. Their implementation is the result of a previous thesis called ”SMT
Models for Verification Debugging” [10] and in the following, we will have
a first look at what information they provide.

In the initial state of Silicon, it generates a so-called native model and a
state for each method that fails verification. The native model is by the SMT
solver. It is a map of identifiers to the model’s entries which can be values
of variables at certain points in the program or results of called functions
among other things. The state contains various data structures of which the
following are relevant for a counterexample:

• the store, a map from the names of local variables to their value or an-
other identifier pointing to some location in the other data structures;

• the main heap, containing so-called chunks of predicates and fields of
references representing their values when the method fails verification;
and

• the old heaps, a map from labels to heaps, where each heap has the
same structure as the main heap, but it represents all the values of the
method’s variables when crossing the corresponding label. It always
contains a heap at the label ”old”, representing the values when en-
tering the method, and additional heaps if the execution runs through
explicitly defined labels, e.g. the ones generated for basic blocks by
Prusti.

To get an idea of how we can use these counterexamples but also to empha-
size how cumbersome it was to use them in their initial state, we will look
at some concrete examples. First, we consider a heap-independent Viper
method (Listing 2.5) that tries to prove the same thing as our previous exam-
ple. A valid counterexample would give us three equal values for both of the
arguments and the result. If we look at the relevant parts of the generated
counterexample (Listing 2.6) it is fairly easy to extract this information by
mapping the provided identifiers from the store to the given model entries,
giving us a value of 906 for all the variables.

9

2. Background

Listing 2.5: Heap independent Viper example

method max(x: Int, y: Int) returns (n:Int)

ensures(n > x || n > y)

{

if (x > y) {

n := x

} else {

n := y

}

}

Listing 2.6: Relevant parts of counterexample for Listing 2.5

Store {

x -> x@3@04,

y -> y@4@04,

n -> y@4@04,

}

Model {

x@3@04 -> 906,

y@4@04 -> 906,

}

Unfortunately, extracting this information becomes a lot more complicated
once we start dealing with values involving the heap. To demonstrate the
problem we will have a look at a simplified version of the method that is gen-
erated by Prusti for our initial example (Listing 2.7). We do not use Prusti’s
generated Viper code because it is hard to read and the produced files are
a lot larger. The fields of the arguments are now located on the heap and
hence, the resulting counterexample suddenly involves a lot of Viper inter-
nal structures. Extracting meaningful information, even with the required
knowledge, is tedious. If we wanted to get the value of 1, we would first
have to get the identifier 1@3@04 from the store (line 2 in Listing 2.8). On
the heap, we can then find the location of the field for 1.val int on line
8, given by the SortWrapper construct. We do not have to understand this
term completely yet, but it points us to the matching field of the model (line
12) where we can get a value of 323 for this field. This is still a fairly simple
example, but the point to be made here is that the current interface for coun-
terexamples in Silicon is hard to use for both direct users and front-ends of
Silicon.

10

2.2. Verification Pipeline

Listing 2.7: Viper program similar to the one generated by Prusti

field val_int: Int

method max(_1:Ref, _2:Ref) returns (_0:Int)

requires(acc(_1.val_int) && acc(_2.val_int))

ensures(_0 > old(_1.val_int) || _0 > old(_2.val_int))

{

if (_1.val_int > _2.val_int) {

_0 := _1.val_int

} else {

_0 := _2.val_int

}

}

Listing 2.8: relevant parts of counterexample for Listing 2.7

1 Store {

2 _1 -> _1@3@04,

3 _2 -> _2@4@04,

4 _0 -> _0@9@04,

5 },

6 Heap {

7 _2@4@04.val_int -> SortWrapper.SnapToInt(Second(t@6@04)),

8 _1@3@04.val_int -> SortWrapper.SnapToInt(First(t@6@04)),

9 },

10 Model {

11 t@6@04 -> (Snap.combine Snap.unit Snap.unit),

12 SortWrappers.SnapToInt -> {

13 323

14 },

15 _0@9@04 -> 323,

16 }

11

Chapter 3

Approach

As outlined in Chapter 1, the idea of this project is to use the counterexam-
ples generated by Silicon to generate meaningful counterexamples for Rust
programs. On a high level, this goal can be split into three parts: First,
extracting the needed information from Silicon’s counterexamples; Second,
translating this information back to their corresponding Rust components;
and finally, presenting the counterexamples to the user in an understand-

Figure 3.1: Prusti’s structure with new components (green).

13

3. Approach

able way. Figure 3.1 illustrates Prusti’s [3] structure and the components we
contribute (in green).

As we have seen in Section 2.2, the counterexamples that were initially avail-
able in Silicon are difficult to work with and if we are interested in the
values of fields of references, there is a lot of processing required. Since
Prusti translates almost every Rust type to a reference in Viper, we added a
simpler representation of counterexamples to Silicon that contains an entry
for each variable. Such an entry recursively contains other entries for its
fields if it is a reference. To obtain this new representation it evaluates all
Silicon internal values found on the heap and within the model that we have
seen previously and maps the given values of the fields to the correspond-
ing references. This is also done with the heaps at all the old labels that are
available, giving us multiple values for variables that are mutated during
execution. While all of this could be implemented within Prusti, we decided
to do it on the Silicon level and design it in a way that makes it front-end
independent. This has the advantage that it might be used in future imple-
mentations of counterexamples for other front-ends but can also be useful
to Viper users in general.

To give an idea of what our new representation achieves, we take a look at
another version of our maximum function shown in Listing 3.1, computing
the maximum of two values with the slight difference that the permissions
to the fields are inhaled in the method’s body instead of giving them as a
precondition. Listing 3.2 shows us the new representation of the counterex-
ample that is generated for the example. Looking at the values given after
the method returns, we can see the advantage over the initial native coun-
terexamples. However, it is worth noting that at the label ”old”, where the
permission to the fields is not inhaled yet, we do not get any values for the
fields of the references.

Listing 3.1: Adjusted Viper example

field val_int: Int

method max(_1:Ref, _2:Ref) returns (_0:Int)

ensures(acc(_1.val_int) && acc(_2.val_int))

ensures(_0 > _1.val_int || _0 > _2.val_int)

{

inhale(acc(_1.val_int) && acc(_2.val_int))

if (_1.val_int > _2.val_int) {

_0 := _1.val_int

} else {

_0 := _2.val_int

}

}

14

Listing 3.2: Mapped counterexample for Listing 3.1

model at label: old

_1 <- Ref ($Ref!val!0) {

}

_2 <- Ref ($Ref!val!2) {

}

_0 <- 906

on return:

_1 <- Ref ($Ref!val!0) {

val_int(perm: 1/1) <- 906

}

_2 <- Ref ($Ref!val!2) {

val_int(perm: 1/1) <- 906

}

_0 <- 906

On the Prusti side, we use Silicon’s new representation combined with the
compiler’s information to obtain counterexamples for Rust. We first need
to find a mapping of all Rust variables of the failing function to their cor-
responding variable names in Viper. Then we try to get a counterexample
entry for each Viper variable and revert the translation of the various types
that Prusti performed according to the type of the Rust variable which we
get from the compiler. We try to translate every variable according to its
type if the necessary information is available, which needs to be done re-
cursively for composite types like tuples, structs or references. For example,
if we assume that 1 in the given counterexample is the entry for x back
in our example Listing 2.1, the compiler would tell us that x is an integer
and we would get its value from 1.val int. This sort of back-translation is
supported for integers, booleans, characters, references, tuples, structs, and
enums.

The last part of our approach is presenting the counterexamples to the user.
Before starting any implementation we studied various Rust examples that
fail verification to understand how to meaningfully present counterexam-
ples. One way of presenting counterexamples is to give the initial value of
all arguments, and all the values of the local variables including the result
and the arguments once the function fails. In almost all considered cases
this makes determining the reason for the verification error straightforward.
That is why, for any failing function, Prusti now computes the available val-
ues at those two points. They are presented to the user as a compiler note
for each variable.

15

Chapter 4

Implementation

In this chapter, we will delve into the details of the implementation of our
project. It will be split into two parts, first explaining the changes we applied
to Silicon to obtain a simpler, more compact representation of counterexam-
ples and second explaining how this new representation can be used in
Prusti to generate counterexamples for Rust programs.

4.1 Improving Counterexamples in Silicon

In this section, we go into more detail on the implementation of the new
mapped Silicon counterexamples. Some parts of the implementation are
based on Nagini’s [6] implementation, which is the first Viper front-end
that implemented counterexamples. With the goal of making the available
information more usable, we implemented a new class called MappedCoun-

terexample and a class Converter that is responsible for translating the
existing information to the new representation. The new counterexamples
are generated if the user executes Silicon with the flag ”--counterexample
mapped”.

4.1.1 Native Models

First, we need to have a deeper look at the initially available native model
[14] that we briefly discussed in Chapter 2. While the heap and store are
also crucially important to process the model correctly, all of the concrete
values of a counterexample that tell us when a method fails are found in
the model. The native model is a map of strings to instances of a class
called ModelEntry. The structure of this class and its sub-classes is shown
in Figure 4.1.

Instances of the class ConstantEntry represent, as the name suggests, con-
stant values given as strings. These can be the strings of integer or boolean

17

4. Implementation

Figure 4.1: UML diagram of the ModelEntry class

values, strings of identifiers (e.g. for references), or the string of internal
values such as Snap.unit. The class ApplicationEntry, which is also part
of the class ValueEntry, contains the name of a function and a sequence of
arguments. The following listing contains examples of ApplicationEntry
instances we typically encounter in generated models:

$t@2@04 -> ($Snap.combine $Snap.unit $Snap.unit)

x@1@04 -> (- 563)

In the printed output of counterexamples, shown in the above listing, in-
stances of ApplicationEntry are always displayed as S-expressions, mean-
ing that they are put into parentheses containing their function name fol-
lowed by the arguments. Each arguments is either a ConstantEntry or an-
other ApplicationEntry, allowing for a nested structure.

Instances of the class MapEntry represent the result of function calls and
define a mapping from a sequence of ValueEntrys to a single ValueEntry.
They store results of function calls during the execution and help to recover
those results for given values of the arguments. Those entries are not only
generated for functions that are explicitly defined in the program we are
verifying, but also for Silicon internal functions like sort wrappers. To get a
result for a given sequence of arguments we try to find the arguments in the
map options (Figure 4.1) and use the ValueEntry it maps to if we find it.
Otherwise, we take the default value, which is shown as the else case in the
printed output. In the printed version of the model MapEntry instances are
always surrounded by curly brackets as we can see in the following listing:

SortWrappers.SnapToInt -> {

(Snap.combine Snap.unit Snap.unit) -> 21

else -> 42

}

18

4.1. Improving Counterexamples in Silicon

4.1.2 ExtractedModel

Before looking into the translation and processing of the heap and state
using the native model, we need to know what our desired result will look
like. The new counterexample will consist of several models containing
the values of local variables at each label of a method. Each model is a
map from identifiers of variables to a new class of entries. The new class is
called ExtractedModelEntry and contains sub-classes for the various values
we are interested in for a meaningful counterexample. Listing 4.1 shows
the various types of entries our new model will contain. The first three
classes represent values of Viper’s basic types. Then there are three classes
to represent references. In Silicon, every instance of a reference has a unique
identifier of the form Ref!Val!0 which is stored in the name field of these
entries. The class RefEntry also contains all of its fields as a mapping from
the field name to another entry and the permission to that field. The class

Listing 4.1: Structure of ExtractedModelEntry (Scala)

sealed trait ExtractedModelEntry

//Literals

case class LitIntEntry(value: BigInt)

case class LitBoolEntry(value: Boolean)

case class LitPermEntry(value: Double)

//References

case class RefEntry(

name: String,

fields: Map[String, (ExtractedModelEntry, Permission)]],

)

case class NullRefEntry(name: String)

case class RecursiveRefEntry(name: String)

//Sequences

case class SeqEntry(

name: String,

values: Vector[ExtractedModelEntry]

}

//Debugging and intermediate results

case class VarEntry(value: String, sort: Sort)

case class OtherEntry(value: String, problem: String)

case class UnprocessedModelEntry(entry: ValueEntry)

19

4. Implementation

RecursiveRefEntry was added to avoid infinite recursion for cyclic refer-
ences. We also added support for sequences while other composite types
like sets and multi-sets remain as future work. Finally, there are a few types
of entries that either store some intermediate result or help reporting the rea-
son why a value of an entry could not be extracted. For example, instances
of the class VarEntry store identifiers of sequences and references that will
be replaced with their corresponding entries during further processing.

4.1.3 Evaluating Terms

Both on the heap and in the store, we will encounter instances of Silicon’s
Term class [14]. To get a meaningful counterexample we need to be able to
evaluate those terms for a given native model. We implemented a function
evaluateTerm which takes a native model and a term as arguments and
returns an ExtractedModelEntry. Its implementation is based on Nagini [6]
[5], with the difference that Nagini’s version operates on an older version
of the native model and that its method only returns strings. The function
supports a subset of Silicon’s terms and in the following, we are going to
explain how the most frequently occurring terms are evaluated.

Variables

Variable terms are of the form Var(name, sort) where the sort defines their
type. To evaluate them, we always try to find an entry in the native model
mapped to their name. If we do not find one we return an OtherEntry

reporting that it cannot be found. Otherwise, what we do to evaluate the
found entry depends on the sort of the variable; there are three cases:

• If the sort is Int, Bool or Perm, we try to get an actual value from
the native entry and return a literal entry. The found entry either
has to be a ConstantEntry or an ApplicationEntry of the function
”-” containing another constant, meaning that the contained value has
to be negated. The ConstantEntry can be parsed to a value of the
required type. The function, if there is one, has to be applied to get the
final value. We return one of the three literal entries depending on the
sort. Note that the sort Perm is not only used for fractional permissions
but also for the type Rational in Viper. The following listing contains
three examples of native entries for each of the discussed sorts:

x@0@04 -> 1.0,

y@1@04 -> False,

z@2@04 -> (- 7)

• If the sort is Ref or Sequence, then the found entry needs to be a
ConstantEntry containing the string of an identifier. The evaluation

20

4.1. Improving Counterexamples in Silicon

returns a VarEntry containing the found identifier and its sort. We are
interested in the values of the sequence or the fields of the reference,
but they have to be resolved at a later stage and the VarEntry serves
as a placeholder. The following listing contains native model entries
generated for a sequence and a reference:

x@1@04 -> Seq<Int>!val!1,

y@4@04 -> $Ref!val!2

• If the sort is Snap, we return an UnprocessedModelEntry directly con-
taining the found native entry. Why this is needed will become clear
when we evaluate the next term.

First/Second

The terms First and Second are part of Silicon’s modelling of the heap.
They can only be applied to ApplicationEntry instances of the form
(Snap.combine x y) where First returns x and Second returns y. They
contain another term that, when evaluated recursively, should return an
UnprocessedModelEntry containing the entry to which we can apply them.
To give an example, we evaluate Second(t@4@04) with the following model
entry:

t@4@04 -> (Snap.combine Snap.unit (Snap.combine Snap.unit Snap.unit))

We first recursively evaluate the variable t@4@04, returning an Unprocessed-

ModelEntry containing the entry shown in the above listing. We then apply
the function second to the contained entry, giving us the ApplicationEntry

(Snap.combine Snap.unit Snap.unit) which we return in another Unpro-

cessedModelEntry.

Sort Wrappers

The last terms we are covering are the sort wrappers. They contain two sorts
and another term. The two sorts are needed to construct the name of the
MapEntry it refers to in the model, e.g. SnapToRef. To evaluate a term, for
example, SortWrapper.SnapToRef(First(Second(t@4@04))), we first eval-
uate the contained term recursively. It should return another Unprocessed-
ModelEntry containing an ApplicationEntry, for example (Snap.combine

Snap.unit Snap.unit). In the native model we should find a MapEntry of
the following form:

SortWrapper.SnapToRef -> {

(Snap.combine Snap.unit Snap.unit) -> Ref!val!4

else -> Ref!val!3

}

21

4. Implementation

The returned value of our recursive evaluation maps to Ref!val!4, and
therefore we return this identifier in a VarEntry. Depending on the sort
we expect, the result could also be one of the literal entries.

4.1.4 Heap Extraction

With the new function evaluateTerm, we can now start processing the heaps
at the various labels. A heap in Silicon is a list of chunks. There are multiple
types of chunks in Silicon but we only handle so-called basic chunks which
are either predicate or field chunks. This is another design decision we repro-
duced from Nagini [6] and they seem to contain all the relevant information
for the supported features. A field chunk consists of an argument term, a
field name, and a snap term. It tells us that the value of arg.fieldname is
given by the snap term. For example, if we run Silicon on the method in
Listing 4.3, it generates the main heap and the heap at the label ”old”. Since
no values change during the execution of this method, we only need to look
at one of the heaps, which is shown in the following:

SortWrapper.SnapToRef(First(t@2@04).field1 ->

SortWrapper.SnapToInt(Second(Second(t@2@04)),

x@1@04.next -> SortWrapper.SnapToRef(First($t@2@04)),

SortWrapper.SnapToRef(First(t@2@04).field2 ->

SortWrapper.SnapToInt(First(Second(t@2@04)),

The goal of the extraction is to generate an expression of the form identi-

fier.fieldname = entry for each field chunk. We can get that information
by using our previously discussed function, evaluateTerm, on both the ar-
gument and the snap term. The argument has to evaluate to a VarEntry and
we only keep its name. For the above example the result for the extraction,
given the native model in Listing 4.4, is the following:

Listing 4.2: Extracted heap

Ref!val!2.field1 <- 1,

Ref!val!0.next <- Ref!val!2,

Ref!val!2.field2 <- 0

All the extracted information is stored in a new ExtractedHeap class and
will be used for the final mapping as explained in the next section. While
predicate chunks might also be useful for some applications, we currently
are not using them for our counterexamples in Prusti. They are also pro-
cessed and part of the extracted heap but for the final mapping only field
chunks are relevant, which is why we are not covering them in more detail.

22

4.1. Improving Counterexamples in Silicon

Listing 4.3: Example Viper program with nested references

field field1: Int

field field2: Int

field next: Ref

method simple(x: Ref)

requires acc(x.next)

requires acc(x.next.field2) && acc(x.next.field1)

{

assert(x.next.field2 == x.next.field1)

}

Listing 4.4: Native counterexample for Listing 4.3

x@1@04 -> Ref!val!0,

t@1@04 -> (Snap.combine

Snap.unit

(Snap.combine

Snap.unit

(Snap.combine Snap.unit Snap.unit)

)

),

SortWrappers.SnapToInt -> {

(Snap.combine Snap.unit Snap.unit) -> 1

else -> 0

},

SortWrappers.SnapToRef -> {

Ref!val!2

},

4.1.5 Final Mapping

After processing all the heaps we can now try to get the actual values of
a counterexample. We evaluate the store at each of the given heaps to get
the values of the method at those labels. Since no values change during the
execution of the previous example, we will again look at one heap only. Now
our goal is to get a counterexample value for each variable that is located in
the store. The store is a mapping of variables to terms and for our previous
example in Listing 4.3 it only contains the value x -> x@1@04.

If we want to get an entry for the variable x, we start by using our eval-

uateTerm function on x@1@04 with the model given in Listing 4.4. In some
cases the result might be one of the literal entries, meaning a value for the
variable. However, since it is a reference we get a VarEntry containing the
identifier Ref!val!0. We want to turn it into a RefEntry containing all the

23

4. Implementation

fields, so we start going through the previously extracted heap in Listing 4.2
and look for fields of the current identifier. We find one extracted chunk for
the identifier Ref!val!0, storing the value of the field next given by another
VarEntry containing Ref!val!2. Because it is another VarEntry we need to
resolve it recursively. For the reference Ref!val!2 we find two fields contain-
ing the literal integer-entries for 0 and 1 and we finally obtain the following
ExtractedModelEntry for the value of x:

x <- Ref (Ref!val!0) {

next <- Ref (Ref!val!2) {

field1 <- 1

field2 <- 0

}

}

While going through the fields of a nested reference, we keep a list of iden-
tifiers we already encountered. If we find a reference for a second time, in-
stead of mapping its fields again, we return a RecursiveRefEntry to avoid
infinite recursion if there are cyclic references. Finally, if we encounter a
VarEntry of a sequence, we also resolve it to a SequenceEntry during the
final mapping. If a counterexample involves a sequence, we will find the
following two MapEntry instances in the model:

Seq_length -> {

Seq<Int>!val!1 -> 5

else -> 0

},

Seq_index -> {

Seq<Int>!val!1 1 -> 4

Seq<Int>!val!1 2 -> 6

else -> 3

}

Given the identifier from the variable-entry, in this case Seq<Int>!val!1, we
can first get the length of the sequence from the Seq length field. Then we
can get the value at each index by evaluating the Seq index function given
the identifier and index as the arguments. We get a sequence of length 5
with the elements [3, 4, 6, 3, 3].

Recall that we always have a main heap and a list of heaps for all the labels
of the Viper program. After the mapping, our result is a main model, giving
us the values of the method when the verification error occurred, and a map

24

4.2. Prusti Counterexamples

from labels to older models. The map always contains a label ”old”, giving
us the model for the values of variables when entering the method, and
additional labels if the method contains explicitly defined labels.

4.2 Prusti Counterexamples

In this section, we will explain how Silicon’s new representation of coun-
terexamples can be used to generate counterexamples for Rust programs.
To enable counterexample generation in our extension of Prusti, one has to
set the environment variable PRUSTI COUNTEREXAMPLE to true. In that case,
Prusti passes the additional flag ”--counterexample mapped” to Silicon. If
Silicon’s verification fails for a function, we should be able to get a Silicon
counterexample for it. The produced counterexample is then copied over
into Rust to a data structure equivalent to Silicon’s mapped counterexample.
After we encounter a verification error and obtain a Silicon counterexample,
we proceed with the following simplified steps: we identify the functions
that fail verification, for each function we determine a set of Rust variables
we are interested in, for each variable we look for its corresponding entry in
the Silicon counterexample and translate it back to a Rust value, and finally,
we present the counterexample to the user. These steps will be explained in
more detail in the following sections.

4.2.1 Identifying the failing function

Let us assume we are given an annotated Rust function that Prusti failed
to verify and the counterexample option is enabled. Moreover, Silicon did
produce a counterexample in the new representation. Before we can do any
sort of processing, we need to know which functions of our Rust program
failed. Therefore we need its so-called DefId, which uniquely identifies
a function. To obtain the function’s DefId, we make use of the existing
error manager of Prusti [13]. Its purpose is to map errors in Silicon back
to the element in Rust that caused it, to report the failing statement. For
every generated Viper statement that might potentially cause a verification
error, it registers an error location. They are registered during the encoding
of the program, and we simply added the DefId of the currently encoded
function to each of the registered errors. Whenever verification fails and
Prusti identifies the reason for the failure, we are additionally given the
identifier of the failing function.

4.2.2 Variables

After we find a failing function, we need to determine the variables that
our counterexample should contain. We also want to know which of those
variables are arguments of the function. Given the DefId, we can get the

25

4. Implementation

MIR-encoding of the function that fails verification. The variable names of
the generated Viper program are the ones that we find in the MIR, however,
to give a counterexample we need to know which original Rust variables
they correspond to. To find the variables of interest we use a data struc-
ture given by the compiler called VarDebugInfo, giving us a mapping from
source Rust variables to their corresponding MIR variables, for example x

-> 1, y -> 2. They are always numbered starting from 1 and we are also
given the number of arguments arg count, telling us that the first arg count

variables are the function’s arguments. Additionally, we know that the vari-
able 0 always stores the result of the function. Given the MIR identifier of
a variable, we can also get its type which means now, given a Silicon model,
we can try to get a value for this variable.

4.2.3 Backtranslation

In this section, we look at how to translate an extracted model entry back
to a value of a Rust variable. For this part of the implementation, we need
to be aware of the fact that a given model might not contain the entry for
our variable at all or that its entry might not contain all the information we
need, e.g. some fields of a reference might not be available. Our goal is
to get as much information as possible from the given entries. The result
of the translation is a new type of entries, implemented as an enum with

Listing 4.5: Definition of Prusti’s counterexample entries

pub enum Entry {

IntEntry { value: i64 },

BoolEntry { value: bool },

CharEntry { value: char },

RefEntry { el: Box<Entry> },

Struct {

name: String,

field_entries: Vec<(String, Entry)>,

},

Enum {

super_name: String,

name: Option<String>,

field_entries: Vec<(String, Entry)>,

},

Tuple { fields: Vec<Entry> },

Unit,

UnknownEntry,

}

26

4.2. Prusti Counterexamples

one variant for each of the supported types with the addition of unknown
entries, which represent missing information or unsupported types. From
now on we will always refer to Silicon’s extracted model-entries as Silicon
entries, and the ones we just introduced as Rust entries. The definition of the
Rust entries is given in Listing 4.5.

Assume we are given an identifier of a local MIR variable, its Rust type and
an extracted Silicon model, and we want to get a value for the counterex-
ample of the variable. Since the names of the MIR variables are the same
as their translated Viper variables, we search the model for an entry of our
current variable name. If we find an entry we translate the found Silicon
entry according to the given type-definition [2] of the Rust variable. Oth-
erwise, we return an UnknownEntry. In the following sections, we discuss
how the various Rust types are translated to Viper and how we can back-
translate a Silicon entry to a Rust entry given the type it encodes. More
details on the Rust-Viper encoding performed by Prusti can be found in the
main publication [3] or the developer guide [12].

Primitive Types

The encoding of integers, booleans and characters is straightforward. Any
type of integer (unsigned, signed, long, short) in Rust is usually encoded to
a reference with a field val int in Viper. However, the generated encoding
is sometimes simplified to just an integer. Depending on the Silicon entry we
find, we either directly use the contained value, or if we get a reference we
look for the field val int and get its value. If we do find the field we return
an IntEntry containing the found value and otherwise an UnknownEntry.
Two examples of given Silicon entries and the internal representation of the
translated Rust entries are given in the following:

_1 <- 21

_2 <- Ref ($Ref!val!3) {

val_int <- 43

}

Listing 4.6: Silicon

_1 <- IntEntry(21)

_2 <- IntEntry(43)

Listing 4.7: Prusti

The translation of booleans works analogously, with the sole difference that
the field is named val bool and we return a BoolEntry. For characters,
there is a difference because Viper does not have a char type. Rust characters
are translated to integers in Viper, meaning we first get an integer value from
the counterexample, as before. This value then has to be converted back to
a char and we return a CharEntry. The following listings show an example
of the translation of chars and booleans. Note that the entry for 1 looks

27

4. Implementation

exactly the same as for an integer, but because the target variable in Rust is
of type char it is translated differently:

_1 <- Ref {

val_int <- 63

}

_2 <- Ref {

val_bool <- true

}

Listing 4.8: Silicon

_1 <- CharEntry(’c’),

_2 <- BoolEntry(true),

Listing 4.9: Prusti

References

Rust references are, not very surprisingly, encoded to Viper references. They
have a field val ref containing the value they point to. The provided type-
definition also gives us the type of the value it points to. Given the Silicon
entry generated for a Rust reference, we get its field val ref and then recur-
sively translate it according to the reference’s sub-type. Then we return a
RefEntry containing the result of the recursive translation. In the following
listings, we show an example Silicon entry and the result of the translation
for the type Ref(i32):

_1 <- Ref {

val_ref <- Ref {

val_int <- 0

}

}

Listing 4.10: Silicon

_1 <- RefEntry(IntEntry(0))

Listing 4.11: Prusti

Tuples

Tuples in Rust are also translated to references in Viper and their elements
are stored in fields named tuple 0, tuple 1, etc. The type information gives
us a list of the types of all the elements. Depending on the length of this list
we try to find all the entries for those fields of the reference, and again trans-
late the entries we find recursively. If we do not find a field, the difference
to the previous types is that only the element that can not be found will be
an UnknownEntry. Translating all the fields gives us a vector of Rust entries
which we then return within a TupleEntry. In the example below, we show
a Silicon entry that is generated for a tuple of the type Tuple(i32, bool).
Note that the references pointed to by tuple 0 and tuple 1 have the same

28

4.2. Prusti Counterexamples

fields, which comes from the fact that they both point to the same reference.

_1 <- Ref {

tuple_0 <- Ref {

val_int <- 32

val_bool <- false

}

tuple_1 <- Ref {

val_int <- 32

val_bool <- false

}

}

Listing 4.12: Silicon

_1 <- TupleEntry([

IntEntry(32),

BoolEntry(false)

])

Listing 4.13: Prusti

Algebraic Data Types

Enums and structs in Rust belong to the same category called algebraic
data types (ADT). Unions are also part of the same class but they are not
supported by Prusti yet. We focus on structs first since they are just enums
with only one variant in Rust. A struct is translated to a reference with a
field for each field of the struct. The type definition provides us with the
name of the struct and all the names of the fields and their types, which lets
us find the Silicon entries for the fields and evaluate them recursively again.
Listing 4.14 shows an example of a struct definition in Rust.

Listing 4.14: Example of a struct definition

struct SomeStruct {

value: i32,

other_value: i32,

valid: bool,

}

The Silicon entry for an instance of the given struct has the structure of the
following example and translating it gives us the shown Rust entry.

29

4. Implementation

_0 <- Ref {

f$valid <- Ref {

val_bool <- true

val_int <- 43

}

f$value <- Ref {

val_int <- 42

}

f$other_value <- Ref {

val_bool <- true

val_int <- 43

}

}

Listing 4.15: Silicon

_0 <- Struct {

name: "SomeStruct"

fields: [

value: LitIntEntry(42),

other_value: LitIntEntry(43),

valid: BoolEntry(true)

]

}

Listing 4.16: Prusti

To extend this translation to enums, we will consider the following example
definition:

enum Choose {

One,

Two{x: i32, y: bool},

Three(char, bool)

}

To encode an enum, Prusti generates a reference with fields for each variant
and an additional field storing the enum’s discriminant. Each variant is
encoded like a struct. The discriminant is an integer that has a certain value
for each variant. An example of a Silicon entry that was generated for the
above enum is shown in Listing 4.17.

To translate the Silicon entry of an enum, we always try to get its discrim-
inant first because it determines the variant of the enum. For our current
example, we get the value 2 for the discriminant. Given a discriminant and
the internal representation of the enum definition, we can get the name of
the variant and the names of all its fields. In this case, the discriminant tells
us that the Silicon entry represents an instance of the variant Three. There-
fore, we have to get the entry of the field enum Three and evaluate it as if
it was a struct. For the given example we will encounter recursive refer-
ences, which means we have to look for the complete reference entry with
the same identifier to resolve some of the fields. Finally, we get the following
Rust entry:

30

4.2. Prusti Counterexamples

Listing 4.17: Examples of a Silicon entry generated for enum Choose

_1 <- Ref ($Ref!val!0) {

enum_Two <- Ref ($Ref!val!2) {

f$0 <- RecRef($Ref!val!2)

f$1 <- RecRef($Ref!val!2)

val_int <- 99

val_bool <- false

}

discriminant <- 2

enum_Three <- Ref ($Ref!val!2) {

f$0 <- RecRef($Ref!val!2)

f$1 <- RecRef($Ref!val!2)

val_int <- 99

val_bool <- false

}

}

Listing 4.18: translated Rust-entry

Enum {

super_name: "Choose",

name: "Three",

field_entries: [

0: CharEntry(’c’),

1: BoolEntry(’false’),

]

}

4.2.4 Choosing Labels

At this point, we have a set of Rust variables for which we want values in
the counterexample, their corresponding MIR and Viper variable names and
the capability to translate Silicon entries back to Rust entries. We now have
to choose the models of the Silicon counterexample from which we want to
get the values for the entries. To get the values of all variables at the end of
the program’s execution, the intuitive choice is to use the main model and
for the initial values of the arguments, the most obvious choice would be
the model at the label ”old”.

However, after implementing this part of the project, we noticed that choos-
ing the correct model is more subtle given the internal workings of Silicon.
The problem is that in Viper, to access fields of references, one requires the
permission to do so. In the programs generated by Prusti, most fields are
accessed via predicates that are unfolded when those values are accessed

31

4. Implementation

and folded again at a later point. At any label of the Viper program, if the
predicate granting permission to the fields of a reference has not been pre-
viously unfolded or is already folded again, the counterexample does not
know the field’s values. To put this into context we consider the following
Rust function that takes a struct (cf. Listing 4.14) as an argument:

pub fn foo(x: SomeStruct) {

assert!(x.value == x.other_value || x.valid)

}

As we already know, the struct x will be translated to a reference 1 with
multiple fields. We will now look at a very reduced version of the generated
Viper method, containing only the statements that are relevant for whether
or not fields of 1 are accessible, which is shown in Listing 4.19.

Listing 4.19: Predicate definition, labels and statements involving permissions of Viper program
generated by Prusti for the Rust function in Section 4.2.4

1 predicate m_SomeStruct$_beg_$_end_(self: Ref) {

2 acc(self.f$value, write) && (acc(i32(self.f$value), write)

3 && (acc(self.f$other_value, write)

4 && (acc(i32(self.f$other_value), write)

5 && (acc(self.f$valid, write)

6 && acc(bool(self.f$valid), write)))))

7 }

8
9 method m_foo() returns (_0: Ref)

10 {

11 var _1: Ref

12 label start

13 inhale acc(m_SomeStruct$_beg_$_end_(_1), write)

14
15 label pre

16 inhale true

17 unfold acc(m_SomeStruct$_beg_$_end_(_1), write)

18 unfold acc(i32(_1.f$value), write)

19
20 label l0

21 unfold acc(i32(_1.f$other_value), write)

22
23 label l1

24 unfold acc(bool(_1.f$valid), write)

25
26 label l4

27 ...

28 }

32

4.2. Prusti Counterexamples

m SomeStruct$ beg $ end is the name of the predicate that gives access
to the fields of the struct once it is unfolded. Since this unfolding (line
17) takes place after the label pre (line 15), these fields will only be in the
counterexample for the models at the labels after it. The access to the fields
of the actual integer and boolean values is unfolded later. Only at label
l4 and after will all values of the struct be available. We can see this in
the following entries of the generated Silicon counterexample at the various
labels:

Listing 4.20: Silicon entries for 1 of Listing 4.19 at the various labels

// at label old, start and pre:

_1 <- Ref ($Ref!val!0) {

}

// at label l0:

_1 <- Ref ($Ref!val!0) {

f$valid(perm: 1/1) <- Ref ($Ref!val!3) {

val_int(perm: 1/1) <- 0

}

f$other_value(perm: 1/1) <- Ref ($Ref!val!2) {

}

f$value(perm: 1/1) <- Ref ($Ref!val!3) {

val_int(perm: 1/1) <- 0

}

}

//at label l4:

_1 <- Ref ($Ref!val!0) {

f$valid(perm: 1/1) <- Ref ($Ref!val!3) {

val_bool(perm: 1/1) <- false

val_int(perm: 1/1) <- 0

}

f$other_value(perm: 1/1) <- Ref ($Ref!val!2) {

val_int(perm: 1/1) <- 1

}

f$value(perm: 1/1) <- Ref ($Ref!val!3) {

val_bool(perm: 1/1) <- false

val_int(perm: 1/1) <- 0

}

}

In a similar fashion, if we want to get a value for the result of a function we
can usually not use the main model because at this point the permissions
for the fields of the result are already folded again. Unfortunately, there is
no simple rule for where to evaluate variables such that we can be certain
that we get a complete entry. In some cases, the unfolding and folding even

33

4. Implementation

happens within the same label, such that the values can not be obtained at
any label. To solve this problem we considered multiple solutions:

• when verification fails, insert additional fold/unfold statements at spe-
cific places and rerun verification to get more information;

• use the control flow graph of the program to find the labels where the
values should be unfolded and evaluate them there; or

• change Silicon’s implementation in a way that makes these values ac-
cessible even when they are not unfolded;

We dismissed the first idea because it would clutter the translation and dou-
ble the running time. The second idea would still not always work, because
in some cases the values are not available at any label as previously men-
tioned. Even though we might get more information than we currently do,
we decided against this approach because it is more of a workaround than
an actual solution to the problem. The third idea could potentially make
all the values available at any label. Unfortunately, the changes required in
Silicon are quite involved and were not feasible in time for our project but
they might be part of another project in the future.

For now, Prusti simply evaluates its arguments at the label l0 and all vari-
ables (including the arguments) at the last label that can be found in the list
of models. Evaluating the arguments at the label l0 makes sense because
at that point mutable arguments are usually not modified yet and we can
often get some useful information already. We choose the last labeled model
instead of the main model because the main model almost never contains
the value for the result even though we might not get the true final value of
a variable in some cases. The final result, after translating the given models
as we have just described, gives us two Rust entries for each argument and
one entry for all other local variable and the result.

4.2.5 Presentation

The last section of this chapter describes how we present the counterexam-
ple to the user. Note that all the results of the back-translation we have
previously seen explicitly showed the internal representation of Rust entries
and not how they are presented to the user. Their actual output is close to
how their values would be written in Rust. For example, the Rust entry that
was the result of the translation of a struct in Listing 4.16 is presented in the
following way:

34

4.2. Prusti Counterexamples

x <- SomeStruct {

value: 0,

other_value: 1,

valid: false,

}

We will show more examples of different types during the evaluation in
Chapter 5. As mentioned in Chapter 3, the entries are presented as compiler
notes. For each variable, we print a note containing the entries and it’s
span. The compiler also automatically outputs the line of code where the
variable is defined and underlines the variable. While the initial reason to
use compiler notes was to make the output compatible with Prusti-Assistant,
it has the additional advantage that we can easily identify variables in case
of duplicate names. For example, the function in Listing 4.22 generates the
following two compiler notes for the two variables named x:

Listing 4.21: Prusti’s presentation of counterexamples

note: counterexample for "x"

x <- 7

--> counterexample-thesis-resources/cetests/ref2.rs:10:9

|

10 | x => x * 2

| ^

note: counterexample for "x"

initial: x <- ref(7)

final: x <- ref(7)

--> counterexample-thesis-resources/cetests/ref2.rs:5:8

|

5 | fn foo(x: &mut i32) -> i32{

| ^

From this output it is clear which variable each note corresponds to. If we
wanted to present the counterexample in a similar fashion to Nagini we
would have to interpret the spans of variables in case of duplicate names.
While the generated notes are currently not used by the VSCode extension
Prusti-Assistant [4], it still recognizes and displays them in a more compact
way as shown in Figure 4.2. Clicking a note makes the cursor jump directly
to the variable it refers to. In the future this should eventually allow for
a better IDE integration, where the variables would actually be underlined
in the source code and hovering over them would display the generated
counterexample.

35

4. Implementation

#[ensures(result != 14)]

fn foo(x: &i32) -> i32{

let y = *x;

match y {

x => x * 2

}

}

fn main(){}

Listing 4.22: Rust example with duplicate names

Figure 4.2: Generated list of problems in VSCode when using Prusti-Assistant with our Version
of Prusti and counterexamples enabled

36

Chapter 5

Evaluation

The evaluation of our counterexample implementation in Prusti consists of
two parts: a qualitative evaluation of the generated counterexamples and an
analysis of their influence on Prusti’s performance.

5.1 Qualitative Evaluation of Counterexamples

We tested our implementation on a handpicked collection of Rust programs
that fail verification in Prusti. Initially, our plan was to evaluate the quality
of the counterexamples using Prusti’s existing tests, namely those that fail
verification. Before starting the implementation, we annotated all of those
tests with what we would consider optimal counterexamples. However, due
to the limitations of our implementation caused by the often inaccessible
values of counterexamples (cf. Section 4.2.4), we chose examples that il-
lustrate the strengths and weaknesses of our implementation. We evaluate

Example Complete Spurious RE LOC VT Source
sum.rs 3 7 3 10 0.49 Prusti tests [13]

replace.rs 3 7 3 13 0.46
tuple.rs 7 7 3 8 0.71

account.rs 7 7 3 18 1.05
enum.rs 7 7 3 13 0.80

account-fail.rs 7 7 7 11 0.51
loop.rs 3 3 7 11 0.75

Table 5.1: The list of examples used for the evaluation and a summary of the attributes of
their generated counterexamples. We evaluated their completeness, i.e. the counterexample
contains no missing values, and whether the counterexample lets us reproduce the error (RE).
It also contains the example’s lines of code (LOC) and verification time (VT) in seconds with
counterexamples enabled.

37

5. Evaluation

the back-translation for various types, discuss the validity of the generated
counterexamples and then showcase the limitations of our implementation.
Table 5.1 summarizes the results. Let us consider each example in more
detail.

sum.rs Going back to our very first example in the introduction, shown
again in Listing 5.1, we can see the generated output of the new Prusti
version in Listing 5.2. This function is part of Prusti’s test suite and also
shows our manual annotation of an ”ideal counterexample” as we previ-
ously discussed. The generated counterexample is valid since it gives us a
negative value for n and the program returns 0 for that value, which indeed
violates the post-condition. Therefore this example does meet our initial
expectations. The generated output is comparable to other compiler errors
(e.g. invalid borrows) and thus the format is familiar to Rust programmers.
Nonetheless, a more concise error message in an IDE (e.g. as we have seen
in Figure 2.1 for Dafny) might be preferable. For the rest of the evaluation,
we will not be showing all of the generated output and reduce it to only the
information about the variables.

Listing 5.1: sum.rs (function from Prusti’s test suite with counterexample annotation)

#[ensures(result == n*(n+1)/2)]

fn sum(n: i32) -> i32 {

if n <= 0 {

0

} else {

sum(n-1) + n

}

}

/* Counterexample:

n <- -1

result <- 0

*/

Listing 5.2: Prusti’s output for sum.rs

error: [Prusti: verification error] postcondition might not hold.

--> counterexample-thesis-resources/evaluation/sum.rs:5:11

|

5 | #[ensures(result == n*(n+1)/2)]

| ^^^^^^^^^^^^^^^^^^^

note: counterexample for "n"

initial: n <- -2

final: n <- -2

--> counterexample-thesis-resources/evaluation/sum.rs:6:8

|

38

5.1. Qualitative Evaluation of Counterexamples

6 | fn sum(n: i32) -> i32 {

| ^

note: result <- 0

--> counterexample-thesis-resources/evaluation/sum.rs:6:19

|

6 | fn sum(n: i32) -> i32 {

| ^^^

Verification failed

replace.rs Next we consider an example involving references, chars and
booleans. Listing 5.3 contains a function that checks if the given reference
points to the char ’$’. If it does, depending on whether the argument
acc is true, it mutates the char to a white-space or panics. The generated
counterexample, given in Listing 5.4, provides us with the correct arguments
leading to a panic. It also illustrates how we decided to present chars. Apart
from the char itself, we also display its hexadecimal value. Additionally, we
note that the counterexample gives us a value for the result even though the
function would encounter a panic, an unrecoverable error in Rust, before
returning any result. Our implementation currently does not detect whether
the reason for the verification error is part of the function (e.g. assertion
error, panic, etc.) or its post-condition and tries to get a value for the result
in both cases, even when it should not be part of a counterexample.

Listing 5.3: replace.rs

fn replace(x: &mut char, acc: bool) {

match x {

’$’ => {

if acc {

*x = ’ ’;

} else {

panic!("no access");

}

},

_ => {}

}

}

39

5. Evaluation

Listing 5.4: Generated counterexample for replace.rs

initial:

acc <- true

x <- ref(’%’ (0x25))

final:

acc <- true

x <- ref(’%’ (0x25))

result <- ()

tuple The next function, shown in Listing 5.5, is given a tuple as an ar-
gument with the precondition that the first element of the tuple has to be
larger than zero and the contained char has to be ’c’. It returns another
tuple where the two entries of the argument are swapped and two is sub-
tracted from the integer field. We try to prove that the second field of the
result is always greater than or equal to zero.

The resulting counterexample is shown in Listing 5.6. Looking at the initial
value of the argument we can see that the first field of the tuple is available
and correct since 1 is the only value that does not violate the precondition
but leads to a violation of the postcondition. The question mark in the

Listing 5.5: tuple.rs

#[requires(x.0 > 0 && x.1 == ’c’)]

#[ensures(result.1 >= 0)]

fn foo(x: (i32, char)) -> (char, i32) {

let y = x.0 - 2;

let z = x.1;

(z, y)

}

Listing 5.6: Generated counterexample for tuple.rs

initial:

x <- (1, ?)

final:

x <- (1, ’c’ (0x63))

y <- -1

z <- ’c’ (63)

result <- (’c’ (0x63), -1)

40

5.1. Qualitative Evaluation of Counterexamples

second field represents an UnknownEntry indicating that the corresponding
Viper field has not been unfolded at label l0 where the initial values are
evaluated. However, in the set of final values of the counterexample, we
can still find its value which is also correct. The result and the intermediate
values also match an execution of the function and therefore this is also a
valid counterexample.

account.rs For structs, we consider the function in Listing 5.7. The function
transfer takes in two accounts and transfers an amount from account x to
account y. The post-condition it tries to prove does not hold and finding
a counterexample is trivial. However, this time we are handling mutable
arguments and are interested in the values for x and y before and after they
are mutated.

In the generated counterexample, given in Listing 5.8, we can see that most
values are available. The initial amount and the initial balance of y is missing.
The missing amount does not really pose a problem, since it is not mutated
and must be equal to its initial value. We can see that the balance of x got
reduced by the correct amount, but for y we could not be sure if we hadn’t
created the additional variable temp storing its value. Missing values are a
major problem of our implementation, but in many cases, we can still deduct
what the reason for a failure was if we analyze the available values.

Listing 5.7: account.rs

pub struct Account {

balance: i32,

}

#[requires(amount > 0 && x.balance > amount && y.balance >= 0)]

#[ensures(old(y.balance) > result.1.balance)]

pub fn transfer(

mut x: Account,

mut y: Account,

amount: i32

) -> (Account, Account) {

if x.balance >= amount {

let temp = y.balance;

x.balance -= amount;

y.balance += amount;

}

(x, y)

}

41

5. Evaluation

Listing 5.8: Generated counterexample for account.rs

initial:

x <- Account { balance: 2701 }

y <- Account { balance: ? }

amount <- ?

amount <- 2700

final:

final: x <- Account { balance: 1 }

y <- Account { balance: 5399 }

temp <- 2699

result <- (

Account { balance: 1 }

Account { balance: 5399 }

)

enum.rs Moving on to the last supported type, Listing 5.9 shows a function
that evaluates enums representing three binary operations. The operation
that is causing the error is BinOp::Div because it can lead to a division by
zero. The generated counterexample, shown in Listing 5.10 does give us
this value for the argument, but once again the fields are not available in the
initial entry. The counterexample also contains all the variables for each arm
of the match statement. This is unpleasant since many of those variables are
never created during an execution which makes the counterexample wrong
and less readable. Resolving this would require some analysis of the paths
taken but for any analysis of this sort, the counterexample for the arguments
would have to be complete.

Listing 5.9: enum.rs

enum BinOp {

Add(i32, i32),

Sub(i32, i32),

Div(i32, i32),

}

fn apply(op: BinOp) -> i32 {

match op {

BinOp::Add(a, b) => a + b,

BinOp::Sub(c, d) => c - d,

BinOp::Div(e, f) => e / f

}

}

42

5.1. Qualitative Evaluation of Counterexamples

Listing 5.10: Generated counterexample for Listing 5.9

initial:

op <- BinOp::Div(?, ?)

final:

op <- BinOp::Div(2, 0)

a <- 0

b <- 0

c <- 0

e <- 2

f <- 0

result <- 0

Listing 5.11: account-fail.rs

fn get_balance(acc: Account) -> i32 {

acc.balance

}

#[ensures(result)]

fn has_money(acc: Account) -> bool {

get_balance(acc) > 0

}

account-fail.rs So far, even though we have mentioned the limitations of
our approach several times, we have only shown examples where the inac-
cessible values of a counterexample were not actually relevant to trace the
verification failure back to what causes it. However, in some cases we are not
able to derive the reason for the verification failure from the counterexample
and an example function for this behavior is given in Listing 5.11. The func-
tion has money is the one failing verification. It operates on the same struct
Account that was defined in Listing 5.7. The post-condition is violated for
any account with a negative balance, but the important difference for this
example is that the balance is accessed via an additional function. Because

Listing 5.12: Generated counterexample for Listing 5.11

initial:

acc <- Account { balance: ? }

final:

acc <- Account { balance: ? }

result <- false

43

5. Evaluation

of that, the fields of the Viper variable 1, the translated variable of acc, will
never be unfolded in Viper and the value causing the failure is not accessible
at any label of Silicon’s counterexample. Therefore the generated counterex-
ample, shown in Listing 5.12, does not contain any valuable information
about the arguments.

loop.rs Finally we discuss an example of a spurious counterexample. As
mentioned in Chapter 2 spurious behavior is possible in cases, where the
space of reachable abstract states contains an error state but there is no pro-
gram execution, i.e. sequence of concrete states, realizing that error. List-
ing 5.13 shows an example where we expect this behavior. The function
consists of a loop and a post-condition that will not be violated when exe-
cuting the function. However, the loop invariant is too weak to prove that
the assertion holds; therefore verification fails. After the loop, the verifier
knows that the assertion y > 0 && x >= 0 && !(x > 0) must hold, which
is an over-approximation of the concretely reachable states because the only
reachable state is x == 0 && y == 1. Because of this over-approximation,
there exists a solution to this equation that also violates the post-condition
leading to a spurious counterexample. Prusti’s generated counterexample
gives us a final value of 16 for y which aligns with the expected behavior.

Listing 5.13: loop.rs

#[ensures(result < 16)]

fn spurious() -> i32 {

let mut x = 10;

let mut y = 1;

while(x > 0) {

body_invariant!(x >= 0 && y > 0);

x = x - 1;

y = y + 1;

}

y

}

44

5.2. Timing Analysis

5.2 Timing Analysis

For the evaluation of the influence on Prusti’s performance when generating
counterexamples, we adjusted Prusti’s existing benchmarking script to run a
set of 121 Rust files that fail verification with counterexamples enabled and
disabled. The tests consist of the examples used during the evaluation and
Prusti’s existing tests that fail verification.

The results of this analysis showed that verification with counterexamples
enabled takes on average around 0.1 seconds longer than when they are
disabled. The distribution of the increase of the execution time in seconds is
shown in Figure 5.1. In most cases, the difference is less than 0.2 seconds but
there are a few outliers where the difference is quite substantial. Analyzing
the extreme cases where the increase is more than 2 seconds showed that
both of them involved loops, however, other examples involving loops did
not confirm a trend of high verification times for loops in general.

Additionally, we were interested in how this increase is related to the total
verification time. The results show that enabling counterexamples increases
the verification time by on average 6.5%. Figure 5.2 shows that the influence
can be quite substantial in some cases, but is smaller than 20% in most
(>90%) of the tests.

The influence on the performance should be barely noticeable in most cases
and should not have an influence on the verification experience. Since coun-
terexamples will mostly be used as a debugging tool and not be constantly
enabled, this seems acceptable.

Figure 5.1: Histogram for increase in verification time when using counterexamples

45

5. Evaluation

Figure 5.2: Histogram for relative increase in verification time

46

Chapter 6

Conclusion

The goal of this thesis was to produce counterexamples for Rust programs
that fail verification. To this end, we improved the representation of coun-
terexamples computed by Viper’s Silicon back-end. Based on this repre-
sentation we then implemented a back-translation to Rust variables, which
yields the actual counterexample.

On the Silicon level, our implementation has already proven to be useful
by simplifying the interaction with Prusti significantly. Comparing our im-
plementation to Nagini’s implementation using the native counterexamples
shows that our representation shifts a lot of effort to the back-end. This
claim is further supported by the fact that there are already exists an ongo-
ing project using our implementation with the goal of extending Gobra [11],
another Viper based verifier, to generate counterexamples.

We qualitatively evaluated our implementation of Rust counterexamples.
They are already useful in some cases but have room for improvement. Our
counterexamples are limited by the fact that relevant values are often miss-
ing in the generated Silicon counterexamples. However, as explained in
Section 4.2.4, we think that this problem could be resolved on the Silicon
level in the future. If the accessibility issue was resolved, we would expect
our current implementation to produce meaningful counterexamples consis-
tently, since our back-translation works well in the cases where the necessary
information is available. The generated counterexamples are currently pro-
vided to the user via compiler notes, which is a familiar format for Rust
programmers.

47

6. Conclusion

6.1 Future Work

There are several directions for future work that would either improve our
current implementation of counterexamples or use them for some interest-
ing analysis of the function under verification. Some of them are listed in
the following:

• Extend Prusti-Assistant [4] to process the generated counterexamples
and display them within the code in a similar fashion to what we have
seen for Dafny [7].

• Extend the set of supported types, for example, boxes which would
allow us to handle unbounded data structures.

• Extend the counterexamples to provide more fine-grained debugging
information. For example, if we had the values of the variables at all
labels, we could process them at each label and analyze the changes
for each variable. Instead of getting just one value, we could get all
the values of a variable during an execution (assuming they are not
mutated twice in the same basic block).

• Generating counterexamples for the results of function calls would be
another useful extension. At the moment, if the result of a function call
is not stored in a local variable, this value will never be a part of the
counterexample. If a function is non-deterministic and the verification
error depends on its return value, we can not reproduce the failure.
Extending our current implementation with this functionality should
be a relatively easy adaption since the MIR encoding will create a tem-
porary variable storing the result of each function call, and therefore
the same is true for the translated Viper encoding.

• Given a counterexample, one could automatically run the function un-
der verification for the provided arguments. A suitable tool to im-
plement this functionality is Miri [9], a MIR interpreter. Executing a
program for the given counterexample could be used to check whether
a counterexample is realizable or caused by a too coarse specification.

48

Bibliography

[1] The rust programming language. https://www.rust-lang.org. Ac-
cessed: 28.04.2021.

[2] Rust type definitions. https://doc.rust-lang.org/stable/nightly-
rustc/rustc middle/ty/sty/enum.TyKind.html. Accessed: 02.05.2021.

[3] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. Leveraging rust types for modular specification and verification.
Proc. ACM Program. Lang., 3(OOPSLA):147:1–147:30, 2019.

[4] Julian Dunskus. Developing ide support for a rust verifier. Master’s
thesis, ETH Zürich, 2020.

[5] Marco Eilers and contributors. Repository containing nagini’s source
code and documentation. https://github.com/marcoeilers/nagini. Ac-
cessed: 05.05.2021.

[6] Marco Eilers and Peter Müller. Nagini: A static verifier for python.
In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages
596–603. Springer, 2018.

[7] Luke Herbert, K. Rustan M. Leino, and Jose Quaresma. Using dafny,
an automatic program verifier. In LASER Summer School, volume 7682
of Lecture Notes in Computer Science, pages 156–181. Springer, 2011.

[8] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Depend-
able Software Systems Engineering, volume 50 of NATO Science for Peace
and Security Series - D: Information and Communication Security, pages
104–125. IOS Press, 2017.

49

Bibliography

[9] Scott Olson and Christopher Dutchyn. Miri: An interpreter for rust’s
mid-level intermediate representation. 2016.

[10] Cedric Stoll. Smt models for verification debugging. Master’s thesis,
ETH Zürich, 2019.

[11] Gobra team. Repository containing gobra’s source code and documen-
tation. https://github.com/viperproject/gobra. Accessed: 03.05.2021.

[12] Prusti team. Prusti developer guide.
https://viperproject.github.io/prusti-dev/dev-guide. Accessed:
02.05.2021.

[13] Prusti team. Repository containing prusti’s source code and docu-
mentation. https://github.com/viperproject/prusti-dev/. Accessed:
28.04.2021.

[14] Viper team. Repository containing silicon’s source code.
https://github.com/viperproject/silicon. Accessed: 05.05.2021.

[15] Viper team. Viper tutorial. http://viper.ethz.ch/tutorial/. Accessed:
04.05.2021.

50

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Introduction
	Background
	Counterexamples
	Verification Pipeline

	Approach
	Implementation
	Improving Counterexamples in Silicon
	Native Models
	ExtractedModel
	Evaluating Terms
	Heap Extraction
	Final Mapping

	Prusti Counterexamples
	Identifying the failing function
	Variables
	Backtranslation
	Choosing Labels
	Presentation

	Evaluation
	Qualitative Evaluation of Counterexamples
	Timing Analysis

	Conclusion
	Future Work

	Bibliography

