
Contract Checking at Runtime in Rust

Master’s Thesis Project Description

Cedric Hegglin
Supervisors: Aurel B́ılý, Jonáš Fiala, Prof. Dr. Peter Müller

Start: April 5, 2023
End: October 5, 2023

1 Introduction

Prusti[1] is a formal verifier for the Rust programming language[2]. It can statically
prove the absence of panics and certain functional correctness properties. Users
can annotate functions with contracts in the form of pre- and postconditions, and
Prusti will attempt to proof their validity. In theory, this should guarantee that
these contracts are valid in all possible executions of the verified program.

In practice, however, these guarantees are often limited. A user running a Prusti
verified Rust library in Python might unknowingly not comply with a function’s
precondition. In that case our Rust code might still panic or produce a wrong
result. Similarly, when verifying any real-world program with Prusti, users usually
rely on having so called trusted methods. A method being trusted means that
whatever specification is attached to it is simply assumed to be correct. Examples
of situations where one requires trusted methods are calls to foreign libraries, but
also other Rust dependencies that can not be verified. Again, when running our
program, if the trusted method does not uphold the specified contract, all of the
guarantees in the verified parts of our code are lost too. In turn, users might
lose trust in the value of verification, which motivates the idea of checking these
contracts at runtime. When verified code is called from a non-verified context, we
have to make sure it is called correctly, and when calling trusted methods from
within verified code, we want to make sure it behaves as specified.

Additionally, runtime checks can also be helpful as a debugging tool in the
process of verifying code. When a program is only partially annotated and can not
be verified yet, the verifier itself offers very little help on determining a specification’s
correctness. Runtime checks on the other hand could already warn a user if a
specification is incorrect.

The main challenges for doing this automatically are to translate Prusti’s spec-
ification language to runtime checks, and to insert these checks into the generated
executables automatically.

2 Approach

The road-map for this project can be split into a theoretical part and a practical
part. The theoretical part is defining the translation of Prusti’s specification lan-
guage to runtime checks in Rust. The practical challenge is to then generate and
automatically insert these checks automatically into the executables produced by
Prusti.

1

In general, it makes sense to insert runtime checks in the following cases:

• When calling trusted functions from verified code, to check their postcondition
after the call. This could be a method from a library that we annotated with
extern spec, or a wrapper for some foreign function.

• When calling verified functions from unverified code, to check that the precon-
dition is satisfied on entry of the called function. For example, when publishing
a library verified with Prusti, insert runtime checks for the precondition at the
beginning of each public method.

• If a trusted function has a pledge attached, to check the Boolean expression
as soon as the receiver reference of that pledge is dropped.

• If the verification of a method fails, check all its specifications to help a user to
identify wrong annotations. In this case, postconditions can also be inserted
into a method’s body instead of at the call site.

In the other cases, Prusti’s proof already guarantees the correctness of the con-
tracts. In this case, inserting runtime checks could still be useful for detecting
potential bugs in Prusti. Since not having to distinguish all of the above cases sim-
plifies things, our initial approach will be to check as many specifications as possible.
In some cases however (as will be shown in Section 2.1), runtime checks also put
additional constraints on the used types in specifications. Therefore, allowing the
user to configure which specifications should be checked could still be useful.

2.1 Translation

To design a translation of Prusti contracts to runtime checks, we need to create
rules for the various components of its specification language. A large portion of
the specification language is simply Rust syntax for Boolean expressions and some
syntactic sugar for common operations such as implications. In these cases, the
translation to runtime checks in the form of assertions is trivial as seen in Listing 1.

1 #[requires(i < self.length)]
2 fn lookup(&self, i: usize) -> i32 {
3 + assert!(i < self.length);
4 ..
5 }
6

7 #[requires(a ==> b)] // syntactic sugar
8 fn bar(a: bool, b: bool) {
9 + assert!(!a || b);

10 ..
11 }

Listing 1: Example of assertions to be added (green) to check the simple given
preconditions.

However, for the more powerful features, the translation can quickly get a lot
more complicated. To demonstrate this, we will consider the method shown in
Listing 2, containing an old expression and a forall quantifier in its specification.
It contains a method push, that adds an element to a collection. The specification
expresses that all original elements remain unchanged. Since this method is trusted,
we want to check its postcondition at runtime whenever it is called. This time,

2

however, we can not perform the check by only adding assertions. To check this
contract, we need to store all the old expressions that need to be evaluated to check
the quantifier. Listing 3 shows how a call to this method would have to be extended.

1 #[trusted]
2 #[ensures(forall(|i: usize| i < old(self.len()) ==>
3 old(self.lookup(i)) == self.lookup(i)
4))]
5 fn push(&mut self, el: i32) {
6 ..
7 }

Listing 2: Example of a more complex specification using the old keyword and a
quantifier.

1 // storing "old" values
2 let old_self_len = v.len().clone();
3 let old_self_lookup_i = Vec::new();
4 for i in 0..old_self_len {
5 old_self_lookup_i.push(v.lookup(i).clone())
6 }
7 // the actual call:
8 v.push();
9 // the runtime checks:

10 for i in 0..old_self_len {
11 assert!(v.lookup(i) == old_self_lookup_i[i])
12 }

Listing 3: The saved values and runtime checks that are necessary to check the
contract of Listing 2 whenever push is called.

One limitation of this approach is the requirement that whatever type is used
within an old expression has to implement the Clone trait. Moreover, the quantifier
in this example has a very convenient form. It contains an implication whose left-
hand side limits the number of values we need to loop through. Without this
limitation, these kinds of runtime checks can be practically uncheckable or are at
least undesirable due to the timing overhead they introduce. This raises some design
questions that will need to be addressed. A user might want to limit the number of
loop iterations that are introduced by a single quantifier. Non-exhaustive runtime
checking might still provide some value, for example using simple heuristics such as
checking the boundaries only.

While we only showed examples of translations so far, the result of this part
of the project will be a set of rules on how to translate the various features. This
must also support arbitrary combinations and nesting of the supported expressions.
Nevertheless, for a few specification features we are not certain yet, whether runtime
checks will be in scope for this thesis. These include snapshot equality and closure
specifications.

2.2 Instrumenting Executables

Assuming that we have determined the appropriate runtime checks to include, our
next challenge is to incorporate them into executables. Prusti already uses the Rust
compiler’s interface to read various internal data structures and can use it to compile

3

programs after verifying them. Our goal is to modify the generated executables by
adjusting the control flow graph of the MIR (mid-level intermediate representation).
When the MIR is first built, before any optimizations are performed, we want to
identify all method declarations and calls of interest and instrument them with
runtime checks. There are multiple reasons for why we want to operate on the MIR
level. First of all, the type information on this level is explicit, which means all
function calls can be resolved and we can insert checks depending on the type of the
involved variables (recall the requirement of Clone for old). Additionally, this is
the level where Prusti already performs most of its analysis, which should simplify
our integration. One downside of this approach is that, since the MIR is control
flow graph based and low-level, it is quite verbose and hard to work with.

Unfortunately, the interface of the Rust compiler does not provide a lot of func-
tionality to support such modifications, which is why this will require a fair bit of
engineering. Although this section is rather short, this will be the main part of the
project in terms of effort. It will require a deep understanding of the compiler, the
MIR and the inner workings of Prusti.

3 Goals

While the previous section should have provided an idea of the technical challenges,
the following sections will provide a more structured overview of our goals for this
project.

3.1 Core Goals

• Design specification translation
Design the theoretical translation of Prusti features into runtime checks. This
translation will consist of a set of rules on how to translate the Prusti speci-
fication syntax, for example quantifiers or old expressions, to executable Rust
code. Additionally we also need to design rules for when and where to insert
these checks for the various types of specification items such as preconditions,
postconditions, pledges and various others. In general, one goal of this project
is to include runtime checks for as many specifications as possible.

• Instrumentation of generated executables
Within Prusti, use the Rust compiler’s interface to to modify the generated
executables in a sensible way. It has to allows us to insert the desired runtime
checks automatically, but optimally it can also be used in different settings.
One example of a different purpose are the optimizations based on verification
listed in the extension goals.

• Implement the translation and insertion
Use this instrumentation of the Rust compiler and implement the automatic
translation and insertion of runtime checks based on Prusti’s contracts.

• Qualitative Evaluation
We will demonstrate the functionality of our implementation on a set of ex-
amples. This may include examples of calls to foreign libraries from Rust and
calls to verified Rust libraries from other languages.

4

3.2 Extension Goals

• Support for “hard” specification features
For some features of Prusti and its specification language, it is rather unclear
how we could support runtime checks. Examples include snapshot equality
and closure specifications.

• Optimizations based on the verification results
During verification, Prusti gains additional information about a program. This
could allows us to perform optimizations a traditional compiler would not
be able to find, such as eliminating an unreachable match arm for example.
The added instrumentation of the compiler could allow us to perform such
optimizations.

• Combining contract checking with a testcase generator
Since runtime checks are a way of automated testing, it could be interesting to
combine them with a testcase generator. Runtime violations of preconditions
could be used to eliminate testcases, and the remaining assertions can be used
as oracles to find errors.

• Error reporting
Failing runtime checks, as we have described them so far, would simply re-
sult in failing assertions. A user will see the expression that failed, but it
would be better if the resulting panic provided some information about which
specification was violated to cause this error.

• Conversion of equivalent specifications for efficiency
Certain specifications including quantifiers can express equivalent properties in
multiple ways, but result in runtime checks with vastly different performance.
For example, sortedness of a collection can be expressed using a quantifier over
two variables conditioned on one being larger than the other, or only one vari-
able and its successor. Assuming transitivity, both express the same property.
But the resulting runtime check’s complexity is quadratic in one case and lin-
ear in the other. With a set of lemmas one could recognize and convert certain
types of these equivalences, and allow for more thorough runtime checks.

References

[1] V. Astrauskas et al. “Leveraging Rust Types for Modular Specification and
Verification”. In: Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA). Vol. 3. OOPSLA. ACM, 2019, 147:1–147:30. doi: 10.
1145/3360573. url: http://doi.acm.org/10.1145/3360573.

[2] Nicholas D Matsakis and Felix S Klock II. “The rust language”. In: ACM
SIGAda Ada Letters. Vol. 34. 3. ACM. 2014, pp. 103–104.

5

https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
http://doi.acm.org/10.1145/3360573

	Introduction
	Approach
	Translation
	Instrumenting Executables

	Goals
	Core Goals
	Extension Goals

