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Abstract

Prusti is a powerful static verifier for the Rust programming language,
ensuring the absence of panics and adherence to specified contracts.
This thesis extends Prusti with the ability to check these contracts
at runtime, through modifications to Rust’s abstract syntax tree and
its mid-level intermediate representation. Our implementation helps
programmers to pinpoint gaps in verification or violated assumptions
more easily. Additionally, this work introduces verification-based op-
timizations such as dead code removal and safety-check eliminations,
leveraging the additional information introduced by specifications and
the verification capabilities of Prusti to improve the performance of
Rust programs.
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Chapter 1

Introduction

Rust[6], a systems programming language, has rapidly gained popularity
due to its emphasis on safety without sacrificing performance. It incorpo-
rates a unique ownership system to manage memory and concurrency, thus
eliminating many classes of bugs at compile time. Prusti[1] leverages the
Viper[5] verification infrastructure to annotate and verify Rust programs,
enabling developers to provide formal specifications for their functions and
ensure that the implementation adheres to the specified behavior.

The core goal of this thesis is twofold. Firstly, we aim to enhance Prusti with
the capability to conduct runtime checks on its contracts. By integrating
runtime checks into the compiled executables, we can detect violations of
specifications during program execution. Secondly, we explore and imple-
ment verification-based optimizations. Harnessing the detailed information
from specifications and Prusti’s verification, we perform optimizations that
are not always possible for a traditional compiler.

1.1 Motivation for Runtime Checks

At first glance, the integration of runtime checks with Prusti’s static verifica-
tion might seem redundant. If a program has been verified at compile-time,
what added value can runtime checks provide? However, while static veri-
fication provides a robust layer of safety, there are situations where it may
not cover all potential pitfalls. In the following sections, we will discuss the
various scenarios that underline the significance of runtime checks, even in
statically verified code.

Calls to unverified functions Oftentimes when verifying software, pro-
grammers need to make certain assumptions. For example, when using
functionality from external crates, in Prusti programmers rely on so-called
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1. Introduction

extern specifications. Giving an external function a postcondition, for ex-
ample, will cause Prusti to trust this function to uphold its contract without
actually verifying it. Similarly, if a function is too complex it might be in-
feasible to prove its specification. Prusti users will mark such methods with
#[trusted] to skip its verification. If such a function violates its postcon-
dition, this can render the rest of Prusti’s proof invalid. Thus, a user might
run into errors that are not easily linked back to the violation of the trusted
contract, leading to a loss of trust in verification. Runtime checks would
allow a user to detect this error early and to locate the reason for it easily.

Calls from unverified context Rust is a very popular candidate for provid-
ing libraries to other languages such as Python or Java via foreign function
interfaces. Even if these functions are verified by Prusti, calls to these func-
tions from a different language are currently not. Therefore, they can easily
be called incorrectly by not satisfying their preconditions. Runtime checks
detect incorrect usages and emit errors if the functions of a library are used
incorrectly. The same problem occurs if we call verified functions from a
trusted function.

Assume Proofs can be assisted by “assuming” additional knowledge, us-
ing the prusti assume statement to infuse additional knowledge. Doing so
leads the verifier to consider an expression as valid at a particular point in
the code. However, if the assumed expression is not valid, this leads to an
invalid proof. By checking these assumptions at runtime, developers can
pinpoint and rectify erroneous assumptions.

Debugging partial specifications Annotating and verifying a program can
be a challenging task. One problem in particular is the distinction between
verification errors arising from incomplete specifications from those caused
by incorrect specifications. Runtime checking facilitates this distinction since
it can be used to “test” unverified specifications. Whenever violated specifi-
cations are detected at runtime, this confirms that our specifications must be
erroneous and not only incomplete. In this context, it is beneficial to employ
runtime checks for all specifications, as opposed to the specific instances we
listed in previous examples.

Debugging Prusti Runtime checks could serve as a valuable tool for vali-
dating Prusti’s correctness. Specifically, if a Rust program successfully un-
dergoes Prusti’s verification but later experiences contract violations at run-
time, this indicates a potential unsoundness within Prusti itself.
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1.2. Overview

1.2 Overview
In this report, we will first explain necessary background information con-
cerning Rust, the Rust compiler, and Prusti in Chapter 2. Chapter 3 revolves
around the manual rewriting of Rust programs with Prusti specifications
for runtime checks, and employing static verification to detect unreachable
code. Chapter 4 contains the details of our implementation. In particular,
we discuss how runtime checks can be automatically translated and inserted
into the generated executables by interacting with the Rust compiler and its
internal data structures. Additionally, we explain how similar modifications
are performed to achieve the mentioned optimizations. We qualitatively
evaluate and discuss the results of our implementation in Chapter 5, be-
fore concluding our work and discussing opportunities for future work in
Chapter 6.
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Chapter 2

Background

2.1 Rust

While readers are expected to have a foundational understanding of Rust,
this section elaborates on topics vital for comprehending the contents of this
thesis. We will also explore lower-level details that might not be well-known
even to seasoned Rustaceans.

2.1.1 Ownership

In Rust, the concept of ownership plays a pivotal role in ensuring memory
safety without requiring a garbage collector. At its core, ownership estab-
lishes that each value in the program has a single designated owner, which
is a variable. When the owner goes out of scope, its associated memory is
automatically reclaimed.

Move Semantics

When a value is assigned from one variable to another, or passed as a func-
tion argument, Rust by default “moves” the value, transferring its owner-
ship. After the move, the original variable becomes inaccessible for further
use, ensuring that there is only one owner at any given time.

For instance, in Listing 2.1 the variable x is moved into the function consume
and can no longer be accessed afterward, causing the program to fail com-
pilation. Since the value has been moved into a function, this also means
that this function is responsible for freeing the memory of the moved vector
at the end of its execution.

5



2. Background

Listing 2.1 Example of trying to access a value that is no longer owned.
fn main() {

let x = vec![1,2,3];
consume(x);
let y = x.get(1); // illegal, x is no longer valid

}

fn consume(v: Vec<i32>) {}

Listing 2.2 Example call to a function where the passed argument is not
consumed because it implements Copy.
fn main() {

let x = 5;
non_consuming(x);
let y = x; // x is still accessible

}

fn non_consuming(v: i32) {}

Copy and Clone

Rust’s Copy trait provides a mechanism to sidestep the move semantics, al-
lowing certain types to be duplicated merely by copying their bits. When-
ever a variable of a Copy type is assigned to another or passed as a function
argument, the data is duplicated and both the original and the duplicate can
be used independently. This is a shallow bit-wise duplication, and this trait
cannot be safely implemented for heap-allocated types.

An example is shown in Listing 2.2, where the difference to our previous
example is the fact that the passed type i32 implements Copy, making this
a valid program.

The Clone trait, on the other hand, offers a way to explicitly create a du-
plicate of an object. The trait is more versatile and is appropriate for types
that require a deeper form of copying, and thus suitable for types managing
heap-allocated data. For instance, it can be used to fix the error of the earlier
example in Listing 2.1, by calling consume(x.clone()) instead of moving x
into the function. The .clone() method must be explicitly used to create
a duplicate. Implementations of Clone for heap-allocated data necessarily
involve allocating additional memory for the duplicates. Notably, all Copy
types also implement Clone. The reverse, however, is not true.

2.1.2 Borrowing
Borrowing in Rust permits sharing access to data in a safe manner while
respecting the rules of the ownership system. A borrow is either mutable or
immutable.

6
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Listing 2.3 Multiple immutable borrows of the same value.
let s = String::from("hello");
let r1 = &s;
let r2 = &s;
// both r1 and r2 can be used simultaneously

Listing 2.4 A mutable borrow followed by another illegal immutable borrow
of the same value.
let mut s = String::from("hello");
let r1 = &mut s;
let r2 = &s; // illegal since r1 is still accessed later
r1.push_str(" world");

Immutable Borrowing

Immutable borrowing allows multiple parts of the code to read from the
same data simultaneously without being able to modify it. When data is
immutably borrowed, no mutable references to that data are allowed to co-
exist with immutable references. This ensures that the data will not change
unexpectedly while being read. An example is shown in Listing 2.3.

However, Rust offers a concept known as interior mutability which allows
for mutation through an immutable reference. This is facilitated by types
like RefCell and Mutex which employ runtime checks to ensure safety.

Mutable Borrowing

Mutable borrowing, on the other hand, grants exclusive access to data for
reading and writing. Only one mutable reference to a particular piece of
data is allowed at any given time. Trying to borrow a value that is already
mutably borrowed leads to an error at compile time. This exclusivity pre-
vents data races, which are a common source of concurrency bugs in many
programming languages. An example of an illegal sequence of borrows is
shown in Listing 2.4.

Borrow Checking

The borrow checker is an integral component of the Rust compiler, tasked
with ensuring that references strictly adhere to Rust’s borrowing and own-
ership rules at compile time. The primary goal of the borrow checker is to
ensure that references do not outlive the data they point to and that mutable
and immutable references cannot coexist simultaneously.

Polonius[2] is an implementation of the borrow checker that seeks to refine
and extend Rust’s borrow-checking capabilities. The results of its analysis
are used by Prusti. Polonius introduces the notion of “loans”, representing
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2. Background

Listing 2.5
1 struct Percentage(usize)
2

3 fn main() {
4 let mut p = Percentage(42);
5 let x = {
6 let y = &mut p; // (L1)
7 &mut p.0 // (L1, L2)
8 }
9 *x = 56;

10 // L2 expires, then L1 expires
11 p.0 = 72;
12 }

the code span during which a particular piece of data is borrowed via a
reference. The state of a loan is analyzed across positions of a program,
marking it as alive after its creation until it becomes dead at another position.
The transition point is termed the loan’s expiration location, marking the last
location where the contents of a borrow could be legally accessed.

Note that the life cycle of a loan does not necessarily align with the scope
of its corresponding reference. To illustrate, consider the example shown
in Listing 2.5. Here, the first loan labeled as L1 is initiated on line 6. This
reference handed out to y is subsequently reborrowed, creating the loan L2.
Although the variable y goes out of scope, the loan L1 has to be alive for at
least the duration of L2.

The borrow checking rules would permit us to access the contents of y on
line 10, right after L2 expires and before L1 expires itself. Line 11 requires
both loans to be dead, for p to be accessible again.

2.1.3 Rust Macros
Rust macros are a metaprogramming tool that allows for code generation
and transformation. This mechanism operates at the syntactic level before
the actual compilation process begins.

There are two primary types of macros in Rust: declarative macros and
procedural macros. Declarative macros are defined by a set of rules that de-
scribe how the input tokens should be transformed to generate code. Con-
trastingly, procedural macros are expressed using actual Rust code, allowing
for a more unrestricted analysis and modification of the passed tokens. For
the purposes of this thesis, we will discuss procedural macros due to their
extensive application in our work.

Beyond the differences between procedural and declarative macros, it is es-
sential to also understand the distinction between function-like macros and
attribute macros. Examples of declarations and usages of both function-like
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Listing 2.6 Example of function-like macros versus attribute macros.
// defines a procedural function-like macro
#[proc_macro]
fn function_like(tokens: TokenStream) -> TokenStream {..}

// defines a procedural attribute macro
#[proc_macro_attr]
fn attr_macro(attr: TokenStream, tokens: TokenStream) -> TokenStream

{..}↪→

// uses attribute macro on function foo
#[attr_macro(args)]
fn foo() {

// uses function-like macro
function_like!(args);

}

and attribute macros are shown in Listing 2.6. Function-like macros accept
a sequence of tokens and produce a new token stream as output. Attribute
macros, on the other hand, can be attached to items like functions or structs
and are able to modify them. When processed they have access to both the
argument that was passed to them explicitly, as well as the tokens of the
item they are attached to (the tokens of the function foo in the previous
example). When these macros are expanded, the declared functions are ex-
ecuted to produce a modified version of the original items or even entirely
new items.

2.1.4 The Rust Compiler

A large part of this thesis is interacting with the Rust compiler and altering
it to instrument the generated executables. Explanations require a good
understanding of the process of compiling a Rust program and its internal
data structures. In this section, we will talk about the various phases the
Rust compiler goes through and some of its intermediate representations.

Compiler Pipeline

Initially, raw Rust code is lexed and parsed into an AST. This representation
is further modified during Macro Expansion, producing an altered version
of the AST. As the compiler progresses, it transforms the AST into the High-
Level Intermediate Representation (HIR), representing the AST in a more
desugared and resolved form and used to perform type checking. The typed
HIR (THIR) is then lowered to the Mid-Level Intermediate Representation
(MIR), a control-flow graph representation of the program. The MIR is the
central representation of the Rust compiler used for many analyses and op-
timizations of the program. Upon its initial construction in a representation
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2. Background

Source AST (T)HIR
MIR

.. 3
built promoted drops-elaborated ..

macro expansion

Figure 2.1: A simplified illustration of the Rust compiler pipeline.

referred to as mir built, the MIR undergoes several transformation and
optimization phases resulting in different versions of the MIR.

Once the MIR phase concludes, the code undergoes backend compilation to
be further optimized and transformed into machine code for the targeted
architecture. An illustration of this pipeline is shown in Figure 2.1.

The MIR

The MIR is of central importance to this thesis, since both Prusti in its orig-
inal state and our implementation heavily rely on it. Some of its key char-
acteristics are that it has no nested expressions and all its types are fully
explicit. In the MIR, a program is represented as a collection of items, each
representing an entity like a function, a trait, or a type. Each item has a
unique identifier referred to as its DefId.

Each function item of the MIR is represented by a struct called Body, con-
taining its control-flow graph, function signature, a list of declared variables,
and more. In the following, we explain the terminology used for the MIR
and take a closer look at its structure.

Locals, Places, and RValues Locals refer to memory locations on the stack
such as function arguments, local variables, and temporaries. They are in-
dexed and written with a leading underscore, e.g. 1. For a function with n
parameters, the locals 1 to n are always its parameters and 0 is its return
value.

Places are expressions that identify a location in memory. A place is always
constructed from a local and a set of projections. The projections are used
to model things such as field accesses, indexing, or subslicing.

Examples: 1, 1.f, 1[2]

Operands in Rust represent values and can originate from either loading a
memory location, referred to as a place, or directly from a constant value.
Operands are often used as the input to various MIR instructions, serving
as the means by which data flows through the computation.

RValues stand for “right-hand values” and represent the values that can be
assigned to a place in the MIR. RValues encompass a broad range of com-
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2.1. Rust

putational expressions, not only including simple values but also binary op-
erations (like addition or multiplication), unary operations (like negation),
and other computations. An assignment statement in the MIR consists of a
place as its destination and the source of the assignment which is an RValue.

Control-flow Graph Each node in the CFG corresponds to a basic block
consisting of a sequence of statements and a terminator. Basic blocks are
indexed starting at 0, which is always the entry block for a function. Often-
times we refer to locations in the MIR, which point to a specific statement
or terminator. Locations consist of a block index and a statement index, usu-
ally denoted as bbx[y] to point to the statement y in block x. Consider the
simple example function shown in Listing 2.7 and its corresponding CFG in
Figure 2.2. We will use this example to discuss the structure of the MIR in
more detail.

Terminators There are multiple kinds of terminators in the MIR. The ones
that are relevant to this thesis will be discussed in the following.

• The Return terminator marks the successful termination of a function.
An example is shown in block 5 of our example.

• The Resume terminator indicates that the function has encountered a
panic and consequently terminates its execution, signaling this event
to the caller.

• Call terminators invoke a function with a sequence of places as its ar-
guments. The result of the call is assigned to its destination. A call
terminator has two outgoing edges called return and unwind. The
path taken at runtime depends on whether the called function pan-
icked or returned. If the called function panicked, the caller proceeds
on the unwind path, usually cleaning up any heap-allocated data it
owns and subsequently resuming itself, leading to the unwinding of
the full call stack. We say “usually” because it is technically possible
to “catch” panics, but it is usually discouraged in idiomatic Rust. Oth-
erwise, the execution continues on the return path. An example of a
call is shown in block 1 of our example.

• Assert terminators have one Boolean place as an argument. If that
Boolean is true, the execution jumps to its success target and other-
wise the function panics as well. Assert terminators are not generated
for user assertions, rather they are a result of Rust’s runtime checks
for certain critical operations. For example, they are used to check that
certain binary operations do not overflow or to check that an index of
a slice is within bounds.

11



2. Background

Listing 2.7 A simple Rust function.
fn foo(mut v: Vec<i32>, b: bool, x: i32) -> i32 {

if b {
v.remove(0);
x + 5

} else {
42

}
}

Figure 2.2: MIR control flow graph generated for the function in Listing 2.7.

fn foo(_1: std::vec::Vec<i32>, _2: bool, _3: i32) -> i32

0

switchInt(_2)

1

_5 = &mut _1

_4 = Vec::<i32>::remove(move _5, const 0_usize)

otherwise

4

_0 = const 42_i32

goto

0

2

_6 = CheckedAdd(_3, const 5_i32)

assert(!move (_6.1: bool), "addition overflowed")

return

7 (cleanup)

drop(_1)

unwind

3

_0 = move (_6.0: i32)

goto

successunwind

5

drop(_1)

6

return

return

8 (cleanup)

resume

return
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• The Goto terminator represents an unconditional jump, directing the
flow to its designated target.

• SwitchInt is used to represent conditional branching. It is the result
of if-else or match statements for example. The terminator takes one
integer place as an argument, which is referred to as its discriminant. It
jumps to a different block according to a jumplist, or the target labeled
otherwise if no entry in this list matches its discriminant. An example
with a jumplist of length one is shown in block 0.

• The Drop terminator invokes the de-allocation of a value. Every heap-
allocated value owned by the function must be dropped before the
function terminates. In our current example, the vector in the function
parameter v is dropped in block 5 of the MIR.

Compiler Queries

The Rust compiler has to answer numerous questions about the code dur-
ing compilation, such as the MIR representation of a particular item at a
specific stage of its compilation. Instead of computing these details from
scratch every time they are requested, the compiler uses a demand-driven
system called “compiler queries”. The results of these queries are cached
so the compiler can reuse them. Recalling our compiler diagram shown in
Figure 2.1, each of the MIR versions corresponds to one compiler query.

However, to avoid duplicating these potentially large data structures every
time they are transformed, the compiler also uses a principle called “steal-
ing”. For example, when mir built is constructed for an item, it is then
cached and stored. At a later point, when the mir promoted query is in-
voked, it will steal the mir built representation of that item and start mod-
ifying it in place. As a consequence, the mir built query can no longer be
invoked from this point onwards.

Compiler Interface

The Rust compiler interface serves as the main point of contact for external
tools such as Prusti, interfacing with the Rust compiler. It provides a set of
tools and libraries to interact with and leverage the Rust compiler’s capabil-
ities. It allows applications to hook into specific stages of the compilation
process via callbacks to analyze or modify internal data structures. Unfor-
tunately, the interface is highly unstable, and applications relying on it will
require changes with each update of the Rust compiler.

Applications using this interface can use compiler queries to obtain infor-
mation about the program that is being compiled. Queries can also be over-
ridden, giving us the option to modify their results.

13



2. Background

Listing 2.8 Function with a pre- and postcondition.
#[requires(x > 0)]
#[ensures(result < 0)]
fn invert(x: i32) -> i32 { -x }

2.2 Prusti
In this section, we will give an overview of Prusti’s contracts, its specification
language, and some details of its inner workings.

2.2.1 Prusti Specifications

Prusti allows programmers to extend their Rust programs with various an-
notations to prove certain properties.

Specification Items

Pre- and Postconditions Functions can be annotated with pre- and post-
conditions as shown in Listing 2.8, expressing Boolean conditions that need
to be satisfied upon entry or exit of the function, respectively.

Pledges Prusti’s concept of pledges is a powerful tool to reason about mu-
tably borrowed values over the span of their life. This abstraction ensures
that despite potential modifications, certain properties about these values
remain consistent. The introduction of pledges in Prusti was motivated by
the need for a more refined mechanism to assure properties about borrowed
values beyond their immediate use.

Prusti contains two kinds of constructs to express pledges. The first kind of
pledge is assert on expiry, which takes two Boolean expressions as argu-
ments. We will refer to them as the left-hand side and right-hand side of the
pledge. The left-hand side of a pledge is used to reason about a mutable ref-
erence that was handed out by a function and its state when it expires. The
right-hand side is used to express properties of the value that was borrowed
from, that need to be re-established once the reference expires. The pledge
does not restrict intermediate mutations while the borrow is alive; rather, it
emphasizes the state of the value at the moment of expiration.

Consider the example shown in Listing 2.9 containing a method get mut
that hands out a mutable reference to the field of the struct Percentage. The
pledge attached to this method states that the values assigned to the contents
of this reference remain between zero and 100. In the main function, we see
an example of the pledge in action. After obtaining a mutable reference
to the Percentage struct’s internal value using get mut, its value can be
modified as shown on line 16. The loan that was handed out expires on line

14



2.2. Prusti

Listing 2.9
1 struct Percentage(usize);
2

3 impl Percentage{
4 #[assert_on_expiry(
5 *result <= 100,
6 before_expiry(*result) == self.0 && self.0 <= 100
7 )]
8 fn get_mut(&mut self) -> &mut usize {
9 &mut self.0

10 }
11 }
12

13 fn main() {
14 let p = Percentage(42);
15 let x = get_mut(&mut p);
16 *x = 72;
17 // x expires
18 p.x = 101;
19 }
20

17, which is where the conditions expressed by the pledge must hold, which
is the case in this example. Had we assigned a value greater than 100 to *x,
this program would fail verification.

The second construct considered a pledge is after expiry. It can be viewed
as a simplified version of assert on expiry since a specification of the
form #[after expiry(expr)] is equivalent to #[assert on expiry(true,
expr)].

Inline Assertions With the use of constructs such as prusti assert!(),
developers can assert expected conditions at particular points in the code.
Similarly, prusti assume!() allows developers to make assumptions that
Prusti takes for granted during verification. The body invariant!() is yet
another powerful construct, employed within loops to denote invariants —
conditions that must remain true for every iteration. Note that by default all
of these specifications are solely used for verification purposes and have no
influence on the behavior of the program at runtime.

Specification Language

Prusti’s specification language extends Rust’s native syntax by allowing a
variety of specialized constructs to express more intricate properties and
behaviors. While contracts typically employ Boolean expressions, Prusti in-
troduces additional features for expressive program verification:

15



2. Background

• old: This construct captures the value of an expression at the begin-
ning of a function, facilitating comparison with its value at the func-
tion’s termination.

• quantifiers: For more generalized conditions, Prusti introduces uni-
versal (forall) and existential (exists) quantifiers.

• result: In postconditions or pledges, the result keyword represents the
return value of the function. This provides a way to specify conditions
on what a function should return.

• syntactic sugar: Prusti introduces syntactic sugar for multiple logical
expressions and comparisons. Examples include the operators ==> for
logical implication or === for snapshot equality. These operators offer
a clearer, more concise way to express properties.

Contract Rewriting

As the reader might have noticed, all specification items are either attribute
macros or function-like macros. When Prusti is executed for a given pro-
gram, all contract macros are expanded to produce a modified program. For
the context of our thesis, a few aspects of this rewriting are very substantial.

Preparsing Expressions within contracts are processed by a custom parser,
that desugars syntactic sugar, like implications, and translates them to valid
Rust expressions. For example an implication of the form a ==> b, which is
not valid Rust syntax, is rewritten to !a || b.

Generation of Specification Functions Contracts attached to functions will
be translated to so-called specification functions. This enables type checking
of contracts and allows Prusti to access the lower-level representations of
these functions to encode specifications. For instance, consider the following
example program containing a function with a precondition:

#[requires(a % 2 == 0)]
fn foo(a: i32) {}

After macro expansion has taken place, this program will be rewritten to:1

#[prusti::spec_only]
#[prusti::spec_id = "dc7f47"]
fn prusti_pre_item_foo_dc7f47(a: i32) -> bool {

let prusti_result: bool = a % 2 == 0;
prusti_result

}
#[prusti::pre_spec_id_ref = "dc7f47"]
fn foo(a: i32) {}

1UUIDs in this example have been shortened for the sake of presentation.
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In this transformed code, every specification function is uniquely identified.
The attribute #[spec only] indicates to Prusti that the function is a specifi-
cation function and should not undergo the regular verification process. By
adding spec id attributes to both the original function and the generated
specification function, a link between the original code and its associated
specification is constructed. This connection ensures that, during Prusti’s
verification of the initial function, it can directly access and use the associ-
ated specification.

Inline Assertions Inline assertions in Prusti are treated separately because
they are processed as function-like macros. For instance, the assertion:

prusti_assert!(x % 2 == 0);

is rewritten to:

if false {
#[prusti::spec_only]
#[prusti::prusti_assertion]
#[prusti::spec_id = "b1d6a0"]
|| -> bool { x % 2 == 0 };

};

This transformation places the expression inside a closure. The reasoning
for this choice is that, at the AST level, no type information regarding the
operands used can be obtained. Consequently, creating a specification func-
tion would be infeasible. By utilizing a closure, the variables in scope can
be effectively captured. Again, the #[spec only] attribute enables Prusti
to distinguish code generated from specifications from code written by the
user.

2.2.2 Interaction with the Rust Compiler Interface
To verify Rust programs, Prusti makes use of the previously mentioned Rust
compiler interface.

Running Prusti results in the Rust compiler being invoked, and Prusti per-
forms its verification during the compilation process. To be precise, it uses
the mir promoted phase of the MIR and encodes it to the Viper verification
language. This phase was chosen for multiple reasons. First of all, it still
contains certain debug information that links MIR primitives to locations
in the source code. Secondly, this is the phase that is used to perform the
borrow checking. Therefore, information generated by the borrow checker
such as expiration locations is only accurate during this phase.

After encoding the MIR to a Viper program, this program is verified. If
errors are generated they can be linked back to locations in the MIR, and
subsequently back to locations in the original Rust program.
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Chapter 3

Approach

3.1 Translation
In this chapter, we will first have a look at how Prusti’s specifications can
be checked at runtime according to their semantics. We focus on how pro-
grams that are annotated with contracts can be rewritten by extending them
with assertions, to ensure the annotated properties are checked correctly at
runtime.

In Section 3.1.1 we look at the different kinds of contracts (such as precon-
ditions and postconditions) and where their corresponding checks should
be performed. Subsequently in Section 3.1.2 we discuss how certain Prusti-
specific contents of these contracts are translated. How exactly these con-
tracts are automatically translated and inserted into executables will be dis-
cussed in Chapter 4.

Remark 3.1 Although the translation of Prusti-specific expressions contained in
contracts is discussed in the second part of this chapter, we already utilize it in
preceding sections. We denote their translation as the function T : Expr → Expr.
When this expression is encountered within a code snippet, it does not represent
a function being invoked. Rather, it signifies that this expression still has to be
rewritten to account for any occurrences of Prusti features that are not evaluated
correctly at runtime.

3.1.1 Specification Items
Preconditions

Prusti enables users to annotate functions with preconditions, denoting con-
ditions that must be satisfied upon the function entry. One approach to
check these preconditions is to modify the body of the function directly by
inserting assertions at the beginning of the function. An example of this
translation is shown in Listing 3.1.
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Listing 3.1 Insertion of a precondition check into the function’s body.
#[requires(expr)]
fn foo(input: I) {

assert!(T(expr));
// rest of function body

}

Listing 3.2 Insertion of a postcondition check into the function’s body.
#[ensures(expr)]
fn bar(input: I) -> S {

if b {
assert!(T(expr));
return res1

}
assert!(T(expr));
res2

}

However, if this is a precondition of an external function, for example, a
function of the standard library, we cannot modify its body. In such in-
stances, all calls to this function within our program are prepended with a
check instead.

Postconditions

Similarly, postconditions are used to specify conditions that need to be sat-
isfied after the execution of a function. Checking a postcondition by altering
the function’s body, is slightly more intricate in this scenario. Every location
that returns from the function needs to be prepended with a runtime check.
An illustrative example is shown in Listing 3.2.

When the function body cannot be modified, we instead append runtime
checks to each invocation of functions with a postcondition.

Pledges

Unlike preconditions and postconditions, pledges cannot be checked by
modifying the body of the function they are attached to. They describe con-
ditions that have to be satisfied after the method has returned, necessitating
checks at the call site. To insert a check, we must examine the reference re-
turned by the call and determine where it expires. Technically, the left-hand
side of a pledge needs to be checked right before a loan expires, accessing
the reference that was handed out at the last point where it still can be ac-
cessed. The right-hand side is checked as soon as the original value which
was borrowed from becomes accessible again. This implies that it needs
to be checked after the expiration of the loan. Given that loans always ex-
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Listing 3.3 Insertion of runtime checks for a pledge.
#[assert_on_expiry(*result <= 100, p.0 <= 100)]
fn get_mut(p: &mut Percentage) -> &mut usize {

&mut p.0
}

fn main() {
let a = Percentage(42);
let x = a.get_mut();
*x = 67;
assert!(*x <= 100);
// a expires
assert!(a.0 <= 100);

}

pire between statements, we only need to ensure that the left-hand side is
checked before the right-hand side to preserve the order described above. A
simple example is shown in Listing 3.3.

While this would be the correct way of translating the previous example,
the method of translating pledges as described so far is not sufficient in all
cases. For an example, refer to Listing 3.4. In this example, there are two
kinds of pledges with different restrictions on the same type. Variable r
holds a reference that must satisfy one of the two pledges when it expires.
Which of the two pledges needs to be checked depends on the path taken at
runtime.

To encode this scenario correctly, guards are added for each encountered
pledge. When a borrowing function with an associated pledge is called, the
corresponding guard is set to true. The check at the expiration locations
is only performed if the guard related to the pledge has been set to true.
Additionally, to denote the pledge as expired post-check, the guard is reset
to false. This is required when a reference holding a pledge is conditionally
overwritten with a different pledge. The translation of our previous example
is shown in Listing 3.5.

Inline Assertions

In Prusti, several constructs can be embedded within any code block, in
contrast to being attached to elements like functions. Specifically, we are re-
ferring to prusti assert, prusti assume and body invariant. All of them
use Prusti specification syntax to express that certain properties hold at spe-
cific locations of a program. In Prusti’s original state, compiling a program
containing such statements has no impact on the program’s runtime behav-
ior. Although the verifier interprets each of the three statements differently,
for the purpose of runtime checking we handle them all in the same way.
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Listing 3.4 Example of a reference that contains one of two pledges depend-
ing on the path taken at runtime.
#[assert_on_expiry(

result >= 50 && result <= 100,
p.0 >= 50 && p.0 <= 100

)]
fn get_likely(p: &mut Percentage) -> &mut usize {

&mut p.0
}

#[assert_on_expiry(result <= 50, p.0 <= 50)]
fn get_unlikely(p: &mut Percentage) -> &mut usize {

&mut p.0
}

fn bar(b: bool, x: usize) {
let p = Percentage(50);
let r = if b {

get_likely(&mut p)
} else {

get_unlikely(&mut p)
}
*r = x;
// End of loan

}

Listing 3.5 Usage of the pledges defined in Listing 3.4 and added modifica-
tions to check them at runtime.
fn bar(b: bool, x: usize) {

let mut guard_1 = false;
let mut guard_2 = false;
let p = Percentage(50);
let r = if b {

guard_1 = true;
get_likely(&mut p)

} else {
guard_2 = true;
get_unlikely(&mut p)

}
*r = x;
// End of loan
if guard_1 {

assert!(*r >= 50 && *r <= 100);
assert!(p.0 >= 50 && p.0 <= 100);
guard_1 = false;

}
if guard_2 {

assert!(*r <= 50);
assert!(p.0 <= 50);
guard_2 = false;

}
}
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Listing 3.6 Translation of inline assertions.
fn main() {

prusti_assume!(expr1);
prusti_assert!(expr2);
for i in 0..10 {

body_invariant!(expr3);
}

}

fn main() {
assert!(T(expr1));
assert!(T(expr2));
for i in 0..10 {

assert!(T(expr3));
}

}

It is worth noting that traditional loop invariants must also be met when
exiting the loop, whereas the semantics of body invariant do not require
the condition to be true on exit. Otherwise, the encoding of body invariants
would differ from that of assertions and assumptions.

To check inline assertions at runtime, we only need to translate the expres-
sions they contain and put them into “real” assertions, as illustrated in List-
ing 3.6.

Predicates

Predicates in Prusti are used to make specifications more modular and ab-
stract over certain implementation details. If an abstract predicate1 is used
within a specification we cannot check it at runtime. Predicates with an im-
plementation can be used, but their contents will also need to be translated.

3.1.2 Specification Language

To check contracts at runtime, the expressions within contracts need to be
translated according to their semantics, which is why we introduced the
rewriting function T earlier. In the following, we will examine several fea-
tures of the Prusti specification language, and discuss how they can be trans-
lated to ensure accurate behavior at runtime.

Result and Variable Names

In postconditions and pledges, Prusti specifications refer to the returned re-
sult of a function by using the result keyword. We must ensure that the
result of a function is accessible, thus it needs to be assigned to a variable.
We then simply replace every occurrence of result in the specification with
the name of the correct variable. When checking contracts on the call site of
a function, we also need to ensure that the names of parameters in the spec-
ification are substituted with the names of the arguments that were passed
to it.

1A predicate without a body
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Listing 3.7 Primitive encoding of old expressions.
#[ensures(*x == old(*x) + 1)]
fn increment(x: &mut i32) {

x + 1
}

let old_x = *x;
increment(&mut x);
assert!(*x == old_x + 1)

Listing 3.8 Example of an old expression that is only conditionally evalu-
ated.
#[ensures(index < old(v.len()) ==> old(v[index]) == result)]
fn remove(v: Vec<i32>, index: usize) -> Option<usize> {..}

Old

The most intuitive way to evaluate old expressions at runtime would be to
evaluate and store each expression that occurs within an old expression at
the correct location. For instance, for calls to the function shown in List-
ing 3.7 we would have to store the old value of *x prior to invoking the
function. This stored value would then be used to check the postcondition.

Unfortunately, there are multiple reasons why this encoding is not sufficient.
Firstly, storing a value by dereferencing it without taking its ownership will
only work if the type of the stored value implements the Copy trait. One pos-
sible solution to extend the set of supported types is to clone the old values
instead of dereferencing them. While this would still limit us to using types
that implement the Clone trait, this approach is less restrictive since we can
still reason about heap-allocated data structures, which is not possible when
relying on the Copy trait. Since Prusti does not support interior mutability
at the time of writing this thesis, we can safely assume that a derived im-
plementation of Clone or a reasonable manual implementation will result
in the correct behavior at runtime. Fields of a struct containing values will
be cloned or copied to the new struct. Any references it contains can safely
point to the same data since Rust’s ownership system ensures that any of
their contents will remain unchanged.

Conditional Evaluation However, another issue arises with this encoding
when old expressions are evaluated conditionally. This situation arises when
a contract contains explicit branching, for instance, if-else or match state-
ments, or due to short-circuiting of Boolean expressions.

To illustrate, we will consider a function – whose signature and specification
are presented in Listing 3.8 – that removes an element from a vector if the
provided index is within bounds.

If we attempt to naively evaluate and store the contents of the old expres-
sion before calling this function, we encounter a panic if the index is out of
bounds. To resolve this issue, we adopt a translation strategy proposed in
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the Master’s thesis by Mayer [4]. The fundamental premise of this trans-
lation is that old expressions can be rewritten by “pushing” them inwards
until they are only applied to the parameters of the function the contract
was attached to. For example when dealing with an expression of the form
old(E(p1, .., pn)) where E is an arbitrary expression and pi are the parame-
ters of the parent function occurring within this expression, it is equivalent
to E(old(p1), .., old(pn)).

While providing a formal proof for this equivalence applied to Rust ex-
pressions in Prusti is beyond the scope of this thesis, we offer an informal
argument below. Prusti’s contracts require that every function call within a
specification is pure. This implies that they are devoid of side effects and
are deterministic. Consequently, we can interpret E as a function. Given
this interpretation, it is implicit that the result of evaluating E is solely de-
pendent on the values of its input parameters, as no external state or side
effects influence the evaluation. Therefore, the equivalence of evaluating
each parameter of the expression in its old state, i.e., E(old(p1), .., old(pn)),
and evaluating the whole expression in its old state, i.e., old(E(p1, .., pn)), is
a logical consequence of the purity constraints imposed by Prusti’s contracts.

Under this assumption the contract for our prior example is rewritten to:

#[ensures(index < old(v).len() ==> old(v)[index] == result)]

After rewriting specifications according to this rule, the task of storing old
expressions in their old state becomes more straightforward. Instead of eval-
uating potentially critical operations, we simply clone all function parame-
ters that are used within an old expression. The downside of this approach
is that any function parameters used within an old expression must imple-
ment Clone. Cloning the full argument might result in the duplication of
large regions of memory, adversely affecting the performance of the pro-
gram.

A call to the function remove from our previous example will be translated
as follows2:

let old_v = v.clone();
let old_index = index.clone();
remove(v, index);
assert!(

index < old_v.len() ==> old_v[old_index] == result
);

Encoding Move Semantics Note that we technically would not have to
clone the variable index in our previous example, since it is not a mutable
reference and it implements Copy. Without cloning it, however, if that value

2The fact that implication is not valid Rust syntax and not allowed outside of specifica-
tions is ignored for simplicity
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was moved into the function instead of being copied, we would no longer
be able to access it after the call since ownership is transferred to the callee.
However, this problem is not specific to values that are used within old ex-
pressions, it applies to any moved value used in a specification! Addition-
ally, a non-reference value can be modified within the called function. If this
variable occurs within a function’s postcondition or pledge, the specification
refers to the variable’s value before the function was called. This is part of
Prusti’s logic because non-reference values do not have a post state. There-
fore, if a user refers to such a parameter in a postcondition or pledge, Prusti
automatically interprets this as an old expression for user convenience.

So even if we were able to access the argument we no longer own, it might
not contain the correct value anymore. Listing 3.9 showcases this problem.
The program, absent the added assertion, is successfully verified by Prusti.
The runtime check we generate with our current translation fails compila-
tion because s becomes inaccessible. Yet, more crucially, even if it would
successfully compile, the check would fail due to the modification in the
length of s occurring within the function.

Listing 3.9 Example of function consuming its input and modifying it, with
an incorrect runtime check.
#[ensures(result.len() == s.len() + extension.len())]
fn extend(mut s: String, extension: &str) -> String {

s.push_str(extension);
let result = s
assert!(result.len() == s.len() + extension.len())
s

}

Consequently, moved values in a postcondition or pledge must also be
stored in their old state. Even in instances where values are not used within
an old expression, for correct runtime evaluations, they need to be treated
as such.

A correct runtime check for a call of the previous function has to be trans-
lated as follows:

let old_s = s.clone();
let result = extend(s, t);
assert!(result.len() == old_s.len() + t.len())

Although the parameter s is not used within an old expression, we still eval-
uate it in its old state. Note that this latest adjustment to the translation is
only applied to postconditions and pledges. Inline assertions operate within
a different scope, and any function parameters used within them must be
evaluated in their current state unless they are part of an old expression.
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Listing 3.10 Translations of quantifiers to checkable expressions, assuming
domain of type can be iterated over.
// forall(x: T expr(x))
{

let mut holds_forall = true;
for x in dom_T {

if !T(expr(x)) {
holds_forall = false;
break;

}
}
holds_forall

}

// exists(x:T expr(x))
{

let mut exists = false;
for x in dom_T {

if T(expr(x)) {
exists = true;
break;

}
}
exists

}

Quantifiers

As presented in Chapter 2, Prusti supports both universal and existential
quantifiers. Bound variables are constructed as arguments of a closure and
must be annotated with a type. In this discourse, quantifier triggers will be
disregarded. To simplify the translation, we first note that a quantifier with
multiple arguments can be rewritten as a series of nested quantifiers when
ignoring triggers. For instance, consider the quantifier:

forall(|x:T, y:S| expr(x,y))

which can be rewritten as:

forall(|x:T| forall(|y:S| expr(x,y)))

Moving forward, we will restrict our considerations to quantifiers with a
single argument. To rewrite a quantifier as an expression that can be eval-
uated at runtime, we must traverse the values of its domain. Assuming
that all the values of a domain are contained in an Iterator named dom T,
we can rewrite quantifier expressions as shown in Listing 3.10. Leverag-
ing Rust’s functional characteristics, enclosing these blocks of code within
brackets allows us to use them as subexpressions in any overarching Boolean
expression. Consequently, this translation supports nested quantifiers as
well. Subsequently, our focus shifts to devising a strategy that enables the
traversal of all the values within a domain.

Types The bound variables of a quantifier are always annotated with a
type to define their domain. For the iteration over every value within the
domain of a primitive integer type T, we can simply instantiate the variable
dom T of our previous translation with the range T::MIN..=T::MAX. While
other types are supported by Prusti, our translation does not support them.
The reasons for this will be laid out in Chapter 4 and possible extensions
will be discussed in Chapter 6.
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Bounds The process of iterating over all values of a type’s domain is highly
inefficient. Especially for nested quantifiers or quantifiers over large types,
performing runtime checks will oftentimes be infeasible in practice. How-
ever, it is very common for developers to specify bounds on the expression
used within a quantifier. Although Prusti does not currently support ex-
plicit declaration of quantifier bounds, it is oftentimes possible to infer them
from the contained expression.

In Prusti, bounds over universal quantifiers are typically defined by using
implications, declaring that a condition needs to be met only if a certain
bound condition is satisfied. For instance, to make assertions about the
contents of a collection, specifications are generally formulated as:

forall(|i: usize| i < v.len() ==> check(v.lookup(i)))

Since implications are vacuously satisfied for all values not meeting the
bound condition, checking values outside of the bounds at runtime is un-
necessary. In the given example we can limit dom T to the range 0..v.len().
Similarly, the domain of an existential quantifier is usually limited using a
conjunction of bound conditions and the condition to be checked itself. Our
strategy is to derive a lower and an upper bound for each quantifier if pos-
sible, to then iterate over the range between them.

3.2 Verification-based optimizations

In this subsequent segment of the thesis, the objective is to exploit the addi-
tional information introduced through the annotation of contracts combined
with the advanced verification capabilities of Prusti to enable optimizations
that may be unattainable for a conventional compiler.

3.2.1 Dead Code Elimination

By adjusting Prusti’s encoding of Rust programs, we can employ it to pin-
point unreachable code. More precisely, the statement prusti refute!(false)
will result in a verification error if it is located in an unreachable segment.
By embedding a refutation of false at the beginning of every block of code
that is the target of a branching operation, we can identify blocks that are un-
reachable, subsequently allowing their removal by simplifying or removing
the branching structures. Listing 3.11 showcases the encoding of a match
statement with one unreachable arm due to the function’s precondition.
Prusti will report an error for the refutation on line 13, which allows us
to remove this branch.
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Listing 3.11 A function with an unreachable match arm (because of its pre-
condition), with added refutations to detect unreachable code.

1 #[requires(x % 2 == 0)]
2 fn foo(x: i32) -> i32 {
3 match x {
4 x if x % 4 == 0 => {
5 prusti_refute!(false);
6 3
7 },
8 x if x % 7 == 0 => { // this case can be removed!
9 prusti_refute!(false);

10 6
11 },
12 _ => {
13 prusti_refute!(false);
14 0
15 }
16 }
17 }

3.2.2 Removing Unneeded Checks
Rust performs a variety of checks at runtime to ensure memory safety and
prevent undefined behavior. Examples include overflow checking for cer-
tain operations or boundary checks during the access of arrays or slices.
Frequently, Prusti is able to prove that these operations are secure, deem-
ing the associated check redundant. In such instances, we can remove these
checks and modify the checked operations into their unchecked equivalent.
The explanations of these optimizations are specific to the MIR, which is
why most information regarding this topic will be presented in Chapter 4.
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Chapter 4

Implementation

4.1 Runtime Checks

For the insertion of runtime checks into the produced executables, we make
modifications on two stages of the compilation. In particular, we modify
Rust’s AST using macros and the MIR by overriding compiler queries. We
rely on the modifications to both representations because each of them offers
certain advantages.

The AST is modified to generate functions that can be used to check spec-
ifications and translate expressions. The advantages of modifying the AST
are that generating a lot of new code is significantly less tedious and our
generated code will still be type and memory safe. The nested structure of
expressions in the AST additionally facilitates translations that would be a
lot more challenging during later stages.

On the MIR level we will, among a few other things, identify function decla-
rations and calls with associated contracts and insert calls to the previously
generated check functions. The advantages of making modifications at this
stage include:

• All names are resolved and full type information is available.

• The control flow is explicit and the compiler offers functionality to
analyze it.

• Expressions and Statements are simpler since they are no longer nested.

• The borrow checking information is available.

An overview of the performed modifications is shown in Figure 4.1.
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Figure 4.1: Illustration of the modifications performed in the compiler
pipeline.
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4.1.1 AST Rewriting

Using Rust macros, we can modify the AST of a program during macro
expansion. As discussed in Chapter 2, Prusti’s contracts are used to gen-
erate specification functions using procedural macros. Prusti uses attribute
macros like #[ensures(..)] which are attached to functions and function-
like macros for inline assertions. We will first deal with the translation of
contracts defined via attribute macros.

Again, we will use a function T to model the rewriting of expressions within
contracts while first discussing the different kinds of contracts.

Function Generation

Analogous to the manner in which Prusti generates specification functions
for each contract attached to a function (Section 2.2.1), we generate check
functions for each specification we intend to check at runtime. Unlike spec-
ification functions which are solely utilized for verification purposes, check
functions are designed to be executed and are intended to test their corre-
sponding contracts. At this stage, these functions will only be declared but
no calls to them will be inserted into the program.

The functions we generate to check contracts attached to a function are gen-
erally of the form:

#[spec_only]
#[check_only]
fn check_uuid(inputs) {

let mut error_message =
"Contract 'expr' was violated at runtime";

if !(T(expr)) {
panic!(error_message);

}
}

The main challenges of this translation involve generating a function sig-
nature that gives access to all important data such as the result and values
of parameters in their old state, and generating an expression that can be
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checked at runtime given the contents of the contract by implementing the
rewriting function T.

The signature of a check function depends on the parameters of the func-
tion they are attached to and the kind of contracts they are checking. All
check functions inherit all the parameters (including generic type parame-
ters) from the function they are attached to. This already resolves the nam-
ing issue that we discussed in Chapter 3, since parameters have the same
names as the variables occurring within the checked expression. For each
pre- and postcondition, one check function is generated. For a pledge we
generate two check functions, one for its left-hand side and another for its
right-hand side. The error message that is passed to the panic macro is a
string containing the source code of the expression that has failed at run-
time.

All function names contain a UUID, allowing us to link them to the function
they were attached to. Additionally, certain attributes are added to each
check function, not all of which are shown in the above example. For in-
stance, the attribute #[spec only] is used to stop Prusti from attempting to
verify such functions.

In the following, we look at the implementation of the translation of Prusti
specifications.

Result

The result keyword can be used in postconditions and the left-hand side of
pledges. To handle it, we extend the set of parameters for the check function
of these contracts with a parameter of the same name. No modifications to
the expression to be checked itself are necessary.

Old Expressions

To check contracts containing old expressions at runtime, we make modifi-
cations to both the check function’s signature, as well as to the expression
to be checked. The signature of the check function is extended with an
old values tuple with the same number of fields as the associated function
has parameters. The i-th field of this tuple either has the same type as the
i-th parameter of the function or is of type unit if the corresponding param-
eter never needs to be evaluated in its old state. The purpose of the unit
types in this tuple is to reduce the memory overhead introduced by cloning
arguments unnecessarily and to allow easy identification of the required
parameters in the later stages of the translation.

To illustrate, we use the example shown in Listing 4.1. We first translate
the contents of the given contract to an expression that can be evaluated at
runtime. At first, at least conceptually, old expressions are moved “inwards”
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Listing 4.1 An example function with a postcondition and multiple argu-
ments.
#[derive(Clone)]
struct Simple(i32);

#[ensures(old(a.0 + b.0) == c.0)]
fn foo(a: &mut Simple, b: &Simple, c: Simple) {..}

according to the equivalence outlined in Chapter 3. For instance, in our
running example, the contract would be rewritten to:

old(a).0 + old(b).0 == c.0

Afterward, we traverse the AST of the expression to be checked. For each
encountered identifier, we determine whether it should be evaluated in its
old state. We apply the previously discussed rules as follows:

• If the identifier is not one of the function’s parameters, we leave it
untouched in all cases.

• If the identifier is one of the function’s parameters but is an immutable
reference, we leave it untouched as well. Evaluating it in its old state is
unnecessary because in the absence of interior mutability the contents
of this reference cannot be modified. For instance, this rule applies to
the example function’s parameter b, where the old expression around
old(b) can consequently be removed.

• If the identifier is used within an old expression, referring to a param-
eter that is not an immutable reference, we replace it with an access
to the correct field of the old values tuple. In particular, if an iden-
tifier a i refers to the i-th argument of the function the contract is
attached to, then the expression old(a i) will be replaced with the
tuple access old values.i. In our example, this rule applies to the
function parameter a, where the expression old(a) will be replaced
with old values.0.

• If the identifier is a function parameter and is not a reference, we have
to assume that it is a moved value and therefore also evaluate it in
its old state, even if there is no old expression surrounding it. The
rewriting to a tuple access is done as explained before. In our example,
this rule applies to the function parameter c, where the identifier will
be replaced with old values.2.

Note that to determine the type of a function parameter, we can only rely
on the information that can be extracted from the tokens of the type anno-
tations of a function signature. No type or name resolution has taken place
in this phase of the compilation. We only recognize references as such, if
their type annotation starts with an &. This results in two problems, the first
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of which is that we have to assume that all non-reference types are moved
even though some of them might implement Copy, resulting in unnecessary
cloning. The second problem occurs in the presence of type aliases, which
can hide details of a type we rely on. For a type alias containing an im-
mutable reference, this only leads to unnecessary cloning, since we interpret
these types as potentially moved values. For mutable references, however,
this can cause inconsistencies in our runtime checks, which is a bug that we
have not been able to resolve yet. A possible solution would be to resolve
old expressions completely in the MIR instead of the combined solution we
currently employ.

Pattern matching within function signatures is not supported by our current
approach. For example, if a function signature contains an argument of the
form SomeStruct{a, b}: SomeStruct, we are not able to translate usages
of the variable a to an access of the old values tuple.

Applying all of the previously discussed rules to our current example results
in the expression translated to:

old_values.0.0 + b.0 == old_values.2.0

Since only a and c are used in their old state the type of the old values
tuple in the check function signature is:

(&Simple, (), Simple)

The complete check function being generated in this example looks as fol-
lows:

fn check_uuid(a: &mut Simple, b: &Simple, mut c: Simple, result: (),
old_values: (&Simple, (), Simple)) {↪→
if !(old_values.0.0 + b.0 == old_values.2.0) {

panic!(error_message);
}

}

As long as this function is called with the correct arguments, this will per-
form a correct check of the contract in question. The responsibility to clone
arguments, invoke the check functions, and pass the correct arguments will
all be resolved via modifications of the MIR.

Quantifiers

The implementation for the translation of quantifiers follows the translation
we outlined back in Section 3.1.2, in particular the translation displayed in
Listing 3.10. As mentioned, we limit the set of types to primitive integer
types. In particular these include all unsigned integers (u8, .., u128, usize)
and signed integers (i8, .., i128, isize).
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Bounds Extraction To make runtime checks of quantifiers more efficient,
we try to derive bounds outside of which checking the expression under
analysis is unnecessary.

When dealing with a universal quantifier, we will first try to isolate the
expression that potentially contains its bounds. If the body of the quantifier
is of the form !e1 || e2, which is what an implication is turned into by
the preparser (Section 2.2.1), then e1 is the expression we use for trying to
extract a bound. For existential quantifiers, the expression that potentially
contains bounds is the quantifier’s body itself.

In the following, we will assume that the variable in a quantifier is named
x. To collect a set of bounds, we walk the AST of the expression recursively
while following a set of rules as shown in Algorithm 1. The operation ◦ rep-
resents an integer comparison out of ≤, <, ≥ or >. A lower or upper bound
is generated for each subexpression of the form x ◦ e1. For conjunctions,
we process each conjunct separately to try and derive multiple bounds. If
we encounter a negated expression, the bound derived from that expres-
sion has to be inverted. However, if a negated expression contains further
conjunctions, we cannot extract bounds from this expression. Otherwise an
expression like !(x < 5 && x > 10) would result in us deriving a lower
bound of 5 and an upper bound of 10, although the expression is valid for
all values of x.

Algorithm 1 The recursive bound extraction process.

1: function extract(e)
2: if e = x ◦ e1 then
3: return [bound(e1, ◦)]
4: else if e = a && b then
5: return extract(a) ⊕ extract(b) ▷ List conjunction
6: else if e = !a ∧ ¬is conjunction(a) then
7: return invert(extract(a)) ▷ Invert bound
8: else
9: return [] ▷ Empty list

10: end if
11: end function

Note that this extraction and translation strategy does not work for quanti-
fiers with multiple arguments. Consider the following example, specifying
that v is a sorted collection:

forall(|i: usize, j:usize| i < j && j < v.len() ==> v[i] <= v[j])

With our implementation, we would try to create two nested loops iterating
over possible values for i and j. For i we would determine j as its up-
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per bound, however, if the outer loop iterates over i, then j will not even be
defined yet. To solve this, our implementation would have to detect the tran-
sitive relation of i and v.len() since the correct range for i is 0..(v.len()
- 1).

At the end of this process, we receive a set of bounds. For us to accept an
extraction and generate runtime checks for them, we define some rules to
ensure the encoding is correct, but also to protect the user from checking
contracts that might run forever. We can have at most one upper and one
lower bound for each quantifier. The range we loop through will be of the
form lower..upper. If we found a lower bound for our quantifier, then
lower will get the value of this bound, otherwise we use Type::MIN. The
same thing is done for the upper bound, with a default value of Type::MAX
instead. To make sure users do not generate runtime checks that run forever,
we also require that any type larger than 8 bits must always have exactly one
upper bound, and if these types are signed they also need a lower bound.

While there are better solutions and many interesting possible extensions of
this implementation, they were unfortunately out of the scope of this thesis.
Extracting the bounds of quantifiers is a similar problem to inferring invari-
ants for loops with numeric iteration variables, which has been extensively
studied in the literature. An important thing in this context is also, that
a user should easily understand which cases are supported and which are
not. Many solutions we considered would still only solve this problem for a
specific subset of cases.

Manual Bound Annotations It is apparent that our bound extraction, as
defined, is very limited. For quantifiers to be checked at runtime, they can
only have one argument and their body must have the previously described
structure for us to derive bounds. To give users more power when runtime
checking quantifiers, we added a new custom attribute that quantifiers can
be extended with, to manually declare the range for the runtime checks of
a quantifier. An example of such an annotation – as it would be required to
correctly check our previous example – is shown in the following:

forall(
#[runtime_quantifier_bounds(0..=v.len()-1, i+1..=v.len())]
|i: usize, j:usize| i < j && j < v.len() ==> v[i] <= v[j]

)

The arguments passed to this custom attribute will be used to generate the
loop ranges of our translation. Their correctness is the responsibility of the
user and will not be checked, but would be an interesting extension of this
feature. By verifying that the negation of the imposed bound implies the
body of the quantifier, we could be certain that no values outside of the
bound can violate the condition.
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Ownership and Freeing Memory

When considering how the check functions we are generating in this section
will be invoked, there are some clear problems regarding ownership. For
example, consider the following simple function with a precondition:

#[requires(v.len() == 5)]
fn foo(v: Vec<i32>) {..}

The check function that will be generated for this function will have the
following signature:

fn check_pre_foo(v: Vec<i32>) {..}

If we encounter a call to this function and want to check its precondition,
the check function would have to be invoked as follows:

let v = vec![1,2,3];
check_pre_foo(v);
foo(v);

The borrow checker would not accept this program, since v is moved into
both functions. However, as we will see later, we are able to bypass this
and still invoke both calls. When dealing with Copy types or references, this
is safe since the check function only checks pure contracts. Additionally,
non-reference arguments are only accessed through the old values tuple
in check functions. The problem with moved values located on the heap,
however, is that the check function will free the moved region. The function
itself, foo in our example, will do the same and try to free v a second time,
leading to undefined behavior.

To avoid this, we stop check functions from freeing any of the arguments
they inherited from their parent function, by invoking core::mem::forget
on all of them.

However, this does not solve the problem completely. In cases where the
specification expression moves the argument further, the call to forget re-
sults in a ”use after move” error. We found that, nevertheless, this approach
of forgetting arguments allows more contracts to be checked. A proper solu-
tion would require substantial changes in our approach, either disallowing
specifications from capturing values completely – which would severely re-
strict the expressiveness of contracts – or abandoning the idea of generating
check functions and checking contracts purely with modifications in the MIR
instead.

Inline Assertions

Inline assertions are processed using function-like macros, as opposed to
the attribute macros we considered in the previous section. For that reason,
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Listing 4.2 Extension of Prusti’s encoding of inline assertions for runtime
checking.
prusti_assert!(expr); if false {

... // original Prusti branch
} else if true {

#[check_only]
#[spec_only]
|| -> bool { true };
let mut error_message = "..";
if !(T(expr)) {

panic!(error_message);
}

}

instead of generating check functions for these kinds of specifications, we
extend the original encoding of Prusti as shown in Listing 4.2.

The second branch of this encoding added to the original translation of
Prusti if an inline assertion is checked at runtime. The closure that is defined
at the beginning of this branch is used to mark this block with attributes that
can be identified on the MIR level. Firstly, we can use it to mark this branch
as specification only with the #[spec only] attribute, so it does not influence
Prusti’s encoding and verification. Secondly, it is used to mark this block as
a check block, allowing us to make further modifications on the MIR level
later.

The important difference is that when a procedural function-like macro like
prusti assert!(expr) is expanded, we only operate on the tokens directly
passed to it and have no access to the tokens of the function it is called
from. Most importantly, we cannot determine which of the identifiers oc-
curring within the passed expression are function parameters, which is a
problem for evaluating old expressions. In this setting, we cannot rely on
an old values tuple, since we cannot derive its type. Instead, we shift the
effort for resolving old expressions to the modifications we will be making
on the MIR level and leave old expressions untouched in this phase. The
translation of quantifiers still happens exactly as for function-level specifica-
tions.

Predicates

In the original state of Prusti, predicates could not be evaluated at runtime
because their content is moved into a specification function and their body is
replaced with an unimplemented statement. To enable the use of a predicate
within specifications that are checked at runtime, we have to replace the
body of the predicate with its translated content. Since old expressions
cannot be used within predicates, only quantifiers will be rewritten here.
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Error Reporting

The error messages as we described them so far allow a user to identify
which contract has failed at runtime. In this section, we further adjust the
translation of expressions to offer more precise error messages in the context
of conjunctions. If a universal quantifier or a series of “and” operations
yield a false result, there is a single sub-expression or condition within the
sequence that is responsible for the overall falsehood1.

To identify the failing conjuncts and improve the generated error message,
we define the following function check expr:

pub fn check_expr(expr: bool, added_info: &str, message: &mut String)
-> bool

{
if !expr {

message.push_str(added_info);
false

} else {
true

}
}

This function will extend the error message we report to the user with the
information contained in added info if the expression that is passed to it
yields false, and subsequently returns the Boolean value that was passed to
it. A conjunction of the form a && b can be rewritten to:

check(a, "a was violated", &mut error_message)
&& check(b, "b was violated", &mut error_message)

Evaluating this expression has the same result as the original, but will ex-
tend the error message we report to the user with more precise information.
Similarly, we extend the failing branch of a universal quantifier with a modi-
fication to the error message string as well, reporting the value of the bound
variable for which the quantifier was violated:

for x in .. {
if !expr {

error_message.push_str(
format!("'expr' was violated for index x={}", x).as_str()

);
holds_forall = false;
break;

}
}

These modifications are only applied to the outermost chain of conjunctions
of an expression. For instance, when translating the expression !(a && b),

1While multiple sub-expressions might be false, the evaluation stops after encountering
the first one due to short-circuiting and our translation of forall.
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the contained conjunction will be left untouched since an error message
stating that a or b was violated might be more confusing than helpful.

4.1.2 MIR Modifications

In this section we will discuss how modifications to the MIR are made in
general, and subsequently how we can leverage this capability to properly
check contracts at runtime.

As mentioned previously, the MIR of a program can be modified by
overriding a specific compiler query. However, the Rust compiler in-
terface did not quite support the modifications required for our pur-
poses at the time we started this thesis. In the Rust compiler inter-
face’s original state, if we wanted to modify the result of the query
mir drops elaborated and const checked, we would first invoke the so-
called base query to get the original result of the query and then modify it.
For our purposes, however, we had a few requirements.

Firstly, we do not want to modify the result of the mir promoted query, since
its result is used for Prusti’s encoding and modifications would influence its
result.

Secondly, we rely on the results of the borrow checker, in particular the
information about expiration locations. For this information to be com-
puted, mir promoted must have been constructed already. Once a MIR
phase is constructed, we can no longer modify it since its result is cached.
Looking at the compiler pipeline, this would lead us to the conclusion that
mir drops elaborated is the query that should be modified. However, the
representation obtained through the base query has already gone through
various MIR passes and the information about expiration locations from the
borrow checker is no longer accurate for this representation. Also, any in-
formation obtained through verification relating to specific MIR locations
(which will be important in the last section of this chapter) might now be
offset as well.

Instead of relying on base queries, we have to be able to fully re-implement
the mir drops elaborated query. This would allow us to invoke the
mir promoted query and steal it, then perform our own modifications, and
finally perform the checks and passes that the compiler performs. Initially,
this was not possible, since the processing done by the compiler was not
accessible through the compiler interface. We opened a PR2 for the Rust
compiler that exposes this functionality, which was eventually accepted.

With the capability to modify the MIR, we can now discuss how the pro-
grams generated by our translation need to be further modified for contracts

2PR: https://github.com/rust-lang/rust/pull/114628
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to be correctly checked at runtime. Our overridden query is automatically
invoked by the compiler for a specific item. Modifications are necessary if
the item itself has pre or postconditions to be checked, or if its body con-
tains calls to functions with any checked contracts or inline assertions. In
the following, we will explain the modifications that are required for each
of these cases.

Empty Start Block

When we create new blocks, they will always have the highest index within
the current CFG. Since certain modifications require us to add basic blocks
at the start of the function, before any of its actual code is executed, we move
the original starting block at index 0 to a new block. Instead, we place an
empty block at the start index with a Goto terminator jumping to the original
start block. Additionally, we also adjust all terminators in the remaining
body that point to block 0. This is more of a precaution since the starting
block does usually not have back edges. This will later allow us to add
blocks at the beginning of the function, i.e. right after our empty “dummy”
block, by simply adjusting its terminator instead of having to move blocks
around and constantly having to adjust other terminators pointing to blocks
that were moved.

Even though modifications of this nature make the CFG more complex by
adding empty, technically unnecessary blocks, they will eventually be opti-
mized away again by later passes of the compiler.

Preconditions

Given the body of a function, we first check if the function itself has pre-
conditions that should be checked. If that is the case, we create a new block
that contains a Call terminator to the check function of each precondition.
The arguments of the current function are simply forwarded to the check
functions and no additional arguments are required. The targets of each
terminator need to be arranged such that they build a chain of calls where
the final call jumps back to the actual function after terminating. Afterward,
we set the target of the dummy block to the start of that chain. An example
of an empty function with two preconditions and its modified MIR body is
shown in Figure 4.2

Subsequently, we traverse the body of the function and look for Call termi-
nators. Calls to local functions3 can safely be ignored since their precondi-
tions will be checked within their body. For all other calls, we also check
if they have any preconditions to be checked. To prepend a precondition
check to a call, we modify the MIR as shown in Figure 4.3. In this example,

3Functions which are part of the same crate
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Figure 4.2: Insertion of calls to check functions into function body with two
preconditions.

#[requires(x == 42)]
#[requires(y == 42)]
fn foo(x: i32, y: i32) {}

fn foo(_1: i32, _2: i32) -> ()
debug x => _1;
debug y => _2;

0

goto

3

_4 = pre_check_foo_2(_1, _2)

1

_0 = const ()

goto

4

return

2

_3 = pre_check_foo_1(_1, _2)

return

return

the call to unwrap has a precondition to be checked. Indeed, checking the
precondition of unwrap is rather redundant, as the function itself conducts
the same check internally. First, we create a new block (block 4 in the exam-
ple) and move the original call into the new block. Afterward, we replace
the terminator of the original caller block with a call to the check function
and pass it the same arguments as the original call was invoked with. The
target block of the check call is the newly created block.

With these modifications in place, each call to a function with a precondition
will be checked correctly at runtime.

Postconditions

For postconditions, we currently only extend calls to functions with a post-
condition with runtime checks, as opposed to inserting checks into the func-
tion body as well. Similarly to how we handle preconditions, we first tra-
verse the CFG of an item and try to identify calls to functions with post-
conditions to be checked. The necessary modifications are slightly more
involved in this case since the check function might require some of the ar-
guments in their old state. Additionally, values that are cloned manually via
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Figure 4.3: Prepending of check function for an external call with a precon-
dition into MIR, before (left) and after (right).

0

_1 = std::option::Option::<i32>::Some(const 5_i32)
_3 = _1

_2 = std::option::Option::<i32>::unwrap(move _3)

1

_0 = const ()

return

return

2 (cleanup)

resume

unwind

1

_0 = const ()

return

2 (cleanup)

resume

0

_1 = std::option::Option::<i32>::Some(const 5_i32)
_3 = _1

_4 = PrustiOption::<i32>::pre_check_unwrap(move _3)

4

_2 = std::option::Option::<i32>::unwrap(move _3)

return

return unwind

modifications of the MIR also need to be dropped again. At this stage, the
compiler no longer automatically ensures that memory is properly cleaned
up.

The modifications made can be summarized as follows:

• Before the function with a postcondition is called, clone its arguments
if they are required in their old state.

• Call the actual function, as it occurred in the original MIR.

• Invoke the check function with the correct arguments, which now also
include result and old values.

• Drop the values that we cloned to free their memory.

To identify which arguments need to be stored before invoking the function,
we analyze the signature of the check function, or more specifically the type
of its old values parameter. Recall that the old values tuple contains fields
for each function parameter, where the type of each field is either the unit
type or the type of the corresponding parameter, depending on whether its
value is required. Consider the example shown in Listing 4.3 of the wrapper
function remove that removes an element from a Vector. The modifications
made to the MIR for a call to this function are shown in Figure 4.4.

The type of old values for the generated check function is:
old_values: (&Vec<i32>, ())

Therefore only the first argument passed to the function call needs to be
cloned, which is the local 9 in our current example. As seen in the modified
graph, we first clone the local 9 into a new temporary variable (block 3) and
then store a reference to the result in a new local to match the type of the
original value.

In block 5 we then construct the old values tuple before calling the remove
function, where its result is assigned to the local 8. Afterwards, the post-

44



4.1. Runtime Checks

Listing 4.3 Example function with postcondition.
#[trusted]
#[ensures(result == old(lookup(v, i)))]
fn remove(v: &mut Vec<i32>, i: usize) -> i32 {

v.remove(i)
}

Figure 4.4: Insertion of a postcondition check into MIR for a function call,
shown before (left) and after (right)

1

statements before

_8 = remove(move _9, const 2_usize)

2

..

return

1

statements before

goto

3

_14 = <std::vec::Vec<i32> as std::clone::Clone>::clone(move _9)

2

_0 = const ()

drop(_1)

7

goto

8

drop(_14)

6

_12 = post_check_remove(move _9, const 2_usize, move _8, move _11)

return

5

_11 = (move _13, const ())

_8 = remove(move _9, const 2_usize)

return

4

_13 = &'_ mut _14

goto

return

return

condition is checked by invoking the check function (block 6). The provided
arguments consist of the arguments that were also passed to remove, the
result ( 8), and the tuple we generated for the old values ( 11).

Finally, we de-allocate the values we cloned earlier using the Drop terminator
if necessary, as seen in block 8. Whether or not a value needs to be de-
allocated depends on two factors. First of all, a value must only be dropped
if it is located on the heap, which can be determined using the compiler
interface. Secondly, if the value is not passed by reference but moved into
the check function, then the check function will free it. Dropping the value
again, after the check function has returned, would result in a double-free
and lead to undefined behavior.
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Pledges

For the insertion of runtime checks for pledges, we rely on the information
of the borrow checker, in particular, the information derived through the
Polonius algorithm. Prusti already uses this information and provides a
suitable interface to determine the expiration locations of loans. We depend
on a subset of its functionality, which we will shortly explain here:

• get call loan at location: If a location in the MIR contains a call
to a function that returns a reference, this function will give us the
identifier for the loan associated with the returned reference.

• get loans dying at: Given a location in the MIR, this function will
return all the loans that expire exactly after this location.

• get loans dying between: Given two locations in the MIR with the
second location being a successor of the first one, this function will re-
turn the list of loans expiring between them. Note that for a statement
s1 and its successor s2, invoking info.get loans dying between(s1,
s2) yields the same result as get loans dying at(s1) However,
for terminators with multiple targets and therefore multiple suc-
cessor locations, a loan might only expire on a specific edge. In
that case, get loans dying at will not contain this loan, whereas
get loans dying between provides us with more precise information.

As previously mentioned, pledges can only be checked at the call site. In all
examples, we will consider calls to the function get mut shown in Listing 4.4
that we have already seen in previous examples.

We will first consider the simple example shown in Listing 4.5. The cor-
responding MIR is shown in Figure 4.5. In Chapter 3 we described how
the source code would have to be modified to check this pledge, now we
describe how the equivalent modifications can be applied to the MIR.

Listing 4.4 Example of a pledge function.
struct Percentage(usize);

impl Percentage{
#[assert_on_expiry(

*result <= 100,
before_expiry(*result) == self.0 && self.0 <= 100

)]
fn get_mut(&mut self) -> &mut usize {

&mut self.0
}

}
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Listing 4.5 Simple call to pledge function defined in Listing 4.4
let mut p = Percentage(42);
let r = p.get_mut();
*r = 55;
// expiration location
p.0 = 66;

Figure 4.5: Simplified MIR of Listing 4.5 before modifications (left) and after
(right)

1

_1 = Percentage(const 42_usize)
_3 = &'_ mut _1

_2 = Percentage::get_mut(move _3)

2

(*_2) = const 55_usize
(_1.0: usize) = const 66_usize

..

return

2

_6 = _2
(*_2) = const 55_usize

goto

6

switchInt(_7)

3

(_1.0: usize) = const 66_usize

..

12

goto

11

_8 = pledge_check_rhs(move _3, move _6, move _4, move _5)

return

10

_9 = pledge_check_lhs(move _6, move _4)

return

9

_5 = (move _10,)

goto

8

_10 = &'_ mut _11

goto

7

_7 = const false

_11 = <usize as std::clone::Clone>::clone(move _6)

return

3

otherwise

5

_4 = (const (),)

_2 = Percentage::get_mut(move _3)

return

4

_7 = const true

goto

1

_1 = Percentage(const 42_usize)
_3 = &'_ mut _1

goto
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The function get mut is invoked at the location bb1[2], and we obtain
the pledge associated with this call using get call loan at location.
Afterward, we look for the expiration locations of this loan using
get loans dying at for each location of the MIR, in this case returning the
location bb2[0], the location where the last assignment to the returned refer-
ence occurs and right before self is accessed again. The check of the pledge
needs to occur between these two statements, which is why this block is
split into blocks 2 and 3 in the modified MIR.

Block 4 is added before the call to get mut, assigning true to the local 7
to set the guard associated with the pledge. Additionally, in block 5 we
construct the old values tuple 2 which is empty in the current example.
Otherwise, the cloning of old values would also occur before the call of the
pledge function. After get mut has been called, we copy its result into a new
local 6 to handle the case where the result 2 is overwritten before the loan
associated with it expires. This can occur due to reborrowing as we have
seen earlier.

Between blocks 2 and 3 the actual checks are performed. The switchInt
terminator in block 6 makes sure the checks are only performed if the guard
7 is set. In block 7 the guard is set to false, and we clone the result of

get mut for the value of before expiry(result). Just like old values are
cloned before a function with a contract is invoked, we clone and borrow
the result of the function for the before expiry value before it expires in
blocks 7 and 8, and create the before expiry tuple in block 9. Afterward,
the left-hand side of the pledge is invoked in block 10, and the right-hand
side in block 11.

To show why the expiration locations obtained through get loans dying at
are not always sufficient, we consider another example using get mut as
shown in Listing 4.6. The unmodified MIR of this snippet is shown in Fig-
ure 4.6.

Listing 4.6 Conditional expiration of pledge defined in Listing 4.4.
fn foo(b: bool) {

let mut p = Percentage(50);
let mut r = p.get_mut(); // (L1)
if b {

// L1 expires here, if this path is taken
p.0 = 43;
r = p.get_mut(); // (L2)

}
*r = 62;
// either L1 or L2 expires here
p.0 = 32;

}
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Figure 4.6: The unmodified MIR of Listing 4.6.

0

_2 = Percentage(const 50_usize)
_4 = &'_ mut _2

_3 = Percentage::get_mut(move _4)

1

_6 = _1

switchInt(move _6)

return

6 (cleanup)

resume

unwind

2

(_2.0: usize) = const 43_usize
_9 = &'_ mut _2

_8 = Percentage::get_mut(move _9)

otherwise

4

_5 = const ()

goto

0

3

_7 = &'_ mut (*_8)
_3 = move _7
_5 = const ()

goto

return unwind

5

(*_3) = const 62_usize
(_2.0: usize) = const 32_usize
_0 = const ()

return

In this example, the loan L1 associated with the first call to get mut can
expire at one of the two locations bb1[5] or bb5[2]. The corresponding
locations in the source file are marked with comments. However, the loan
only expires at bb1[5], if the otherwise branch of the switchInt terminator
at this location is taken. Invoking get loans dying at(bb1[5]) will not
return L1, but by using get loans dying between(bb1[5], bb2[0]) we can
obtain this information. To find all expiration locations we therefore not only
check all locations of the MIR, but also each pair of switchInt terminators
and their successors.

To insert runtime checks for such an example, we need to adjust the
switchInt terminators targets and for the edges on which a loan expires,
we jump to our check blocks instead of its original target. The full trans-
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lation of this MIR is too involved to be discussed here, but the interested
reader can refer to Appendix A.1.

Note that inserting multiple runtime checks at different locations can render
other expiration locations invalid because of the modifications of the CFG.
To avoid this, all locations where modifications need to be performed are
first collected and sorted in decreasing order. Additionally, for the same
reason, the insertion of runtime checks for pledges is always the first modi-
fication that is performed, because the insertion of checks for other contracts
would lead to the expiration locations reported by the borrow checker being
wrong.

This example also illustrates why the guard of a pledge needs to be set
to false after it is checked. During execution, if the loan L1 expires after the
switchInt terminator, we will still come across the location bb2[0]. Without
the guard, the same pledge would be checked for a second time, long after
its expiration.

Inline Assertions

As opposed to the contracts we have seen so far, inline assertions are al-
ready inserted into the code as discussed in Section 4.1.1. However, if they
contain old expressions they will not be evaluated correctly without addi-
tional modifications in the MIR. Old expressions in Prusti are interpreted
as function calls by the Rust compiler. In the MIR we can identify these
calls, but since expressions are not nested anymore, it is harder to deter-
mine which locals were actually passed into the old expression. The task
to be solved consists of: finding calls to old within code blocks that were
marked as #[check only] and analyzing the arguments passed to old and
the locals they depend on, to properly clone the correct parameters of the
parent function and replace the correct locals with their clones in the correct
places.

The challenge of resolving old for inline assertions is illustrated in List-
ing 4.7 and the corresponding MIR blocks of the old calls in Figure 4.7. In
the function foo, the function parameter is used within the old expression
and should be evaluated in its state at the entry of the function, therefore
requiring some modifications. In the function bar on the other hand, the lo-
cally defined Boolean variable b is used within the old expression. Although
b is also computed using x, since b is not a function parameter, x should not
be evaluated in its old state. Finally, the function baz also uses a locally de-
clared variable b, but since x is declared within the old expression, it has to
be evaluated in its old state. Of course, this example is rather artificial, and
writing specifications in such a way is nonsensical. However, the similarity
of the MIR generated by these examples illustrates the challenge of differen-
tiating the three cases based on their CFG. Our goal is to identify the locals
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Listing 4.7 Three examples of old expressions in prusti assert statements.
#[requires(x == 50)]
fn foo(mut x: i32) {

x = 42;
prusti_assert!(old(x == 50));

}

#[requires(x == 50)]
fn bar(mut x: i32) {

x = 42;
prusti_assert!({let b = x == 50; old(b)});

}

#[requires(x==50)]
fn baz(mut x: i32) {

x = 42;
prusti_assert!(old({let b = x == 50; b}))

}

of function parameters that were actually passed into the old expression,
and eventually replace them with their clones.

To evaluate the correct parameters in their old state, we build a dependency
graph for each local that is passed to an old function. A local depends on
another, if there is an assignment to it where the other local occurs within its
right-hand side or if the local is the destination of a call and the other local
occurs within the arguments of that call. For each local defined in the MIR,
we have access to debug information, used to determine whether a local
belongs to a user-declared variable in the source code or if it is a temporary
variable generated by the compiler. Additionally, we also rely on the source
spans of the declaration of a local, telling us whether a variable was declared
within the old expression or outside of it. The dependency graphs for each
of the locals that are passed to old are shown in Figure 4.8.

To determine the necessary modifications, the dependency graph is tra-
versed starting at the local that was passed to the old function. If we en-
counter a constant or a variable that is user-declared and was not defined
within the span of the old call, we can stop searching in this branch. For
instance in the dependency graph for the function bar, we stop traversing
the graph at the local 12 and the constant 50. Since we did not encounter
any function parameters, this function does not require any modifications.
For locals that are not user-declared or declared within the span of old, we
visit the graph further. For example in the graph of baz, we encounter the
user declared local 12 representing the Boolean b. Since b was declared
within the old expression, we still visit the remaining dependencies. If we
encounter a dependency on a function parameter, we are now certain that it
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Figure 4.7: MIR blocks invoking the old function, for assertions as defined in
Listing 4.7.

fn foo(_1: i32) -> ()

4

_13 = _1
_12 = Eq(move _13, const 50_i32)

_11 = prusti_contracts::old::<bool>(move _12)

fn bar(_1: i32) -> ()

4

_12 = _1
_11 = Eq(move _12, const 50_i32)
_13 = _11

_10 = prusti_contracts::old::<bool>(move _13)

fn baz(_1: i32) -> ()

4

_13 = _1
_12 = Eq(move _13, const 50_i32)
_11 = _12

_10 = prusti_contracts::old::<bool>(move _11)

Figure 4.8: Dependency Graphs for the locals passed to old, built from the
MIR shown in Figure 4.7 and its debug information.
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baz( 1)
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needs to be evaluated in its old state.

Each function parameter that is used in its old state will be cloned into a
new local upon entry of the function. Then the uses of the original function
parameter will be replaced with the cloned function parameter in the MIR
locations where we detected the dependency. For example, assume that the
result of cloning 1 is stored in 2 in both functions foo and baz. In both
examples we would replace the first instruction 13 = 1 in Figure 4.7, with
13 = 2. This modification ensures the correct resolution of any old expres-

sions in inline assertions. Finally, if any of the cloned values are located on
the heap, we have to make sure they are dropped again before the function
returns. An example of the fully translated MIR for the function foo can be
found in Appendix A.2.

4.2 Verification-based Optimizations
To perform optimizations based on the result of verification, we em-
ploy the previously explained modifications to the MIR by overriding
mir drops elaborated and const checked. Now these modifications are
based on errors reported by Viper, which can be linked back to specific
MIR locations.

4.2.1 Dead Code Elimination

In Chapter 3, the idea of inserting prusti refute!() statements into the tar-
gets of branching operations was explained. Instead of inserting these refu-
tations into the actual Rust programs, they are inserted into Prusti’s Viper
encoding. The encoded Viper programs generated by Prusti are organized
in labeled blocks for each basic block in the MIR. If the optimizations of this
section are enabled, we extend this encoding with refute false statements
in each Viper block that is the result of encoding a MIR block that is the
target of a switchInt terminator.

Additionally, we need to ensure that Viper is configured to report all errors
it can detect and does not stop at the first error it encounters. After the
verification of the encoded Viper program has concluded, the errors gener-
ated by the inserted refute statements are filtered out, resulting in a set of
unreachable blocks for each verified item in the MIR. Other errors are still
reported to the user.

Once the mir drops elaborated query is invoked for a specific item, we
consult the list of unreachable locations to modify it accordingly. The only
necessary adjustments in the MIR are modifications of the jumplists of
switchInt terminators. For each switchInt terminator in the MIR, every
target in the jumplist is eliminated if it was previously marked as unreach-
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Listing 4.8 Example function with one unreachable match arm because of
its precondition.
#[requires(x % 2 == 0)]
fn foo(x: i32) -> i32 {

match x {
2 => 3,
3 => 4,
_ => 0

}
}

Figure 4.9: MIR of Listing 4.8 before and after optimization.
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switchInt(_1)
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_0 = const 0_i32

goto
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_0 = const 4_i32
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return
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return
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_0 = const 3_i32

goto

3

_0 = const 4_i32

goto

0

switchInt(_1)

otherwise 2

able during verification. If the otherwise target is unreachable, one of the
targets in the jumplist is turned into the otherwise target. If only one target
is left, the switchInt terminator can be turned into a goto terminator. If
all targets are eliminated, implying that the switchInt terminator itself is
unreachable, we transform it into a unreachable terminator.

Nodes are not explicitly deleted, but if all incoming edges of a node are
removed, the later passes of the compiler will ensure that the node itself
will be deleted as well.

A very simple example is shown in Listing 4.8, where the second match arm
is unreachable because of the function’s precondition. With the adjusted
encoding, the result of verifying this function will identify block 3 in the
MIR (Figure 4.9) as unreachable, and subsequently delete the edge to it.
Later optimizations of the Rust compiler will delete block 3 completely.

4.2.2 Removing Assert Terminators and Unchecked Operations
As we have explained earlier, Rust generates assert terminators to check
certain safety properties at runtime. Violations of these assertions result in
programs panicking. Since Prusti is able to prove the absence of panics,
these assertions can be eliminated in certain cases, further simplifying the
control flow of functions and reducing the size of executables.
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For example, for a division operation in Rust, the compiler will insert an as-
sertion to prevent division by zero. An example of a basic block performing
such a check is shown in the following:

0

_5 = Eq(_4, const 0_i32)

assert(!move _5, "attempt to divide `{}` by zero", _3)

If Prusti proves that an assertion can never fail, it can be transformed into a
goto terminator.

These safety checks at runtime often involve the use of checked operations
for arithmetic operations such as addition, subtraction, or multiplication.
For example, an addition of two variables in the MIR is checked for over-
flows as shown here:

0

_5 = CheckedAdd(_3, _4)

assert(!move (_5.1: bool), "addition of .. would overflow")

The result of a checked operation is a tuple, where the first field holds the
result of the operation and the second field contains a Boolean value that
is true if the operation was successful. When Prusti is able to prove that
an assertion associated with a checked operation can never fail, we not
only remove this assertion but also transform the checked operation into
an unchecked one. The block in the previous example is modified to:

0

_6 = Add(_3, _4)

goto

Additionally, all occurrences of 5.0 in the remaining CFG need to be re-
placed with the new result of the unchecked operation, in this case, 6
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Chapter 5

Evaluation

5.1 Runtime Checks
To evaluate the usefulness of our implementation, we first demonstrate how
our implementation of runtime checks for Prusti contracts can be used in
practice. We will then show a few examples and examine the errors that
are generated for violated contracts. Afterward, we apply our implementa-
tion to the Prusti test set to determine how many typical Prusti annotated
programs can be successfully checked at runtime.

5.1.1 User Guide
In this section, we will give an overview of how runtime checks can be used
in Prusti. This part should also serve as a template for an extension of the
Prusti user guide.

Setup

By default, Prusti stops after verifying a program and does not complete its
compilation. For the purposes of runtime checking, we of course need to
compile the program into an executable. When working with standalone
Rust files using prusti-rustc, the Prusti flag FULL COMPILATION must be
set. When using cargo-prusti, the CARGO CMD flag must be set to either
“run” or “build”.

To enable runtime checks, a user first has to set the Prusti flag
INSERT RUNTIME CHECKS to one of the values “selective” or “all”. If selec-
tive runtime checks are enabled, only contracts marked with the attribute
#[insert runtime check] will be checked at runtime. With the option “all”
enabled, all contracts are attempted to be checked at runtime. Enabling all
runtime checks is not advisable in most practical use cases, since there are
various Prusti features that are not properly supported yet.
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Additionally, users have the option to enable debugging messages for run-
time checks. By setting the flag DEBUG RUNTIME CHECKS to true, each check
that is performed will emit a message stating which check has been exe-
cuted. In the absence of this debug option, only breaches in contracts –
which lead to panics – are visible to the user.

Supported Contracts

Function Contracts Runtime checks are supported for preconditions, post-
conditions, and pledges. The contracts can also be part of external spec-
ifications. For the #[insert runtime check] attribute to be applied to a
method’s contract, it must be placed in front of the contract. For example,
for a precondition of a method to be checked at each invocation, it has to be
annotated as follows:

#[insert_runtime_check]
#[requires(x % 2 == 0)]
fn foo(x: i32) {}

Inline Assertions Additionally, inline assertions such as prusti assume,
prusti assert and body invariant can be checked at runtime by adding
the attribute to their body as follows:
prusti_assume!(#[insert_runtime_check] x % 2 == 0)

These statements can also be used within trusted methods, where they –
despite being ignored by verification – allow users to write assertions using
the Prusti specification syntax.

Predicates To be able to use predicates within contracts that are checked at
runtime, they must be marked with the #[insert runtime check] attribute
as well:
#[insert_runtime_check]
predicate! {

fn is_even(x: i32) { x % 2 == 0 }
}

#[insert_runtime_check]
#[requires(is_even(x))]
fn foo(x: i32) {}

For obvious reasons, abstract predicates cannot be checked at runtime and
will cause an error at compile time.

Specification Language

For expressions within contracts to be checked at runtime, only a subset of
Prusti’s specification language can be used, often with additional require-
ments.
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Result The result keyword within postconditions and pledges can be
used without any restrictions.

Old Referring to values in their old state is only possible if all function
parameters that are used within the old expression implement the Clone
trait. For example, consider the following method signature and its contract:

#[ensures(old(x.some_property()))]
fn bar(x: &mut SomeStruct) {}

Since x is used within the old expression and is a parameter of the bar
function, the struct SomeStruct must implement Clone for this contract to
be checkable at runtime.

Similarly, the before expiry expression can only be used within checked
pledges if the return type of the annotated function implements Clone.

Quantifiers For quantifiers to be checked at runtime there are various re-
strictions. The arguments of quantifiers can only have primitive integer
types, i.e. u8, .., u128, usize and i8, .., i128, isize. To avoid runtime
checks that run forever, quantifiers over all types larger than 8 bits must be
bounded. Bounds can be introduced in two ways:

• For quantifiers with only one argument, bounds are automatically ex-
tracted from the body of the quantifier if possible. For example, con-
sider the following quantifiers:

forall(|x: i32| (x >= lb && x <= ub) ==> condition)
exists(|x: i32| x >= lb && x <= ub && condition)

The lower bound lb and upper bound ub will be determined auto-
matically, and the conditions will only be checked within this range.
The extraction only works if these expressions follow a certain struc-
ture. For universal quantifiers, the body must be of the form bounds
==> condition or !bound || condition. For existential quantifiers,
the expression itself is used as the bounds expression. The bounds ex-
pression must be a conjunction containing one upper and one lower
bound. For unsigned types, the lower bound is optional. A bound
within a conjunction is only recognized as such if it is a comparison
operation (<, <=, >, >=) where either the left-hand side or the right-hand
side of the operation is the quantifier parameter, x in our example.

• Alternatively, quantifiers can be manually annotated with the ranges
that should be used to check them at runtime. This feature’s main
purpose is to support quantifiers with multiple arguments, but can
also be used in single-argument quantifiers. For example, a quantifier
with two arguments can be annotated as follows:
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forall(
#[runtime_quantifier_bounds(0..10, x..=x+10)]
|x: i32, y: i32| ..

)

The correct annotation of contracts is the responsibility of the user. An
incorrect range might lead to passing checks for violated quantifiers,
or unsubstantiated runtime errors in existential quantifiers. One ad-
vantage, however, is the fact that a user can willingly only check a
smaller range of a quantifier to reduce the overhead of the performed
check.

The presence of bounds still does not ensure that runtime checks for quan-
tifiers are efficient and they should be used with caution.

5.1.2 Examples

In the following, we will present the output of a few examples to demon-
strate the functionality of our implementation.

The first example, shown in Listing 5.1, contains a function transfer that
has an incorrect postcondition. The function is called from the main method
because otherwise, the insertion of runtime checks would have no effect.
Running this program, after compiling it with Prusti, results in the following
error:

thread 'main' panicked at account.rs:18:5:
Prusti Runtime Checks:

Contract #[ensures(self.balance() == old(self.balance()) + amount)]
was violated at runtime

The error is reported correctly and the failing contract can easily be identi-
fied. Of course, if this method was not trusted, verification would also allow
us to identify the error easily.

Next, we consider the example shown in Listing 5.2 to demonstrate runtime
checks for pledges, once again using the Percentage struct. Within the main
method, we assign a value of 101 to the reference returned by the get mut
function, which violates the pledge. Compiling and running this program
leads to the following error being generated:

thread 'main' panicked at pledge.rs:11:5:
Prusti Runtime Checks:

Contract #[assert_on_expiry(*result <= 100, ..)] was violated
at runtime
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Listing 5.1 Example implementation of a transfer function with incorrect
specification.
#[derive(Clone)]
struct Account {

bal: u32,
}

impl Account {
#[pure]
fn balance(&self) -> u32 {

self.bal
}

#[trusted]
#[requires(amount <= self.balance())]
#[ensures(self.balance() == old(self.balance()) + amount)]
fn transfer(&mut self, other: &mut Account, amount: u32) {

self.bal = self.bal - amount;
other.bal = other.bal + amount;

}
}

fn main() {
let mut a1 = Account { bal: 10 };
let mut a2 = Account { bal: 20 };
a2.transfer(&mut a1, 12);

}

Listing 5.2 Example showcasing the violation of a pledge.
struct Percentage(usize);

impl Percentage {
#[assert_on_expiry(

*result <= 100,
before_expiry(*result) == self.0 && self.0 <= 100

)]
fn get_mut(&mut self) -> &mut usize {

&mut self.0
}

}

#[trusted]
fn main() {

let mut p = Percentage(42);
let r = p.get_mut();
*r = 101; // illegal assignment
p.0 = 42;

}
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Listing 5.3 Example of a prusti assume statement, containing a predicate
and a quantifier. The implementation of VecWrapper is omitted.
predicate! {

fn smaller_than(x: i32, y: i32) -> bool {
x < y

}
}

#[trusted]
fn main() {

let v = VecWrapper::new(vec![1,2,3,4,4,6,7]);
prusti_assume!(forall(|i: usize| (i < v.len() - 1) ==>

smaller_than(v.lookup(i), v.lookup(i+1))
));

}

From this error message, we can derive that the pledge attached to get mut
was violated at runtime. More precisely, we can tell the left-hand side of
the pledge has been breached since only the left expression of the contract
is displayed.

Finally, we consider the example shown in Listing 5.3, containing an inline
assertion, a quantifier, and a predicate. The specified quantifier expresses
that the provided VecWrapper is sorted, using the smaller than predicate.
However, the defined Vector is not strictly sorted, leading to the following
error:

Prusti Runtime Checks:
Contract prusti_assume!(forall(|i: usize| (i < v.len() - 1) ==>

smaller_than(v.lookup(i), v.lookup(i+1))
)) was violated at runtime

> expression (i < v.len() - 1) ==>
smaller_than(v.lookup(i), v.lookup(i+1))
was violated for index i=3

The message not only contains the failed contract but also more precise
information about the index that caused the quantifier to fail. The improve-
ments to the reported errors, discussed in Section 4.1.1, simplify identifying
the source of an error, improving the user experience.

5.1.3 Limitations

While we have touched on the limitations of our implementation in previous
chapters, this section offers a concise recap and provides further details.
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Specification Items Our implementation supports preconditions, postcon-
ditions, pledges, predicates, and inline assertions. Other kinds of specifica-
tions in Prusti, such as prusti refute!(..) are not supported, but mostly
because the properties that they express cannot be checked at runtime.

Moreover, functions with specifications to be checked at runtime cannot use
pattern matching in their signature, which will result in an error after macro
expansion. All values that are used in their old state, both explicitly with old
expressions or when referring to moved values in postconditions or pledges,
must be of a type that implements Clone.

Naming Issues A large portion of the performed translations are made us-
ing a syntactic representation of Rust programs, where the names of types,
variables, and functions are not resolved yet. Consequently, certain key-
words and patterns can lead to errors and must be avoided:

• Defining variables within specifications whose names conflict with
a parameter of the function they are attached to can lead to type-
checking errors or incorrect runtime checks.

• Defining functions with the same name as Prusti internal expressions,
for example, old or forall, will cause them to be misinterpreted.

• Declaring type aliases that hide the mutability of a reference and using
it in a function signature, can lead to incorrect runtime checks.

Ownership When attaching specifications to functions that take ownership
of a value, this specification cannot move the value further. For example,
a user cannot assign the moved parameter to a new variable via pattern
matching.

Contract Contents Various features of the Prusti specification language
cannot be properly evaluated at runtime and can therefore not be part of a
specification that is checked. These features include:

• Snapshot equality and inequality

• The function snap()

• The function model()

Quantifiers The limitations of quantifiers were discussed in detail both in
Section 4.1.1 and in Section 5.1.1. Without revisiting all the details, it is worth
noting that only a subset of quantifiers can be checked at runtime, and these
generated checks can substantially impact a program’s performance.
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5.1.4 Prusti Testset
To test how many typical Prusti annotated programs can be checked at run-
time with our implementation, we apply the modifications to various pro-
grams in Prusti’s test suite. We only examine the results of the verification
and compilation.

We used Prusti’s existing tests where the result of verification is examined1.
UI tests were excluded since they examine the output of the AST rewriting,
which causes all tests to fail expectedly since we rewrite the AST. In total,
this test set included 824 test cases. For each test, we wanted to determine
whether:

• the test case contains unsupported features that are not correctly en-
coded,

• the modified translation of the AST produces code that breaks the
initial type checking,

• the modified translation of the AST changes the result of verification,

• the modifications to the MIR ever cause internal compiler errors

An overview of the results of these tests is shown in Figure 5.1. In 763 of
the test cases, the verification had the expected result and compilation was
successfully completed. A total of 61 tests resulted in errors. Note that the
various kinds of errors listed below do not add up to the total number of
errors, since some of the tests are responsible for more than one violation.

A total of 53 errors were caused during the rewriting of the AST. 26 of
those tests contain unsupported features, in most cases because snapshot-
equality or calls to snap were used. Note that the compilation continues in
case unsupported features are encountered since they only cause a warning.
Another 26 tests contain quantifiers that either had multiple arguments, an
unsupported type, or no bound could be extracted for them. In one test
case, we encountered the problem of pattern matching within the signature
of an annotated function.

During type checking, a total of 12 tests were rejected due to a ”use after
move” error. The failures are caused by the problem of moved arguments
within checks due to calls to mem::forget, as discussed in Section 4.1.1.
Notably, a significant portion of these errors arise from function calls like
snap or snapshot equality, which, in any case, are not supported. Other
function calls cannot cause these errors, because a function that captures
a value is never pure and cannot be used within a contract. However, ”use
after move” errors can still manifest in supported contracts, but only when a
moved value is reassigned to another variable within the specification. Out

1The directories verify, verify partial, and verify overflow in prusti-tests/tests/
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Figure 5.1: Results of evaluating runtime check implementation on the Prusti
test set.

Total 824
Successful 763
Total errors 61
Unsupported features 26
Failing quantifiers 26
Pattern matching in argument 1
Use of moved value 12
Non-clone type in old state 1
Encoding 7

of all the test cases, this scenario was observed in just one, supporting our
argument that the solution using mem::forget is a decent compromise.

Unfortunately, our implementation still contains bugs related to the encod-
ing of inline assertions. In a total of 7 cases, there were errors reported
during the encoding of the program, most of them when programs were
encoded using the “unsafe core proof”. Unlike the previous cases, there is
no technical justification for these errors and they will be fixed in the future.

Runtime Tests

To ensure the correctness of our implementation and to facilitate its future
maintenance, we created a separate set of tests composed of 63 test cases,
all of which are successful. For each of these tests, the program undergoes
verification and compilation but is also executed. At runtime, we ensure
that the checks for all contracts are performed and that only the violated
conditions lead to a panic.

Prusti’s test set was unsuitable for this type of testing because most of them
only have empty main methods. To evaluate the behavior of runtime checks,
the methods annotated with contracts must be executed. Extending all tests
with applications of the functionality they define was not in the scope of this
thesis.

5.2 Verification-based Optimizations

We now shift our focus to the second topic of this thesis: verification-based
optimizations. In this domain, two specific types of optimizations were ex-
plored and implemented: dead code elimination and the removal of unnec-
essary assert terminators and checked operations.
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Listing 5.4 Example function with unreachable blocks because of precondi-
tion.
#[requires(x % 15 == 1)]
pub fn foo(x: i128) -> i128 {

let y = x * 2;
if x % 3 == 0 {

y + 1
} else if x % 5 == 1 {

// if precondition holds we always reach this branch
x + 1

} else {
y - 1

}
}

To activate these optimizations, the Prusti flag REMOVE DEAD CODE has to be
set. As before, the modifications can only be examined if programs are
compiled to completion.

5.2.1 Dead Code Elimination

The additional information introduced through specifications, and the logi-
cal reasoning capability of a static verifier allow us to identify unreachable
paths in the MIR and eliminate them. As discussed previously, these modifi-
cations are realized by deleting outgoing edges of switchInt terminators in
the MIR. Now we are going the inspect the effects of these modifications on
the subsequent optimized stages of the MIR and the generated executables.

Consider the example shown in Listing 5.4. It showcases an example where
the applicable optimization can lead to an extreme simplification of the func-
tion. When taking the precondition for granted, only the second branch of
this function is reachable. Under this assumption, the function can be sim-
plified to:

fn foo(x: i128) -> i128 { x }

The effect of the optimizations applied to this example becomes evident
when examining the final optimized version of the MIR, now consisting
of only a single operation, as depicted in Figure 5.2. In contrast, the ver-
sion where only the default Rust optimizations were applied2 retains 6 basic
blocks. Proactively altering the MIR in a preliminary stage allows the Rust
compiler to further remove unneeded operations.

Unsurprisingly, the effect of this optimization is also reflected in the per-
formance of the program. On average, a call to the optimized function is

2All examples were compiled with optimization level 3
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Figure 5.2: MIR of function foo defined in Listing 5.4 with dead code elimi-
nation enabled.

fn foo(_1: i128) -> i128

0

_0 = Add(_1, const 1_i128)

return

executed in just 2.1 nanoseconds3, compared to the unoptimized version
which takes 19.2 nanoseconds. However, it is important to approach these
figures with a degree of caution, given the artificial nature of the provided
example. In more realistic scenarios, only a minor fraction of the code might
be identified as unreachable. In particular, this will often apply to code that
is responsible for error handling, which can potentially be proven to be un-
necessary through verification.

Moreover, this optimization is only correct as long as the specification of the
function is satisfied. In case the previous function is ever called on a value
that does not obey its precondition, the result of the optimized function will
be inconsistent with its declaration.

5.2.2 Removing Assert Terminators and Unchecked Operations

While the process of dead code elimination can have a pronounced impact
on the performance of Rust programs, the removal of assert terminators
and unchecked operations results in a subtler effect. In release mode, Rust
optimizes out many of the checked operations and their associated assert
terminators to bolster performance. For operations such as addition or mul-
tiplication, overflow checks are only performed when compiling programs
in debug mode. Therefore, the elimination of overflow checks is not a useful
tool when optimizing for performance.

For other safety checks such as division by zero or slice indexing, however,
Rust also tries to prove the safety of the operation before removing the as-
sociated check. Nevertheless, the additional information of contracts allows
Prusti to remove assertions that the Rust compiler cannot. Consider the
example shown in Listing 5.5, where an array is indexed using a function
argument. Again, thanks to the precondition of the method index, Prusti
determines that the bounds check for the array access cannot panic, allow-

3The measurements were averaged over a total of 109 invocations, on an Intel(R)
Core(TM) i5-4460 CPU, 3.20GHz, Haswell
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Listing 5.5 Access to an array that is safe because of its precondition.
#[requires(i < 10)]
fn index(a: &mut [i32; 10], i: usize) -> i32 {

a[i] + 1
}

Figure 5.3: The MIR of the function index in Listing 5.5, with verification-
based optimizations disabled (left) and enabled (right).

0

_4 = Lt(_2, const 10_usize)

assert(move _4, "index out of bounds")

1

_3 = (*_1)[_2]
_0 = Add(move _3, const 1_i32)

return

success

0

_3 = (*_1)[_2]
_0 = Add(move _3, const 1_i32)

return

ing us to eliminate it. The Rust compiler cannot perform this optimization.
Figure 5.3 shows the final MIR stage for both cases. Because the function
was compiled with optimization level 3, neither of the two CFGs contains
any overflow checks, although the original function contained an addition.
As expected, the bounds check was removed in the optimized MIR but still
exists in the unoptimized MIR.

The examination of the generated LLVM[3] IR highlighted the effect of the
optimization, reducing the number of statements from 6 down to 4. Inter-
estingly, no substantial performance difference was observed between the
generated executables. Despite the presence of a branching operation in the
unoptimized version, we hypothesize that the consistent performance can be
attributed to successful branch prediction. Given that we repeatedly invoke
the function for benchmarking and every call follows an identical execution
path, it provides an environment conducive to effective branch prediction.
This is an inherent limitation on the effects of this optimization since ev-
ery branch that can be eliminated will always exhibit this behavior in the
unoptimized version of the program.

In more realistic use cases there might be a noticeable improvement in per-
formance. Regrettably, a proper assessment of this optimization’s perfor-
mance impacts was not performed in this thesis. However, beyond mere
performance enhancement, our modifications can also be viewed as a proof
of concept for more nuanced safety checks at runtime. While the Rust com-
piler simply removes certain safety checks like overflow checks in release
mode, our method ensures the removal of checks only when their safety is
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provably guaranteed. This strategy could provide a balanced tradeoff be-
tween performance and safety.
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Chapter 6

Conclusion

This thesis’ primary contribution is the design and realization of runtime
checks for the contracts of the static Rust verifier Prusti. We detailed the
high-level transformation of Prusti contracts into executable Rust constructs,
enabling runtime evaluation of their logic. We implemented this transla-
tion and insertion of runtime checks through AST rewriting via procedural
macros, and by directly interacting with the Rust compiler by modifying
its MIR. Rust’s safety properties both aided and challenged our endeavors.
They allow for a simple interpretation of past states compared to other lan-
guages but also restrict the rewriting of specifications.

The work on this topic was qualitatively evaluated, using examples to high-
light how runtime checks complement verification and help pinpoint errors
in specifications. To further assess the robustness and applicability of our
implementation, the compilation process of our implementation was tested
against a large portion of Prusti’s test suite. Furthermore, we incorporated
a dedicated set of tests designed to evaluate the behavior of runtime checks
in execution. We found that, despite the various limitations of our imple-
mentation, it can still be applied to a large portion of contracts.

Additionally, we explored the idea of verification-based optimizations
through modifications of the MIR. In particular, we designed and imple-
mented a technique for the detection and removal of dead code, and the
elimination of superfluous safety checks. Although we could not perform a
full-fledged performance evaluation of these optimizations, this work under-
scores the potential of static verifiers for not only ensuring code correctness,
but also enhancing its efficiency.
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6.1 Future Work

6.1.1 Contract Documentation in Runtime Check Failures

One feature that is currently under development in Prusti is the extension
of contracts with supplementary documentation. This provides insight into
the intent behind specific specifications. For example, a precondition could
be extended as follows:

#[requires(x < 42, "x must be less than 42")]

This additional information could be incorporated and even extended when
performing runtime checks. Ideally, the diagnostic messages could dynam-
ically integrate the concrete values causing a violation by employing format
strings in the documentation.

The importance of such enhancements becomes even more apparent in sce-
narios where a developer is working with external libraries. When a library
has not been verified by the user, the meanings of specifications can be dif-
ficult to understand. By offering detailed diagnostic feedback phrased in
plain language, rather than just logical expressions, developers can grasp
the meaning behind contract violations more intuitively.

6.1.2 Improving Runtime Checks for Quantifiers

Several areas would benefit from improvements to quantifier checking.
Specifically, the following topics warrant further refinement:

Extended Type Support Our current design only supports a heavily re-
stricted set of types. This constraint arises because our translation is purely
syntactic and has no ability to resolve types, and therefore no ability to rea-
son about the contents of user-defined types. To extend the type support,
we identify two possible strategies. Either, the translation would have to be
performed on a lower level, for example, the MIR as well. However, this
translation would be intricate and labor-intensive. Another possible strat-
egy worth exploring is the idea of initiating an additional early run of the
compiler, purely dedicated to extracting spanned type information. This in-
formation could then be used during the AST rewriting, facilitating more
advanced translations. The issues outlined in Section 5.1.3 related to name
resolutions could also be resolved with this approach.

Advanced Bound Derivation At present, the automatic derivation of
boundaries is confined to quantifiers with a single argument containing ex-
pressions of very specific forms. Again, the fact that we are dealing with
a syntactical representation complicates more sophisticated methods. How-
ever, if we were working with properly modeled logical expressions, we
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could employ more advanced tools to derive boundaries and determine
transitive relations between arguments. Consequently, we could extract
boundaries from more general kinds of expressions and determine the order
of loops for quantifiers with multiple arguments more easily.

6.1.3 Replacing Functions with Equivalent Counterparts
In Rust, there are many examples of different functions that exhibit the same
behavior if a certain precondition is met but differ in performance. For in-
stance, the functions of the Option enum unwrap or(default) and unwrap()
both return the same result if the input is of the variant Some. An interesting
possible optimization through verification is the introduction of contracts
that specify that a function call can be replaced with another if certain con-
ditions are proven.
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A. Appendix

A.1 Conditional Pledge MIR Modifications

The modified MIR of example in Listing 4.6, split into two parts.

0

goto

35

StorageLive(_2)
_2 = Percentage(const 50_usize)
nop
StorageLive(_3)
StorageLive(_4)
_4 = &'_ mut _2

goto

1

_12 = _3
StorageDead(_4)
nop
StorageLive(_5)
StorageLive(_6)
_6 = _1

switchInt(move _6)

2

goto

otherwise

4

_5 = const ()

goto

0

30

switchInt(_13)

3

_16 = _8
_7 = &'_ mut (*_8)
StorageDead(_9)
_3 = move _7
StorageDead(_7)
StorageDead(_8)
_5 = const ()

goto

5

StorageDead(_6)
StorageDead(_5)
(*_3) = const 62_usize

goto

22

switchInt(_13)

6 (cleanup)

resume

23

(_2.0: usize) = const 43_usize
StorageLive(_7)
StorageLive(_8)
StorageLive(_9)
_9 = &'_ mut _2

goto

34

_17 = const true

goto

24

goto

25

_26 = Percentage::prusti_pledge_check_item_get_mut_39106d26c441449ba0a37f6d437d3b24(move _4, move _12, move _10, move _11)

return

26

_27 = Percentage::prusti_pledge_lhs_check_item_get_mut_39106d26c441449ba0a37f6d437d3b24(move _12, move _10)

return

27

_11 = (move _28,)

goto

28

_28 = &'_ mut _29

goto

29

_13 = const false

_29 = <usize as std::clone::Clone>::clone(move _12)

return

0

otherwise

31

_10 = (const (),)

_3 = Percentage::get_mut(move _4)

return

unwind

32

_13 = const true

goto

33

_14 = (const (),)

_8 = Percentage::get_mut(move _9)

return unwind
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7

(_2.0: usize) = const 32_usize
_0 = const ()
StorageDead(_3)
StorageDead(_2)

goto

36

return

8

goto

9

_18 = Percentage::prusti_pledge_check_item_get_mut_39106d26c441449ba0a37f6d437d3b24(move _9, move _16, move _14, move _15)

return

10

_19 = Percentage::prusti_pledge_lhs_check_item_get_mut_39106d26c441449ba0a37f6d437d3b24(move _16, move _14)

return

11

_15 = (move _20,)

goto

12

_20 = &'_ mut _21

goto

13

_17 = const false

_21 = <usize as std::clone::Clone>::clone(move _16)

return

14

switchInt(_17)

0

otherwise

15

goto

16

goto

17

_22 = Percentage::prusti_pledge_check_item_get_mut_39106d26c441449ba0a37f6d437d3b24(move _4, move _12, move _10, move _11)

return

18

_23 = Percentage::prusti_pledge_lhs_check_item_get_mut_39106d26c441449ba0a37f6d437d3b24(move _12, move _10)

return

19

_11 = (move _24,)

goto

20

_24 = &'_ mut _25

goto

21

_13 = const false

_25 = <usize as std::clone::Clone>::clone(move _12)

return

22

switchInt(_13)

0

otherwise
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A.2 Inline Assertion Translation MIR
The modified MIR of function foo in Listing 4.7.

fn foo(_1: i32) -> ()

0

goto

16

_21 = &'_ _1

_19 = <i32 as std::clone::Clone>::clone(move _21)

1

StorageLive(_4)
StorageLive(_5)
_5 = &'_ _1
_4 = [closure@old-move-fail.rs:13:43: 13:55] { x: move _5 }
StorageDead(_5)
StorageDead(_4)
_2 = const ()

goto

11

StorageDead(_3)
StorageDead(_2)
_0 = const ()

goto

2

StorageLive(_6)
_6 = const true

switchInt(move _6)

3

StorageLive(_7)
_7 = [closure@old-move-fail.rs:13:43: 13:55]
StorageDead(_7)
StorageLive(_8)
StorageLive(_9)
StorageLive(_10)
_10 = const "Prusti Runtime Checks: Contract prusti_assert!(old(x == 50)) was violated at runtime"
_9 = &'_ (*_10)

_8 = <str as std::string::ToString>::to_string(move _9)

otherwise

9

_2 = const ()

goto

0

4

StorageDead(_9)
nop
StorageDead(_10)
StorageLive(_11)
StorageLive(_12)
StorageLive(_13)
_13 = _19
_12 = Eq(move _13, const 50_i32)
StorageDead(_13)

_11 = prusti_contracts::old::<bool>(move _12)

return

13 (cleanup)

resume

unwind

5

switchInt(move _11)

return

12 (cleanup)

drop(_8)

unwind

6

StorageDead(_12)
_2 = const ()
StorageDead(_11)

drop(_8)

otherwise

7

StorageDead(_12)
StorageLive(_16)
StorageLive(_17)
StorageLive(_18)
_18 = &'_ _8
_17 = &'_ (*_18)

_16 = core::panicking::panic_display::<std::string::String>(move _17)

0

8

StorageDead(_8)

goto

return

unwind

unwind

10

StorageDead(_6)

goto

17

return

return

14

_1 = const 42_i32
StorageLive(_2)
StorageLive(_3)
_3 = const false

switchInt(move _3)

otherwise 0

15

_20 = prusti_pre_check_item_foo_d4147bde1c9846b0969c6b98e6e6b9b8(_1)

return

return
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