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Abstract

Advancements of the SMT solvers led to significant improvements in
the field of program verification. As the SMT solvers became faster and
faster, the task of verifying software became feasible. Trying to formally
verify software code can be a cumbersome task even with the help of
highly automated tools, like Viper. A failed verification attempt leaves
the developer with only an exception and no further help to identify
the error he has made.

In this thesis we used the underlying SMT solver to generate counterex-
amples for a failing verification attempt. We used an experimental ap-
proach to cover a big enough subset of the Viper language to create
a prototype that is capable of generating counterexamples for a wide
range of Viper programs. These counterexamples are than visualized
and could be shown directly in the IDE to further simplify the debug-
ging process. In comparison to previous iterations of counterexample
generators, this implementation improves on the theory support and
removes the restriction of a bounded search space.
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Chapter 1

Introduction

Improvements of the SMT (Satisfiability Modulo Theories) solvers in the last
years had led to significant advancements in the field of program verifica-
tion. As SMT solvers became faster and faster, the task of verifying software
automatically became feasible. One example for such a software verification
platform is Viper [11].

Trying to formally verify software code can be a cumbersome task even
with help of highly automated tools. A failed verification attempt leaves the
developer with an “Assertion might not hold” exception and no further help
in identifying the possible errors he has made.

A debugger that could provide some hints, e.g. counterexamples to the cur-
rent proof attempt, would strongly facilitate debugging. Alessio Aurecchia’s
Master thesis “Visual Debugging for Symbolic Execution” [2] (using Ruben
Kélin’s work “Advanced Features for an Integrated Verification Environ-
ment” [10] and Ivo Colombo’s “Debugging Symbolic Execution” [4]) tackled
this problem and developed a counterexample generation engine. For a sub-
set of the Viper language it can generate small counterexamples and displays
them visually in the IDE. To generate possible counterexamples the software
modelling tool Alloy [1] has been used. Using the symbolic execution log,
generated by one of the Viper verifiers (Silicon [12]), they generated an Al-
loy program for a failed assertion. The model for this Alloy program then
corresponded to a possible counterexample for the original program. This
approach has a few drawbacks: Alloy does not natively support theories and
it has to bound the range of integers it considers. This led to approximations,
which in consequence resulted in spurious counterexamples.

In this thesis, an alternative approach to generate counterexamples is de-
veloped. Silicon uses an SMT solver, Z3 [5][6] to be specific, to verify the
code and specifications. If a verification step fails, Z3 is used to produce
a counterexample to the current failing assertion. After a model has been
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obtained from Z3, it needs to be translated back to a counterexample of the
program. The advantage of using Z3 instead of Alloy for generating coun-
terexamples comes in the native theory support that Z3 has. This theory
support will allow us to model the theory constraints precisely and we will
not get spurious models based on an incomplete theory support.

The following example of a realistic Viper program illustrates how a coun-
terexample supports the process of finding the current problem in the verifi-
cation task.

field val : Int

define access(a) forall j: Int :: 0 <= j && j < len(a) ==>
acc(loc(a, j).val)
define untouched(a) forall j: Int :: 0 <= j && j < len(a)
==> loc(a, j).val == old(loc(a, j).val)

domain Array {
function loc(a: Array, i: Int): Ref

function len(a: Array) : Int
function first(r: Ref) : Array
function second(r: Ref) : Int

axiom injectivity {
forall a: Array, i: Int :: {loc(a, i)} first(loc(a
, 1)) == a && second(loc(a, i)) == 1

}

axiom length_nonneg {
forall a: Array :: len(a) >= O
b
b

method find_max(a:Array) returns (max:Int)
requires access(a)
// non-negative integers
requires forall i:Int :: 0 <= i && i < len(a) ==> loc(
a, i).val >= 0

ensures access(a) && untouched(a)

ensures len(a) == 0 ==> max == -1

ensures forall i:Int :: O <= i && i < len(a) ==> loc(a
, i).val <= max

{

if (len(a) == 0)

{
max := -1

}

else

{
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var i:Int := 0
while (i < len(a))
invariant access(a) && untouched(a)
invariant i >= 0 && i <= len(a)
invariant forall j:Int :: { loc(a, j) } j >= O
&& j < i ==> loc(a, j).val <= max
{
i =1+ 1
//Conditional statement might fail. There
might be insufficient permission to access
loc(a, i) .val
if(loc(a, i).val > max)
{
max := loc(a, 1i).val
}
}
}
}

The shown example program employs a method to find the maximum in-
side an array of non-negative integers. Being familiar with the structure of
software code, one will easily identify the underlying fault. The index i
has been increased before the array a is been accessed and if it reaches its
maximum possible value of len(a)-1 and its entering the loop body, this
will cause an out-of-bounds array access.

A counterexample to this program could consists of some array with length
5 and i = 5 at the state of the verification failure. This would show the
developer that the code tries to access the array outside of its bounds. There
are a lot of other examples where a counterexample can be useful and we
hope that the one above gave a short introduction to the idea.

This thesis assumes that the reader already has some knowledge about pro-
gram verification, in particularly about the Viper tool-stack (Silicon and Z3,
knowledge about Carbon is not needed in this thesis). The Program Verifi-
cation course at ETHZ covers all the prerequisites for this thesis.






Chapter 2

Approach

In this chapter we look at the approach we took to create counterexamples
for failing verification attempts in Silicon. In every step during the verifica-
tion, Silicon performs a validity check using the path conditions Path and
the current proof objective (the next step in the verification Step).

Path |= Step = Path= Step = —PathV Step
As we only have a satisfiability solver we have to negate the formula.
—(=PathV Step) = Path N\ —=Step

This formula is only satisfiable if the path conditions are satisfiable but the
next step is not. Therefore if it is satisfiable there exists a model in which the
current verification fails. Only if it is unsatisfiable Silicon will continue, in
all other cases (saT, UNKNOWN and TIMEOUT) it will stop and respond with
a verification failure. As counterexamples should be created once a case of
failure is occurring, the UNSAT case can be neglected, as in such a case the
procedure would have never been started. Additionally we will also ignore
the TIMEOUT case.

If a formula is satisfiable and the SMT solver converges to a SAT or UNKNOWN
response, the solver can produce a model (see the entry for (check-sat) in
the SMT-LIB standard [3]). We can then use this model, as it represents
a counterexample on the SMT level, and map it back to the original Viper
code. This would than be a valid counterexample to the failing verification
attempt and the user will be provided with a concrete reason why the code
does not verify and not just a simple error message.

Queries that come from Silicon almost always result in a UNKNOWN response,
as it heavily depends on universal quantifiers. Previous to this work, we as-
sumed that partial models that come from a UNKNOWN response are not useful.
Nevertheless Our first task was to investigate the usefulness of these types
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Figure 2.1: Overview of the counterexample generation process

of models. During the first weeks we realized that for all of our test cases
the model contained a complete counterexample. Because we could not find
a single viper program where this was not true, we made the following
assumption for this thesis: Every model, independently of the satisfiabil-
ity result (SAT or UNKNOWN), contains a valid counterexample to the failing
viper program.

2.1 Counterexample Generation Process

We will now go through our newly-developed procedure that generates a
counterexample given a Viper source file. An overview over the counterex-
ample generation process for a given Viper source file is shown in Figure
2.1. In short, the failing Viper code undergoes an input preparation step
which creates the required input files which are fed into the Counterexam-
ple Generator. The created counterexample is passed on to the Visualizer
that creates an output in the form of an image. More information about
the input preparation is included in this section, the counterexample gener-
ation will be treated in Chapter 3 and the implementation of the visualizer
is covered in Chapter 4.

Figure 2.2 depicts an outline of the input preparation stage. We generate
a SMT2 file!, a Z3 model for this SMT2 file and a SymbExLog (Symbolic
Execution Log)2 for each failing method in the Viper source. This allows
us to independently generate a counterexample for each failing method. It
starts with running Silicon on a given Viper file. This will generate a list of
all failing methods, a combined SMT2 file and a combined SymbExLog. We

LA SMT?2 File contains statements which satisfy the SMT-LIB 2.x standard, see the docu-
mentation [3].
2 An introduction to Symbolic Execution can be found at [9].



2.2. Experimental Approach

Viper File
A\
Silicon
\
Combined SMT File Failing Methods SymbExLog
u Method specific SMT Files u Method specific Symbexlog

Eﬂ
l=.|
Z3 Models

Figure 2.2: Input preparation for the counterexample generation process.

can split the SMT?2 file and SymbExLog into one for each method. Executing
73 for each SMT?2 file will get us a partial model for each of those. At the end
we have a directory for each failing method, where each directory contains
a SMT?2 file and the SymbExLog.

2.2 Experimental Approach

At the beginning of this thesis we decided to use an experimental approach
to create this process for generating the counterexamples. Therefore we did
not look at the transformation work that Silicon does and then tried to define
rules over all possible SMT2 files and SymbExLogs. We instead started with
a simple Viper example and created a procedure that could handle this type
of problem. If we found a solution to the problem class we continued with
a more difficult example, an additional Viper feature or a more difficult
combination of features. In the end we got a set of rules that handles a large
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subset of Viper programs. This type of approach has a disadvantage as we
handled Silicon almost like a black box, we will never reach a state where we
can say with absolute certainty that we cover all possible cases. This means,
we will never have a guarantee for completeness using this approach.



Chapter 3

Counterexample generation

In this chapter we will go through different Viper examples, discuss how
the corresponding counterexamples could look like and how it can be gen-
erated. Each example will contain progressively more Viper features or will
expose problems of older solutions. The goal at the end is to extract general
rules for generating a counterexample given some Viper file that contains a
combination of Viper features.

Before we can start looking into the first example, we need to specify what
a counterexample contains. One possibility is to display the latest values
for each store variable, heap location and the function models. Another
would be to give the input arguments for the failing method that result in
a verification failure. In this thesis we decided to display the state where
the verification failure occurs. This state contains the store variables, heap
values and function models (both user-defined and internal ones generated
by Silicon). Later in the chapter we will also look into features where this
definition of a counterexample could not be enough and we will add more
information to the counterexample.

3.1 Basic Features

In this introductory section we will discuss the three basic components of
every counterexample: store variables, heap values and functions. It is cru-
cial to support these, otherwise working on more complex Viper features
would be meaningless.

3.1.1 Variables

Let us start with an easy example: a Viper program with only variables and
a control flow statement.
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method test(b:Bool, i: Int)

{
var x: Int = i
x = x + 1
X 1= 2 % X
if (b)
{
x := 10
}
//Assert might fail. Assertion x == 10 might not hold.
assert x == 10
}
In this code, the assertion x == 10 fails if b = false and i '= 4. We will

now look at two of the generated input files: the SMT2 statements and the
Z3 model. As these files are too big to include in their entirety, we will only
show the important parts for the current discussion. Let’s start with the
variable declarations and the main assertions of the generated SMT2 file!::

(declare-const b@0 Bool)
(declare-const i@1 Int)
(declare-const b@2 Bool)
(declare-const i@3 Int)
(declare-const x@4 Int)
(declare-const x@5 Int)
(declare-const x@6 Int)

(assert (= x@5 (+ i@3 1)))
(assert (= x06 (x 2 x05)))

(assert (not b@2))
(assert (mot (= x@6 10)))
(check-sat)

; unknown

We are not particularly interested in how Silicon does the transformation
from a Viper file to SMT2, we only need to know the SMT2 constants it
declares and in which of them the final values for the Viper variables are
stored. Even in this small example some important observations can be
made. The first one is that Silicon keeps the variable names that were used
in the Viper file and the second one is that the code has been transformed
into a single assignment form. We can observe that the constants contain
an ascending identifier. We could assume that for each Viper variable the

LFor more informations about SMT2 statements, look at the SMT-LIB 2.6 standard [3].
%In this thesis we simplified all identifiers generated by Silicon. Normally they would
look like b@0, we simplified them to b@0 as we do not use the second numerical value.
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corresponding constant with the biggest identifier is the last version before
the failing assertion. But to be sure we can use additional information from
the SymbExLog. If we look at the last entry before the verification failure,
we can find the following information about the store:

store:

[
{value: b -> b@2, type: Bool},
{value: i -> i@3, type: Int},
{value: x -> x@6, type: Int}

Here we see for each variable in the Viper file, an entry what name the corre-
sponding constant has and what type it is. For this example our assumption
that the biggest identifier would correspond to the last version would have
been correct. Now we will look at the Z3 model.

b@2 -> false

x@5 -> 6
ie3 -> 5
x@6 -> 12

This was the whole model that Z3 generated for this example, we can see
that it did not assign every constant from the SMT2 query a value®. But we
can see that the counterexample consist of the following store values b =
false,x = 12and i = 5.

As a solution for this example we would then generate the following coun-
terexample.

Store: {
b = false,
x = 12,
i =25

¥

Rules

From this example we can propose the following rules:

e Every constant that corresponds to a Viper variable or parameter needs
to be part of the store in the counterexample.

— Extension 1: Remove constants that do not have a value in the
model.

3We could enforce a complete model with the Z3 parameter "model.completion=true".
In the current version we enforce this, as we want to make sure that every user-defined
variable has an assignment.

11
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- Extension 2: Over all the constants that represent the same vari-
able, keep only the constant with the highest identifier.

3.1.2 Heap Independent Functions

The next feature we want to include in our supported subset of Viper is
functions. As most of the built in features of Viper directly translate to some
functions on the SMT level we need support for it. As for variables, lets
take a look at a basic example that uses a function. There are cases (like the
example below) where the function is not a important part of the counterex-
ample because the implementation is given by the user and therefore already
known. But the model for the SMT2 query will look the same whether the
implementation is given or not. Therefore, we can use either of these cases
to come up with the rules to handle functions.

function inc(x:Int): Int

ensures result == x + 1
{
x + 1
}
method test(x:Int)
{
//Assert might fail. Assertion inc(x) == 2 might not
hold.
assert inc(x) == 2
¥

In this code, we have an increment function, an assertion with inc(x) ==
and no restrictions on x. Therefore this assertion fails for every x !'= 1. But
again, lets take a look at the generated SMT2 code:

(declare-fun inc ($Snap Int) Int)

(assert (forall ((s@$ $Snap) (x@0 Imnt)) (!
(= (inc s@$ x00) (+ x@0 1)))
:pattern ((inc s@$ xQ@0))
)))

(declare-const x@0 Int)
(declare-const x@1 Int)

(assert (mot (= (inc $Snap.unit x@1) 2)))
(check-sat)
; unknown

We can see that the inc function got an additional $Snap parameter. This
snapshot represents heap information the function depends on. In our case
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the function is heap independent, therefore all function cases will have as
an argument the empty snapshot $Snap.unit.

x@1 -> 237

inc -> {
$Snap.unit 237 -> 238
else -> #unspecified

In the Z3 model we see that it chose to set x = 237; this is not equal to 1 and
therefore a valid counterexample. Also we can observe the model for the
inc function. It has a case for inc (237) with the correct result of 238. Every
other case is unspecified*. This does work for the specific case of x = 237
but does not satisfy the postcondition of the inc function (result == x +
1). This is the default behaviour of Z3, as the postcondition of the function
gets modelled as a universal quantifier and quantifiers only apply if they are
triggered. Therefore we see the implications of quantifiers only from cases
that are present in the example. An implication of this is, that the generated
models (in almost every example that contains a function) will not satisfy
the pre- or postconditions of the function for all possible input values. But
as we are only interested in one specific counterexample and not about all
the possible states, this incompleteness is not a problem for us and we can
ignore it.

For this example the following counterexample would be a valid solution.

Store: {
x = 237
}
Functions: {
inc = {
$Snap.unit 237 -> 238
}

Rules

For functions, we can now propose the following rules to incorporate a rep-
resentation for them into the counterexample.

e Take every function model that corresponds to a user-defined Viper
function and add the function definition to the counterexample

— Open Problem 1: This will include the snapshot argument into
the counterexample, even though the user does not know about
this parameter.

“We achieve this behaviour with setting the Z3 parameter model.partial = true.

13
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— Open Problem 2: The mapping from the function calls inside the
code to the function cases could in some cases be difficult for the
user. For example if the parameters are not of type integer it can
get harder. We need some visual approach of mapping a function
call to a function case or directly the result of this application. For
a difficult example look at inc function in the counterexample in
Section 3.3.1.

3.1.3 Permissions

The next feature we want to support are permissions. Permissions are the
Viper feature to talk about heap memory locations. Again, we will look into
a simple example.

field val : Int

method access(r:Ref)
requires acc(r.val, write)
ensures acc(r.val, write)

{
r.val := r.val + 1
//Assert might fail. Assertion r.val == 1 might not
hold.
assert r.val == 1
}

The example above will fail if r.val initially does not have a value of 0; the
simplified SMT2 code looks like this:

(declare-const r@0 $Ref)
(declare-const r@l1 $Ref)
(declare-const $t@2 Int)
(declare-const $t@3 Int)
(declare-const val@4 Int)

(assert (not (= r@i $Ref.null)))
(assert (= val@e4d (+ $te2 1)))

(assert (not (= vale4d 1)))
(check-sat)
; unknown

We can see the constants defined for the reference parameter r (r@0 and r@1)
and some assertions over the integer constants that will represent the field
values of this reference ($t@2, $t@3 and val@4). But inside the SMT2 code
we do not see an assertion or some other way of linking these two groups of
constants together. To get the information that val@4 is the field val of the
reference r@1 we need to take a look at the SymbExLog. There we find the
following JSON entry:
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heap:[r@1.val -> val@4 # W]

This entry says that the reference r@1 has a field val and this field has the
value of the constant val@4. After the # comes the permission amount, in
this example we have W (write, full) permission on this field. Finally we can
take a look at the given model for the SMT2 query.

vale4 -> 720

r@1 -> $Ref!vallO

$t@2 -> 719

$Ref .null -> $Ref!vall!l

Combining this Z3 model with the additional information from the Sym-
bExLog we now know that val@4 represents the final r.val with the value
720. Using the rules described in the variables section we already have the
store part of this counterexample covered. For the heap section we will
now include one entry for each permission in the SymbExLog heap list. In
our case this would add an entry for r.val with the value 720 (the value
Z3 assigned to val@4). Combining this would then lead to the following
counterexample:

Store: {

r = $Ref!val!l
}
Functions: {}
Heap: {

r.val = 720
}

We could even argue, that the store variable r is no longer needed if it has
a heap entry for r.val. We decided the keep it inside the counterexam-
ple, later during the visualisation procedure it can always be hidden if so
desired.

Rules
The rules for field permissions look like this:

e For each entry in the SymbExLog heap add an entry to the counterex-
ample heap. In the SymbExLog, the entry has the following structure:
ref.field -> constant # permission. For the counterexample en-
try keep the ref and field values but exchange the constant with
the assigned value from the Z3 model.

3.2 Extended Features

With these three features covered in the previous chapter we have everything
to support basic Viper programs. We support all kinds of store variables,

15
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user-defined functions (or functions generated by Silicon) and basic heap
permissions (no quantified permissions or predicates). From now on all
new features will build upon these three basic components.

3.2.1 Quantified Permissions

We will use an array example to talk about quantified permissions. As Viper
has no native support for arrays, we have to use a domain and specify what
an array is ourselves. This modelling approach used four functions in com-
bination with two axioms and quantified permissions to describe the main
features of an array. Therefore we can observe the behaviour for both user-
defined domains and quantified permissions with this example. As user-
defined domains are translated to functions and universal quantifiers, they
should already be handled by our basic feature support. But quantified per-
missions are not just new functions on the SMT level, for this feature we will
have to include some new logic to build the counterexample.

1 field val : Int
2
3 define access(a) forall j: Int :: 0 <= j && j < len(a) ==>
acc(loc(a, j).val)
4 define untouched(a) forall j: Int :: 0 <= j && j < len(a)
==> loc(a, j).val == old(loc(a, j).val)

5

6 domain Array {

7 function loc(a: Array, i: Int): Ref
8

function len(a: Array) : Int
9 function first(r: Ref) : Array
10 function second(r: Ref) : Int
11
12 axiom injectivity {
13 forall a: Array, i: Int :: {loc(a, i)}
14 first(loc(a, i)) == a &&
15 second (loc(a, i)) == i
16 }
17
18 axiom length_nonneg {
19 forall a: Array :: len(a) >= 0
20 3
21 }
22
23 method test(a:Array) returns (max:Int)
24 requires access(a)
25 requires len(a) > 1
26 requires forall i:Int
27 0 <= i && i < len(a) ==> loc(a, i).val >= 0
28 {
29 //Assert might fail. Assertion loc(a, 0).val ==

16
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// loc(a, 1).val might not hold.
assert loc(a, 0).val == loc(a, 1).val

A possible counterexample for the method test is the array [1, 2]. We will
again take a look at the generated SMT2 code. This SMT2 code is heavily
simplified. It only covers the declarations of the functions we use to access
the values for the array. It does not contain a lot of helper functions, forall
assertions or other required components to model the Viper code to SMT2.
If you are interested in how this transformation from Viper to SMT2 works,
please look at the PhD Thesis from Malte Schwerhoff [12].

(declare-sort Array)
(declare-sort $FVF<Int>)

; the 4 user-defined domain functions
(declare-fun second ($Ref) Int)
(declare-fun first ($Ref) Array)
(declare-fun len (Array) Int)
(declare-fun loc (Array Int) $Ref)

(declare-fun $FVF.lookup_val ($FVF<Int> $Ref) Int)

(declare-const a@2 Array)
(declare-const sm@10 $FVF<Int>)
(declare-const $t@5 $FVF<Int>)

(assert (> (lem a@2) 1))

(assert (mot (=
($FVF.lookup_val sm@10 (loc a@2 0))
($FVF.lookup_val sm@1l0 (loc a@2 1)))))

(check-sat)
(get-model)
; unknown

On the Viper level, an array access has been modelled as loc(a, 0).val. In
the SMT2 code above, we can see that this access to the val field is not just
a constant, like for normal permissions, it uses a function $FVF.lookup_val.
This function takes a $FVF<Int> and a $Ref as arguments and returns the
Int value of the val field. Here the sort $FVF<Int> represents the current
quantified heap chunk. This is the general transformation Silicon does for
quantified permissions. Like for normal permissions, the direct link between
the Array constant a@2 and its values is not visible in the SMT2 code. For
this connection we have to look into the SymbExLog;:

17
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heap: [
QA r :: r.val -> $t@5

# (0 <= inv@9(r) && 0 <= inv@9(r)

inv@9(r) < len(a@2) ? W

]

Here we can see that for every reference that has a corresponding index
(inv@9 is a function that returns the index for a given reference in the specific
quantified heap chunk) between 0 and (1en a@2) we have write permission
in the state $t@5 ($t@5 is of type $FVF<Int>). If we now look at the Z3 model

we can complete our counterexample.

; Constants

$t@5 -> $FVF<Int>!val'il
sm@10 -> $FVF<Int>!vallo
a@2 -> Array!val!oO

; Functions

second -> {
$Ref!val!0 -> O
$Reflval!l -> 1
else -> #unspecified

}

$FVF.lookup_val -> {
$FVF<Int>!val!0 $Ref!vallO
$FVF<Int>!val!0 $Ref!valll
$FVF<Int>!val'!l $Ref!val!o
$FVF<Int>!val!l $Ref!valll
else -> #unspecified

X

loc -> {
Array!val!0 0 -> $Ref!vall!o
Array!val!0 1 -> $Reflvall!l
else -> #unspecified

X

len -> {
Array_!'val!O -> 2
else -> #unspecified

}

first -> {
$Ref!val!0 -> Array!'!vall!O
$Ref!val!l -> Array!vall!O
else -> #unspecified

}
inve9 -> {
$Ref!val!0 -> 0
$Ref!val!l -> 1
else -> #unspecified
}

->
->
->
->

Z)

2998
2997
2998
2997
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As described in Section 3.1.2 about heap independent functions, we will
include all user-defined functions in the counterexample. Therefore first,
second, loc and len will be in the counterexample. Also the variables sec-
tion of the counterexample is currently correctly handled by the standard
rules for variables. They would include the Array variable a@2 with its
value, given by the Z3 Model, Array!val!0®. The only thing that would
currently be missing is the heap information, as our previous rules for heap
entries only covered field permissions and not quantified permissions.

Store: {
a@2 = Array!val!O
}
Functions: {
first = {
$Ref!val!0 -> Array!val!O
$Ref!val!l -> Array!val!O
}
second = {
$Ref!vall!l0 -> 0
$Ref!val!ll -> 1
}
loc = {
Array!val!0 O -> $Ref!vall!o
Array!val!0 1 -> $Refl!vall!l
}
len = {
Array!val!0 -> 2
}
}
Heap: {
}

Now we want to include the values that where modelled with the quanti-
fied permission in the counterexample. The SymbExLog entry gives us the
constant $t@5, this constant contains the heap chunk for the failing state
and the Z3 Model has the value $FVF<Int>!val!l for it. We now have to
filter the function $FVF.lookup_val with this value for the heap chunk as
we are only interested in the values for the final program state. We achieve
this filtering with a partial function application, where we used the value
$FVF<Int>!val!1l for the first parameter. With the partial application we get
the following function:

$FVF.lookup_val ($FVF<Int>!val!l) = {
$Ref!val!0 -> 2998
$Ref!val!l -> 2997
else -> #unspecified

573 uses this naming scheme for generated values: SORT!val!ID

19
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As this function now represents the mapping in the final program state (from
heap entries to the Int values) we add it to the heap of the counterexample.
Heap: {

$FVF.lookup_val ($FVF<Int>!val!l) = {

$Ref!val!0 -> 2998
$Ref!val!ll -> 2997

Let us call this partially applied function fp. To reconstruct the array from
the counterexample the user would now have to go through the following
steps:

o Get the value from a@2 from the counterexample: a@2 = Array!val!0

e Partially apply the loc function with Array!val!O for the Array pa-
rameter. This will result in the following function that maps Int to
$Ref:

loc(Array!val!o) = {
0 -> $Ref!vallo
1 -> $Reflvalll
else -> #unspecified

QL WD =

e With the function fp the user has a mapping from the loc references
to the array integer values. Composing these two fp(loc(i)) where
iis some index withi >= 0 && i < (len Array!val!0), would give
the following lookup function that maps indices to array values:

lookup = {
0 -> 2998
1 -> 2997
else -> #unspecified

QL WO DN =

e The reconstructed array of this counterexamples is then [2998, 2997].
Rules
A quantified entry has the following form:
QA r :: r.FIELD -> VAL # PERM.

For each quantified heap entry we see in the SymbExLog we perform the
following actions:

1. Extract the FIELD and VAL variable out of the SymbExLog entry.
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$Reflval!ll

loc ——

$ReflvallO

Figure 3.1: Visualisation of a subset of the function graph from the quantified permission
example. Where in green we have the functions and in white the argument values.

2. Get the assignments from the Z3 model for the $FVF.lookup FIELD
function and the VAL variable.

3. Partially apply the function with the model value of the VAR variable.

4. Add the partially applied function to the heap of the counterexample.

3.2.2 Function Graph

In the last example we saw that the reconstruction of the counterexample
was not an easy task for the end user. We cannot automate this (without any
additional information), as the array was modelled by the user and he must
do this reconstruction of the original data structure on his own. But only
because we cannot do it automatically does not mean we cannot support
him.

One way of giving additional support is visualising how the different func-
tions are connected to each other. Our idea was to build a directed acyclic
graph for all the function applications (from now on called function graph
or function application graph). The graph should contain all the function ap-
plications as nodes that are inside the viper file and also contain all the
information Z3 gathered from the different universal quantifiers about these
functions. Concrete this means that we have a node for each function case
that appeared during the verification. Also we will have a node for each
argument of a function and an edge that connect these arguments with the
functions, see Figure 3.1 for an example.

The best way to get all this information is directly from Z3, because inter-
nally it has this data in the E-Graph and we can be sure that we get all
the data Z3 has during the verification. Currently we talk to Z3 only over
the SMT?2 text interface and we found no way to access these internal data.
Therefore we had to reconstruct the required information on our side. This
has the disadvantage that we cannot be sure to ever get the exact same
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amount of data than Z3 had internally (only if we would reproduce the
exact steps that Z3 did).

Construction

The initial set of function calls we get from the SMT2 file. All the additional
information about the functions come from quantifiers that get triggered
and lead to additional information. Therefore we have to load all the univer-
sal quantifier from the SMT2 file and search for combinations of functions
that trigger a quantifier. Every triggered quantifier could lead to additional
function applications and in consequence to new triggered quantifiers. This
could loop endlessly, called a matching loop, this means that the implemen-
tation does need a mechanism to prevent this from happening. For our
implementation see Section 4.3.3. As you can see in the example every func-
tion application has a result node. Therefore we have to ask Z3 for all the
results of the function calls. After we have gathered all the information we
need, we have to create the graph. Here are the steps to create such a graph:

e Create a node for every function application.

o Create a node for every result and connect it to the function applica-
tion.

e Create a node (if not already present) for every argument of a function
application and connect it.

3.2.3 Quantified Permission V2

We will now take a second look at quantified permissions, as there are cases
where the previous rules do not get us to the correct result. Here is an
example with two integer arrays of length 1:

field val : Int

define access(a) forall j: Int :: { loc(a, j) } 0 <= j &&
j < len(a) ==> acc(loc(a, j).val)
domain Array {
function loc(a: Array, i: Int): Ref
function len(a: Array) : Int
function first(r: Ref) : Array
function second(r: Ref) : Int

axiom injectivity {

forall a: Array, i: Int :: {loc(a, i)}
first(loc(a, 1)) == a &&
second(loc(a, 1i)) == 1i
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axiom length_nonneg {
forall a: Array :: len(a) >= 0
}
}

method test(a:Array, a2: Array)
requires access(a) && access(a2)

requires len(a) == 1 && len(a2) == 1
{
//Assert might fail. Assertion loc(a, 0).val == loc(a2
, 0).val might not hold.
assert loc(a, 0).val == loc(a2, 0).val
¥

The only difference to the previous quantified permission example is that
we compare two elements of different arrays and before we compared two
elements of the same array.

Here is the simplified SMT2 code, in this simplified version it is almost
exactly the same as the previous example.

(declare-sort Array)
(declare-sort $FVF<Int>)

; user-defined functions
(declare-fun loc (Array Int) $Ref)
(declare-fun len (Array) Int)
(declare-fun first ($Ref) Array)
(declare-fun second ($Ref) Int)

(declare-fun $FVF.lookup_val ($FVF<Int> $Ref) Int)

(declare-const a@0 Array)
(declare-const a2@1 Array)
(declare-const a@2 Array)
(declare-const a2@3 Array)
(declare-const sm@18 $FVF<Int>)

(assert (= (lem a@2) 1))
(assert (= (len a2@3) 1))

(assert (mnot (=
($FVF . lookup_val (as sm@18 $FVF<Int>) (loc a@2 0))
($FVF.lookup_val (as sm@18 $FVF<Int>) (loc a2@3 0)))))
(check-sat)
; unknown

In the SymbExLog we see now two quantified permissions.
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heap

And for completeness, here also the Z3 output:

o[
QA T r.val -> $t@11
# (0 <= inv@15(r) && 0 <= inv@15(r) ==>
inv@15(r) < len(a203) 7 W zZ),
QA T r.val -> $t@5
# (0 <= inv@9(r) && 0 <= inv@9(r) ==>
inv@9(r) < len(a@2) 7 W Z)

; Variables
-> Array!'!val!l

-> Array'!val!O
-> $FVF<Int>!val!2

1 -> $FVF<Int>!val!3

a203
a@2

$te5
$teo1

; Functions
$FVF.lookup_val -> {
$FVF<Int>!val!'l
$FVF<Int>!vall!1l
$FVF<Int>!val!3
$FVF<Int>!val!2
$FVF<Int>!'val!3
$FVF<Int>!val!l?2
$FVF<Int>!val!o
$FVF<Int>!val'4
$FVF<Int>!val'4
$FVF<Int>!val!b
$FVF<Int>!val!5s

-> (_

-> (_

$Ref!lval!il
$Ref 'val!2
$Ref!vallil
$Ref!vallil
$Ref!lval!2
$Ref !val!?2
$Reflval!il
$Ref!'vallil
$Ref !vall!2
$Ref !vallil
$Ref !val!?2

-> #unspecified

8366)

-> #unspecified

1

-> #unspecified

-> Arraylval!l

-> 1
-> 1

else

}

inv@9 -> {
$Ref !lval!2
else

}

inve1ls -> {
$Ref!val!l
else

}

first<Array> -> {
$Ref!val!2
else

¥

len -> {
Array!val!oO
Array!valll
else

¥

loc -> {

-> #unspecified

-> #unspecified

->
->
->
->
->
->
->
->
->
->
->

W Pd WwoddwND W
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Array!val!0 0 -> $Reflval!l
Array!val!l 0 -> $Ref!vall!l2
else -> #unspecified

}

second -> {

#unspecified

}

If we now apply our previous rules for quantified permissions, we get the
following two partial functions:

Heap: {
$FVF.lookup_val ($FVF<Int>!val!2) = {
$Ref!val!l -> 3
$Ref!val!2 -> 5
}
$FVF.lookup_val ($FVF<Int>!'val!3) = {

$Ref!val'!l -> 2
$Reflval!2 -> 4

We can see that both partial function contain two values, even though that
the length of both arrays is fixed at 1. The partial functions therefore do not
correctly represent the arrays and contain spurious elements. Another prob-
lem that we have in this representation, is that it is impossible to match the
partial functions to the Array variables without looking at the SymbExLog
entries.

Currently, we do not have a automated solution for the second problem,
matching Array variables to the partial functions. Manually this can be
done, if the user looks at the SymbExLog permission expression and there
he can see the connection to the array ((len a@2)). But we have a potential
automated solution for the first problem. We only did tests on these types of
quantified permissions (the array representation), so there is still work left
to do.

Our goal was to remove the spurious elements from the partial functions.
We can observe that the loc function has the correct entries, one case for
each array and it returns the correct reference. But we cannot use the loc
directly, as there is no obvious connection from the quantified permissions
to the loc function that is known without user knowledge about how he
modelled the array. But what we can use is the permission expression in the
SymbExLog. Here is the permission expression for Array a:

0 <= inv@9(r) && 0 <= inv@9(r) ==> inv@9(r) < len(a@2) ? W : Z
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We can observe that the left side has a duplicated expression, let us simplify
it.
0 <= inv@9(r) ==> inv@9(r) < len(a@2) ? W : Z

We see that we have write permission on a reference if this implication is
true. Additionally in the model that we got from Z3, we know that this
implication has been enforced. Therefore if the left side is true, we know that
we have a positive index (inv@9 maps references to integers) and, because
it is a valid implication, that the index is smaller than (len a@2). But the
implication can also be true if the left side is false. In this case we do not
learn the right side of the implication but we still have write permission.
This is the case that happens in our example above (see the models for both
functions inv@9 and inv@15 in the Z3 model).

Our solution was then for quantified permission with this form of a permis-
sion expression (an implication) to check if the left side is true for each case
of the partial function. If the left side is not true for a case, we will remove it
from the partial function. If we apply this technique to the current example
we would get the following partial functions:

Heap: {
$FVF.lookup_val ($FVF<Int>!val!2) = {
$Ref!val!l -> 3
}
$FVF.lookup_val ($FVF<Int>!val!3) = {

$Ref!vall!2 -> 4
}

3.3 Open Problems

For the following sections we only have basic support. This means that the
above rules get applies and it does display the variables, function model and
heap entries (both normal permissions and quantified permissions). But an
improved version should include additions mechanisms to handle them.

3.3.1 Heap dependent Functions

Previously we only looked at heap independent functions, but heap depen-
dent ones do utilize the snapshot feature. Here is a small example that
shows what the current solution would do with a heap dependent function.
Again we start with the Viper file, it is a small increment function but this
time heap dependent.
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field a : Bool
field b : Bool

function inc(config:Ref, x:Int): Int
requires acc(config.a, 1/2) && acc(config.b, 1/2)
ensures result == (config.a || !config.b ? x + 1 : x)
{
config.a || !'config.b 7 x + 1 : x

}

method access(r:Ref, r2:Ref)
requires acc(r.a) && acc(r.b)
requires acc(r2.a) && acc(r2.b)

requires r.a == true && r.b == true
{

assert inc(r, 5) == 6

assert inc(r, 7) == 8

r.a := false

assert inc(r, 5) == 5

assert inc(r, 7) == 7

assert inc(r2, 7) == 8
}

A counterexample for this Viper code would be r2.a = false and r2.b =
true. With this configuration the increment function would return 7. Our
current rules would generate the following counterexample:

Store: {

r@2 -> $Ref!val!o
r2@3 -> $Ref!vall!2

}
Functions: {
inc -> {
($Snap.combine $Snap.unit $Snap.unit) $Ref!vall!O 5
-> 6
($Snap.combine $Snap.unit $Snap.unit) $Ref!val!0 7
-> 8
($Snap.combine ($Snap.combine $Snap.unit $Snap.
unit) $Snap.unit) $Ref!vall!0 5 -> 5
($Snap.combine ($Snap.combine $Snap.unit $Snap.
unit) $Snap.unit) $Ref!vall!0 7 -> 7
($Snap.combine ($Snap.combine $Snap.unit $Snap.
unit) $Snap.unit) $Reflvall!2 7 -> 7
else -> #unspecified
}
}
Heap: {
r.a = false
r.b = true
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r2.a = false
r2.b true

}

This generated counterexample is correct, but the problem is the repre-
sentation of the function. As snapshots are Silicon internal a normal end
user of Viper does not know what snapshots are. And even if the user
knows what snapshots are, a mapping from the snapshot binary trees (these
$Snap. combine functions build a binary tree) to a tuple of values would be
user friendly and appreciated.

3.3.2 Predicates

The same as for heap dependent functions is also true for predicates. The
software can generate correct counterexamples but it does not collect and
combine every bit of information it could. Here we have a really simple
example that contains a predicate.

field val : Int

predicate pred(this: Ref)
{

acc(this.val)

}

method access(r:Ref, x: Int)
requires pred(r)
ensures pred(r)

unfold pred(r)
r.val := x
fold pred(r)

assert x ==

The predicate does not take an important part of the counterexample, but
we want just demonstrate what happens if a counterexample does contain
a predicate instance. Predicate instances are part of the heap information in
the SymbExLog, in the current example we would find the following entry:

pred(x@3; r@2) # W

The current rules we have for heap entries only cover normal permissions
and quantified permission. Predicates would need an additional set of rules
but because if time constraints we just added the predicate instance as it is
to the counterexample. Further work is needed to correctly parse this heap
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entry and connect it to the already existing parts of the counterexample. The
current version would output the following counterexample:

Store: {
r -> $Ref!val!o
x -> 0
}
Functions: {}
Heap: {
pred (x@3; r@2)
}

3.3.3 Set, Sequences, Multisets

Viper has built-in support for three data structures set, sequences and mul-
tisets. This means that Silicon has built in functions that encode these three.
The goal would be that the counterexample would only contain constructs
that the user knows from the Viper level. But currently the counterex-
ample would contain these Silicon internal functions. This is correct, but
again like in the previous two sections, not the expected output. Future
versions should include a mapping back from the counterexample to the
Viper level. If you are interested in examples, you can find them inside the
experiments/test-suites/viper_datatypes directory.

3.3.4 Matching Program States

One of our extension goals for this thesis was the support to generate pro-
gram states that occurred earlier in the trace of the counterexample. We did
not work extensively on this task but we had some ideas on how to tackle
this problem. If someone wants to continue this work, here are some ideas.

The main idea is that given a counterexample we can go back to an older
state in the execution trace if we take a subset of the constants (and heap
entries in the SymbExLog) and then start the counterexample generation
process for this subset of constants, functions and SymbexLog entries. Here
is a simple example to illustrate the point:

method test ()

{
var x: Int
X := x + 2
// user requests the state here
X = x + 2
X = x + 2
assert x != 7
}
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The simplified SMT2 code for this Viper method looks like this:

(declare-const x@6 Int)
(declare-const x@7 Int)
(declare-const x@8 Int)
(declare-const x@9 Int)

(assert (= xQ@7 (+ x@6 2)))
(assert (= x@8 (+ x@7 2)))
(assert (= x0@9 (+ x0@8 2)))

(assert (not (mnot (= xQ@9 7))))

The requested state would than mean that the user is interested in the value
from x at constant x@7. We would therefore remove the variables x@8 and
x@9 from the Z3 model and the generate the counterexample.

There are multiple problems that need to be addressed. First we have to find
this subset that corresponds to the right program state. Another could be
branching, maybe the counterexample trace did not even reach the requested
state or Silicon did some pre-calculations and removed it. This would mean
that there are no constants that represent the requested state. Here is an
example:

method test ()

{
var x: Int := 1
X := x + 2
// user requests the state here
X = x + 2
X = x + 2
assert x != 7
}

The generated SMT2 code for this example looks like this:

(assert (not false))

No constants for x where created (as it is not needed) but we cannot generate
the requested state with this technique if there are no constants.

This concludes the work we have done on the counterexample generation
during this thesis. There are most likely more open problems than we en-
countered. As our approach was an experimental one and we did not argue
over all the possible Viper and SMT2 configurations.



Chapter 4

Implementation

This chapter will describe the implementation of the counterexample gen-
eration process we created in this work. Not every idea discussed in the
previous chapter but rather a baseline process has been implemented. Also
we created a first version of the visualizer, that is a proof of concept for the
debugging support.

4.1 Overview

Our software is written in Python, along with some bash scripts. It can be
found in the src directory of our repository [13]. In this directory you will
find the following files/directories:

e counterexample_generation: Python project that implements the “Coun-
terexample Generator”, the “Visualizer” and the second part of the
Input Preparation Phase from the Approach chapter.

e execute_viper_client.sh: A Bash script that facilitates the interaction
with the viper_client. The viper_client itself starts the verification
task and it handles the communication with Silicon.

e generate_counterexample.sh: Main Bash script to start the counterex-
ample generation and does the first part of the Input Preparation.

4.1.1 Getting started: Generate a Counterexample

To generate a counterexample for your failing verification, run the following
script:

./generate_counterexample.sh "ViperFile" ["Output Directory"]

e ViperFile: Path to the Viper file
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start counterexample
generator

Figure 4.1: First part of the input preparation phase

e Output Directory: Path to the output directory, [optional, default:
./out]

4.2 Input Preparation

In the first part of the input preparation phase the Viper file will be sent
to Silicon (via the viper_client) and it creates the SMT2 File, SymbExLog
and the viper_client.log containing all the failing methods with the error
messages. These three files will then be moved to the Output Directory
and the Python program will be started (see figure 4.1).

The second part is handled by the Python program. At that stage, the files
are split into the method-specific sections. We want an SMT?2 file for each
failing method. We can then use Z3 to generate a model for the method
specific SMT?2 file to get the third input we need for the counterexample
generation. The current implementation does not split the SymbExLog into
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different files, here we load only the required parts if we need some infor-
mation. We create a subdirectory for each failing method and copy the files
to the subdirectory.

4.2.1 Post-processing the SMT2 file

As a final step before the counterexample generation can be started, we have
to run a post-processing routine on the SMT2 file. The sources on this are
contained in the postprocessing package. First all the (get-model) state-
ments are removed and then add this statement after the final (check-sat).
We do this because we are only interested in the model in the failing state.

Subsequently we remove unnecessary statements from the SMT?2 file. The
SMT?2 file contains (push) and (pop) statements: Every time a (pop) is sent
to the SMT Solver, it returns its internal state back before the last (push)
happened. It basically unlearns all the assertions that happened in between
these two statements. Hence we can remove all assertions that are in be-
tween some (push) and (pop) statements with the same index. This does
reduce the execution time of Z3 as these assertions are meaningless to the
final generated model. For illustration purposes a short example is given
below: on the left side you see the original SMT2 input and on the right side
the final SMT2 input after the unnecessary assertions where removed.

(push) ; 1
(push) ; 2
(assert (= (f x) 2))

(push) ; 1
(assert (= (f y) 3))
(check-sat)

Gl LN =

(check-sat) ; unknown
; unsat (pop) ; 1
(pop) ; 2

(assert (= (f y) 3))
(check-sat)
; unknown

(pop) ; 1

4.3 Counterexample Generator

Now that we have completed the file preparation we are ready to have a
look at the implementation for a single failing method. As we have split up
the failing methods we can now solve every method independently.

4.3.1 Parsing

Beforehand we need to parse the input files. In the package inputparsing
you can find all the different parsers we used during this thesis. In every
parser file are also the model classes. The different parsers are:
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e smt_parser.py

e symbex_log parser.py

e viper_client_log parser.py
e z3_model_parser.py

For the SymbExLog we also have an infix_to_smt_converter.py as some
code expressions inside the SymbExLog are in infix notation and we have to
convert those to SMT2.

4.3.2 Building the counterexample

After parsing all the inputs the preparation for the generation process is
completed. The counterexample generation has been implemented in the
following files:

e counterexample_generator.py
e counterexample.py
e function_application_graph.py

e forall instantiations.py

matching trigger _candidates.py
e z3_solver.py

The generated counterexample consists of 4 objects. The first three are a
list of store variables, a list of heap entries (heap fields, quantified per-
missions and predicate instances) and a list of all the user-defined func-
tion models. The fourth object is the generated function graph. Addi-
tionally the input files are also stored within the counterexample. The
definitions can be found in the counterexample.py file. If you are inter-
ested in the generation of the store, heap or function objects, please refer
to counterexample_generator.py. For the function graph look at the file
function_application_graph.py and its dependencies.

4.3.3 Detailed explanations
Triggering of Universal Quantifiers

In Section 3.2.2 we only described how we could use the function graph
and not how we get to all the different function applications. Also in that
section, we stated that the best approach would be to get these from the
SMT solver. But as we could not achieve this, via the SMT2 interface, we
had to implement our own solution. In the following section we will discuss
how we handled the triggering of the universal quantifiers. We used this to
generate more function applications for the function graph.
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The first set of function applications we obtain directly from the SMT?2 file.
To get the same set of function applications as the SMT solver, we would
have to trigger the same universal quantifiers as the solver. This means just
reimplementing what the SMT solver does. This is undesirable and also out
of scope for this project. Therefore we created a lightweight solution that
is able to trigger all available universal quantifiers based on a given ground
set. If desired we could repeat this process, if we added the newly found
applications in each iteration to the ground set and repeat the whole process.
The question posing itself at this point clearly was: How many repetitions
are required? The current implementation only runs the whole process once
and does not repeat it.

We will explain the solution based on a simplified example. You can find
the code in these files:

e function_application_graph.py
e forall_ instantiations.py
e matching trigger_candidates.py

Let us assume that we have three functions f: Int -> Int,g: (Int x Int)
-> Int and h: Int -> Int, additionally we have the following universal
quantifier:

(forall ((x Int) (y Imnt)) (!
(=y (g (£ x) y))
:pattern ((f x) (g (h x) y))
))

Inside the SMT?2 file we found the following function applications:

(f 1 1 (g1 1)
(f 2) 2 (g (h 1) D
(f 4) 3 (g (h 3) 1)
4 (g (h 3) (f 4))

The first step is to check for all £ and g function applications if they match
the trigger structure. For f this is (f x), as we only have syntactically cor-
rect f applications inside the SMT2 file (otherwise we would have crashed
during the first execution of this SMT2 file) we can assume that every func-
tion application matches this trigger. For g this is different, the trigger has
the form (g (h x) y). Therefore the first argument has to be an application
of the function h. After this filtering step we have the following candidates
for our matching;:
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(f 1 1 (g (b 1) 1)
(f 2) 2 (g (h 3) 1)
(f 4) 3 (g (h 3) (£ 4))

The next step is to find all combination of candidates (where we always
choose one candidate out of each group) that satisfy equality over the quan-
tified variables. In our example the trigger was (f x) (g (h x) y), there-
fore the argument of the candidate for the f function has to be identical to
the argument of the h function. As we only have one y, we don’t have any
constraints on it and any value is sufficient.

To solve this problem, we translated all the remaining function applications
to a set of assignment:

{x = 1} 1 {x=1, y = 1}
{x = 2} 2 {x =3, y =1}
{x = 4} 3 {x =3,y =(( 4}

Our goal is now to select one set of assignments out of each group with-
out getting any conflicts. The fastest solution we developed translates this
problem to a SAT query and we had to create a new Z3 instance to solve
this problem. The translation is relatively straightforward. For the above
example it would look like this (we replaced (f 4) with a new integer 5):

(and
; choose one out of the first group
(or
(and (= x 1))
(and (= x 2))
(and (= x 4))
)
; choose one out of the second group
(or
(and (= x 1) (= y 1))
(and (= x 3) (= y 1))
(and (= x 3) (= x 5))
)

Z3 will return us the model x

= 1 and y = 1 for this query. Therefore we

know that we should trigger the universal quantifier with the variables x =
1and y = 1. To get all solutions, we will assert the negation of this model
((not (and (= x 1) (= y 1))) and then ask for the next. This process can
be repeated until an UNSAT response is reached.
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4.3. Counterexample Generator

Simplified Function Graph

We added a simplified version for the function graph, as we wanted to re-
move as much Z3 and Silicon internal information as possible. In this ver-
sion the result nodes for functions have been removed, if this result node
is only used as an argument for another function. As an example, the call
f(g(2)) withf(x) = xand g(x) = x + 1in the normal version would look
like this:

2->g->3->f->3

But in the simplified version the result node for the g function has been
removed and the graph would look like this:

2->g->f->3

Filtering of the quantified permission

While in Section 3.2.3 it was discussed how the partial functions had to be
filtered we will now demonstrate the implementation of this process. For
simplicity’s sake the example from Section 3.2.3 will be reconsidered. The
permission expression we looked at was:

0 <= inv@e9(r) ==> inv@9(r) < len(a@2) ? W : Z

Our goal was to take the left side of this implication and check for each case
of the partial function if it is true in the current model. To check this, we
have to translate the expression from an infix representation to into an SMT2
expression (look at infix_to_smt_converter.py if you are interested in this
part). The converted SMT2 expression reads:

(<= 0 (inv@9 r))

Again, here is the partial function we talked about:

$FVF.lookup_val ($FVF<Int>!val!2) = {
$Reflval!l -> 3
$Ref!val!2 -> 5

If we now take the first case of this function and replace the r variable in the
SMT2 expression with $Ref !val!l we get the following:

(<= 0 (inv@9 $Ref!val!l))

Requesting a validation from Z3 will result in an error, because the value
$Ref!val!l is an internal value and we cannot use these internal values in
queries. These are only allowed to appear in models.
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To overcome this problem we used a combination of constant model val-
ues and our function graph. As every internal value Z3 presents us in the
model corresponds to some constant or function application, we only have
to find the suitable expression that is in the same equivalence class with
$Ref !val!l. If we assume that our function graph contains the exact same
function applications as Z3 internally, than we would have an expression for
every internal value Z3 can present us. This means that during the creation
of the function graph we create an inverse lookup dictionary (from model
value to expression) and also fill this dictionary with the SMT2 constant and
their model values. At the end we have a dictionary for every internal value
Z3 presents us and we can map them back to an SMT2 expression. In our
example the dictionary would give us the expression (loc a@2 0) for the
internal value $Ref!val!1l. The SMT2 expression to check if the left side of
the implication is true would look like this:

(<= 0 (inv@9 (loc a@2 0)))

If this expression evaluates to true, this case is part of the final partial func-
tion.

4.4 \Visualizer

In this section we will go over the three main parts of a counterexample
(store, heap and functions) and talk about how they are visualized. For the
visualization we used the graph tool graphviz [7]. The concept of this proto-
type is based on ideas from a previous Master Thesis written by Alessio Au-
recchia [2]. You can find the implementation in the file visualisation.py.

4.4.1 Store

The easiest part is the store (example in figure 4.2); it displays nodes for each
user-defined variable. This node label contains the name of the variable, the
type and its model value. If the type is a reference ($Ref), an edge will
be drawn to the heap entry that represents that memory location and the
model value will not be displayed. In the current implementation this only
works for simple permissions, not quantified permissions.

4.4.2 Functions

Every function that is in the counterexample functions list will be displayed.
To do this, we add the functions as a box and every case of this function
model to this box (we remove the else case). See Figure 4.3 for an example.



4.4. Visualizer

Store

b: Bool = false

i:Int =5

x: Int = 12

Figure 4.2: Example of a store visualization.

Functions

second

$Reflval!2 -> 2743

$Reflvall4 -> 2581

$Ref!val!0 -> 2742

first

$Reflval!2 -> Array !val!O

$Reflval!4 -> Array !val!O

$Ref!lval!0 -> Array !val!O

len

3062

loc

Array lvall0, 2742 -> $Reflvall0

Array l!vall0, 2743 -> $Reflvall2

Array l!vall0, 2581 -> $Reflvalld

Figure 4.3: Example of the functions visualization.
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Heap
Store $ReflvallO
rl: $Ref ref
T
Y
$Reflval!2
x=1

Figure 4.4: Example of a heap visualization.

4.4.3 Heap

For the heap we add every reference value (the model value of a reference
variable; think of them as memory locations) as a box. The title of this box
displays the reference variable and then a smaller box is added that repre-
sents the different fields of this memory location. Every field contains its
name and model value (in the current implementation it does not contain a
type). If the value of the field is a reference ($Ref) then it won’t be displayed
but instead an edge is added to the referenced heap entry (see 4.4 for an
example).

Quantified Permissions

In Chapter 3 (Counterexample Generation) we talked about how we gener-
ate a partial function for quantified permissions. In the visualizer we will
use this partial function and display it similarly to a normal function, but
inside the heap box.

Predicates

If the counterexample contains predicate instances, the current implemen-
tation does add them as a single node to the heap box. It does not parse
the arguments of this predicate, it will just display them to the user. It is a
bare bones implementations, so a lot of improvements could be done on this
subject.



Chapter 5

Evaluation

To evaluate what has been achieved by this project we will use our imple-
mentation of the counterexample generation and the prototype for the visu-
alizer. We will look at different tests and check if the implementation can
find a counterexample, if that counterexample is correct and finally if the
visualizer can generate an image that visualizes all the important part of
this counterexample. The last step will then be to compare our results of
this theses with the project description that was created at the start of this
project.

5.1 Example Set

The examples created during this thesis focused on simple test cases for the
different Viper features. We used these examples to build the counterex-
ample generation process. The resulting examples are relatively small and
mostly contain only the feature that is being put to the test. Later we built
some examples that combine multiple features but we don’t have an exam-
ple for every combination. Currently our example set contains 35 test cases,
which should be enough to discuss the main use cases of the tool. The list
of examples is given in Appendix A.1.

5.2 Case Study

In the following sections the counterexamples were generated with the de-
fault settings of the software. Therefore the simplified function graph is
enabled. We will now go over different examples from the example set and
analyse the generated counterexamples for each of these examples.
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Store
x:Int =0
y:Int = 4

Figure 5.1: The visualisation of the generated counterexample for the first example.

5.2.1 Arithmetic Example

Let us start with an arithmetic example that only contains two store variables
and has a simple structure.

method test(x:Int, y:Int)
{
assert 2*x*x + 3*%x + 10 > yx*y

}

This example has a method test with two integer parameters, x and y. The
method consists of a single assertion with an arithmetic expression. This
expression does not hold for every possible assignment for x and y and
therefore we get a verification failure. The generated counterexample is
also straightforward and only contains the two values for the parameters
(see Figure 5.1). It contains the assignments x = 0 and y = 4; if we use
these assignments in the original formula the result will be 10 > 16 which
is indeed not correct and therefore the counterexample is correct. The visu-
alisation does also only contain the relevant information a user needs and is
small enough to show inside an IDE.

5.2.2 Reference Field Example

Let’s now have a look at heap permissions and heap fields that store refer-
ences.

field x: Int
field ref: Ref

method test(rl: Ref)
requires acc(rl.ref) && acc(ril.ref.x)

{

assert rl.ref.x == 0

}

This example contains two fields, an integer one (x) and a Ref (ref), and a
method test. The method has a Ref parameter r1 and requires access to
ri.ref and ri1.ref.x. The body of this method then only has an assertion
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Heap
Store rl
rl: $Ref ref
T
Y
$Reflval!2
x=1

Figure 5.2: The visualisation of the generated counterexample for the reference field example.

that checks that the value of this last field ri.ref.x is equal to 0. As this
does not have to be true, the verification fails and the system will therefore
generate a counterexample. You can find the visualisation of the generated
counterexample in Figure 5.2. It generated a r1.ref .x field permission with
the value of 1 and additionally the references r1 which points to $Ref !val!0
and $Ref !'val!0.ref which points to $Ref !val!2. The last reference in this
chain, $Ref!val!2, has an assignment x = 1. As the value was not 0, this
counterexample is correct.

5.2.3 Increment Function

So far the store and heap have been treated. In this next example we will
discuss an example that contains a function. This will enable the generation
of the function graph and the function section in the visualization.

function inc(x:Int): Int

ensures result == x + 1
{
x + 1
}
method test(x:Int)
{
assert inc(x) == 2
}

The example has a test method with a single integer parameter x and an
inc function. As the assertion inc(x) == 2 of the method only holds true
for x = 1, a verification failure will occur. Figure 5.3 displays the gener-
ated counterexample for this case. We can see that it generated a constant
function model for the inc function with a value of 238. This image also
contains a function application graph and this introduces a new, for the user
unknown, identifier $Snap.unit. As the function is independent of the heap
the snapshot is not used and therefore the default one $Snap.unit has been
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3

Functions

inc

238

Store

x: Int = 237

inc 238

)
i

$Snap.unit

Figure 5.3: The visualisation of the generated counterexample for the increment example.

Functions

inc

238

Store

x: Int = 237

Figure 5.4: The visualisation without the function graph.

used. In case a user is not aware of snapshots, he will be irritated by its
occurrence. One way to solve this problem is simply to remove the func-
tion graph from the final result, as depicted in figure 5.4. For this simple
example this would be a reasonable solution, but if the examples get more
complicated this could no longer work. Another way would be to remove
the snapshot; as the inc function is not heap dependent this would work.
But as soon as we have heap dependent functions, this solution would no
longer be sound.

5.2.4 Array Maximum

As a last example for the evaluations we will look at an example that com-
bines multiple features from Viper. It is a faulty implementation of a find-
the-maximum algorithm in an array (loop through the array and find the
biggest integer). It compares the current element with the previous element
and not with the current maximum. Therefore the algorithm is not correct
and we expect a verification failure.

// Removed the default Array definition

method find_max(a:Array) returns (max:Int)
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5.2. Case Study

requires access(a)
requires forall i:Int :: 0 <= i && i < len(a) ==> loc(
a, i).val >= 0

ensures access(a) && untouched(a)

ensures len(a) == 0 ==> max == -1
ensures forall i:Int :: O <= i && i < len(a) ==> loc(a
, i) .val <= max
{
if (len(a) == 0)
{
max := -1
}
else
{
max := O
var i:Int := 0
var last: Int := O
while(i < len(a))
invariant i >= 0 && i <= len(a)
invariant access(a) && untouched(a)
invariant forall j:Int :: { loc(a, j) } j >= 0
&& j < i ==> loc(a, j).val <= max
invariant i1 > 0 ==> last == loc(a, i-1).val
invariant i == 0 ==> last == 0 && max ==
{
if (loc(a, i).val > last)
{
max := loc(a, 1i).val
}
last := loc(a, 1i).val
i =1+ 1
}
}
}

The main algorithm is located within the find max method. As we pointed
out earlier, this algorithm compares the current element with the previous
one and not with the current maximum. Therefore if we call find max on
[3,1,2] it will output max = 2 and will not find the correct max = 3. There-
fore the verification fails as the loop invariant might not be preserved. If
we now take a look at Figure 5.5, we can see that it also found this problem
(albeit with other numbers). To facilitate the overview over the output, we
removed the function graph from the visualisation for this report.

The analysis of this counterexample is a bit more complex than the previous
ones as it contains a lot more information. If we start with the store variables,
we can see that our array a has the value Array_!val!0, the max is 2748 and
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Figure 5.5: The visualisation of the generated counterexample for the Array Maximum example.
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Functions

loc<Ref>

‘ Array_lvall0, 6020 -> $Reflvall0 |

‘ Array_lvall0, 6021 -> $Reflvall2 |

‘ Array_lvall0, 6019 -> $Reflvalld |

len<Int>

6738

first<Array>

| $Reflval!2 -> Array !vall0 ‘

| $Reflval!'4d -> Array !vall0 ‘

| $Reflval!0 -> Array !vall0 ‘

second<Int>

| $Reflvall2 -> 6021 }

| $Reflval!l4 -> 6019 }

| $Reflval!0 -> 6020 }

Store

sm: $FVF<Int> = $FVEF<Int>!vall2 |

max: Int = 2748

a: Array = Array !vall0

last: Int = 2748

Heap

$FVFElookup val $FVF<Int>!val!3

| $Reflvall2 -> 2748 ‘

| $Reflvalld -> 2749 ‘

$Reflvall0 > 0




5.3. Comparison to the Project Description

i is 6022. If we continue with the model for the 1oc function, we can observe
that the important indices are 6019, 6020 and 6021 and the corresponding
memory locations are $Ref !val!4, $Ref!val!0 and $Ref!val!2. To get the
values at these array locations we have to use the partial function generated
for the quantified permission. In the current implementation it is named
$FVF.lookup_val _$FVF<Int>!val!3. This function has exactly three cases,
one for each memory location. Using this function we get to the following
array values: a[6019] = 2749, a[6020] = 0 and a[6021] = 2748. Thisis a
correct counterexample to our initial Viper file.

In this example we can see even more new identifiers than in the previous
one and we no longer have the option to just remove them, as in this example
the new identifiers play an important role for the counterexample. It would
be beneficial to have some sort of simplification steps on the counterexample,
for more information about this idea see chapter 4.3.3.

5.3 Comparison to the Project Description

Now we will compare our results to the goals set in the project description.
There we specified some core goals and a set of extension goals. As the main
focus a of thesis lies on the core goals, we will start with those.

5.3.1 Core Goals
Build an example set

The first core goal was to build an example set, as described in this chapter
we could achieve this goal and got an example set of 35 different examples
that span different Viper features. It is not complete (and cannot be com-
plete) but it contains a wide enough field of examples to talk about the
general idea and if it would be possible to create such a counterexample
generation engine.

Modelling in SMT2

During the time we wrote the project description we thought that we have to
remove the quantified constraint. Therefore we included this goal to rewrite
(or remodel) the SMT2 queries. One of the first results of this thesis was
the realisation that this is not needed and we can directly reuse the queries
generated by Silicon. This means that this step is required and the core goal
can be removed (or simply it was achieved by the default SMT2 query).

Using Z3 as a model Finder

The next thing was using the Z3 SMT solver to generate the counterex-
amples. As the generated queries of a failing verification already gener-
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ated a counterexample (but on the SMT2 code level) the first step was
achieved early during the project. The harder part was creating a method
that mapped this model back to the original source code. This could be
achieved for some Viper features but not on all of them.

Alternative: using Z3 as an oracle

As we used Z3 as a model finder, we did not work on this goal.

Implementation

We created a prototype implementation for the counterexample generation
and the visualization of the counterexample. This prototype was a stan-
dalone software and not integrated into the original debugger of Viper. So
there is still work to do, to create a real implementation that is tightly inte-
grated into the Viper tool-chain and also the VS Code IDE.

5.3.2 Extension Goals
Matching Program States

The first extension goal was to support finding program states from earlier in
the failing trace. For example given the program state of the failing assertion,
what was a possible state at the beginning of the method (or any other
possible state in this method). We talked about this in section 3.3.4 but did
not implement it in the prototype.

User-provided constraints

As we did not wrote an IDE extension that implemented our way of gener-
ating a counterexample we also did not support user-provided constraints.
As described in the extension goal, an additional constraints is just an ad-
ditional assumption on the Viper level and therefore Silicon should do the
transformation to the SMT2 level. The counterexample generation engine at
the bottom of the tool-chain would then not even recognise that some of the
assumption where user-provided and not already inside the Viper code.

Support for Carbon

During the thesis we focused on the support for Silicon. Therefore we did
not work on this extension goal.

5.4 Comparison to other Tools

In the field of program verification they are many other ways of supporting
the developer in case of a verification failure. The current implementation



5.4. Comparison to other Tools

of the Viper Debugger, like other Symbolic Execution based verifiers for
example VeriFast [8], visualise the symbolic verification states. Additionally
the Viper debugger has a counterexample generation engine based on Alloy.
Alloy has a few disadvantages in comparison to the model generation with
73 as it only works over a bounded search space (for example we have to
limit the range of integers it considers) and it does not have a native theory
support. But every improvement in this section is a positive advancement
as the most used tool is just adding new assertions to the failing verification
file to check if some expression is true.
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Chapter 6

Conclusion and Future Work

The goal of this thesis was to generate counterexamples using Z3 as a model
finder. A previous project by Alessio Aurrechia accomplished this using
Alloy as an external tool. But Alloy has some serious disadvantages as it
only support searching for counterexamples over some bounded space and
it does not have native tool support for theories used by Viper. Therefore
our goal was to remove the Alloy dependency and use the SMT solver that
is also being used to do the verification task.

In the end we created a standalone tool that is able to create counterexam-
ples given the a Viper source file. First Silicon translates it into SMT2 state-
ments and Z3 can then create a model (a counterexample) for this program.
The main task of this thesis was then to map this model (using SymbExLog
and the SMT?2 file) back to the Viper source code.

The tool does not support every feature of Viper, but for the features it sup-
ports and with a little understanding on how Silicon translates a Viper file
into SMT?2, it is a useful tool for Viper developers. The automatically gen-
erated counterexample does help debugging failing verification tasks. Even
if the current implementation of the visualisation of the counterexample is
just a proof of concept, it still manages to display the important parts.

As a conclusion we can say, that an IDE for program verification in the future
must have support for counterexample generation and also some way of
visualising it. This thesis has been a step into the right direction to achieve
this goal for Viper and its integration into the VS Code IDE.

6.1 Future Work

As previously discussed, the current implementation is just a proof of con-
cept, therefore there are a lot of open problems to solve:
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e Integrate the software into the Viper Plugin for VS Code and reuse

the data structure Silicon uses internally. At the moment our python
software does the parsing of the input files and stores the data in its
own model classes. It does not reuse already defined classes from Sili-
con/Viper (as these are written in scala). This is one of the important
aspects to improve as otherwise the overhead to support and keep it
up to date is enormous.

Support more (at best all) of the different Viper features. Currently
there are some features of Viper that are not directly supported. As
most Viper features get translated to some SMT2 functions by Silicon,
we support them because we know how to handle these generated
functions but the final version should translate the models from the
generated functions back to the Viper level and not just display these
internal functions.

Create a good visualizer. The current implementation of the visualizer
is a simple one. It does work for small counterexamples but if the
number of nodes get too big, the generated image gets messy. The
lines overlap and the user cannot easily extract the information that
the image should display. In a future version of the IDE, the generated
counterexample should be interactive. There should be a way to hide
some parts of the counterexample, move them around, rename them
and even link them to the source code.

Improve the communication between the SMT solver and the coun-
terexample generation engine. As the SMT solver does most of the
work, we should reuse a lot of things it already did (but normally
does not expose). For example, currently we manually do a quantifier
instantiation to get all the function applications on the python side. A
closer integration with Z3 should enable us to ask Z3 directly, what
function application it knows about. This would save us some calcula-
tion time and even more important, it would be a cleaner solution in
the end.
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Verification

Nr  Test Group Main Feature Test case Description Failure CE found CE correct Time[s] Visualization
ilu
array with stored indices, try to access
1 array_access QP access yes yes yes 1.6575 ok
a[a[0]]
2 QP access_len0 array with stored indices, len(a) == no no 0.8788
array with stored indices, len(a) == 0,
3 QP access_len0_loc5 yes yes yes 1.6272 ok
acc ala[5]]
simple testcase to check how snapshots
4 snapshots Snapshots snapshot_structure are built yes yes yes 3.1126 ok
5 max QP 0_max wrong max algorithm yes yes yes 1.1034 too big, function graph not helpful
6 QP 1_max_len3 with len(a) == yes yes yes 4.2902 too big, function graph not helpful
7 QP 2_max_len2 with len(a) == yes yes yes 5.6563 too big, function graph not helpful
8 QP 3_max_len2_fix fixed an error in loop invariant no no 3.1847
9 QP 4_max_fix back to the original (with the found fix) yes yes yes 4.6683 too big, function graph not helpful
10 nested_function_calls Functions nested_add nested function applications yes yes yes 1.306 ok
11 permissions Permissions full_permission full permission ref field yes yes yes 1.2171 ok
12 Permissions fractional_permission fractional permission ref field yes yes yes 1.1034 ok
13 Permissions minimal minimal testcase with a ref field yes yes yes 1.2245 ok
14 Permissions ref_fields field with type reference yes yes yes 1.1388 ok
15 Permissions ref_returned_by_function function that returns a reference yes yes yes 1.3322 ok
16 predicates Permissions predicates small testcase with a predicate yes yes yes 1.2112 ok
17 basics Store Variables ifelse an if/else block yes yes yes 1.1369 ok
18 Store Variables if a single if block yes yes yes 1.2368 ok
19 Store Variables arith arithmetic expression yes yes yes 1.1255 ok
20 Store Variables multiple_errors multiple failing methods yes yes yes 3.4442 too big
21 viper_datatypes QP sets_1 Set example 1 yes yes yes 1.4329 function graph not helpful
22 QP sets_2 Set example 2 yes yes yes 1.3844 function graph not helpful
23 QP sequences sequence example yes yes yes 2.0943 function graph not helpful
24 QP multisets multiset example yes yes yes 1.4363 function graph not helpful
25 two_arrays QP two_arrays two int arrays yes yes yes 17.0595 too big, function graph not helpful
26 QP different_array_types two arrays with different datatypes yes yes 45.3618 too big, function graph not helpful
. another implementation of the same
27 different_max QP max yes yes yes 5.4568 ok
max algo from max
. . . first example with a quantified
28 quantified_permissions QP quant_permission . yes yes yes 1.8506 ok
permission
29 QP arraySize assertion on a len function yes yes yes 1.3687 ok
30 QP simple_array assertion on the content of the array yes yes yes 1.6374 ok
. . . max algorithm from the introduction
31 introduction_max QP intro_max yes yes yes 3.1521 ok
chapter
32 functions Functions state_independent function without a state dependency yes yes yes 1.1503 ok, function graph doesn't really help here



ok, snapshot should need an alternative
33 Functions state_dependent function with a state dependency yes yes yes 1.8818 . . P .
visualization
34 Functions recursive_function a recursive function yes yes yes 1.8413 too many function cases

35 linked_list QP linked_list a linked list example yes yes yes 4.6541 ok
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