
Verification of Advanced Properties for
Real World Vyper Contracts

Master’s Thesis Project Description

Christian Bräm

Supervisors: Marco Eilers, Prof. Dr. Peter Müller

ETH Zürich, Switzerland

April 16, 2020

1 Motivation

Smart contracts are programs running on a distributed, decentralised blockchain net-
work, like Ethereum [11]. The contracts facilitate agreements between multiple parties
without the need of a trusted third party. The code of a contract specifies rules how an
agreement can be established. If others fulfill the conditions of the contract, they con-
clude the agreement and the defined consequences are automatically executed. Hereby
the principle Code is law applies [8]. This means not the intention behind a smart con-
tract is legally binding but just the code.

If the smart contract has an unintended behavior from the perspective of the pro-
grammer and the smart contract is already deployed to the blockchain, the programmer
cannot do anything to change the contract anymore. The attack on the TheDAO con-
tract and the resulting theft of $50M worth of Ether [2] was only possible since this
contract had a bug. Only a fork of the blockchain could undo these unwanted transac-
tions.

Therefore, it is very important that writers of smart contracts can specify what their
intentions are and that the code of their contracts can then be automatically verified.
There are now various verifiers (for example: [1] [6] [7]) that try to help a programmer to
verify some specification, one of the verifiers is 2VYPER [9]. It allows users to formally
specify the contract using annotations in the form of code comments.

With 2VYPER, the behavior of the functions of a contract can be specified. But
2VYPER is currently not able to verify some advanced properties of smart contracts.

1

For example, two such advanced properties would be

• invariants between contracts or

• properties of contracts with highly nonlinear arithmetic.

Inter-Contract Invariants Many popular smart contracts like UniSwap [12] and Sta-
bleSwap [4] maintain invariants between multiple contracts.

Listings 1 and 2 show an example of such a contract. Here, the interContractIn-
crease in Listing 2 tries to maintain a constant difference between two simpleIncrease
contracts of Listing 1. An invariant of the interContractIncrease contract could be:
self.token A.get() - self.token B.get() == diff. We cannot verify this invariant without
further information about the return value of the get function in the simpleIncrease
contract. This value can only be modified by the increase function of the same contract.

The execution of smart contracts takes place in a distributed and decentralised envi-
ronment. Therefore, increase of simpleIncrease could be called by many others. Never-
theless, the invariant actually holds, since the amount of the token A and token B can
only be changed by the interContractIncrease contract. Other callers of increase would
have different addresses in msg.sender on line 7 of Listing 1.

Only with these or similar arguments, a verifier is able to prove such an invariant.

1 # simpleIncrease

2

3 amounts: map(address , uint256)

4

5 @public

6 def increase () -> bool:

7 self.amounts[msg.sender] += 1

8 return True

9

10 @public

11 @constant

12 def get() -> uint256:

13 return self.amounts[msg.sender]

Listing 1: A simple contract that stores an amount for each unique address.

1 # interContractIncrease

2

3 import simpleIncrease as Token

4

5 token_A: Token

6 token_B: Token

7 _diff: uint256

8

9 @public

2

10 def __init__(token_A: address , token_B: address):

11 self.token_A = Token(token_A)

12 self.token_B = Token(token_B)

13 value_A: uint256 = self.token_A.get()

14 value_B: uint256 = self.token_B.get()

15 assert(value_A >= value_B)

16 self._diff = value_A - value_B

17

18 @public

19 def increase () -> bool:

20 result: bool = False

21 if self.token_A.get() != MAX_UINT256 \

22 and self.token_B.get() != MAX_UINT256:

23 self.token_A.increase ()

24 self.token_B.increase ()

25 result = True

26 return result

Listing 2: A contract that maintains a constant difference between two simpleIncrease
contracts.

Nonlinear Arithmetic Often smart contracts execute some nontrivial and most impor-
tantly nonlinear math calculations. Since SMT solvers’ theory (e.g. Z3 [3]) of nonlinear
arithmetic tends to be slow and unstable and it is undecidable in the integer domain,
they have to rely only on heuristics. Just some small code changes can lead to unpre-
dictable verification failures [5].

Real world contracts like StableSwap contain many nonlinear expressions. For example
StableSwap uses Newton’s method to get the roots of a nonlinear function. An example
implementation of Newton’s method in Vyper can be seen in Listing 3. In this example
the function would be x2−4x+3 and the zeros of this function would be 1 and 3. There-
fore, a possible postcondition of this function could be: ¬loop break ∨ (x > 0 ∧ x < 4).

The update step of Newton’s method on line 13 of Listing 3 contains a nonlinear
expression. Since we have nonlinear integer arithmetic, this is undecidable for SMT
solvers and we would not be able to prove this postcondition.

1 # newtonsMethod

2

3 @public

4 @constant

5 def newton(start_value: int128) -> int128 :

6 if start_value == 2:

7 start_value = start_value - 1

8 x_prev: int128 = 0.0

9 x: int128 = start_value

10 loop_break: bool = False

11 for _i in range (255):

12 x_prev = x

3

13 x = x - (x*x - 4*x + 3) / (2*x - 4)

14 if x > x_prev:

15 if x - x_prev <= 1:

16 loop_break = True

17 break

18 else:

19 if x_prev - x <= 1:

20 loop_break = True

21 break

22 return x

Listing 3: A contract that calculates the zeros of x2 − 4x + 3 using Newton’s method.

2 Core Goals

The goal of this project is to support more complex contracts in 2VYPER. The following
steps are required:

• Inter contract invariants: Design and implement a way for users to express
invariants between smart contracts and enable them to prove properties of these
inter-contract dependencies.

• Nonlinear arithmetic: Design and implement one approach to deal with nonlin-
ear arithmetic, so that the SMT solver does not use its heuristics. For example, one
approach could be to enable pre-defined lemmas (e.g. (x > 0

∧
y > 0) ⇒ xy > 0)

as well as lemmas specified by the user. Using those lemmas, the SMT solver does
no longer depend on its heuristic [5]. Another approach could be to change integers
into reals, since nonlinear real arithmetic is decidable for SMT solvers [10].

• Make verification more scalable: Currently, in 2VYPER function calls get
inlined and loops get fully unrolled before the verification. This leads to a perfor-
mance loss during verification.
This goal, to enable fast verification of real world contracts with advanced prop-
erties, is twofold. First, we have to find and identify such performance losses.
Second, we have to design and implement a way so that 2VYPER must no longer
rely on these parts.

• Enable a way to referring to constant functions: Vyper supports an anno-
tation to declare a function to have no side effects on the contract state. We want
to design and implement a way so that one can refer to this functions in the formal
specification of 2VYPER. For example in an invariant or a postcondition one can
write (f() > old(f())), where f would be such a constant function.

• Evaluation: Evaluate each of the features mentioned in the previous goals on real
world contracts.

4

3 Extension Goals

• Comparison of nonlinear approaches: As described in the Core Goals, there
are multiple approaches in dealing with nonlinear arithmetic. Another approach
should be designed and implemented, so that an evaluation and comparison of
these two can be established.

• StableSwap evaluation: Prove correctness properties of the StableSwap con-
tract.

References

[1] Karthikeyan Bhargavan et al. “Formal Verification of Smart Contracts: Short Pa-
per”. In: Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security. 2016, pp. 91–96.

[2] Phil Daian. Analysis of the DAO exploit. 2016. url: https://hackingdistributed.
com/2016/06/18/analysis-of-the-dao-exploit/ (visited on 03/31/2020).

[3] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. 2008, pp. 337–340.

[4] Michael Egorov. stableswap. 2020. url: https://github.com/curvefi/curve-
contract/blob/master/vyper/stableswap.vy (visited on 03/31/2020).

[5] Chris Hawblitzel et al. “Ironclad Apps: End-to-End Security via Automated Full-
System Verification”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). 2014, pp. 165–181.

[6] Everett Hildenbrandt et al. “KEVM: A Complete Formal Semantics of the Ethereum
Virtual Machine”. In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF). 2018, pp. 204–217.

[7] Yoichi Hirai. “Defining the Ethereum Virtual Machine for Interactive Theorem
Provers”. In: International Conference on Financial Cryptography and Data Secu-
rity. 2017, pp. 520–535.

[8] Lawrence Lessig. “Code is law”. In: The Industry Standard 18 (1999).

[9] Robin Sierra. “Verification of Ethereum Smart Contracts Written in Vyper”. MA
thesis. 2019.

[10] Alfred Tarski. “A Decision Method for Elementary Algebra and Geometry”. In:
Quantifier Elimination and Cylindrical Algebraic Decomposition. 1998, pp. 24–84.

[11] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[12] Yi Zhang, Xiaohong Chen, and Deajun Park. Formal Specification of Constant
Product (x*y = k) Market Maker Model and Implementation. 2018.

5

