
Translating Chalice into SIL
Problem Description

Christian Klauser
klauserc@student.ethz.ch

December 15, 2011

1 Background

Chalice is an experimental programming language designed for specifying and verifying concurrent
programs. It is centred on the idea of passing permissions back and forth between methods, threads,
monitors and channels. Currently, the Chalice veriϐier works by encoding its input program and Chal-
ice’s semantics into aBoogie programandhaving that programveriϐiedby theBoogie veriϐier. SIL is the
intermediate language used in Semper, a long term project aiming to create an extensible, symbolic-
execution-based veriϐier for Scala.

2 Main task

The goal of this Bachelor’s thesis is to design and implement a new back end for the Chalice compiler,
targeting SIL instead of Boogie. In addition to interfacing Chalice with a new veriϐier backend, the
project helps ϐlesh out SIL and test the tool chain of the Semper project.
The resulting program should

• use the existing Chalice front endwith as few changes as possible. This ensures that the language
does not get fragmented.

• be able to translate basic language constructs like assignments, conditions and loops so that they
can be veriϐied.

• be able to translatemethod calls, thread forks and joins,making sure that permissions are passed
around correctly.

• be able to translate monitor-based locks, including transfer of permissions into and out of the
lock. Chalice’s deadlock-avoidance mechanism can be considered as an extension.

• track locations in the original source code in order to generate meaningful error messages in
case an input program fails veriϐication. The use of an intermediate representation should be as
transparent as possible.

1



3 Extensions

Depending on the progress of the main task, several extensions to the project are possible.
• Chalice comes with support for predicates and functions, features that allow for information hid-
ing and code reuse in invariants, pre- and postconditions. Functions in particular offset Chalice’s
lack of pure methods. Predicates and functions need to be translated into the target language in
order to verify Chalice programs using these features.

• Deadlock-avoidance is a very important feature for a language that is designed to enable the veri-
ϐicationof concurrent programs. Chalice alreadyprovides amechanism forpreventingdeadlocks
onmonitors; it would just have to be translated into the target language.

• Many of themore interesting Chalice programsmake use of channels to simplify communication
between threads (Actormodel). Likewithmonitors, there is amechanism for avoiding deadlocks
on receive operations. Again, these would have to be translated into the target language.

2


