
TranslaƟng Chalice into SIL

Bachelor Thesis Report

Chair of Programming Methodology
Department of Computer Science

ETH Zürich
www.pm.inf.ethz.ch

By: Christian Klauser
klauserc@student.ethz.ch

Supervised by: Dr. Alexander J. Summers
Prof. Dr. Peter Müller

Date: November 29, 2012

http://www.pm.inf.ethz.ch
mailto:klauserc@student.ethz.ch

Contents

1 Introduction 2

2 Background 2
2.1 Chalice . 2

2.1.1 Permissions . 3
2.1.2 Percentage Permissions . 5
2.1.3 Counting Permissions . 5
2.1.4 Fractional (Read) Permissions . 6
2.1.5 Fork-Join . 6
2.1.6 Information Hiding through functions and predicates 8
2.1.7 Monitors (locks) . 9
2.1.8 Details on the Boogie-based Chalice veriϐier 10

2.2 Semper Intermediate Language (SIL) . 11
2.2.1 SIL Program Structure . 12
2.2.2 SIL Statements . 13
2.2.3 SIL Expressions and Terms . 14
2.2.4 SIL Domains and Types . 14

2.3 Silicon . 15

3 Translation of Chalice 15
3.1 Fractional Read Permissions . 15

3.1.1 Methods and fractional permissions 16
3.1.2 Method calls with fractional permissions 17

3.2 Asynchronous method calls (Fork-Join) . 19
3.2.1 Translation of fork . 19
3.2.2 Translation of join . 23
3.2.3 Limitations of the current fork-join implementation 26

3.3 Predicates and Functions . 28
3.3.1 Predicates . 28
3.3.2 Functions . 29

3.4 Monitors with Deadlock Avoidance . 29
3.4.1 Approach to Deadlock Prevention and Locking 30
3.4.2 Limitations of the current Implementation 33

4 Evaluation 35
4.1 SIL as a translation target/veriϐication intermediate language 35

4.1.1 Encoding of loops . 35
4.1.2 Syntactic distinction between assertions and program expressions . 35
4.1.3 PTerms vs. DTerms vs. GTerms vs. Terms 36
4.1.4 Capturing state in SIL . 37

4.2 Chalice2SIL+Silicon compared to Syxc . 38
4.2.1 Benchmark: correctness . 38
4.2.2 Benchmark: performance . 39

4.3 Implementation status . 42

5 Conclusion 42

A Full SIL Term and Expression Grammar 43

B Benchmark data 44

1

1 Introduction

Writing correct computer programs is difϐicult. Writing correct concurrent or parallel
computer programs is evenmore difϐicult. One approach tomaking sure programs do not
contain errors is (automatic) static veriϔication: the idea of having a computer prove that
a given program fulϐils its speciϐication and does not crash. An example of such a system is
Chalice [LMS09] (section 2.1), a research programming language andmatching automatic
static veriϐication tool. However, targeting a specialized research language dedicated to
the veriϐication of concurrent programs, means that one cannot directly apply the tool to
code that is used out in the world.
This is where Semper, a project at ETH Zürich, comes into play. Its goal is to develop an
automatic program veriϐier for concurrent Scala [Sca12] programs. Central to the Semper
project is an intermediate program representation for veriϐication called SIL (section 2.2).
Programmers are not intended to use SIL directly, but instead write their programs in an
existing programming language and then use a translator to get an intermediate repre-
sentation that the Semper tools understand.
The goal of this Bachelor’s thesis is to build Chalice2SIL, the ϐirst such translator, trans-
lating from Chalice to SIL (section 3), in order to gain experience with working with SIL
(section 4) and the tools involved in Semper. As the veriϐication methodology used in
Semper is based on the methodology underlying Chalice, Chalice is a good ϐit for the ϐirst
“source language” to be targeted by Semper.

2 Background

This section brieϐly presents both Chalice (the “source language”) and SIL (the “target lan-
guage”), focusing on the aspects that are important for discussing how Chalice2SIL per-
forms its translation.

2.1 Chalice

Chalice [LMS09, LM09] is a research programming language with the goal of helping pro-
grammers detect bugs in their concurrent programs. Aswithmost languages aimed at au-
tomatic static veriϐication (e.g, Spec#) [BLS], the programmer provides annotations that
specify how they intend the program to behave. These annotations appear in the form of
monitor invariants, loop invariants and method pre- and postconditions. A veriϐication
tool can take such a Chalice program and check statically that it never violates any of the
conditions established by the programmer.
The original implementation of the automatic static program veriϐier for Chalice gener-
ates a program in the intermediate veriϐication language Boogie [BDJା06]. A second tool,
conveniently also called Boogie, takes this intermediate code and generates veriϐication
conditions to be solved by an SMT solver, such as Z3 [dMB08].
Listing 1 demonstrates how we can implement integer division and have the veriϐier en-
sure that our implementation is correct. Our solution repeatedly subtracts the denomi-
nator b until the rest r becomes smaller than b. Because this exact algorithm only works
for positive numerators and denominators, themethod requires that the numerator a is
not negative and that the denominator is strictly positive.

2

Listing 1: Loop invariants, pre- and post conditions in a Chalice program
class Program {
method intDiv(a : int, b : int) returns (c : int)
requires 0 <= a && 0 < b;
ensures c*b <= a && a < (c+1)*b;

{
c := 0;
var r : int := a;
while(b <= r)
invariant 0 <= r && r == (a - c*b)

{
r := r - b;
c := c + 1;

}
}

}

Similarly, we specify what themethod is supposed to do: the ensures clause tells the ver-
iϐier that, when ourmethod is ready to return, the resulting quotient cmust be the largest
integer for which 𝑐 ⋅ 𝑏 ≤ 𝑎 still holds. If the veriϐier cannot show that this postcondi-
tion holds for all invocations of this method that satisfy the precondition, it will reject the
program.
The ϐinal bit of annotation in this example is the invariant on the while loop. A loop in-
variant is a predicate that needs to hold immediately before the loop is entered and after
every iteration, including the last one, when the loop condition is already false. This an-
notation helps the veriϐier understand the effects of the loop without knowing howmany
iterations of the loop would happen at runtime.

2.1.1 Permissions

What sets Chalice apart from other languages for program veriϐication is its handling of
concurrent access to heap locations. Whenever a thread wants to read from or write to a
heap location it requires read orwrite permissions to that location, respectively. A thread
havingwrite permission to a heap locationmeans that that thread holds all permissions to
that location. However, permissions can also be divided up betweenmultiple threads and
as long as a thread holds onto a strictly positive amount of permission to a heap location,
it can not only read that location, but is also guaranteed that no thread can write to that
location, as write-access requires 100% of all permissions to a heap location. For a thread
to have no permissions at all to a heap location means that this location is completely
inaccessible. Worse yet, it could be changing at any moment, since another thread might
hold full permissions to it. Chalice therefore forbids access to heap locations where the
current thread holds no permissions to.
The amount of permission a thread holds over a certain heap location can change over
time, and often does. The main thread of an implementation of a parallel algorithm, for
instance, could start with exclusive write-access to the input data structure and then split
up its permissions among a number of worker threads. These worker threads could then

3

Listing 2: Chalice example of object creation and (write) accessibility predicates.
class Cell { var f : int }
class Program {
method clone(c : Cell) returns (d : Cell)
requires c != null && acc(c.f)
ensures acc(c.f)
ensures d != null && acc(d.f) && d.f == c.f

{
d := new Cell;
d.f := c.f;

}
}

all read from the input data structurewhile performing their work, relying on the fact that
concurrent accesses to that data structure are safe since no thread canwrite to it. After the
worker threads have ϐinished, the main thread can collect the permission fractions given
out to the workers and combine them back to a full permission, allowing it to write to the
input data structure once again, perhaps to update it with the results retrieved from the
worker threads.
Almost as a side-effect of this model, the amount of permission a thread has can be used
to “frame” the set of existing heap locations that thread can access (a thread can always
allocate new heap space). All these permissions only exist for veriϐication and would be
erased by compilers for Chalice.
As an under-approximation of the set of permissions a thread would have at runtime,
Chalice tracks permissions for each method invocation (stack frame, activation record).
That way, the veriϐier can verify method bodies in complete isolation from one another.
The programmer thus has to specify which heap locations need to be accessible for each
method.
InListing2,weuseaccessibility predicatesof the formacc (receiver.field) in themethod’s
pre- and postcondition. acc(c.f) in the precondition represents a permission, which al-
lows us to refer to c.f in the method body. The accessibility predicates in the postcondi-
tion, on the other hand, represent permissions that the method will have to “return” to its
caller upon completion. Conceptually, the caller passes the permission requested by the
callee’s precondition on to the callee. Similarly, the caller receives the permissions men-
tioned in the callee’s postcondition when the call returns. As a consequence of verifying
eachmethod in isolation, it doesn’t matter whether a method is called on the same thread
or on a thread of it’s own (with the caller waiting for the callee’s computation to ϐinish).
The necessary permissions need to be transferred in both scenarios.
Listing 3 demonstrates howour clonemethod could be used. Unfortunately, the assertion
on line 9 will fail, as the veriϐier has to assume that clone might have changed the value
stored in c.f. In Chalice, whenever a method gives away all permissions to a memory
location (so that it doesn’t even have read-access), it must assume that that location has
been changed, the next time it gets to read said location. While we might augment the
postcondition of clone with the requirement that c.f == old(c.f) (the value of c.f at
method returnmust be the same as it was onmethod entry), there is amuchmore elegant
solution to this problem: read-only permissions.

4

Listing 3: Calling Program::clone (extension of Listing 2)
1 class Program {
2 //...
3 method main()
4 {
5 var c : Cell := new Cell;
6 c.f := 5;
7 var d : Cell;
8 call d := clone(c);
9 assert d.f == 5; // will fail, c.f might have changed

10 }
11 }

2.1.2 Percentage Permissions

When Chalice was originally created, the programmer could specify read-only permis-
sions as integer percentages of the full (write) permission. acc(x.f,100) is the same as
acc(x.f), i.e. grants read and write access, whereas any other strictly positive percent-
age acc(x.f,n) (for 𝑛 ∈ ℕ, 0 < 𝑛 < 100) only grants read access to the heap location
x.f. The veriϐier keeps track of the exact amount of permission a method holds to each
heap location, so that write-access is restored when a method manages to get 100% of
the permission back together, after having handed out parts of it to other methods or
threads.
While percentage permissions are very easy to understand, they have the serious draw-
back that the number of percentage points of permission a method receives to a certain
location, essentially determine themaximumnumberof threadswith (shared) readaccess
that method could spawn. That is a violation of the procedural abstraction that methods
are intended to provide.

2.1.3 Counting Permissions

Another drawback of percentage permissions is that it is difϐicult to deal with a dynamic
number of threads to distribute read access over. As a solution to that problem, Chalice
also introduced “counting permissions” that are not limited to just 100 “pieces” of permis-
sion. Accessibility predicates using counting permissions are written as acc(x.f,rd(1))
and denote an arbitrarily small but still positive (non-zero) amount of permission 𝜀. Per-
mission amounts equal to multiples of 𝜀 can be written as acc(x.f,rd(n)), but any ϐinite
number of epsilon permissions are deϐined to be still smaller than 1% of permission. This
also means that a method that holds at least 1% of permission, can always call a method
that only requires 𝑛 ⋅ 𝜀 of permission.
Unfortunately, counting permissions (often also referred to as “epsilon permissions”) still
causemethod speciϐications to leak implementationdetails. An epsilonpermission cannot
be split up further, thus a method that acquires, say, 2𝜀 of permission to a heap location
cannot spawn more than two threads with read access to that heap location.

5

2.1.4 Fractional (Read) Permissions

In order to regain procedural abstraction [HLMS11] added an entirely new kind of per-
mission to Chalice: the fractional read permission, based on [Boy03]. The idea is to allow
for “rational” fractions of permission because, unlike epsilon or percentage permissions,
these can always be divided further. Composability can still be an issue, even with con-
crete rational permissions. A method that requires ଵ

ଵ଴଻ of permission could still not be
called from a method that only has ଵ

ଵଷ଻ , even though the fractions passed around the en-
tire system could almost alway be re-scaled to make that call possible. Thus, instead of
forcing the programmer to choose a ϐixed amount of permission ahead of time, all acces-
sibility predicates involving fractional permissions are kept abstract.
The programmerwrites acc(x.f,rd) to denote an abstract (read-only) accessibility pred-
icate to the heap location x.f. The amount of permission denoted by rd is not ϐixed. When
used in a method speciϐication, the rd can represent a different amount of permission for
each method invocation.
Tomakeabstract fractional permissions actually useful, Chalice applies certain constraints
to the amount of permission involved in acc(x.f,rd). Firstly, fractional read permissions
always represent a fractionof the caller’s permission. Whena caller gives awaya fractional
read permission to a heap location, it will always retain some permission to that location.
That way, the caller retains read-access and can be sure that the contents of the memory
location don’t change. Secondly, a common idiom in Chalice is to have methods that re-
turn the exact same permissions they acquired in the precondition back to the caller via
the postcondition. When a method requires acc(x.f,rd) and then ensures acc(x.f,rd),
we would want these two amounts of permission to be the same. That way, a caller that
started out with write access to x.f gets back the exact amount of permission it gave to
our method.
Chalice restricts read fractions inmethod speciϐications even further: for eachmethod in-
vocation, all fractional read permissions in themethod contract, even to different heap lo-
cations, refer to the same amount of permission (but that amount can still differ between
method invocations). This restriction accounts for the limited information about alias-
ing available statically and also makes the implementation of fractional read permissions
more straightforward.
Listing 4 shows the corrected version of our example above (Listings 2 and 3) using (ab-
stract) read permissions (acc(c.f,rd) in lines 4 and 5). Note thatwe don’t need to tell the
veriϐier that c.f won’t change separately, because it uses the permissions that the caller
retained to determine which locations cannot be modiϐied by the call.

2.1.5 Fork-Join

As a language devoted to encoding concurrent programs, Chalice has a built-in mecha-
nism for creating new threads andwaiting for threads to complete in the familiar fork-join
model. Replacing the call keyword in a (synchronous)method call with fork causes that
method to be executed in a newly spawned thread. As with a synchronous method call,
the caller must satisfy the callee’s precondition and will give all permissions mentioned
in that precondition.

6

Listing 4: Corrected example using abstract read permissions
1 class Cell { var f : int }
2 class Program {
3 method clone(c : Cell) returns (d : Cell)
4 requires c != null && acc(c.f,rd)
5 ensures acc(c.f,rd)
6 ensures d != null && acc(d.f) && d.f == c.f
7 {
8 d := new Cell;
9 d.f := c.f;

10 }
11

12 method main()
13 {
14 var c : Cell := new Cell;
15 c.f := 5;
16 var d : Cell;
17 call d := clone(c);
18 assert d.f == 5; // will now succeed
19 c.f := 7; // we still have write access
20 }
21 }

Listing 5: Alternative deϐinition of Cell using functions.
class Cell {
var f : int
function equals(o : Cell) : bool
requires acc(f,rd)
requires o != null ==> acc(o.f,rd)

{ o != null && f == o.f }
}

7

fork tok := x.m(argument1, argument2, ..., argumentn);
// do something else
join result1, result2, ..., resultn := tok;

While just forking off threads might work for some scenarios, most of the time the caller
will want to collect the results computed by its worker threads at some point. To that
end, the fork statement returns a token that the programmer can use to have the calling
method wait for the thread associated with the token to complete. The permissions men-
tioned in the postcondition of the method used to spawn off the worker thread will also
be transferred back to the caller at that point.

2.1.6 Information Hiding through functions and predicates

A major shortcoming of pre- and postconditions as presented so far, is that they often
“leak” implementation details. One example of this happening is the clonemethod from
listing 4. It ensures that the values from the old object are copied over to the newly created
object, but in the process tells the caller that there is exactly one ϐield, called f on those
objects. Should the deϐinition of class Cell ever change, sifting through the entire program
and updating speciϐications is going to be in order. What the programmer wanted to say
is, that the two objects are “equal”.
Functions help cut down code repetition and put an abstraction layer between the imple-
mentation of a method and its clients. Listing 5 presents an alternative deϐinition of Cell
that exposes the equality testing function equals. Below is a corresponding signature for
themethod clone that uses this function. If wewere to add a new ϐield to Cell now, callers
of clonewould no longer see a change in the method’s signature.
method clone(c : Cell) returns (d : Cell)

requires c != null && acc(c.f,rd)
ensures acc(c.f,rd)
ensures d != null && acc(d.f) && c.equals(d)

Notice how the equals function does not have a postcondition that describes the func-
tion’s result or “returns” permissions back to the caller. In order to be used in pre- and
postconditions, they are forbidden from changing any state, which iswhy the programmer
doesn’t have explicitly return permissions to the function’s caller. This happens automat-
ically.
Predicates, on the other hand, are a way to abstract over not just values but also over
accessibility. Additionally, unlike functions, they are treated as abstract entities unless the
programmer explicitly “unfolds” them to apply their deϐinition. When a method requires
a predicate in its precondition, it will not automatically get the permissions (and other
assertions) “contained” in the predicate because at that point, the predicate acts like a
black box. The method can pass the predicate to other methods or threads and it behaves
much like a permission to amemory location: it cannot be duplicated and once given away,
it’s gone.
Given a predicate, the programmer can use the unfold statement to “trade” the predi-
cate for its deϐinition. The current thread will receive all permissions “contained” in the
predicate and gets to assume any other assertions associatedwith the predicate. After the

8

Listing 6: Using the predicate valid to hide the representation of Indentation
class Indentation {

var count : int;

predicate valid
{ acc(count) && 0 <= count }

function getCount() : int
requires valid;

{ unfolding valid in count }

method increase(amount : int)
requires valid && 0 <= amount;
ensures valid;
ensures old(getCount()) + amount == getCount();

{
unfold valid;
count := count + amount;
fold valid;

}
}

programmer is done operating on the predicate’s contents, they can use fold to “trade”
access permissions in exchange for the predicate.
Listing 6 additionally demonstrates theunfolding expression syntax used to temporarily
get access to the contents of a predicate during the evaluation of an expression.

2.1.7 Monitors (locks)

Using just fork-join, it is impossible for threads to communicate with one another. They
can only produce a result and all of their memory writes only become visible when they
return the exclusive write permissions back to their caller. To handle more realistic sce-
narios, such as concurrent access to a shared queue, Chalice comes withmonitors that al-
low for exclusive locking of a shared resource. For each class, the programmer can deϐine a
monitor invariant that represents the “resources” that themonitor is supposed tomanage
access to. As with predicates, this deϐinition can consist of both accessibility predicates
and ordinary boolean assertions.
Initially, objects are not available for locking via the monitor mechanism. When the pro-
grammer shares an object with other threads using the share statement, the access per-
missions associatedwith the invariant get stored in themonitor (similar to fold for pred-
icates). Threads that subsequently acquire the lock on this shared object will receive the
contents of the monitor invariant (similarly to an unfold of a predicate). The object is
now locked and can be made available to other threads via the release statement (sim-
ilarly to a fold of a predicate, again). The programmer can also revert the conversion
to a shared object by using the unshare statement (similar to unfold, again). Listing 7
demonstrates these statements with a single thread.

9

Listing 7: Example of the life-cycle an object can go through in Chalice
class C {

var f : int;

invariant acc(f);

method main(){
var c : C := new C;
c.f := 5;
share c;
acquire c; c.f := 7; release c;
// cannot access c.f here
acquire c; c.f := 6; unshare c;
assert c.f == 6;

}
}

Aswithmonitors in Java andC#, in order to guaranteemutual exclusion, threads that reach
an acquire statement are blocked until the monitor can grant them the exclusive lock.
With such a simple blockingmechanism comes the risk of deadlocks (thread 1waiting for
monitor 𝑏, currently held by thread 2, which is waiting for monitor 𝑎, currently held by
thread 1).
To solve this problem, the Chalice veriϐier makes sure that locks are acquired according to
a consistent ordering. The programmer can assign a locking level to a monitor, ensuring
that the lock on that monitor can only be acquired when that locking level is higher than
the locking level of all other locks held by the current thread. Whether one locking level is
higher than another, is denoted by a strict partial order that we denote as<<. The share
statement seen above optionally accepts clauses of the form between… and…, above…
or below… to constrain the lock level at which the monitor is installed. If such a clause is
missing, Chalice chooses above waitlevel, whichmeans that the lock level is higher than
the highest lock level of all locks currently held by the thread (we refer to this maximum
as a thread’s wait level).
In listing 8, we create two objects a and b and share them. The lock level of a defaults to
above waitlevel and the programmer explicitly declares the lock level of b to be above a.
This means that if a thread plans to lock both a and b, it will have to ϐirst lock a and then
b. Should the programmer try to lock objects in the opposite order, on acquire a the
thread’s wait level would already be at the lock level of b, which is above a’s; this would
result in an error.
Lock levels are implemented via a special ϐield called mu of type Mu (the type of lock levels),
available on every object. The mu ϐield is assigned during share and unshare operations
and needs to be readable in order to acquire the lock.

2.1.8 Details on the Boogie-based Chalice veriϐier

In order to verify Chalice programs, the Boogie-based veriϐier models permission transfer
by two operations: inhale and exhale. They are essentially the same as assume and

10

Listing 8: Example of deadlock-prevention
class C {

var f : int;
invariant acc(f);

method main() {
var a := new C;
share a;
var b := new C;
share b above a;

acquire a; acquire b;
release b; release a;

acquire b;
acquire a; // illegal

}
}

assert but in addition to providing and checking facts, they also model the transfer of
permissions. The argument of an exhale operation is an expression that can contain
both traditional (boolean) assertions as well as accessibility predicates. Conceptually,
exhale 𝑒 represents the transfer of 𝑒 to another thread. Because veriϐication of Chal-
ice methods is modular, we don’t specify or even care about which thread will “receive”
𝑒. For each exhale 𝑜peration, the veriϐier will check (assert) the boolean predicates and
remove permissions mentioned in 𝑒 from the current thread’s set of permissions (usu-
ally referred to as the thread’s “permission mask”). The inhale 𝑒 operation works the
opposite way. Access permissions mentioned in 𝑒 are added to the thread’s permission
mask and boolean predicates get assumed. More advanced features such as method calls
and monitors are translated into combinations of inhale , exhale , assume and assert
operations.

2.2 Semper Intermediate Language (SIL)

The Semper Intermediate Language is a veriϐication language aimed at the veriϐication of
concurrent programs using a methodology based on Chalice. As its name suggests, SIL
is the intermediate language to be used by the various tools that are part of the semper
project.
Much of SIL’s design is oriented around Chalice’s core elements: methods, permissions
and accessibility predicates. This also means that SIL programs are encoded on a much
higher level of abstraction than the same programs in less focused veriϐication languages,
such as Boogie. As an example: the Boogie-based veriϐier for Chalice needs to represent
permissions as a pair of integers (the number of epsilons and the percentage) whereas in
SIL there is a dedicated and built-in data type and associated value constructor functions
for permissions.
In this section, we will give an overview of the syntactic structure of SIL programs, diving

11

into more detail where the design of SIL deviates signiϐicantly from Chalice. At this time
SIL ismostly intended as an “exchange format” and thus has no ϐixed semantics associated
with it. Also, SIL doesn’t currently have a serialised/text form and SIL programs only exist
as syntax trees in memory. As a result we use our own ad-hoc textual representation for
SIL program snippets in this report.

2.2.1 SIL Program Structure

Each SIL program has a name (⟨program-id⟩) and comes with a number of domain, ϔield,
function, predicate andmethod deϔinitions. While SIL is certainly aimed at the veriϐication
of object oriented programs, it isn’t actually necessary to distinguish between the types
of references to objects created from different classes. As a direct result, ϐields, functions,
predicates and methods are not “contained” in any form of class deϐinition.
⟨Program⟩ ::= ’program’ ⟨program-id⟩

{⟨Domain⟩}
{⟨Field⟩}
{⟨Function⟩}
{⟨Predicate⟩}
{⟨Method⟩}

Field and predicate deϐinitions, apart from the fact that they are not tied to a nominal class,
are fairly straightforward. Fields consist of a name and a data type and predicates consist
of a name and an expression. As with Chalice, this predicate expression can contain both
accessibility predicates and ordinary boolean predicates. Field and predicate namesmust
each be unique within a SIL program.
⟨Field⟩ :: ’ϐield’ ⟨ϔield-id⟩ ’:’ ⟨DataType⟩
⟨Predicate⟩ ::= ’predicate’ ⟨pred-id⟩ ’=’ ⟨Expr⟩
Functions, again, are similar to their Chalice counterparts. They consist of a name, a pa-
rameter list, a result type, somepreconditions andan implementation. Notehowan ⟨Expr⟩
is expected for the preconditions and a ⟨Term⟩ for the function’s body. This is an example
of SIL distinguishing syntactically between assertions/formulae (⟨Expr⟩) and expressions
that represent a value (⟨Term⟩).
⟨Function⟩ ::= ’function’ ⟨id⟩ ({ ⟨Param⟩ ,⋯ }) : ⟨DataType⟩

⟨Contract⟩ ’=’ ⟨Term⟩
⟨Param⟩ ::= ⟨id⟩ : ⟨DataType⟩
⟨Contract⟩ ::= { ’requires’ ⟨Expr⟩ } { ’ensures’ ⟨Expr⟩ }
Methods in SIL have a name (unique among all methods in the program), input and output
parameters anda set of pre- andpostconditions. Every SILmethodalwayshas aparameter
called this of type ref in the ϐirst position, which represents the this pointer in object
oriented languages. Having the this pointer as an ordinary parameter makes tools that
consumeSILprogramsabit simpler. Eachmethod canhavemultiple implementations that
must all share the exact same parameters, pre- and postconditions. For source languages
with virtual methods, the to-SIL-translator would create a method for each “method slot”
(vtable slot) and add an implementation for each concrete implementation encountered
in the program.

12

⟨Method⟩ ::= ’method’ ⟨method-id⟩ ({ ⟨Param⟩ ,⋯ }) : ({ ⟨Result⟩ ,⋯ })
⟨Contract⟩ { ⟨Impl⟩ }

⟨Result⟩ ::= ⟨Param⟩
⟨Impl⟩ ::= ’implementation’ ⟨method-id⟩ ⟨Cfg⟩
Methodbodies in SIL are represented as a control-ϐlowgraph. This ismostly because SIL is
intended as a format for exchanging programs between the tools that make up Semper as
opposed to an actual computer languages used by humans. Whether an eventual textual
representation would retain this form, is not clear at this point.
Unusual about SIL’s control-ϐlow graph is that loops are not ϐlattened into basic blocks
but retained as a sort of composite block. A loop block consists of the loop condition, an
invariant and a nested control-ϐlow graph for the loop’s body.
⟨Cfg⟩ ::= ’{’ { ⟨VarDecl⟩ } { ⟨Block⟩ } ’}’
⟨VarDecl⟩ ::= ’var’ ⟨var-id⟩ : ⟨DataType⟩
⟨Block⟩ ::= ⟨BasicBlock⟩
| ⟨LoopBlock⟩
⟨LoopBlock⟩ ::= ’while’ ⟨PExpr⟩ [’invariant’ Expr] ’do’ ⟨Cfg⟩
⟨BasicBlock⟩ ::= ⟨label⟩: ’{’ { ⟨Stmt⟩ } ⟨ControlFlow⟩ ’}’
⟨ControlFlow⟩ ::= ’goto’ ⟨label⟩
| ’halt’
| ’if ’ ⟨PExpr⟩ ’then goto’ ⟨label⟩ ’else goto’ ⟨label⟩

At the endof everyblock there is a single control-ϐlowstatement that indicateshowcontrol
is transferred to other blocks.

2.2.2 SIL Statements

⟨Stmt⟩ ::= ⟨var-id⟩ ’:=’ ⟨PTerm⟩
| ⟨var-id⟩.⟨ϔield-id⟩ ’:=’ ⟨PTerm⟩
| ⟨var-id⟩ ’:= new’ ⟨DataType⟩
| ⋮
⟨Stmt⟩ ::= ⋮
| ({ ⟨var-id⟩ ,⋯ }) ’:=’ ⟨PTerm⟩.⟨method-id⟩({ ⟨PTerm⟩ ,⋯ })
| ⋮
⟨Stmt⟩ ::= ⋮
| ’inhale’ ⟨Expr⟩
| ’exhale’ ⟨Expr⟩
| ⋮
⟨Stmt⟩ ::= ⋮
| ’fold’ ⟨Term⟩.⟨pred-id⟩ ’by’ ⟨Term⟩
| ’unfold’ ⟨Term⟩.⟨pred-id⟩

13

2.2.3 SIL Expressions and Terms

⟨Expr⟩ ::= ’acc’ (⟨Location⟩, ⟨Term⟩)
| ’old’ (⟨Expr⟩)
| ’unfolding’ ⟨Term⟩.⟨pred-id⟩ ’by’ ⟨Term⟩ ’in’ ⟨Expr⟩
| ⟨Term⟩ == ⟨Term⟩
| ⟨unary-op⟩ ⟨Expr⟩
| ⟨binary-op⟩ ⟨Expr⟩
| ⟨dom-pred-id⟩({ ⟨Term⟩ ,⋯ })
| ∀ ⟨logical-var-id⟩ : ⟨DataType⟩ :: (⟨Expr⟩)
| ∃ ⟨logical-var-id⟩ : ⟨DataType⟩ :: (⟨Expr⟩)
⟨Location⟩ ::= ⟨Term⟩.⟨ϔield-id⟩
| ⟨Term⟩.⟨pred-id⟩
⟨Term⟩ ::= ’if ’ ⟨Term⟩ ’then’ ⟨Term⟩ ’else’ ⟨Term⟩
| ⟨var-id⟩
| ⟨logical-var-id⟩
| ’old’(⟨Term⟩)
| ⟨func-id⟩({ ⟨Term⟩ ,⋯ })
| ⟨dom-func-id⟩({ ⟨Term⟩ ,⋯ })
| ’unfolding’ ⟨Term⟩.⟨pred-id⟩ ’by’ ⟨Term⟩ ’in’ ⟨Term⟩
| (⟨Term⟩) : ⟨DataType⟩
| ⟨Term⟩.⟨ϔield-id⟩
| ’perm’(⟨Location⟩)
| ’write’
| ’0’
| ’E’
| ⟨integer-literal⟩

We simpliϐied the presentation of the term and expression grammar for this section and
attached the full rules in appendix A.

2.2.4 SIL Domains and Types

A data type in SIL is either ‘ref’, the type of all object references, a domain type or a type
variable. Object references in SIL are treated as potentially having all ϐields in the SIL
program. In practice, only the ϐields that a method/function has access to, are relevant.
For statically typed programming languages, it’s the responsibility of the to-SIL-translator
to make sure that input programs are type error free.
⟨DataType⟩ ::= ⟨var-type⟩
| ⟨dom-type⟩
| ’ref’

In addition to the built-in value domains for integers, booleans and permissions, SIL al-
lows its users to deϐine their own value domains, with (uninterpreted) constructor func-
tions, predicates over values of that domain and their axioms. Domain deϐinitions can
come with type parameters, making them templates for concrete domains (similar to C#
generics).

14

⟨Domain⟩ ::= ’domain’ ⟨dom-id⟩ [⟨DomainParameters⟩] ’{’ ⟨DomainDef ⟩ ’}’
⟨DomainDef ⟩ ::= { ⟨DomainFunction ⟩} { ⟨DomainPredicate⟩ } { ⟨DomainAxiom⟩ }
⟨DomainFunction⟩ ::= ’function’ ⟨dom-func-id⟩ ({ ⟨DataType⟩ ,⋯ }) : ⟨DataType⟩
⟨DomainPredicate⟩ ::= ’predicate’ ⟨dom-pred-id⟩ ({ ⟨DataType⟩ ,⋯ })
⟨DomainAxiom⟩ ::= ’axiom’ ⟨id⟩ ’=’ ⟨DExpr⟩
⟨DomainParameters⟩ ::= ’[’ { ⟨DataType⟩ ,⋯ } ’]’

2.3 Silicon

Silicon is an automated program veriϐier for SIL programs based on symbolic execution. It
was derived fromSyxc [Sch11], an alternative veriϐier for Chalice, and adapted to verify SIL
instead. As Silicon is currently the only veriϐier for SIL, we use it to test Chalice2SIL.

3 Translation of Chalice

This section explains how Chalice2SIL translates the most interesting aspects of Chalice
into SIL. As Chalice and SIL code often look very similar, we use ⟦𝑒ଵ⟧Ch to emphasize the
fact that 𝑒ଵ is a Chalice expression or statement. Similarly ⟦𝑒ଶ⟧SIL stands for the SIL ex-
pression 𝑒ଶ.

3.1 Fractional Read Permissions

To SIL, permission amounts are just another data type. The SIL prelude only deϐines a set
of constructors (such as no permission, full permission) and some operators and pred-
icates (such as permission addition, subtraction, equality, comparison). In particular, it
does not specify how permissions are represented. This aligns well with the abstract na-
ture in which fractional permissions are written by the programmer. As with previous
veriϐication backends for Chalice, concrete permission amounts associatedwith fractional
read permissions (acc(x.f,rd)) are never chosen but only constrained. This also means
that two textual occurrences of acc(x.f,rd) in different parts generally do not represent
the same amount of permission.
Not choosing a ϐixed permission amount for abstract read permissions makes them very
ϐlexible. As long as a thread holds any positive amount of permission to a location, we
know that we can give away a smaller fraction to a second thread and thereby enable both
threads to read that location. Unfortunately, that amount of ϐlexibility would also make
fractional read permissions very hard to use, since every mention of a read permission
could theoretically refer to a different amount of permission. Chalice, therefore, imposes
additional constraints on fractional permissions involved inmethod contracts, predicates,
and monitors. In the following sections we will describe how Chalice2SIL handles each of
these situations.

15

Listing 9: A call that uses and preserves fractional read permissions.
class Actor {
method main(a : int) returns (r : Register)
ensures r != null
ensures acc(r.val)
ensures t.val == a

{
r := new Register;
r.val := 5;
call act(r);
r.val := a; //should still have write access here

}

method act(r : Register)
requires r != null
requires acc(r.val,rd)
ensures acc(r.val,rd)

{ /* ... */ }
}
class Register {
var val : int;

}

Listing 10: Handling of fractional read permissions by the Boogie-based Chalice veriϐier.
procedure act(r : Register)
{
var k_m;
assume (0 < k_m) && (k_m < Permission$FullFraction);
// inhale (precondition), using k_m for rd
...
// exhale (postcondition), using k_m for rd

}

3.1.1 Methods and fractional permissions

In Chalice programs, a very common pattern is that a method “borrows” permissions to a
set of locations, performs its work and then returns the same amount of permission to the
method’s caller. In order to readily support this scenario, the original implementation of
fractional permissions in Chalice constrains the various fractionsmentioned in amethod’s
pre- and postcondition to a value that is chosen once per call site.
For verifying the callee in listing 9, the Boogie-based implementation introduces a fresh
variable permission variable 𝑘௠, constrains it to be a read-permission (0 < 𝑘௠ < full)
and uses it in pre- and postconditions whenever it encounters the abstract permission
amount rd.
Notice how the Boogie-based encoding of Chalice in listing 10 does not make use of the
pre- and postcondition mechanism provided by Boogie. This is primarily because Boogie

16

Listing 11: Handling of fractional read permissions by the Chalice2SIL translator
method Actor::act(r : Register, k_m : Permission)
requires 0 < k_m && k_m < write
requires r != null
requires acc(r.val, k_m)
ensures acc(r.val, k_m)

{ … }

does not have a concept of inhaling and exhaling of permissions. Not so with SIL, which
features pre- and postconditions that are aware of accessibility predicates. Conceptually,
when you “call” a method in SIL, the precondition is properly exhaled and the postcondi-
tion inhaled afterwards.
However, using SIL preconditions alsomeans thatwe can’t justmakeup anewvariable𝑘௠,
instead it becomes a “ghost” parameter and introduces an additional precondition. This
makes a lot of sense, since the value 𝑘௠ is always speciϐic to one call of a method.
In the actual Boogie-based encoding, the upper bound on k_m is even lower to give the
programmer more ϐlexibility. Currently, k_m is assumed to be smaller than a thousandth
of 1%. This allows the programmer to for instance specify a method that requires acc(
x.f,rd) twice, effectively demanding at least 2*k_m permission to x.f. The exact ratio
was chosen arbitrarily and could always be lowered, but has so far worked well for most
examples.

3.1.2 Method calls with fractional permissions

Without fractional permissions, synchronously calling a method in SIL is as simple as us-
ing the built-in call statement:
call () := Actor::act(r)

SIL takes care of asserting theprecondition, exhaling the associatedpermissions, havocing
the necessary heap locations, inhaling the permissions mentioned by the postcondition
and ϐinally assuming said postcondition. Adding support for fractional read permissions
now only means providing a call-site speciϐic value 𝑘, right?
Unfortunately, this where the high-level nature of SIL becomes an obstruction. For each
method call-site, we want to introduce a fresh variable 𝑘௖ that represents the fractional
permission amount of permission selected for that particular call. Then, we want to con-
strain it to be smaller than the amount of permissions we hold to each of the locations
mentioned with abstract read permissions (rd). For the simple preconditions above, this
is easy to accomplish:
var k_c : Permission;
assume k_c < perm(r.val);
call () := Actor::act(r,k_c);

The term perm(r.val) is a native SIL term that represents the amount permission the
current thread holds to a particular location. Sadly, this simple scheme breaks downwhen
we have to deal with multiple instances of access predicates to the same location.

17

Chalice dictates that
exhale acc(x.f,rd) && acc(x.f,rd)

is to be treated as
exhale acc(x.f,rd)
exhale acc(x.f,rd)

Both exhale statements cause 𝑘௖ to be constrained to the amount of permission held to
𝑥.𝑓. Since exhale has the “side-effect” of giving away the mentioned permissions, this 𝑘௖
will be constrained further by the second exhale statement.
Additionally, access predicates can be guarded by implications. In that case, the Boogie-
based Chalice implementation translates
exhale b ==> acc(x.f, rd)

as
if(b)
{
exhale acc(x.f, rd);

}

At this point we could have decided not to use SIL’s built-in call statement and instead en-
code synchronous method calls as a series of exhale statements, followed by inhaling the
callee’s postcondition. While thatwould have been equivalent froma veriϐication perspec-
tive, wewould still be throwing away information: the original program’s call graph.
In order to still use SIL’s call statement, we need to keep track of the “remaining” permis-
sionswhile constraining 𝑘௖ without actually giving away these permissions, otherwise the
veriϐication of the subsequent call statement would fail. We cannot simply create a copy
of the permission mask as a whole and have exhale operate on that instead because SIL
considers the permission mask an implementation detail and thus doesn’t expose it. SIL
at least allows us to look up individual entries of the permission mask via the perm(x.f)
term. perm(x.f) represents the amount of permission the current thread holds for the
location 𝑥.𝑓. We use that feature to manually create and maintain a permission mask of
our own.
Like the permissionmask in the Boogie-encoding of Chalice, this data structuremust map
heap locations, represented as pairs of an object reference and a ϐield identiϐier, to per-
mission amounts. At this time, SIL has no reiϐied ϐield identiϐiers. So in order to distin-
guish locations (pair of an object reference and a ϐield), the Chalice2SIL translator assigns
a unique integer number to each ϐield in the program.
The only way to populate this map, is to “copy” the current state of the actual permis-
sion mask entry by entry via the perm(x.f) term. Unfortunately, we can’t do this in one
big “initialization” block, since some of the object reference expressions that occur on the
right-hand-side of implications might not be deϐined outside of that implication.
We could expand implications in the precondition twice: once for initializing our permis-
sion map, and once to actually simulate the exhales and constraining of 𝑘௖ , but there is a
more concise way.

18

As listing 12 demonstrates, we start out with two fresh map variables 𝑚 and 𝑚଴. The
former,𝑚, is the permission map we are going to update while constraining 𝑘௖ , whereas
𝑚଴ represents the state of the permission map immediately before the method call. We
let the SIL veriϐier assume that the two maps are identical initially (line 5) and later add
more information about𝑚’s initial state by providing assumptions about𝑚଴.
The ϐirst accessibility predicate we translate is acc(r.val,rd). On line 7 we copy the
amount of permission we currently hold to r.val into our own permission map. The key,
(r,1), is a pair consisting of the object reference r and a unique integer that Chalice2SIL
assigned to the ϐield Register::val. No other ϐield in the program shares that integer
identiϐier.
We then continue with ensuring that we still have access to that ϐield (line 8) by assert-
ing that the amount of permission for r.val is strictly positive. Only then can we use the
amount of permission we hold to r.val as an additional upper bound to 𝑘௖ (line 9), oth-
erwise that assumption could have contradicted the assumption about 𝑘௖ made on line 4.
Finally, on line 10 we “simulate” exhaling the permission by subtracting it from our own
permission map entry. Notice how we used an assumption about the “original” map 𝑚଴
on line 7, but then continued to use𝑚, the actual permission map, to perform the simula-
tion.
For the second part of the callee’s precondition, p ==> acc(r.val,rd), we ϐirst have to
deal with the implication. In accordance with our translation scheme for the read fraction
constraints (ϐigure 3), we wrap the translation of the right-hand side of the implication in
an if-block (line 12). As the accessibility predicate acc(r.val,rd) is identical to what
we had before, our translation also generates the same sequence of statements.
Now the fact that we do not simply copy the amount of permission we currently hold into
ourworking permissionmap𝑚 becomes essential. Using an assumption on line 13means
that𝑚଴ still is the map from which the current version of𝑚 (we updated it on line 10) is
derived. Line 15 adds an even lower upper bound to the constraints on 𝑘௖ becausewe had
already subtracted 𝑘௖ from the permission amount for r.val on line 10.
After 𝑘௖ is sufϐiciently constrained, we just emit a call to our target method, passing 𝑘௖
as a ghost parameter. The SIL veriϐier will have to exhale the precondition (giving away
the permissions it mentions), havoc heap locations that the caller has lost all permissions
to, then inhale the postcondition (receiving permissions it mentions) and ϐinally assign
results to local variables as necessary.

3.2 Asynchronous method calls (Fork-Join)

At this time, SIL only provides synchronous call statements. We therefore have to fall back
to just exhaling the precondition on fork and inhaling the postcondition on join. The chal-
lenging aspect of verifying asynchronous method calls is establishing the link between a
join and the corresponding fork. Old expressions, in particular, are difϐicult to capture in
SIL without a dedicated call statement.

3.2.1 Translation of fork

The translation of the Chalice fork statement seems, at least at ϐirst, relatively straight-
forward: constrain a fresh 𝑘௖ to be used as the fractional read permission amount, exactly

19

Listing 12: Translation sketch for a method call involving fractional read permissions and
the precondition acc(r.val,rd)&& p ==> acc(r.val)

1 var k_c : Permission
2 var m : Map[Pair[ref, Integer], Permission];
3 var m_0 : Map[Pair[ref, Integer], Permission];
4 assume 0 < k_c && 1000*k_c < k_m;
5 assume m == m_0;
6 // acc(r.val,rd)
7 assume m_0[(r,1)] == perm(r.val);
8 assert 0 < m[(r,1)];
9 assume k_c < m[(r,1)];

10 m[(r,1)] := m[(r,1)] - k_c;
11 // p ==> acc(r.val,rd)
12 if(p){
13 assume m_0[(r,1)] == perm(r.val);
14 assert 0 < m[(r,1)];
15 assume k_c < m[(r,1)];
16 m[(r,1)] := m[(r,1)] - k_c;
17 }
18 // finally, the actual call
19 call () := m(r,p,k_c);

𝑘௠ ∶ read fraction selected for the surrounding scope
𝑒 ∶ program expressions

𝑃, 𝑄 ∶ assertions
𝑝, 𝑞 ∶ permission amount
𝑓 ∶ ϐield
𝑛 ∶ integer
𝑔 ∶ function
𝐺 ∶ precondition of 𝑔

𝑥ଵ, … , 𝑥௡ ∶ parameters of 𝑔
𝑚[𝑒] ∶ look up map entry with key 𝑒 in map𝑚

𝑃[𝑥/𝑒] ∶ 𝑃, but with 𝑒 substituted for 𝑥

Figure 1: Meaning of names used below.

20

𝐻(𝑝 ∗ 𝑞, ℎ) = 𝐻(𝑝, ℎ) ∧ 𝐻(𝑞, ℎ)
𝐻(𝑝 + 𝑞, ℎ) = 𝐻(𝑝, ℎ) ∧ 𝐻(𝑞, ℎ)
𝐻(𝑝 − 𝑞, ℎ) = 𝐻(𝑝, ℎ) ∧ 𝐻(𝑞,¬ℎ)
𝐻(𝑝 ∗ 𝑛, ℎ) = 𝐻(𝑝, ℎ)
𝐻(𝑘௠, ℎ) = ¬ℎ 𝑘௠ is abstract fraction
𝐻(𝑝, ℎ) = false otherwise

Figure 2: Helper function that determines whether a permission amount expression can
be used to constrain 𝑘௖ .

𝐸⟦acc (𝑒.𝑓, 𝑝)⟧Ch = ൳perm ൫𝐸⟦𝑒⟧Ch, 𝑓൯ < 𝐸⟦𝑝⟧Ch൷SIL
𝐸⟦𝑒⟧Ch translates expression 𝑒 to SIL terms and expressions
𝑅⟦𝑃⟧Ch = ൳

var 𝑘௖ , 𝑚,𝑚଴;
inhale 0 < 𝑘௖ ∧ 𝑘௖ ∗ 1000 < 𝑘௠;
inhale𝑚 = 𝑚଴;
𝑇⟦𝑃⟧Ch൷ SIL

𝑇⟦𝑃 ∧ 𝑄⟧Ch = ൳𝑇⟦𝑃⟧Ch; 𝑇⟦𝑄⟧Ch൷SIL
𝑇⟦𝑒 ⇒ 𝑄⟧Ch = ൳if ൫𝐸⟦𝑒⟧Ch൯ ൛𝑇⟦𝑄⟧Chൟ൷SIL

𝑇⟦acc (𝑥.𝑓, 𝑝)⟧Ch = if 𝐻(𝐸⟦𝑝⟧Ch, false) ൳
exhale 𝐷⟦𝑥⟧Ch;
inhale𝑚଴ ൣ൫𝐸⟦𝑥⟧Ch, 𝑓൯൧ = perm ൫𝐸⟦𝑒⟧Ch, 𝑓൯ ;
exhale 0 < 𝑚 ൣ൫𝐸⟦𝑥⟧Ch, 𝑓൯൧ ;
inhale 𝐸⟦𝑝⟧Ch < 𝑚 ൣ൫𝐸⟦𝑥⟧Ch, 𝑓൯൧ ;
𝑚 ൣ൫𝐸⟦𝑥⟧Ch, 𝑓൯൧ ∶= 𝑚 ൣ൫𝐸⟦𝑥⟧Ch, 𝑓൯൧ − 𝐸⟦𝑝⟧Ch൷ SIL

𝑇⟦acc (𝑥.𝑓, 𝑝)⟧Ch = otherwise ⟦skip⟧SIL

Figure 3: Translation schemes. 𝑅 generates code that constrains a fresh 𝑘௖ according to
the method precondition/loop invariant 𝑃. 𝑇 recursively translates 𝑃 to constraint 𝑘௖ .
𝐷⟦𝑥⟧Ch determines whether 𝑥 is well-deϐined. See ϐigure 5.

21

𝐹⟦old (𝑒)⟧Ch = ൳
inhale acc (𝑡.𝑓௘ , write)
if ൫𝐷⟦𝑒⟧Ch൯ {
var 𝑏௘ ∶ bool;
inhale eval(𝑏௘) == 𝐸⟦𝑒⟧Ch;
𝑡.𝑓௘ ∶= 𝑏௘

}൷ SIL if 𝑒 is an assertion
𝐹⟦old (𝑒)⟧Ch = ൳

inhale acc (𝑡.𝑓௘ , write)
if ൫𝐷⟦𝑒⟧Ch൯ {
𝑡.𝑓௘ ∶= 𝐸⟦𝑒⟧Ch

}൷ SIL otherwise
𝐹⟦𝑃 && 𝑄⟧Ch = ൳𝐹⟦𝑃⟧Ch; 𝐹⟦𝑄⟧Ch൷SIL

𝐹⟦𝑃⟧Ch = analogous

Figure 4: 𝐹 recursively descends into an expression looking for old expressions old(𝑒).
Adds a corresponding ϐield 𝑓௘ to the token 𝑡 and, if the expression is well-deϐined at that
point, evaluates 𝑒 and assigns the result to 𝑓௘ .

as we did for the synchronous method call, then exhale the method’s precondition and
ϐinally create a token object with a boolean ϐield called “joinable” set to true. But how
would we then translate the corresponding join statement(s)? The method’s postcon-
dition is formulated in terms of the method’s return values and parameters. In general
we no longer have access to the latter. The joinmight happen in a different method, but
even if it occurs in the samemethod as the fork, the heap and the values of local variables
could have changed in the meantime. Ideally, we could somehow capture the entire pro-
gram state and store it in or associate it with the token at the fork statement. At the join
statement, we would then evaluate (inhale) the method’s postcondition in terms of that
program state.
Sadly, SIL currently has no such mechanism. It does have old expressions but they are
hardwired to refer to thepre-state of the surroundingmethod (the state immediately prior
to a call to thatmethod). Fortunately, we don’t actually need to capture the entire program
heap. Since the set of values that might be missing at the join site includes at most all
arguments and old expression, we can generate a ghost ϐield on the token to “transport”
each of values from the fork site to the join site.
Chalice2SIL generates one ghost ϐield for each method argument and one ghost ϐield for
each old expression in the method’s postcondition. Just before the exhale statement of a
join, it assigns the effective arguments to the argument ghost ϐields of the token. It then
evaluates the old expressions of the method’s postcondition and assigns the results to the
corresponding ghost ϐields. The translation scheme 𝐹 presented in ϐigure 4 shows how
this is done.
There is just one more complication to take care of: old expressions can appear on the

22

𝐷⟦𝑃 ⇒ 𝑄⟧Ch = ൳𝐷⟦𝑃⟧Ch ∧ ൫𝐸⟦𝑃⟧Ch ⇒ 𝐷⟦𝑄⟧Ch൯൷SIL
𝐷⟦if (𝑒) 𝑃 else 𝑄⟧Ch = ൳𝐷⟦𝑒⟧Ch ∧ ൫𝐸⟦𝑒⟧Ch ⇒ 𝐷⟦𝑃⟧Ch൯

∧ ൫¬𝐸⟦𝑒⟧Ch ⇒ 𝐷⟦𝑄⟧Ch൯൷ SIL
𝐷⟦𝑒.𝑓⟧Ch = ൳𝐷⟦𝑒⟧Ch ∧ ¬൫𝐸⟦𝑒⟧Ch = null൯

∧ 0 < perm ൫𝐸⟦𝑒⟧Ch, 𝑓൯൷ SIL
𝐷⟦𝑒.𝑔 (𝑎ଵ, … , 𝑎௡)⟧Ch = ൳𝐷⟦𝑒⟧Ch ∧ ¬൫𝐸⟦𝑒⟧Ch = null൯

∧ 𝐸⟦𝐺 [this/𝑒, 𝑥ଵ/𝑎ଵ, … , 𝑥௡/𝑎௡]⟧Ch൷ SIL

Figure 5: Translation scheme for ensuring the deϐinedness of an expression.

right-hand-side of implications, where theymight only be deϐined part of the time (due to
missing permissions and null references). Unfortunately, just expanding implications into
if-statements, likewedidwhen constraining𝑘௖ , is not anoptionbecause the left-hand-side
of the implication could refer to a return value, which is of course only available at the join
site. Instead, we walk over each old expression and generate a set of conditions that need
to be satisϐied for the expression to be deϐined at the fork site. These are similar to the
deϐined-ness conditions in [SJP12, p12], which also appear in the Boogie-based Chalice
veriϐier. Figure 5 shows the most important rules for generating deϐinedness conditions
𝐷⟦𝑒⟧Ch for an expression 𝑒.
We then use these deϐined-ness conditions at the fork-site to guard the assignment of the
old values. Listing 14, a translation of the fork statement in listing 13, demonstrates this
on line 16. The deϐined-ness conditions in the if-condition guarantee that the computa-
tion and assignment of the old value on line 17 cannot fail. When the veriϐier arrives at a
point at the join site where the ghost ϐield on the token corresponding to the old expres-
sion is read, we can be in one of two cases. Either the old expression was well deϐined at
the fork-site or it was not. If it was, the veriϐierwill have chosen the path involving the as-
signment of the token ghost ϐield and consequently has information about the contents of
that ϐield. If the old expressionwas not well-deϐined at the fork-site, then the assignment
of the ghost ϐield will have been skipped.

3.2.2 Translation of join

With most of the hard work done when the thread was forked, the translation of a join
statement is relatively straightforward. First, wemust assert that the token is stilljoinable
(we also need write-access to that ϐield in order to set it to false). Then we inhale the
method’s postcondition using the ghost ϐields on the token as substitutions for the argu-
ments and old expressions. Finally, we have to assign the results of the asynchronous
computation to the variables indicated by the Chalice programmer.
A detail worthmentioning is the representation of results for the inhale statement. Chal-
ice2SIL also creates ghost ϐields on the token for results. Since a token is only ever joined
once, we can safely inhale the permissions to access those result ϐields. Conceptually, by
joiningwith the current thread, the forked thread transfers access to its results alongwith
all other permissions from its postcondition.

23

Listing 13: Example of Chalice program featuring fork and join of method with a possibly
undeϐined old expression.

1 class Cell { var f : int; }
2 class SuperCell { var cell : Cell; }
3

4 class Main {
5 method parallel(d : SuperCell) returns (r: bool)
6 requires d != null ==> acc(d.cell, rd) && d.cell != null
7 && acc(d.cell.f, rd) && d.cell.f == 5
8 ensures r == (d != null)
9 ensures r ==> old(d.cell.f == 5)

10 ensures r ==> (acc(d.cell, rd) && acc(d.cell.f, rd))
11 {
12 r := d != null;
13 }
14

15 method main(d : SuperCell, c : Cell)
16 requires acc(d.cell) && acc(c.f)
17 ensures acc(d.cell) && acc(c.f)
18 {
19 var r : bool;
20 d.cell := c;
21 c.f := 5;
22 fork tk := parallel(d)
23 assert c.f == 5; // still have read-access
24 join r := tk;
25 assert r;
26 }
27 }

24

Listing 14: Translation of the fork statement on line 22 in listing 13.
1 var tk : ref;
2 tk := new ref;
3 inhale acc(tk.joinable,write);
4 tk.joinable := true;
5 // constrain k_c, the read fraction for this call
6 ...
7 // store arguments in token
8 inhale acc(tk.this,write);
9 tk.this := this;

10 inhale acc(tk.d,write);
11 tk.d := d;
12 inhale acc(tk.k_m,write);
13 tk.k_m := k_c;
14 //store old values in token
15 inhale acc(tk.old1,write);
16 if(d != null && 0 < perm(d.cell) && d.cell != null && 0 < perm(d.cell.f)){
17 tk.old1 := (d.cell.f == 5);
18 }
19 // ”perform” the asynchronous call by exhaling the callee’s precondition
20 exhale this != null && 0 < k_c && k_c < write &&
21 d != null ==> acc(d.cell, k_c) && d.cell != null
22 && acc(d.cell.f, k_c) && d.cell.f == 5

Listing 15: Translation of the join statement on line 24 in listing 13.
exhale tk.joinable // SIL verifier also needs to assert that tk != null
inhale acc(tk.r,write) && tk.r == (tk.d != null)

&& tk.r ==> tk.old1
&& tk.r ==> acc(tk.d.cell, tk.k_m) && acc(tk.d.cell.f, tk.k_m);

r := tk.r;
tk.joinable := false;

Alternatively, we could have used fresh local variables to represent result values. The
only advantage that ghost ϐields provide, is that we don’t need to introduce new vari-
ables.
The accessibility of all the other ghost ϐields on the token requires a bit more work. Nat-
urally, tokens can also be passed to other threads and joined there. The requirement that
the joining thread has exclusive access to the joinable ϐield ensures that only one thread
can join on a given token. Now, while the ghost ϐields on the token might be invisible to
the Chalice programmer, SIL does not distinguish between ghost ϐields and ordinary ϐields
in any way. We need to make sure that every method that tries to access any of the ghost
ϐields actually has permissions to do so.
Fortunately, ghost ϐields on a token are only accessedwhenwe also have permission to ac-
cess the joinable ϐield on that token and it is the Chalice programmer’s burden to ensure
that a thread has this permission when attempting to join on a token. If we could some-

25

how link the amount of permission a thread has to each of the ghost ϐields to the amount
of permission it holds to joinable, we would always end up with a sufϐicient amount of
permission for the ghost ϐields.
While SIL provides no built-in support for linking ϐields together accessibility-wise, we
can achieve a similar effect by translating every accessibility predicate for joinable as an
accessibility predicate for that and all token ghost ϐields (with the same amount of permis-
sion for each). That way, we can be sure that whenever a thread holds full permissions to
a joinable ϐield, it also holds full permissions to all ghost ϐields on the token. More for-
mally, given a token 𝑡, a permission amount 𝑝, ghost ϐields 𝑎ଵ⋯𝑎௞ (the arguments) and
𝑜ଵ⋯𝑜௡ (evaluated old expressions), we apply the following transformation:

⟦acc (𝑡.joinable, p)⟧SIL
becomes

⟦acc (𝑡.joinable, 𝑝) ∧ acc (𝑡.this, 𝑝) ∧
∧ acc (𝑡.𝑎ଵ, 𝑝) ∧ acc (𝑡.𝑎ଶ, 𝑝) ∧ ⋯ ∧ acc (𝑡.𝑎௞ , 𝑝) ∧
∧ acc (𝑡.𝑜ଵ, 𝑝) ∧ acc (𝑡.𝑜ଶ, 𝑝)⋯ acc (𝑡.𝑜௡)⟧SIL

3.2.3 Limitations of the current fork-join implementation

Joining a thread seems deceptively simple when done in the samemethod that the thread
was originally forked from. This is because the veriϐier has seen the assignments to the
token ghost ϐields ϐirst hand. When a thread is joined in a separate method, however, that
context is not available because both Silicon and the Boogie-based implementation verify
each method in complete isolation.
For just joining a thread in a separate method, the programmer needs to pass both the to-
ken andwrite access to the token’s joinable ϐield to themethod that performs the joining
and ensure that the thread has not been joined already. Unfortunately, the postcondition
of an asynchronous method call joined this way is next to useless, because the veriϐier
has no information about the context of the method call. Speciϐically, the veriϐier doesn’t
know anything about the receiver or any of the arguments originally passed to the thread.
As a consequence, any clause of the postcondition that mentions the this pointer or an
argument is useless to the veriϐier.
Listing 16 demonstrates a simple program that fails to verify because the context of the
forked thread is lost when the token is transferred to the callee (client). The veriϐier
will complain that there might not be enough permission to satisfy acc(obj.f), because
it doesn’t know that the this pointer used to call work refers to the same object as obj. We
would like to tell the veriϐier more about how our token was created.

requires tk.thisPtr == obj //not a valid Chalice expression

While the previous example is not valid Chalice code, there is a mechanism that can be
used to create similar speciϐications. Listing 17 shows how the eval expression can be
used to provide the veriϐier with the information necessary to prove that the method sat-
isϐies its postcondition.
An ⟦eval (𝑟.𝑎, 𝑒)⟧Ch expression consists of three parts: the “context” 𝑐 (the token in our
case), the description of the “eval state” 𝑎 and an expression 𝑒 to be evaluated in that state.

26

Listing 16: Limitations with joining in separate methods
class Main{

var f : int;
method work()

requires acc(this.f)
ensures acc(this.f)

{
}

method main()
requires acc(this.f)
ensures acc(this.f)

{
fork tk := work();
call client(tk, this);

}

method client(tk : token<Main.work>, obj : Main)
requires acc(tk.joinable) && tk.joinable
ensures acc(obj.f) // might not hold

{
join tk;

}
}

Listing 17: eval expression in Chalice
method client(tk : token<Main.work>, obj : Main)

requires acc(tk.joinable) && tk.joinable
requires eval(tk.fork this.work(), this == obj)
ensures acc(obj.f)

{ join tk; }

27

In our case, we specify a “call state” of the form ⟦fork 𝑟.𝑚 (𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௞)⟧Ch. Here 𝑟 de-
notes the receiver of the asynchronous method call, 𝑚 is the name of the method called
and 𝑎௜ stand for the arguments originally passed to the method.
Chalice2SIL supports a very limited form of the eval expression which covers exactly the
use-case outlined above. As long as the eval expression binds to a fork token and has
true as its second operand 𝑒, Chalice2SIL translates it as follows:

𝑉൳eval(𝑡.fork 𝑟.𝑚(𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௞), true)൷Ch = ⟦ 𝐸⟦𝑡⟧Ch ≠ null

∧ 𝐸⟦𝑡⟧Ch.this = 𝐸⟦𝑟⟧Ch
∧ 𝐸⟦𝑡⟧Ch.𝑎ଵ = 𝐸⟦𝑎ଵ⟧Ch

⋮
∧𝐸⟦𝑡⟧Ch.𝑎௞ = 𝐸⟦𝑎௞⟧Ch൷SIL

This small extension is just expressive enough to associate tokens with parts of the con-
text they were forked from, allowing the joining method to actually take advantage of the
postcondition of the forkedmethod. As the general design of theeval-expression is under
discussion, it did not make sense to fully support it.

3.3 Predicates and Functions

Predicates and functions have been part of SIL since its inception, in a form that verymuch
resembles the functions and predicates from Chalice. As a result, the translation of func-
tions and predicates from Chalice to SIL is relatively straightforward.

3.3.1 Predicates

In contrast to abstract fractional read permissions (rd) in methods, which can assume a
different value for each invocation, the fraction used in predicates remains ϐixed. This is
essential to ensure that the predicate holds the same amount of permission regardless
of where it was folded. Otherwise the user would have to specify exactly how much per-
mission a predicate contains, which rather defeats the purpose of predicates (information
hiding).
Abstract read permissionsmentioned in predicates are thus interpreted by a ϐixed permis-
sion amount. To implement this, we deϐine an uninterpreted constant function global-
PredicateReadFraction() and declare that this global read fraction is strictly positive
and less than the full/write permission amount.
It is possible that, in the future, we’d like to have different fractions for different predicates
or even different fractions for each combination of object (this-pointer) and predicate. To
support this scenario, we don’t insert references to globalPredicateReadFraction
() directly into the generated SIL program. Instead, we use an intermediate function
predicateReadFraction(int,ref); alsouninterpreted. Analogously to the “ϐield iden-
tiϐiers” that we used to index into our copy of the permissionmaskwhenwe constrain the
read permission fraction for method calls, we generate unique “predicate identiϐiers” to

28

distinguish between different predicates on the same object. However, at the moment ev-
ery SIL program that Chalice2SIL generates also contains an axiom that makes predicate
read fractions effectively global:

∀𝑖, 𝑟. predicateReadFraction(i,r) = globalPredicateReadFraction()

This constraint makes it easier to transfer abstract read permissions between predicates,
giving acc(x.f,rd) a ϐixedmeaning across all predicates. Outside of predicates, the user
can refer to the same amount of permission by explicitly mentioning the predicate in an
argument to the abstract read permission. Given two object references 𝑥 and 𝑦, a ϐield
𝑓, a predicate 𝑝 and a corresponding predicate identiϐier 𝑖௣, Chalice2SIL translates an ac-
cessibility predicate that involves an abstract read fraction inside a predicate body as fol-
lows:

൳acc (𝑥.𝑓, rd(𝑦.𝑝))൷Ch = ൳acc ൫𝐸⟦𝑥.𝑓⟧Ch, predicateReadFraction(𝑖௣, 𝐸⟦𝑦⟧Ch)൯൷SIL

3.3.2 Functions

Ideally, we would want to encode abstract read permissions in functions the same way
we encode them when they occur in method pre/postconditions: constraining a differ-
ent fraction for each call site. Unfortunately, the technique we used for read fractions in
method calls would not work for function calls, because for our solutionwe need to create
and then destructively update our own copy of the permission mask. Function calls can
occur in method pre/postconditions and even inside other function bodies. All of those
contexts are pure, which means that we cannot introduce and then update new “local”
variables.
But functions being pure also gives us more freedom, since we don’t have to make the dis-
tinction between read permissions and read-write permissions (functions aren’t allowed
to modify the heap anyway). Similarly, as functions always automatically return the same
amount of permission that they received, it doesn’t really matter exactly “howmuch” per-
mission a function has, only to which heap locations it has access. As a result, Chalice2SIL
translates non-write permission amounts in function preconditions as rd*, which means
“any read-permission”.

⟦acc (𝑥.𝑓, 𝑟𝑑∗)⟧Ch = ⟦∃𝑎, 0 < 𝑎 < write. acc (𝑥.𝑓, 𝑎)⟧SIL

3.4 Monitors with Deadlock Avoidance

As with predicates, the permissions stored in a monitor need to be ϐixed and cannot be
chosen every time we lock an object. Otherwise we’d have to track the amount of per-
mission the monitor holds onto at any point in the program as global state and be able to
communicate these permission amounts in method pre- and postcondition. Using a ϐixed
fractional read permission is how [HLMS11] implements abstract fractional permissions.
So, as with predicates, we deϐine an uninterpreted function that represents the fraction of
permission that the veriϐier uses whenever it encounters an abstract fractional read per-
mission in a monitor. To make mixing monitors and predicates easier, we use the same
global fraction for monitors as we used for predicates.
The really difϐicult part of handling monitors, however, is the implementation of the lock-
ing and deadlock prevention itself. In this section we present our partial solution in the

29

hope that it will help in ϐinding aworking implementation of deadlock avoidance in SIL, or
failing that, in the hope that it at least serves as a demonstration of the limits of SIL.

3.4.1 Approach to Deadlock Prevention and Locking

For locking and deadlock prevention we need to add two kinds of information to each
object: a boolean indicating whether the object in question is locked and amu value that
indicates the object’s position in the locking order. To recapitulate, in section 2.1.7 we
saw that mu values are part of the partially ordered set (𝑀𝑢,≪). Only one concrete value
exists: lockbottom, the single smallest element of Mu. All other values of Mu are kept
abstract and only described in terms of their≪-relation to one another.
The key idea behind deadlock prevention in Chalice, that a thread can only acquire a lock
on monitor/object 𝑚 if it is clear that that monitor/object is higher in the locking order
than any other monitor that that thread already has a lock on. In more concrete terms,
locking is allowed when ∀𝑜 ∈ objects. 𝑜 ≠ 𝑚 ⇒ (holds(𝑜) ⇒ 𝑜.mu ≪ 𝑚.𝑚𝑢).
To use this expression in a SIL assertion (an exhale statement prior to acquiring a lock),
we need to make sure that the heap locations it mentions (𝑜.mu and 𝑚.mu) are deϐined:
that these locations are readable. To ensure that we can access𝑚.mu, we ϐirst check𝑚 ≠
null ∧ 0 < perm(𝑚.mu). But thenwe run into the problemwith 𝑜.mu. Since 𝑜 is quantiϐied
over all object references, wewould have to require read access to all mu ϐields in the entire
heap to ensure that 𝑜.mu is deϐined for all object references. Alternatively, one could try to
use0 < perm(𝑜.mu) tomake sure that 𝑜.mu is only accessedwhenweknow that the location
is readable:

0 < perm(𝑜.mu) ⇒ ¬holds(𝑜) ∨ 𝑜.mu ≪ 𝑚.𝑚𝑢

Unfortunately that is not correct. While a method needs read-access to the mu ϐield to ac-
quire the lock on an object 𝑜ଵ, it can then give away all permissions to ϐields of 𝑜ଵ (it could
fork a thread and hand complete control over that object to the forked thread), while still
holding the lock on the monitor associated with 𝑜ଵ. With the implication in the asser-
tion above, we are really ϔiltering out object references for which we do not have access
to the mu ϐield. Temporarily not having any permission to access to 𝑜ଵ.mu would allow us
to acquire the lock on a monitor that is not higher in the locking order than 𝑜ଵ. Instead
our assertion should be quantiϐied over all object references 𝑜, whether we have access to
𝑜.mu or not.
We need to associate each object with a mu and a ϐlag that indicates whether the object’s
monitor is acquired by the current thread. The only mechanism that SIL provides for as-
sociating information with an object is ϐields, but using ϐields is not an option when one
needs to refer to that ϐield in a universal quantiϐier. The Boogie-based implementation
uses both mu ϐields and a set of additional masks and that is what we will try to emulate in
our approach.
We add another hidden parameter to each method, the currentThread: ref. This object
has two ϐields heldMap and muMap, mapping from references to boolean values and from
references to mu values, respectively. For any object reference 𝑜, we use heldMap[𝑜] to in-
dicatewhether theobject𝑜 is lockedby the current threadat themoment. WeusemuMap[𝑜]
instead of 𝑜.mu inside quantiϐiers to get around the issue of 𝑜.mu not being readable. Via

30

their preconditions, each method gets to assume the following:

currentThread ≠ null ∧ acc (currentThread.heldMap, write)
∧ acc (currentThread.muMap, write)

However, the mu ϐield is not an implementation detail of Chalice2SIL or the Boogie-based
Chalice veriϐier, but an actual ϐield that the user of Chalice has to take into considera-
tion when dealing with monitors. The greatest challenge is thus to keep what the veriϐier
knows about the muMap andwhat it knows about mu ϐields in synchrony. To that end, every
occurrence of an accessibility predicate that mentions mu will be translated according to
the following rule:

⟦acc (𝑥.mu, 𝑎)⟧Ch = ൳acc (𝑥.mu, 𝑎) ∧ currentThread.muMap[𝑥] = 𝑥.mu൷SIL
This makes sure that whenever we gain access to an mu ϐield, we also get a matching entry
in the currentThread’s muMap. Or, conversely, whenever we give away permission to a mu
ϐield, we must also ensure that the muMap is up to date.
With this infrastructure, the implementation of locking-related operations is relatively
straightforward. For the examples that follow, we assume that we have a class 𝐶 with
a single int ϐield 𝑓.
Object creation ⟦𝑜 := new 𝐶⟧Ch is translated as

o := new ref;
inhale acc(o.f,write); // for each field f of class C
inhale acc(o.mu,write);
inhale o.mu == lockbottom;
inhale currentThread.heldMap[o] == false;
inhale currentThread.muMap[o] == o.mu;

Share an object ⟦share 𝑜 above 𝑎 below 𝑏⟧Ch is translated as
exhale o != null;
exhale o.mu == lockbottom;
// Ensure bounds are defined
exhale a != null && b != null;
exhale 0 < perm(a.mu) && 0 < perm(b.mu);
exhale a << b; // Upper bound might be below lower bound
// Constrain value for fresh mu
var m : Mu;
inhale lockbottom << m;
inhale a << m;
inhale m << b;
// Assign mu (to both the field and the map), set held to false
o.mu := m;
currentThread.muMap[o] := o.mu;
currentThread.heldMap[o] := false;
exhale <monitor-invariant>;

[LMS09] also introduces other forms of Chalice’s share statement allow the pro-
grammer to specify multiple upper and lower bounds or omit them altogether. If no

31

lower bound is speciϐied, the current lock level is used as the lower bound, that is,
the object is shared with a mu that is greater than the mu of any object for which the
thread currently holds a lock. After an object has been shared, its mu ϐield is guar-
anteed to be above lockbottom. This property is used to determine whether an
object is currently shared and can often be found in the precondition of methods
that intend to lock that object.

Acquire a lock ⟦acquire 𝑜⟧Ch is translated as
exhale o != null;
exhale 0 < perm(o.mu);
// o must have been shared above current waitlevel
exhale forall h : ref :: currentThread.heldMap[h] ==>

currentThread.muMap[h] << o.mu;
currentThread.heldMap[o] := true;
inhale <monitor-invariant>;

Release a lock ⟦release 𝑜⟧Ch is translated as
exhale o != null;
exhale currentThread.heldMap[o];
exhale <monitor-invariant>;
currentThread.heldMap[o] := false;

Unshare an object ⟦unshare 𝑜⟧Ch is translated as
exhale o != null;
exhale write <= perm(o.mu);
exhale lockbottom << o.mu; // ensures o is shared
exhale currentThread.heldMap[o]; // o is locked
// Update fields/maps
o.mu := lockbottom;
currentThread.heldMap[o] := false;
currentThread.muMap[o] = o.mu;

Forking a thread Chalice2SIL creates a new thread object for the forked thread and ini-
tialises its muMap with the contents with the contents of currentThread’s muMap.
Since the heldMap only represents the locks held by the current thread we do not
copy anything from currentThread’s heldMap.

In the postcondition of each method, we make sure that the mu and held maps are in a
consistent state. The programmer uses the lockchange declaration to list all objects it
changed the lock state of. Without any lockchange declarations, all method postcondi-
tion contain the following assertions:

acc (currentThread.heldMap, write) ∧ acc (currentThread.muMap, write)
∧ ∀𝑜௖ ∈ objects. old (currentThread.heldMap) [𝑜௖] = currentThread.heldMap[𝑜௖]
∧ ∀𝑜ௗ ∈ objects. (currentThread.heldMap[𝑜ௗ]) ⇒

old (currentThread.muMap[𝑜ௗ]) = currentThread.muMap[𝑜ௗ]

The second line demands that the locking state of any object must not have been changed.
The last two lines ensure that the lock level of anything that is currently locked didn’t

32

Listing 18: Losing information about mu.
1 class C {
2 var f : int;
3 invariant acc(f);
4 method nop(){}
5 method main()
6 {
7 var x := new C; var y := new C;
8 share x;
9 share y above x;

10

11 call nop();
12 acquire x;
13 acquire y; release y;
14 release x;
15 }
16 } // Using Syxc: Verification finished with 0 error(s)

change. When the user adds lockchange declarations, the bodies of the last two quanti-
ϐiers are guarded by an implication similar to:

𝑜 ∉ lockchange ⇒ body…

3.4.2 Limitations of the current Implementation

As mentioned above, the current implementation is not correct in some cases. We iden-
tiϐied two major problems: one where we lose information about mu, preventing us from
successfully verifying a correct program, and one where we retain too much information
about mu, causing the veriϐication to be potentially unsound.
Listing 18 presents an example of the former problem. In that program we create two
objects x and y and share them in such a way that locks on x always have to be acquired
before y (lines 8 and9). Whenwe call themethod nop on line 11, we temporarily give away
all permissions to currentThread.muMap. This means that the veriϐier must assume that
the contents of the heap location currentThread.muMap have changed completely. When
the veriϐier reaches the second acquire statement on line 13, it will assert the follow-
ing:
forall h : ref :: currentThread.heldMap[h] ==>

currentThread.muMap[h] << y.mu;

Since there is only one locked object at the moment, the veriϐier effectively checks
currentThread.muMap[x] << y.mu

It remembers that x.mu << y.mu, but has lost all information about muMap[x]. As a result,
the assertion will fail.

33

Listing 19: Modiϐied method nop from listing 18, causes veriϐication to succeed.
method nop(x : C)

requires acc(x.mu,rd)
ensures acc(x.mu,rd)

{ }

Listing 20: Keeping too much information about mu.
1 class C {
2 var f : int;
3 invariant acc(f);
4 method unrelated(x : C)
5 requires x != null && acc(x.mu)
6 ensures acc(x.mu)
7 { }
8

9 method main()
10 {
11 var x := new C; var y := new C;
12 share x;
13 share y above x;
14 acquire x;
15 fork unrelated(x);
16 acquire y; release y;
17 release x;
18 }
19 }// Using Syxc: Error 1280: 17.17: Acquiring y failed. waitlevel << mu

might not hold.

We canwork around this limitation by explicitly mentioning x.mu in an accessibility pred-
icate on the pre- and postcondition of method nop. That causes the assertion x.mu ==
currentThread.muMap[x] to be included in the pre- and postcondition of the translated
SIL method.
In listing 20 we ϐirst acquire the lock on x and then fork a new thread, giving away write
permission to x.mu. When we try to acquire y on line 17, the veriϐier tries to assert
the same expression as in the last example, only here this causes an outdated value for
currentThread.muMap[x] to be used. Since all permissions to the heap location x.mu have
been given away as part of the fork statement in line 16, x.mumight no longer have the
same value.
Both issues are related to the problem of ϐinding a method’s frame, ϐiguring out which
locations a method cannot access or modify. In the ϐirst case, we are missing the fact that
the method nop cannot change x.mu, whereas in the second case we ignore the fact that
the method unrelated could potentially have changed x.mu by the time we arrive at the
acquire y statement.

34

4 Evaluation

4.1 SIL as a translation target/veriϐication intermediate language

One of the primary goals of writing Chalice2SIL was to gather experience working with
SIL, both as a translation target and as a veriϐication intermediate language.

4.1.1 Encoding of loops

At the time we started this project, SIL did not have a dedicated while loop node. In-
stead, programswere to be encoded as a ϐlat directed graph of basic blocks: a control-ϐlow
graph (CFG). Loops were encoded as cycles with the “backwards” pointing edge explicitly
marked (so that tools could traverse the CFG as an acyclic graph by ignoring those back
edges). Unfortunately, Silicon – our veriϐier for SIL – can currently only handle while
loops as they appear in Chalice. In those early days, Silicon would pattern match against
the CFG to ϐind while loops and extract their components (condition, invariant, body), es-
sentially lifting the program back up to the abstraction level of Chalice in terms of control
ϐlow. If Chalice, which only supports while loops, were the only source language that SIL
ever had to support, this approachwould have been ϐine. But since the idea behind SILwas
to eventually have multiple front ends, we decided to capture the fact that we currently
can only verify while loops – and not arbitrary control ϐlow graphs – in the language. As
a result a explicit loop node was added to the SIL control-ϐlow graph.

4.1.2 Syntactic distinction between assertions and program expressions

Currently, SIL distinguishes between assertions (logical formulae and accessibility pred-
icates) and program expressions on a syntactic level. Some language elements require
assertions as operands (e.g., exhale) while others only accept program expressions (e.g.,
method arguments). In the current implementation of the SIL abstract syntax tree (AST),
there are two distinct and unrelated types: the type of assertions and the type of program
expressions. Having the Scala compiler enforce that we never construct a SIL program
where an accessibility predicate is used as amethod argument is nice in theory, but proved
to be more cumbersome than necessary in practice.
Only a partial solution It is still possible to write translators that try to create illegal as-

sertions and will fail due to runtime¹ checks built into the SIL AST. While it would
seem better to check as many properties statically as possible, only ending up with
partial checks can result in a false sense of security. The SILASTAPI is not exception-
free and translators should be prepared deal with exceptions.

Code duplication Logical formulae and program expressions have a lot in common, e.g.
logical operators or literal values. Distinguishing between aprogram-leveltrue and
and an assertion-level true has little beneϐit and at the same means that both pro-
ducers and consumers of SIL need to have two pieces of code that handle boolean
literals. Since the Scala types of assertions and program expressions are unrelated,
there is absolutely no opportunity for code reuse.

¹In the context of ௑-to-SIL-translators, “runtime” refers to the execution of the translator.

35

Translation from Chalice TheChalice compiler does not distinguish between assertions
and program expressions on a syntactic level and instead enforces restrictions on
where certain expressions can appear in semantic checks during type checking. Un-
fortunately, this makes syntax driven translation from Chalice to SIL highly ambigu-
ous. The translator will come across many Chalice expressions where it is not a pri-
ori clear whether to translate them as SIL assertions or as SIL program expressions.
For instance ⟦5 == 3⟧Ch can be translated using the equality assertion ⟦5 == 3⟧SIL
or by ϐirst applying the integer equality domain function intEQ and then lifting the
resulting boolean program value up to assertion-level using the boolean domain
predicate eval: ⟦eval(intEQ(5,3))⟧SIL.
Not all expressions can be translated either way and to ϐind out which translation
scheme is the correct one often requires having a look at the entire expression tree
andnot just the outermost expressionnode. This canmean that a translator needs to
walk through Chalice expressions twice, either just trying both translation schemes
in turn or ϐirst analysing the expression and then deciding on a translation scheme
to use.

Need to convert For Chalice2SIL it was sometimes necessary to convert between asser-
tions and program expressions. One example of this are expressions of the form
൳old(𝑒)൷Ch where 𝑒 translates to a SIL assertion. When a method with such an old
expression in its precondition is forked, conceptually, the expression 𝑒 is evaluated
and its “value” (trueorfalse) stored in a ϐield on the fork-token. Because the right-
hand side of an assignment needs to be a program expression in SIL, we ϐirst have
to create a fresh boolean variable and associate the truth value of that variable with
the assertion:
var b : bool;
inhale eval(b) == e

This can always be done and thusmaking the translator (and later the veriϐier) jump
through these hoops seems pointless.

Naming In the actual implementation of the SIL AST, assertions are called expressions and
programexpressions are called terms. While the implementation uses this terminol-
ogy very consistently, the terms fail to convey the key difference between assertions
and program expressions, resulting in a lot of puzzled faces in conversations with
people who are not intimately familiar with SIL’s design.

4.1.3 PTerms vs. DTerms vs. GTerms vs. Terms

SIL makes another distinction on the syntactic level that we think is better handled as a
semantic check. Tomake sure that domain axioms don’t contain AST nodes that are illegal
in the context of a domain (such as references to heap locations), SIL has four types to
represent program expressions.
DTerm “Domain” terms represent the set of all program expressions that are legal in do-

main axiom speciϐications. References to quantiϐier variables are one example.
PTerm “Program” terms represent the set of all program expressions that are legal in

actual program code (such as the right-hand side of assignment statements). Heap
references are one example.

36

GTerm “General” terms represent the set of all program expressions that are legal in all
contexts. Integer literals are one example.

Term Represent the set of all program expressions. Examples include the full permission
amount write or the permission mask lookup perm (𝑥.𝑓).

Even though the SIL AST implementation uses Scala traits to capture the subset relation-
ships between these sets, there is still an enormous amount of code duplication. For in-
stance, it is not enough to have one node type for domain function applications. Because
you need to restrict the set from which the function application node draws its argu-
ments, there is one domain function application node type for each of the four sets: GDo-
mainFunctionApplication, DDomainFunctionApplication, PDomainFunctionAp-
plication and DomainFunctionApplication.
Luckily, the subset types are all subtypes of DomainFunctionApplicationwhich allows for
code reuse when consuming (pattern matching) these data structures. When it comes to
generating these nodes, however, we essentially had twooptions. One optionwas to dupli-
cate a lot of code (e.g., have separate translation schemes forDDomainFunctionApplication
and PDomainFunctionApplication). We chose instead to translate to the most speciϐic
type whenever possible (e.g., if all arguments of a domain function application are DTerms
themselves, create a DDomainFunctionApplication) but return Terms to accommodate for
all Chalice program expressions. In cases where PTerms are required instead of Terms, we
attempt to downcast to PTerm.
The fact that even the SIL AST implementation itself employs this technique indicates that
maybe in this case runtime checks (running during translation of a program to SIL) are
better suited than trying to encode these constraints in the Scala type system.
The SIL AST implementation makes a similar distinction for assertions. There are GEx-
pressions, DExpressions, PExpressions and Expressions. We included amore complete
grammar listing in appendix A.

4.1.4 Capturing state in SIL

A pattern that often appears in the Boogie-based implementation of Chalice, is that one
would make a copy of the heap and permission mask (both are ordinary variables from
Boogie’s perspective) then perform a series of operations and assertions on that copy
(e.g., inhale, exhale). Describing programs on a higher level of abstraction, SIL does not
allow anything similar. The perm expression is about as close as we get to the permission
mask.
Re-implementing the permission mask as we did to constrain the read fractions (section
3.1.1) seems incredibly wasteful sincemost tools that work on SIL will have a concept of a
permission map, maybe even specialised code to deal with them and all they see are ma-
nipulations of an abstract data structure (themap created by the Chalice2SIL translation),
described by a couple of axioms. So far this hasn’t been a serious problem, though.
A similar issue is how we currently handle old expression for fork/join. What we would
ideally like to do is to capture the program state at the point where a thread is forked
off and then associate that state with the token. Later when we join on the token, we
just evaluate the old expression in the state associate with the token. We would not have
to worry about the deϐined-ness of old expressions at the point where we fork the token.

37

Listing 21: Error that is not detected by Chalice2SIL+Silicon.
class C {

var x : int;
predicate V { acc(x) }

function failUnfoldingV(): int
{ unfolding V in x } // should not be able to unfold V, but succeeds

}

Listing 22: SIL translation of 21
field C::x : Integer
function C::failUnfoldingV() : result
= unfolding acc(this.C::V,write) in (this.C::x)

predicate C::V = acc(this.C::x,write)

Chalice has other features inwhich old state is referenced. History constraints onmonitor
invariants and general eval expressions are examples.

4.2 Chalice2SIL+Silicon compared to Syxc

To evaluate our implementation we compared it to “Syxc”, another Chalice veriϐier and the
tool fromwhich Siliconwas derived. Both Chalice2SIL+Silicon and Syxc use the parser and
type checker from the original Chalice implementation and perform the actual veriϐication
using a combination of symbolic execution and calls to the Z3 SMT solver.
We took a large portion of Syxc’s test suite and compared the results of passing those tests
to Chalice2SIL+Silicon and Syxc, both in terms of correctness and as an ad-hoc perfor-
mance benchmark. For two results to be considered equal, we required that the tools
emitted the same number of error messages on the same lines.

4.2.1 Benchmark: correctness

In total, we looked at 84 test programs (one program usually consisted of multiple test
cases) from the Syxc test suite. Files that the current version Syxc² itself could not han-
dle were not considered. Out of these 84 ϐiles, Chalice2SIL+Silicon were able to correctly
verify 45 ϐiles without any modiϐications and additional 5 ϐiles with slight modiϐications.
Another6 ϐileswereonly veriϐied correctly inparts. In 5of those casesChalice2SIL+Silicon
reported errors not also reportedbySyxc. At least twoof these failures as causedbySilicon
not merging permissions or being able to unfold a predicate nested in another predicate.
For the other case Chalice2SIL+Silicon misses an illegal unfolding in a function (example
in listing 21). This is likely a bug in Silicon as the translation to SIL is very straightforward
and is included in listing 22.
We are left with 28 ϐiles for which Chalice2SIL or Silicon couldn’t handle due to missing
features or bugs in the tools themselves. Chalice2SIL fails 9 cases with an unexpected

²Revision 2bdf7ee59971e2734ccb0aaa2f523786bb1d5e74

38

exception and another 10 due to features that we decided not to implement as part of this
project.
In 4 out of those 9 cases an error during ϐield name resolution is responsible for Chal-
ice2SIL crashing. The remaining crashes are due to an exception during the translation
of an expression that involves waitlevel, an exception during the translation of a type
expression or an exception during a substitution of program variables in an expression.
These are likely simple programming errors that should be easy to ϐix.
Features not implemented as part of this project in Chalice2SIL+Silicon include

• Sequences
• Channels
• General eval expressions
• History constraints (old expressions in monitor invariants)
• Counting permissions (implemented in Chalice2SIL, but not in Silicon)

The detailed results of this evaluation have been forwarded to the people who are cur-
rently or will be maintaining Chalice2SIL and Silicon.

4.2.2 Benchmark: performance

In addition to comparing the answers of Chalice2SIL+Silicon and Syxc, we also measured
how long parsing, translation and veriϐication of each test case took. This performance
benchmark is mainly intended to get a rough idea of how high the price of translating to
an intermediate language (SIL) is.
For Chalice2SIL+Silicon we measured the time spent in the Chalice parser/type checker,
Chalice2SIL itself, and Silicon (including Z3) separatelywhereas for Syxcwe only obtained
onemeasurement per run (excluding JVM start up and argument parsing). For the bench-
marks we used a machine with an Intel Core i7 2700K @ 3.9GHZ, 16GiB of DDR-1600
RAM and amechanical hard drive. Each test was measured three times to compensate for
measurement errors. The averaged data is included in tables 1 and 2 in appendix B.
Figures 6, 7 and 8 break down the time taken by the Chalice parser/typechecker, Sili-
con and Chalice2SIL for each test case. Constructing the Chalice AST took longer than the
translation to SIL in all but two cases: ForkJoin/predicates_fork_join and Permis-
sionModel/basic. We omitted the latter from the diagrams for better readability as it
is a bit of an outlier with a Silicon runtime of over 4.5s (Syxc only needed 1.2s). It is not
clear why veriϐication of this test case via Chalice2SIL+Silicon is that slow.
As the runtimes of the tests in the benchmark sometimes vary greatly between different
test cases, looking at absolute times is not a meaningful way to compare Chalice2SIL and
Syxc. Instead we look at the factor by which Chalice2SIL+Silicon is slower than Syxc. In
the majority of cases this factor is between 1.6 and 1.8, but there are also cases where
Chalice2SIL is 2.5+ times slower. Figure 9 shows how factors were distributed in this
benchmark. Two outliers with ratios 3.69 and 5.02were omitted from this diagram in the
interest of readability.

39

Figure 6: Running Chalice2SIL+Silicon for tests in Basics/, Branching/ and ForkJoin/

Figure 7: Running Chalice2SIL+Silicon for tests in Heaps/, Misc/ and Monitors/

40

Figure 8: Running Chalice2SIL+Silicon for tests in PermissionModel/, VariousFea-
tures/

1.5 2.0 2.5 3.0

Chalice2SIL+Silicon

Syxc

5

10

15

20

25

30
Number of files

Figure 9: Distribution of the factor by which Chalice2SIL+Silicon is slower than Syxc

41

4.3 Implementation status

Chalice2SIL implements most of Chalice’s core functionality and uses nearly all of the fea-
tures that SIL has to offer. However, in addition tomonitors and deadlock avoidance there
are a number of gaps that still need to be ϐilled to make Chalice2SIL+Silicon a true alter-
native to Syxc or the original Boogie-based Chalice veriϐier.
In addition to the tests run as part of the evaluation,we alsowrote a set of 94 test programs
along with expected results that served as part of an automated test suite during develop-
ment. Overall, Chalice2SIL should be considered a prototypewith room for improvement,
especially in terms of performance.

5 Conclusion

As part of this project, we devised and implemented a translator from Chalice ASTs to SIL
ASTs from scratch. When the project started, not a single line of code existed for the SIL
AST, Silicon or Chalice2SIL. SIL itself was little more than a draft of its syntax on paper.
This turned out to be both a blessing and a curse. On the one hand just about everyone
we talked to had a slightly different idea of how a particular SIL construct was supposed
to behave, at least initially. On the other hand we had the opportunity to help shape SIL
and the design of its AST.
While many parts of the translation from Chalice to SIL were comparatively straightfor-
ward due to the similarity between the two languages, some aspects of Chalice or its un-
derlying permissionmodel were surprisingly hard to implement within the constraints of
SIL. Overall, however, we think that the high-level design of SIL goes in the right direction.
Having permission amounts as ϐirst class values and related constructs (acc, exhale, etc.)
as built-in language constructs neatly decouples the representation of permissions in the
veriϐier from the representation of the program to be veriϐied.
With Chalice2SIL+Silicon we now have a ϐirst prototype of an automatic program veriϐi-
cation tool-chain based on SIL, ready to be extended to include other tools that consume
or transform SIL programs.

42

A Full SIL Term and Expression Grammar

⟨Expr⟩ ::= ’acc’ (⟨Location⟩, ⟨Term⟩)
| ’old’ (⟨Expr⟩)
| ’unfolding’ ⟨Term⟩.⟨pred-id⟩ ’by’ ⟨Term⟩ ’in’ ⟨Expr⟩
| ⟨Term⟩ == ⟨Term⟩
| ⟨unary-op⟩ ⟨Expr⟩
| ⟨binary-op⟩ ⟨Expr⟩
| ⟨dom-pred-id⟩({ ⟨Term⟩ ,⋯ })
| ’∀’ ⟨logical-var-id⟩ : ⟨DataType⟩ :: (⟨Expr⟩)
| ’∃’ ⟨logical-var-id⟩ : ⟨DataType⟩ :: (⟨Expr⟩)
| ⟨GExpr⟩
⟨Location⟩ ::= ⟨Term⟩.⟨ϔield-id⟩
| ⟨Term⟩.⟨pred-id⟩
⟨PExpr⟩ ::= ’acc’ (⟨PLocation⟩, ⟨PTerm⟩)
| ’unfolding’ ⟨PTerm⟩.⟨pred-id⟩ ’by’ ⟨PTerm⟩ ’in’ ⟨PExpr⟩
| ⟨PTerm⟩ == ⟨PTerm⟩
| ⟨unary-op⟩ ⟨PExpr⟩
| ⟨binary-op⟩ ⟨PExpr⟩
| ⟨dom-pred-id⟩({ ⟨PTerm⟩ ,⋯ })
| ⟨GExpr⟩
⟨PLocation⟩ ::= ⟨PTerm⟩.⟨ϔield-id⟩
| ⟨PTerm⟩.⟨pred-id⟩
⟨DExpr⟩ ::= ⟨DTerm⟩ == ⟨DTerm⟩
| ⟨unary-op⟩ ⟨DExpr⟩
| ⟨binary-op⟩ ⟨DExpr⟩
| ⟨dom-pred-id⟩({ ⟨DTerm⟩ ,⋯ })
| ’∀’ ⟨logical-var-id⟩ : ⟨DataType⟩ :: (⟨DExpr⟩)
| ’∃’ ⟨logical-var-id⟩ : ⟨DataType⟩ :: (⟨DExpr⟩)
| ⟨GExpr⟩
⟨GExpr⟩ ::= ⟨PExpr⟩ == ⟨PExpr⟩
| ⟨UnaryOp⟩ ⟨PExpr⟩
| ⟨BinaryOp⟩ ⟨PExpr⟩
| ⟨dom-pred-id⟩({ ⟨PExpr⟩ ,⋯ })
| ’True’
| ’False’
⟨UnaryOp⟩ ::= ’¬’
⟨BinaryOp⟩ ::= ’∧’ | ’∨’ | ’≡’ | ’⇒’

43

⟨Term⟩ ::= ’if ’ ⟨Term⟩ ’then’ ⟨Term⟩ ’else’ ⟨Term⟩
| ’old’(⟨Term⟩)
| ⟨func-id⟩({ ⟨Term⟩ ,⋯ })
| ⟨dom-func-id⟩({ ⟨Term⟩ ,⋯ })
| ’unfolding’ ⟨Term⟩.⟨pred-id⟩ ’by’ ⟨Term⟩ ’in’ ⟨Term⟩
| (⟨Term⟩) : ⟨DataType⟩
| ⟨Term⟩.⟨ϔield-id⟩
| ’perm’(⟨Location⟩)
| ’write’
| ’0’
| ’E’
| ⟨GTerm⟩

SIL has three literal constants for permission amounts: writedenotes the full permission,
0 stands for no permission at all (it is distinct from the integer 0 literal) and E represents
a single epsilon of permission (a counting permission, see section 2.1.3).
⟨PTerm⟩ ::= ’if ’ ⟨PTerm⟩ ’then’ ⟨PTerm⟩ ’else’ ⟨PTerm⟩
| ⟨var-id⟩
| ⟨func-id⟩({ ⟨PTerm⟩ ,⋯ }
| ⟨dom-func-id⟩({ ⟨PTerm⟩ ,⋯ })
| ’unfolding’ ⟨PTerm⟩.⟨pred-id⟩ ’by’ ⟨PTerm⟩ ’in’ ⟨PTerm⟩
| (⟨PTerm⟩) : ⟨DataType⟩
| ⟨PTerm⟩.⟨ϔield-id⟩
| ⟨GTerm⟩
⟨DTerm⟩ ::= ’if ’ ⟨DTerm⟩ ’then’ ⟨DTerm⟩ ’else’ ⟨DTerm⟩
| ⟨logical-var-id⟩
| ⟨dom-func-id⟩({ ⟨DTerm⟩ ,⋯ })
| ⟨GTerm⟩
⟨GTerm⟩ ::= ’if ’ ⟨GTerm⟩ ’then’ ⟨GTerm⟩ ’else’ ⟨GTerm⟩
| ⟨integer-literal⟩
| ⟨dom-func-id⟩({ ⟨GTerm⟩ ,⋯ })

B Benchmark data

44

Ta
bl
e1

:B
en

ch
m
ar
kd

at
a,
pa

rt
1

Gr
ou

p
Na

m
e

Ch
ali

ce
To

Sil
Sil

ico
n

To
ta
l

St
dD

ev
Sy
xc

St
dD

ev
Ba

sic
s

bo
ol
ea
n_
ar
gu

m
en

ts
40

9.7
25

0.0
40

7.7
10

67
.3

6.7
65

0.7
17

.6
Ba

sic
s

bo
ol
ea
n_
lo
ca
ls

46
5.3

27
4.3

41
4.3

11
54

.0
5.2

70
7.0

13
.0

Ba
sic

s
bo

ol
ea
n_
re
su
lts

46
4.3

27
9.3

45
4.0

11
97

.7
25

.1
71

3.3
17

.9
Ba

sic
s

bo
ol
ea
ns
_b
as
ic

35
9.3

26
0.3

35
4.0

97
3.7

9.0
54

7.0
0.0

Ba
sic

s
bo

ol
ea
ns
_c
om

pa
ris

on
39

0.3
26

0.3
41

6.7
10

67
.3

10
.1

60
9.7

15
.5

Ba
sic

s
bo

ol
ea
ns
_fo

rm
ul
ae

49
7.7

33
3.3

52
6.0

13
57

.0
19

.1
84

9.0
4.4

Ba
sic

s
bo

ol
ea
ns
_n
ot

35
9.3

22
9.0

31
7.7

90
6.0

1.0
55

2.0
9.5

Ba
sic

s
in
te
ge
r_
ar
gu

m
en

ts
41

6.7
27

5.7
42

2.3
11

14
.7

9.0
67

7.3
9.2

Ba
sic

s
in
te
ge
r_
lo
ca
ls

43
7.3

25
8.0

33
4.0

10
29

.3
15

.7
61

4.7
9.0

Ba
sic

s
in
te
ge
r_
re
su
lts

42
2.0

27
0.3

38
0.0

10
72

.3
9.0

63
0.3

9.2
Ba

sic
s

in
te
ge
rs
_b
as
ic

45
5.7

34
4.0

54
1.3

13
41

.0
3.5

76
0.3

17
.9

Ba
sic

s
in
te
ge
rs
_c
om

pa
ris

on
43

7.3
35

8.0
60

4.0
13

99
.3

29
.1

73
4.3

16
.0

Br
an

ch
in
g

ab
s

43
2.0

26
8.3

31
2.3

10
12

.7
11

.4
59

1.3
2.5

Br
an

ch
in
g

ift
he

ne
lse

51
6.0

35
9.3

43
7.7

13
13

.0
1.0

86
4.7

24
.0

Br
an

ch
in
g

ift
he

ne
lse

_a
nt
ec
en

de
nt
s_
fo
ra
ll

51
0.0

35
4.0

70
3.0

15
67

.0
9.5

90
6.3

0.6
Br
an

ch
in
g

im
pl
ica

tio
ns
2

40
1.0

24
0.3

34
9.3

99
0.7

18
.8

58
4.0

10
.6

Br
an

ch
in
g

sta
ts

41
2.3

27
3.7

46
0.0

11
46

.0
13

.2
57

3.0
9.5

Fo
rk
Jo
in

fo
rk
_o
m
it_
to
ke
n

35
9.7

29
7.0

53
6.7

11
93

.3
9.3

54
6.7

27
.1

Fo
rk
Jo
in

he
ap

_in
de

pe
nd

en
t_m

et
ho

ds
_a
sy
nc

47
4.3

42
5.3

92
2.0

18
21

.7
23

.0
76

0.7
23

.5
Fo

rk
Jo
in

jo
in
ab

le
47

4.0
38

2.7
74

0.0
15

96
.7

15
.9

67
4.3

4.9
Fo

rk
Jo
in

pr
ed

ica
te
s_
fo
rk
_jo

in
54

1.7
57

1.3
21

45
.7

32
58

.7
29

.7
11

51
.7

17
.6

Fo
rk
Jo
in

re
us
in
g_
to
ke
ns

48
5.7

45
5.7

16
72

.0
26

13
.3

50
.2

70
8.0

8.7
Pe

rm
iss

io
nM

od
el

ba
sic

58
4.0

69
2.7

47
55

.0
60

31
.7

62
.0

12
01

.0
6.1

Pe
rm

iss
io
nM

od
el

ca
ch
in
g_
so
un

dn
es
s

44
8.0

26
0.3

30
2.3

10
10

.7
8.4

65
1.0

8.7
Pe

rm
iss

io
nM

od
el

pe
cu
lia

r
52

3.7
44

3.3
69

8.0
16

65
.0

67
.7

81
8.0

5.6
Pe

rm
iss

io
nM

od
el

pe
rm

iss
io
n_
ar
ith

m
et
ic2

53
6.7

39
0.7

83
3.3

17
60

.7
9.3

12
29

.0
8.7

Pe
rm

iss
io
nM

od
el

pr
ed

ica
te
s

52
1.0

35
4.0

69
2.7

15
67

.7
23

.4
91

6.3
17

.9

45

Ta
bl
e2

:B
en

ch
m
ar
kd

at
a,
pa

rt
2

Gr
ou

p
Na

m
e

Ch
ali

ce
To

Sil
Sil

ico
n

To
ta
l

St
dD

ev
Sy
xc

St
dD

ev
He

ap
s

ali
as
in
g

58
8.3

35
9.0

72
9.3

16
76

.7
9.0

14
79

.3
9.0

He
ap

s
ali

as
in
g_
iff

57
9.7

33
6.0

51
4.7

14
30

.3
49

.0
11

39
.0

12
.2

He
ap

s
ali

as
in
g_
ift
he

ne
lse

45
8.3

25
5.3

32
2.7

10
36

.3
9.2

67
2.0

16
.0

He
ap

s
bo

ol
ea
n_
he

ap
_c
hu

nk
s

47
6.3

27
6.3

47
8.3

12
31

.0
10

.1
82

6.0
11

.5
He

ap
s

fa
pp

s_
ar
gu

m
en

t_h
ea
p_
ch
un

ks
48

7.3
30

3.3
41

5.3
12

06
.0

16
.1

76
5.7

0.6
He

ap
s

ϐie
ld
s_
ac
c_
in
_fu

nc
tio

n
28

6.7
10

9.3
88

.7
48

4.7
0.6

48
4.0

0.0
He

ap
s

ϐie
ld
s_
ac
ce
ss

48
4.3

28
6.7

43
2.7

12
03

.7
56

.9
70

8.3
18

.5
He

ap
s

ϐie
ld
s_
co
nd

iti
on

als
45

7.0
26

3.7
43

0.7
11

51
.3

19
.9

62
1.0

11
4.3

He
ap

s
ϐie

ld
s_
co
ns
um

pt
io
ns

51
1.3

38
4.7

76
1.0

16
57

.0
26

.0
86

4.3
9.2

He
ap

s
ϐie

ld
s_
co
ns
um

pt
io
ns
_fr

ac
tio

ns
50

9.3
39

2.0
87

5.7
17

77
.0

25
.1

95
3.7

8.7
He

ap
s

ϐie
ld
s_
rd
_im

m
ut
ab

ili
ty

44
8.0

29
9.7

46
8.7

12
16

.3
13

.6
67

2.3
15

.5
He

ap
s

he
ap

_in
di
re
ct
io
ns

44
9.3

25
5.7

32
6.0

10
31

.0
6.1

65
6.0

6.0
He

ap
s

pr
ed

ica
te
s_
ba

sic
47

3.7
29

4.0
49

4.0
12

61
.7

10
.7

77
5.7

14
.4

M
on

ito
rs

ac
qu

ire
_g
et
te
r

48
4.7

30
7.3

48
9.7

12
81

.7
40

.8
71

9.0
0.0

M
on

ito
rs

in
va
ria

nt
s

53
1.0

37
0.0

56
7.3

14
68

.3
15

.5
88

0.3
49

.7
M
on

ito
rs

ol
d

48
9.7

29
1.7

43
8.0

12
19

.3
31

.0
71

3.7
23

.5
M
isc

ce
ll_
co
nt
ain

er
49

4.7
27

0.7
35

9.7
11

25
.0

15
.0

78
7.0

8.7
M
isc

ce
ll_
ra
w

53
6.7

38
0.7

63
6.7

15
54

.0
13

.5
92

3.0
13

.0
M
isc

di
vi
sio

n
42

5.7
27

6.0
33

1.7
10

33
.3

6.1
63

0.3
8.5

M
isc

er
ro
r_
re
po

rti
ng

_s
yx
c_
vs
_c
ha

lic
e

41
6.7

25
5.0

26
1.7

93
3.3

46
.7

54
1.7

45
.3

M
isc

jo
in
_v
ar
_ϐi
eld

46
8.7

34
9.0

63
0.0

14
47

.7
8.5

68
2.7

9.3
M
isc

sp
lit
_m

er
ge
_a
cc
es
s

52
6.0

31
7.7

63
5.3

14
79

.0
8.7

93
2.3

9.0
M
isc

un
fo
ld
_fo

ld
_u
nc
ha

ng
ed

53
0.3

32
3.7

54
8.0

14
02

.0
27

.2
88

7.7
2.1

Va
rio

us
Fe
at
ur
es

ac
c_
im

pl
ica

tio
ns
_o
r

51
0.3

30
7.7

39
5.7

12
13

.7
32

.3
71

9.0
0.0

Va
rio

us
Fe
at
ur
es

as
se
rt

53
3.0

32
1.3

55
9.0

14
13

.3
78

.5
77

4.0
6.1

Va
rio

us
Fe
at
ur
es

co
ns
tru

cto
rs

53
3.0

32
1.3

55
9.0

14
13

.3
78

.5
77

4.0
6.1

Va
rio

us
Fe
at
ur
es

ne
wr

hs
_in

its
45

1.0
26

2.3
35

8.3
10

71
.7

11
.6

64
8.0

10
.6

Va
rio

us
Fe
at
ur
es

ne
w_

m
ea
ns
_a
ll_
di
ffe

re
nt

42
7.0

25
6.0

35
4.7

10
37

.7
10

.7
61

5.0
8.7

Va
rio

us
Fe
at
ur
es

un
fo
ld
in
g_
ol
d_
he

ap
47

6.0
30

3.3
53

6.3
13

15
.7

11
.9

79
4.3

4.6
Va

rio
us
Fe
at
ur
es

wh
ile

69
3.0

65
6.3

11
82

.0
25

31
.3

18
0.1

12
27

.3
7.6

46

References

[BDJା06] M. Barnett, R. DeLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie: A
modular reusable veriϐier for object-oriented programs. In FormalMethods for
Components and Objects: 4th International Symposium, volume 4111 of Lecture.
Springer, 2006.

[BLS] M. Barnett, K. R. M. Leino, andW. Schulte. The spec# programming system: An
overview. In 2004, Construction and Analysis of Safe, Secure and Interoperable
Smart devices, volume 3362 of Lecture Notes in Computer Science, pages 49–69.
Springer.

[Boy03] J. Boyland. Checking interference with fractional permissions. In Radhia
Cousot, editor, Static Analysis, volume 2694 of Lecture Notes in Computer Sci-
ence, pages55–72. SpringerBerlin /Heidelberg, 2003. 10.1007/3-540-44898-
5_4.

[dMB08] L. deMoura and N. Bjørner. Z3: An efϐicient SMT solver. In TACAS 2008, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[HLMS11] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers. Fractional permissions
without the fractions. Formal Techniques for Java-like Programs (FTfJP), 2011.

[LM09] K. Leino and P. Müller. A basis for verifying multi-threaded programs. Pro-
gramming Languages and Systems, pages 378–393, 2009.

[LMS09] K. R. M Leino, P. Müller, and J. Smans. Veriϐication of concurrent programswith
Chalice. Foundations of Security Analysis and Design V, pages 195–222, 2009.

[Sca12] The scala programming language. http://www.scala-lang.org/, 2012.
[Online; accessed 21-November-2012].

[Sch11] M. Schwerhoff. Symbolic execution for Chalice. Master’s thesis, Eidgenössische
Technische Hochschule Zürich, 2011, 2011.

[SJP12] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans. Pro-
gram. Lang. Syst., 34(1):2:1–2:58, May 2012.

47

http://www.scala-lang.org/

	Introduction
	Background
	Chalice
	Permissions
	Percentage Permissions
	Counting Permissions
	Fractional (Read) Permissions
	Fork-Join
	Information Hiding through functions and predicates
	Monitors (locks)
	Details on the Boogie-based Chalice verifier

	Semper Intermediate Language (SIL)
	SIL Program Structure
	SIL Statements
	SIL Expressions and Terms
	SIL Domains and Types

	Silicon

	Translation of Chalice
	Fractional Read Permissions
	Methods and fractional permissions
	Method calls with fractional permissions

	Asynchronous method calls (Fork-Join)
	Translation of !fork!
	Translation of !join!
	Limitations of the current fork-join implementation

	Predicates and Functions
	Predicates
	Functions

	Monitors with Deadlock Avoidance
	Approach to Deadlock Prevention and Locking
	Limitations of the current Implementation

	Evaluation
	SIL as a translation target/verification intermediate language
	Encoding of loops
	Syntactic distinction between assertions and program expressions
	PTerms vs. DTerms vs. GTerms vs. Terms
	Capturing state in SIL

	Chalice2SIL+Silicon compared to Syxc
	Benchmark: correctness
	Benchmark: performance

	Implementation status

	Conclusion
	Full SIL Term and Expression Grammar
	Benchmark data

