Translating Chalice into SIL

Bachelor Thesis Report

Chair of Programming Methodology
Department of Computer Science
ETH Zirich
www.pm.inf.ethz.ch

By: Christian Klauser
klauserc@student.ethz.ch

Supervised by: Dr. Alexander J. Summers
Prof. Dr. Peter Miiller

Date: November 29, 2012

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

http://www.pm.inf.ethz.ch
mailto:klauserc@student.ethz.ch

Contents
1 Introduction

2 Background
2.1 Chalice oo
2.1.1 PermiSsSions e
2.1.2 Percentage Permissions
2.1.3 Counting Permissions
2.1.4 Fractional (Read) Permissions
2.1.5 Fork-Join e
2.1.6 Information Hiding through functions and predicates
2.1.7 Monitors (Iocks) e
2.1.8 Details on the Boogie-based Chalice verifier
2.2 Semper Intermediate Language (SIL),
2.2.1 SILProgram Structure
222 SILStatements.
2.2.3 SILExpressionsand Terms
2.24 SILDomainsand Types
2.3 Silicon

3 Translation of Chalice
3.1 Fractional Read Permissions
3.1.1 Methods and fractional permissions
3.1.2 Method calls with fractional permissions
3.2 Asynchronous method calls (Fork-Join)
3.2.1 Translationoffork
3.2.2 Translationofjoin e
3.2.3 Limitations of the current fork-join implementation
3.3 Predicatesand Functions
3.3.1 Predicates
3.32 Functions. i e e e e
3.4 Monitors with Deadlock Avoidance
3.4.1 Approach to Deadlock Prevention and Locking
3.4.2 Limitations of the current Implementation

4 Evaluation
4.1 SIL as a translation target/verification intermediate language
4.1.1 Encodingofloops e
4.1.2 Syntactic distinction between assertions and program expressions .
4.1.3 PTermsvs. DTermsvs. GTermsvs. Terms
4.1.4 CapturingstateinSIL.,
4.2 Chalice2SIL+Silicon comparedtoSyxc
4.2.1 Benchmark: correctness
4.2.2 Benchmark: performance
4.3 Implementationstatus e

5 Conclusion
A Full SIL Term and Expression Grammar

B Benchmark data

N

OO UTUTWNDN

15
15
16
17
19
19
23
26
28
28
29
29
30
33

35
35
35
35
36
37
38
38
39
42

42

43

44

1 Introduction

Writing correct computer programs is difficult. Writing correct concurrent or parallel
computer programs is even more difficult. One approach to making sure programs do not
contain errors is (automatic) static verification: the idea of having a computer prove that
a given program fulfils its specification and does not crash. An example of such a system is
Chalice [LMS09] (section 2.1), a research programming language and matching automatic
static verification tool. However, targeting a specialized research language dedicated to
the verification of concurrent programs, means that one cannot directly apply the tool to
code that is used out in the world.

This is where Semper, a project at ETH Ziirich, comes into play. Its goal is to develop an
automatic program verifier for concurrent Scala [Scal2] programs. Central to the Semper
project is an intermediate program representation for verification called SIL (section 2.2).
Programmers are not intended to use SIL directly, but instead write their programs in an
existing programming language and then use a translator to get an intermediate repre-
sentation that the Semper tools understand.

The goal of this Bachelor’s thesis is to build ChaliceZSIL, the first such translator, trans-
lating from Chalice to SIL (section 3), in order to gain experience with working with SIL
(section 4) and the tools involved in Semper. As the verification methodology used in
Semper is based on the methodology underlying Chalice, Chalice is a good fit for the first
“source language” to be targeted by Semper.

2 Background

This section briefly presents both Chalice (the “source language”) and SIL (the “target lan-
guage”), focusing on the aspects that are important for discussing how Chalice2SIL per-
forms its translation.

2.1 Chalice

Chalice [LMS09, LM09] is a research programming language with the goal of helping pro-
grammers detect bugs in their concurrent programs. As with most languages aimed at au-
tomatic static verification (e.g, Spec#) [BLS], the programmer provides annotations that
specify how they intend the program to behave. These annotations appear in the form of
monitor invariants, loop invariants and method pre- and postconditions. A verification
tool can take such a Chalice program and check statically that it never violates any of the
conditions established by the programmer.

The original implementation of the automatic static program verifier for Chalice gener-
ates a program in the intermediate verification language Boogie [BD]*06]. A second tool,
conveniently also called Boogie, takes this intermediate code and generates verification
conditions to be solved by an SMT solver, such as Z3 [dMB08].

Listing 1 demonstrates how we can implement integer division and have the verifier en-
sure that our implementation is correct. Our solution repeatedly subtracts the denomi-
nator b until the rest r becomes smaller than b. Because this exact algorithm only works
for positive numerators and denominators, the method requires that the numerator a is
not negative and that the denominator is strictly positive.

Listing 1: Loop invariants, pre- and post conditions in a Chalice program

class Program {

method intDiv(a : int, b : int) returns (c : int)
requires @ <= a && 0 < b;
ensures c*b <= a && a < (c+1)*b;

{
c := 0;
var r : int := a;
while(b <= r)

invariant @ <= r & r == (a - c*b)
{
=r - b;
=c+1;
}

Similarly, we specify what the method is supposed to do: the ensures clause tells the ver-
ifier that, when our method is ready to return, the resulting quotient c must be the largest
integer for which ¢ - b < a still holds. If the verifier cannot show that this postcondi-

tion holds for all invocations of this method that satisfy the precondition, it will reject the
program.

The final bit of annotation in this example is the invariant on the while loop. A loop in-
variant is a predicate that needs to hold immediately before the loop is entered and after
every iteration, including the last one, when the loop condition is already false. This an-
notation helps the verifier understand the effects of the loop without knowing how many
iterations of the loop would happen at runtime.

2.1.1 Permissions

What sets Chalice apart from other languages for program verification is its handling of
concurrent access to heap locations. Whenever a thread wants to read from or write to a
heap location it requires read or write permissions to that location, respectively. A thread
having write permission to a heap location means that that thread holds all permissions to
that location. However, permissions can also be divided up between multiple threads and
as long as a thread holds onto a strictly positive amount of permission to a heap location,
it can not only read that location, but is also guaranteed that no thread can write to that
location, as write-access requires 100% of all permissions to a heap location. For a thread
to have no permissions at all to a heap location means that this location is completely
inaccessible. Worse yet, it could be changing at any moment, since another thread might
hold full permissions to it. Chalice therefore forbids access to heap locations where the
current thread holds no permissions to.

The amount of permission a thread holds over a certain heap location can change over
time, and often does. The main thread of an implementation of a parallel algorithm, for
instance, could start with exclusive write-access to the input data structure and then split
up its permissions among a number of worker threads. These worker threads could then

Listing 2: Chalice example of object creation and (write) accessibility predicates.

class Cell { var f : int }
class Program {
method clone(c : Cell) returns (d : Cell)
requires ¢ != null && acc(c.f)
ensures acc(c.f)
ensures d != null & acc(d.f) && d.f == c.f
{
d := new Cell;
d.f := c.f;
}
}

all read from the input data structure while performing their work, relying on the fact that
concurrent accesses to that data structure are safe since no thread can write to it. After the
worker threads have finished, the main thread can collect the permission fractions given
out to the workers and combine them back to a full permission, allowing it to write to the
input data structure once again, perhaps to update it with the results retrieved from the
worker threads.

Almost as a side-effect of this model, the amount of permission a thread has can be used
to “frame” the set of existing heap locations that thread can access (a thread can always
allocate new heap space). All these permissions only exist for verification and would be
erased by compilers for Chalice.

As an under-approximation of the set of permissions a thread would have at runtime,
Chalice tracks permissions for each method invocation (stack frame, activation record).
That way, the verifier can verify method bodies in complete isolation from one another.
The programmer thus has to specify which heap locations need to be accessible for each
method.

In Listing 2, we use accessibility predicates of the form acc (receiver.field) in the method’s
pre- and postcondition. acc(c.f) in the precondition represents a permission, which al-
lows us to refer to c.f in the method body. The accessibility predicates in the postcondi-
tion, on the other hand, represent permissions that the method will have to “return” to its
caller upon completion. Conceptually, the caller passes the permission requested by the
callee’s precondition on to the callee. Similarly, the caller receives the permissions men-
tioned in the callee’s postcondition when the call returns. As a consequence of verifying
each method in isolation, it doesn’t matter whether a method is called on the same thread

or on a thread of it's own (with the caller waiting for the callee’s computation to finish).
The necessary permissions need to be transferred in both scenarios.

Listing 3 demonstrates how our clone method could be used. Unfortunately, the assertion
on line 9 will fail, as the verifier has to assume that clone might have changed the value
stored in c.f. In Chalice, whenever a method gives away all permissions to a memory
location (so that it doesn’t even have read-access), it must assume that that location has
been changed, the next time it gets to read said location. While we might augment the
postcondition of clone with the requirement that c.f == old(c.f) (the value of c.f at
method return must be the same as it was on method entry), there is a much more elegant
solution to this problem: read-only permissions.

10

11

Listing 3: Calling Program: : clone (extension of Listing 2)

class Program {

method main()

{
var ¢ : Cell := new Cell;
c.f :=5;
var d : Cell;

call d := clone(c);
assert d.f == 5;

2.1.2 Percentage Permissions

When Chalice was originally created, the programmer could specify read-only permis-
sions as integer percentages of the full (write) permission. acc(x.f,100) is the same as
acc(x.f), i.e. grants read and write access, whereas any other strictly positive percent-
age acc(x.f,n) (forn € N,0 < n < 100) only grants read access to the heap location
x.f. The verifier keeps track of the exact amount of permission a method holds to each
heap location, so that write-access is restored when a method manages to get 100% of
the permission back together, after having handed out parts of it to other methods or
threads.

While percentage permissions are very easy to understand, they have the serious draw-
back that the number of percentage points of permission a method receives to a certain
location, essentially determine the maximum number of threads with (shared) read access
that method could spawn. That is a violation of the procedural abstraction that methods
are intended to provide.

2.1.3 Counting Permissions

Another drawback of percentage permissions is that it is difficult to deal with a dynamic
number of threads to distribute read access over. As a solution to that problem, Chalice
also introduced “counting permissions” that are not limited to just 100 “pieces” of permis-
sion. Accessibility predicates using counting permissions are written as acc(x.f,rd(1))
and denote an arbitrarily small but still positive (non-zero) amount of permission . Per-
mission amounts equal to multiples of € can be written as acc(x.f,rd(n)), but any finite
number of epsilon permissions are defined to be still smaller than 1% of permission. This
also means that a method that holds at least 1% of permission, can always call a method
that only requires n - € of permission.

Unfortunately, counting permissions (often also referred to as “epsilon permissions”) still
cause method specifications to leak implementation details. An epsilon permission cannot
be split up further, thus a method that acquires, say, 2¢ of permission to a heap location
cannot spawn more than two threads with read access to that heap location.

2.1.4 Fractional (Read) Permissions

In order to regain procedural abstraction [HLMS11] added an entirely new kind of per-
mission to Chalice: the fractional read permission, based on [Boy03]. The idea is to allow
for “rational” fractions of permission because, unlike epsilon or percentage permissions,
these can always be divided further. Composability can still be an issue, even with con-
crete rational permissions. A method that requires % of permission could still not be
called from a method that only has %, even though the fractions passed around the en-
tire system could almost alway be re-scaled to make that call possible. Thus, instead of
forcing the programmer to choose a fixed amount of permission ahead of time, all acces-

sibility predicates involving fractional permissions are kept abstract.

The programmer writes acc(x. f, rd) to denote an abstract (read-only) accessibility pred-
icate to the heap location x. f. The amount of permission denoted by rd is not fixed. When
used in a method specification, the rd can represent a different amount of permission for
each method invocation.

To make abstract fractional permissions actually useful, Chalice applies certain constraints
to the amount of permission involved in acc(x. f, rd). Firstly, fractional read permissions
always represent a fraction of the caller’s permission. When a caller gives away a fractional
read permission to a heap location, it will always retain some permission to that location.
That way, the caller retains read-access and can be sure that the contents of the memory
location don’t change. Secondly, a common idiom in Chalice is to have methods that re-
turn the exact same permissions they acquired in the precondition back to the caller via
the postcondition. When a method requires acc(x.f,rd) and then ensures acc(x.f,rd),
we would want these two amounts of permission to be the same. That way, a caller that
started out with write access to x.f gets back the exact amount of permission it gave to
our method.

Chalice restricts read fractions in method specifications even further: for each method in-
vocation, all fractional read permissions in the method contract, even to different heap lo-
cations, refer to the same amount of permission (but that amount can still differ between
method invocations). This restriction accounts for the limited information about alias-
ing available statically and also makes the implementation of fractional read permissions
more straightforward.

Listing 4 shows the corrected version of our example above (Listings 2 and 3) using (ab-
stract) read permissions (acc(c.f,rd) inlines 4 and 5). Note that we don’t need to tell the
verifier that c.f won’t change separately, because it uses the permissions that the caller
retained to determine which locations cannot be modified by the call.

2.1.5 Fork-Join

As a language devoted to encoding concurrent programs, Chalice has a built-in mecha-
nism for creating new threads and waiting for threads to complete in the familiar fork-join
model. Replacing the call keyword in a (synchronous) method call with fork causes that
method to be executed in a newly spawned thread. As with a synchronous method call,
the caller must satisfy the callee’s precondition and will give all permissions mentioned
in that precondition.

10

11

12

13

14

15

16

17

18

19

20

21

Listing 4: Corrected example using abstract read permissions

class Cell { var £ : int }
class Program {
method clone(c : Cell) returns (d : Cell)
requires ¢ != null & acc(c.f,rd)
ensures acc(c.f,rd)
ensures d != null & acc(d.f) && d.f == c.f
{
d := new Cell;
d.f := c.f;
}

method main()
{
var ¢ : Cell := new Cell;
c.f :=5;
var d : Cell;
call d := clone(c);
assert d.f == 5; // will now succeed
c.f :=7; // we still have write access

Listing 5: Alternative definition of Cell using functions.

class Cell {
var £ : int
function equals(o : Cell) : bool
requires acc(f,rd)
requires o != null ==> acc(o.f,rd)
{o!=null && f == o0.f }
}

fork tok := x.m(argumentl, argument2, ..., argumentn);

join resultl, result2, ..., resultn := tok;

While just forking off threads might work for some scenarios, most of the time the caller
will want to collect the results computed by its worker threads at some point. To that
end, the fork statement returns a token that the programmer can use to have the calling
method wait for the thread associated with the token to complete. The permissions men-
tioned in the postcondition of the method used to spawn off the worker thread will also
be transferred back to the caller at that point.

2.1.6 Information Hiding through functions and predicates

A major shortcoming of pre- and postconditions as presented so far, is that they often
“leak” implementation details. One example of this happening is the clone method from
listing 4. It ensures that the values from the old object are copied over to the newly created
object, but in the process tells the caller that there is exactly one field, called f on those
objects. Should the definition of class Cell ever change, sifting through the entire program
and updating specifications is going to be in order. What the programmer wanted to say
is, that the two objects are “equal”.

Functions help cut down code repetition and put an abstraction layer between the imple-
mentation of a method and its clients. Listing 5 presents an alternative definition of Cell
that exposes the equality testing function equals. Below is a corresponding signature for
the method clone that uses this function. If we were to add a new field to Cel1 now, callers
of clone would no longer see a change in the method’s signature.

method clone(c : Cell) returns (d : Cell)
requires ¢ != null & acc(c.f,rd)
ensures acc(c.f,rd)
ensures d != null & acc(d.f) && c.equals(d)

Notice how the equals function does not have a postcondition that describes the func-
tion’s result or “returns” permissions back to the caller. In order to be used in pre- and
postconditions, they are forbidden from changing any state, which is why the programmer
doesn’t have explicitly return permissions to the function’s caller. This happens automat-
ically.

Predicates, on the other hand, are a way to abstract over not just values but also over
accessibility. Additionally, unlike functions, they are treated as abstract entities unless the
programmer explicitly “unfolds” them to apply their definition. When a method requires
a predicate in its precondition, it will not automatically get the permissions (and other
assertions) “contained” in the predicate because at that point, the predicate acts like a
black box. The method can pass the predicate to other methods or threads and it behaves
much like a permission to a memory location: it cannot be duplicated and once given away,
it’s gone.

Given a predicate, the programmer can use the unfold statement to “trade” the predi-
cate for its definition. The current thread will receive all permissions “contained” in the
predicate and gets to assume any other assertions associated with the predicate. After the

Listing 6: Using the predicate valid to hide the representation of Indentation

class Indentation {
var count : int;

predicate valid
{ acc(count) && @ <= count }

function getCount() : int
requires valid;
{ unfolding valid in count }

method increase(amount : int)
requires valid && @ <= amount;
ensures valid;
ensures old(getCount()) + amount == getCount();

{
unfold valid;
count := count + amount;
fold valid;

}

programmer is done operating on the predicate’s contents, they can use fold to “trade”
access permissions in exchange for the predicate.

Listing 6 additionally demonstrates the unfolding expression syntax used to temporarily
get access to the contents of a predicate during the evaluation of an expression.

2.1.7 Monitors (locks)

Using just fork-join, it is impossible for threads to communicate with one another. They
can only produce a result and all of their memory writes only become visible when they
return the exclusive write permissions back to their caller. To handle more realistic sce-
narios, such as concurrent access to a shared queue, Chalice comes with monitors that al-
low for exclusive locking of a shared resource. For each class, the programmer can define a
monitor invariant that represents the “resources” that the monitor is supposed to manage
access to. As with predicates, this definition can consist of both accessibility predicates
and ordinary boolean assertions.

Initially, objects are not available for locking via the monitor mechanism. When the pro-
grammer shares an object with other threads using the share statement, the access per-
missions associated with the invariant get stored in the monitor (similar to fold for pred-
icates). Threads that subsequently acquire the lock on this shared object will receive the
contents of the monitor invariant (similarly to an unfold of a predicate). The object is
now locked and can be made available to other threads via the release statement (sim-
ilarly to a fold of a predicate, again). The programmer can also revert the conversion
to a shared object by using the unshare statement (similar to unfold, again). Listing 7
demonstrates these statements with a single thread.

Listing 7: Example of the life-cycle an object can go through in Chalice

class C {
var f : int;

invariant acc(f);

method main(){
var ¢ : C := new C;
c.f :=5;
share c;

acquire c; c.f := 7; release c;

acquire c; c.f :
assert c.f == 6;

6; unshare c;

As with monitors in Java and C#, in order to guarantee mutual exclusion, threads that reach
an acquire statement are blocked until the monitor can grant them the exclusive lock.
With such a simple blocking mechanism comes the risk of deadlocks (thread 1 waiting for
monitor b, currently held by thread 2, which is waiting for monitor a, currently held by
thread 1).

To solve this problem, the Chalice verifier makes sure that locks are acquired according to
a consistent ordering. The programmer can assign a locking level to a monitor, ensuring
that the lock on that monitor can only be acquired when that locking level is higher than
the locking level of all other locks held by the current thread. Whether one locking level is
higher than another, is denoted by a strict partial order that we denote as <<. The share
statement seen above optionally accepts clauses of the form between ...and .., above ...
or below ... to constrain the lock level at which the monitor is installed. If such a clause is
missing, Chalice chooses above waitlevel, which means that the lock level is higher than
the highest lock level of all locks currently held by the thread (we refer to this maximum
as a thread’s wait level).

In listing 8, we create two objects a and b and share them. The lock level of a defaults to
above waitlevel and the programmer explicitly declares the lock level of b to be above a.
This means that if a thread plans to lock both a and b, it will have to first lock a and then
b. Should the programmer try to lock objects in the opposite order, on acquire a the
thread’s wait level would already be at the lock level of b, which is above a’s; this would
result in an error.

Lock levels are implemented via a special field called mu of type Mu (the type of lock levels),
available on every object. The mu field is assigned during share and unshare operations
and needs to be readable in order to acquire the lock.

2.1.8 Details on the Boogie-based Chalice verifier

In order to verify Chalice programs, the Boogie-based verifier models permission transfer
by two operations: inhale and exhale. They are essentially the same as assume and

10

Listing 8: Example of deadlock-prevention

class C {
var f : int;
invariant acc(f);

method main() {
var a := new C;
share a;
var b := new C;
share b above a;

acquire a; acquire b;
release b; release a;

acquire b;
acquire a;

assert but in addition to providing and checking facts, they also model the transfer of
permissions. The argument of an exhale operation is an expression that can contain
both traditional (boolean) assertions as well as accessibility predicates. Conceptually,
exhale e represents the transfer of e to another thread. Because verification of Chal-
ice methods is modular, we don’t specify or even care about which thread will “receive”
e. For each exhale operation, the verifier will check (assert) the boolean predicates and
remove permissions mentioned in e from the current thread’s set of permissions (usu-
ally referred to as the thread’s “permission mask”). The inhale e operation works the
opposite way. Access permissions mentioned in e are added to the thread’s permission
mask and boolean predicates get assumed. More advanced features such as method calls
and monitors are translated into combinations of inhale, exhale, assume and assert
operations.

2.2 Semper Intermediate Language (SIL)

The Semper Intermediate Language is a verification language aimed at the verification of
concurrent programs using a methodology based on Chalice. As its name suggests, SIL
is the intermediate language to be used by the various tools that are part of the semper
project.

Much of SIL's design is oriented around Chalice’s core elements: methods, permissions
and accessibility predicates. This also means that SIL programs are encoded on a much
higher level of abstraction than the same programs in less focused verification languages,
such as Boogie. As an example: the Boogie-based verifier for Chalice needs to represent
permissions as a pair of integers (the number of epsilons and the percentage) whereas in
SIL there is a dedicated and built-in data type and associated value constructor functions
for permissions.

In this section, we will give an overview of the syntactic structure of SIL programs, diving

11

into more detail where the design of SIL deviates significantly from Chalice. At this time
SIL is mostly intended as an “exchange format” and thus has no fixed semantics associated
with it. Also, SIL doesn’t currently have a serialised/text form and SIL programs only exist
as syntax trees in memory. As a result we use our own ad-hoc textual representation for
SIL program snippets in this report.

2.2.1 SIL Program Structure

Each SIL program has a name ({program-id)) and comes with a number of domain, field,
function, predicate and method definitions. While SIL is certainly aimed at the verification
of object oriented programs, it isn’t actually necessary to distinguish between the types
of references to objects created from different classes. As a direct result, fields, functions,
predicates and methods are not “contained” in any form of class definition.
(Program) ::= 'program’ (program-id)

{{Domain)}

{(Field)}

{(Function)}

{(Predicate)}

{{Method)}

Field and predicate definitions, apart from the fact that they are not tied to a nominal class,
are fairly straightforward. Fields consist of a name and a data type and predicates consist
of a name and an expression. As with Chalice, this predicate expression can contain both
accessibility predicates and ordinary boolean predicates. Field and predicate names must
each be unique within a SIL program.

(Field) :: ’field’ {field-id)’:’ (DataType)
(Predicate) ::= 'predicate’ (pred-id) '=" (Expr)

Functions, again, are similar to their Chalice counterparts. They consist of a name, a pa-
rameter list, aresult type, some preconditions and an implementation. Note how an (Expr)
is expected for the preconditions and a (Term) for the function’s body. This is an example
of SIL distinguishing syntactically between assertions/formulae ({Expr)) and expressions
that represent a value ((Term)).
(Function) ::= "function’ (id) ({ (Param) ,---}): (DataType)

(Contract) ’=" (Term)

(Param) ::= (id) : (DataType)
(Contract) ::= {’requires’ (Expr) } { 'ensures’ (Expr) }

Methods in SIL have a name (unique among all methods in the program), input and output
parameters and a set of pre- and postconditions. Every SIL method always has a parameter
called this of type ref in the first position, which represents the this pointer in object
oriented languages. Having the this pointer as an ordinary parameter makes tools that
consume SIL programs a bit simpler. Each method can have multiple implementations that
must all share the exact same parameters, pre- and postconditions. For source languages
with virtual methods, the to-SIL-translator would create a method for each “method slot”
(vtable slot) and add an implementation for each concrete implementation encountered
in the program.

12

(Method) ::= 'method’ (method-id) ({ (Param),---}): ({(Result), - })
(Contract) { {Impl) }

(Result) ::= (Param)
(Impl) ::= 'implementation’ (method-id) (Cfg)

Method bodies in SIL are represented as a control-flow graph. This is mostly because SIL is
intended as a format for exchanging programs between the tools that make up Semper as
opposed to an actual computer languages used by humans. Whether an eventual textual
representation would retain this form, is not clear at this point.

Unusual about SIL’s control-flow graph is that loops are not flattened into basic blocks
but retained as a sort of composite block. A loop block consists of the loop condition, an
invariant and a nested control-flow graph for the loop’s body.

(Cfg) := '{ {(VarDecl) } { (Block) } '}
(VarDecl) ::= 'var’ (var-id) : (DataType)

(Block) ::= (BasicBlock)
| (LoopBlock)

(LoopBlock) ::= 'while’ (PExpr) ['invariant’ Expr] 'do’ (Cfg)
(BasicBlock) ::= (label): '{’ { (Stmt) } (ControlFlow) '}’

(ControlFlow) ::= 'goto’ (label)

| ’halt’

| ’if’ (PExpr) 'then goto’ (label) 'else goto’ (label)
Atthe end of every block there is a single control-flow statement that indicates how control
is transferred to other blocks.

2.2.2 SIL Statements

(Stmt) ::= (var-id) ":=" (PTerm)
| (var-id).{field-id) ':=" (PTerm)
| (var-id)’:= new’ (DataType)
|
(Stmt) =
| ({(var-id), ---}) ":=" (PTerm).{method-id)({ (PTerm), --- })
| :
(Stmt) =
| ’inhale’ (Expr)
| ’exhale’ (Expr)
| H
(Stmt) =
| ’fold’ (Term).(pred-id) by’ (Term)
| ’unfold’ (Term).(pred-id)

13

2.2.3 SIL Expressions and Terms

(Expr) ::= ’acc’ ({Location), (Term))
| ‘old" ((Expr))
| ’unfolding’ (Term).(pred-id) 'by’ (Term) ’in’ (Expr)
| (Term) == (Term)
| (unary-op) (Expr)
| (binary-op) (Expr)
| (dom-pred-id)({{Term),---})
| ¥V (logical-var-id) : (DataType) :: ((Expr))
| 3 (logical-var-id) : {(DataType) :: ((Expr}))

(Location) ::= (Term).(field-id)
| (Term).(pred-id)
(Term) ::= 'if’ (Term) 'then’ (Term) 'else’ (Term)
| (var-id)
| (logical-var-id)
| ’old’((Term))
| (func-id)({ (Term), -+ })
| (dom-func-id)({(Term),---})
| ’unfolding’ (Term).(pred-id) 'by’ (Term)’in’ (Term)
| ((Term)): (DataType)
| (Term).field-id)
| ’'perm’((Location))
| ’write’
| 0
| E
| (integer-literal)
We simplified the presentation of the term and expression grammar for this section and
attached the full rules in appendix A.

2.2.4 SIL Domains and Types

A data type in SIL is either ‘ref’, the type of all object references, a domain type or a type
variable. Object references in SIL are treated as potentially having all fields in the SIL
program. In practice, only the fields that a method/function has access to, are relevant.
For statically typed programming languages, it’s the responsibility of the to-SIL-translator
to make sure that input programs are type error free.
(DataType) ::= (var-type)

| (dom-type)

| ‘ref’
In addition to the built-in value domains for integers, booleans and permissions, SIL al-
lows its users to define their own value domains, with (uninterpreted) constructor func-
tions, predicates over values of that domain and their axioms. Domain definitions can
come with type parameters, making them templates for concrete domains (similar to C#
generics).

14

(Domain) ::= 'domain’ (dom-id) [(DomainParameters) | '{’ (DomainDef) '}
(DomainDef) ::= { (DomainFunction)} { (DomainPredicate) } { (DomainAxiom) }
(DomainFunction) ::= ’function’ (dom-func-id) ({ {DataType),---}) : {(DataType)
(DomainPredicate) ::= ’predicate’ (dom-pred-id) ({ (DataType), - })
(DomainAxiom) ::= 'axiom’ (id) '=" (DExpr)

(DomainParameters) ::= '[' { (DataType),---}'’

2.3 Silicon

Silicon is an automated program verifier for SIL programs based on symbolic execution. It
was derived from Syxc [Sch11], an alternative verifier for Chalice, and adapted to verify SIL
instead. As Silicon is currently the only verifier for SIL, we use it to test Chalice2SIL.

3 Translation of Chalice

This section explains how Chalice2SIL translates the most interesting aspects of Chalice
into SIL. As Chalice and SIL code often look very similar, we use [e;], to emphasize the
fact that e, is a Chalice expression or statement. Similarly [e;,], stands for the SIL ex-
pression e.

3.1 Fractional Read Permissions

To SIL, permission amounts are just another data type. The SIL prelude only defines a set
of constructors (such as no permission, full permission) and some operators and pred-
icates (such as permission addition, subtraction, equality, comparison). In particular, it
does not specify how permissions are represented. This aligns well with the abstract na-
ture in which fractional permissions are written by the programmer. As with previous
verification backends for Chalice, concrete permission amounts associated with fractional
read permissions (acc(x.f,rd)) are never chosen but only constrained. This also means
that two textual occurrences of acc(x.f, rd) in different parts generally do not represent
the same amount of permission.

Not choosing a fixed permission amount for abstract read permissions makes them very
flexible. As long as a thread holds any positive amount of permission to a location, we
know that we can give away a smaller fraction to a second thread and thereby enable both
threads to read that location. Unfortunately, that amount of flexibility would also make
fractional read permissions very hard to use, since every mention of a read permission
could theoretically refer to a different amount of permission. Chalice, therefore, imposes
additional constraints on fractional permissions involved in method contracts, predicates,
and monitors. In the following sections we will describe how Chalice2SIL handles each of
these situations.

15

Listing 9: A call that uses and preserves fractional read permissions.

class Actor {
method main(a : int) returns (r : Register)
ensures r != null
ensures acc(r.val)
ensures t.val == a

r := new Register;

r.val := 5;

call act(r);

r.val := a; //should still have write access here

method act(r : Register)
requires r != null
requires acc(r.val,rd)
ensures acc(r.val,rd)
{/* ... ¥}
}
class Register {
var val : int;

Listing 10: Handling of fractional read permissions by the Boogie-based Chalice verifier.

procedure act(r : Register)

{
var k_m;
assume (@ < k m) & (k_m < Permission$FullFraction);
// inhale (precondition), using k_m for rd

// exhale (postcondition), using k_m for rd

}

3.1.1 Methods and fractional permissions

In Chalice programs, a very common pattern is that a method “borrows” permissions to a
set of locations, performs its work and then returns the same amount of permission to the
method’s caller. In order to readily support this scenario, the original implementation of
fractional permissions in Chalice constrains the various fractions mentioned in a method’s
pre- and postcondition to a value that is chosen once per call site.

For verifying the callee in listing 9, the Boogie-based implementation introduces a fresh
variable permission variable k,,, constrains it to be a read-permission (0 < k,, < full)
and uses it in pre- and postconditions whenever it encounters the abstract permission
amount rd.

Notice how the Boogie-based encoding of Chalice in listing 10 does not make use of the
pre- and postcondition mechanism provided by Boogie. This is primarily because Boogie

16

Listing 11: Handling of fractional read permissions by the Chalice2SIL translator

method Actor::act(r : Register, k_m : Permission)
requires @ < k m & k m < write
requires r != null
requires acc(r.val, k_m)
ensures acc(r.val, k_m)

{.}

does not have a concept of inhaling and exhaling of permissions. Not so with SIL, which
features pre- and postconditions that are aware of accessibility predicates. Conceptually,
when you “call” a method in SIL, the precondition is properly exhaled and the postcondi-
tion inhaled afterwards.

However, using SIL preconditions also means that we can’t just make up a new variable k,,,
instead it becomes a “ghost” parameter and introduces an additional precondition. This
makes a lot of sense, since the value k,, is always specific to one call of a method.

In the actual Boogie-based encoding, the upper bound on k_m is even lower to give the
programmer more flexibility. Currently, k_m is assumed to be smaller than a thousandth
of 1%. This allows the programmer to for instance specify a method that requires acc(
x.f,rd) twice, effectively demanding at least 2*k_m permission to x.f. The exact ratio
was chosen arbitrarily and could always be lowered, but has so far worked well for most
examples.

3.1.2 Method calls with fractional permissions

Without fractional permissions, synchronously calling a method in SIL is as simple as us-
ing the built-in call statement:

call () := Actor::act(r)

SIL takes care of asserting the precondition, exhaling the associated permissions, havocing
the necessary heap locations, inhaling the permissions mentioned by the postcondition
and finally assuming said postcondition. Adding support for fractional read permissions
now only means providing a call-site specific value k, right?

Unfortunately, this where the high-level nature of SIL becomes an obstruction. For each
method call-site, we want to introduce a fresh variable k. that represents the fractional
permission amount of permission selected for that particular call. Then, we want to con-
strain it to be smaller than the amount of permissions we hold to each of the locations
mentioned with abstract read permissions (rd). For the simple preconditions above, this
is easy to accomplish:

var k ¢ : Permission;
assume k_c < perm(r.val);
call () := Actor::act(r,k c);

The term perm(r.val) is a native SIL term that represents the amount permission the
current thread holds to a particular location. Sadly, this simple scheme breaks down when
we have to deal with multiple instances of access predicates to the same location.

17

Chalice dictates that

exhale acc(x.f,rd) & acc(x.f,rd)

is to be treated as

exhale acc(x.f,rd)
exhale acc(x.f,rd)

Both exhale statements cause k. to be constrained to the amount of permission held to
x.f. Since exhale has the “side-effect” of giving away the mentioned permissions, this k.
will be constrained further by the second exhale statement.

Additionally, access predicates can be guarded by implications. In that case, the Boogie-
based Chalice implementation translates

exhale b ==> acc(x.f, rd)

as

if(b)
{

exhale acc(x.f, rd);

}

At this point we could have decided not to use SIL's built-in call statement and instead en-
code synchronous method calls as a series of exhale statements, followed by inhaling the
callee’s postcondition. While that would have been equivalent from a verification perspec-
tive, we would still be throwing away information: the original program’s call graph.

In order to still use SIL's call statement, we need to keep track of the “remaining” permis-
sions while constraining k. without actually giving away these permissions, otherwise the
verification of the subsequent call statement would fail. We cannot simply create a copy
of the permission mask as a whole and have exhale operate on that instead because SIL
considers the permission mask an implementation detail and thus doesn’t expose it. SIL
at least allows us to look up individual entries of the permission mask via the perm(x.f)
term. perm(x.f) represents the amount of permission the current thread holds for the
location x.f. We use that feature to manually create and maintain a permission mask of
our own.

Like the permission mask in the Boogie-encoding of Chalice, this data structure must map
heap locations, represented as pairs of an object reference and a field identifier, to per-
mission amounts. At this time, SIL has no reified field identifiers. So in order to distin-
guish locations (pair of an object reference and a field), the Chalice2SIL translator assigns
a unique integer number to each field in the program.

The only way to populate this map, is to “copy” the current state of the actual permis-
sion mask entry by entry via the perm(x.f) term. Unfortunately, we can’t do this in one
big “initialization” block, since some of the object reference expressions that occur on the
right-hand-side of implications might not be defined outside of that implication.

We could expand implications in the precondition twice: once for initializing our permis-
sion map, and once to actually simulate the exhales and constraining of k., but there is a
more concise way.

18

As listing 12 demonstrates, we start out with two fresh map variables m and my. The
former, m, is the permission map we are going to update while constraining k., whereas
mg represents the state of the permission map immediately before the method call. We
let the SIL verifier assume that the two maps are identical initially (line 5) and later add
more information about m’s initial state by providing assumptions about m,,.

The first accessibility predicate we translate is acc(r.val,rd). On line 7 we copy the
amount of permission we currently hold to r.val into our own permission map. The key,
(r,1), is a pair consisting of the object reference r and a unique integer that Chalice2SIL
assigned to the field Register: :val. No other field in the program shares that integer
identifier.

We then continue with ensuring that we still have access to that field (line 8) by assert-
ing that the amount of permission for r.val is strictly positive. Only then can we use the
amount of permission we hold to r.val as an additional upper bound to k. (line 9), oth-
erwise that assumption could have contradicted the assumption about k. made on line 4.
Finally, on line 10 we “simulate” exhaling the permission by subtracting it from our own
permission map entry. Notice how we used an assumption about the “original” map m,
on line 7, but then continued to use m, the actual permission map, to perform the simula-
tion.

For the second part of the callee’s precondition, p ==> acc(r.val,rd), we first have to
deal with the implication. In accordance with our translation scheme for the read fraction
constraints (figure 3), we wrap the translation of the right-hand side of the implication in
an if-block (line 12). As the accessibility predicate acc(r.val, rd) is identical to what
we had before, our translation also generates the same sequence of statements.

Now the fact that we do not simply copy the amount of permission we currently hold into
our working permission map m becomes essential. Using an assumption on line 13 means
that m still is the map from which the current version of m (we updated it on line 10) is
derived. Line 15 adds an even lower upper bound to the constraints on k. because we had
already subtracted k. from the permission amount for r.val on line 10.

After k. is sufficiently constrained, we just emit a call to our target method, passing k.
as a ghost parameter. The SIL verifier will have to exhale the precondition (giving away
the permissions it mentions), havoc heap locations that the caller has lost all permissions
to, then inhale the postcondition (receiving permissions it mentions) and finally assign
results to local variables as necessary.

3.2 Asynchronous method calls (Fork-Join)

At this time, SIL only provides synchronous call statements. We therefore have to fall back
to just exhaling the precondition on fork and inhaling the postcondition on join. The chal-
lenging aspect of verifying asynchronous method calls is establishing the link between a
join and the corresponding fork. Old expressions, in particular, are difficult to capture in
SIL without a dedicated call statement.

3.2.1 Translation of fork

The translation of the Chalice fork statement seems, at least at first, relatively straight-
forward: constrain a fresh k. to be used as the fractional read permission amount, exactly

19

Listing 12: Translation sketch for a method call involving fractional read permissions and
the precondition acc(r.val,rd)& p ==> acc(r.val)

var k_c : Permission

var m : Map[Pair[ref, Integer], Permission];
var m_0 : Map[Pair[ref, Integer], Permission];
assume 0 < k_c && 1000*k_c < k_m;

assume m == m_0;

// acc(r.val,rd)

assume m_O[(r,1)] == perm(r.val);

10

11

12

13

14

15

16

17

18

19

assert © < m[(r,1)];
assume k ¢ < m[(r,1)];
m{(r,1)] :=m[(r,1)] - k_c;
// p ==> acc(r.val,rd)

if(p){

assume m @[(r,1)] == perm(r.val);
assert @ < m[(r,1)];
assume k_c < m[(r,1)];

m{(r,1)] :=

}

m[(r‘,l)] - k_CS

// finally, the actual call
call () := m(r,p,k _C);

: read fraction selected for the surrounding scope
: program expressions

P,Q:
p.q:
: field

: integer

assertions

permission amount

: function

: precondition of g

: parameters of g

: look up map entry with key e in map m
: P, but with e substituted for x

Figure 1: Meaning of names used below.

20

H(p*q,h) = H(p,h) NH(q,h)
H(p+q,h) = H(p,h) NH(q, h)
H(p —q,h) = H(p,h) AH(q, ~h)
H(p*n,h) = H(p,h)
H(k,y, h) = =h k., is abstract fraction
H(p, h) = false otherwise

Figure 2: Helper function that determines whether a permission amount expression can
be used to constrain k..

Efacc (e.f,p)] o, = [[per'm (E[[e]]Ch,f) < E[[p]](:h]]sIL
E[e], translates expression e to SIL terms and expressions
RIPlc, = [[
var k., m,my;
inhale 0 < k. Ak, *x 1000 < k,,;
inhale m = my;
TIPIeh] g,
TIP A Qlg, = [TTPIcys TIQNG],
Tle = Qlg, = [if (Elelc,) {T1QTcn} g,
Tlacc (x.f,p)], = if H(E[p],, false) [[
exhale D[x];
inhale m, [(Elx], f)] = perm(Elel, f);
exhale 0 < m[(E[x]q, f)];
inhale E[[p]]Ch <m [(E[x]]Ch,f)] ;
m[(Elxlgy)] = m [(Elx] e £)] — Elplg,] SIL
Tlacc (x.f,p)], = otherwise [skip]g,

Figure 3: Translation schemes. R generates code that constrains a fresh k. according to
the method precondition/loop invariant P. T recursively translates P to constraint k..
D[x],, determines whether x is well-defined. See figure 5.

21

Flold (&), =
inhale acc (t.f,, write)

if (Dle]c,){
var b, : bool;
inhale eval(b,) == E[e];
t.fe :=Dbe

}]] SIL if e is an assertion

Flold (&), =1
inhale acc (t.f,, write)

if (Dlelgy,){
t.fe = E[ely,
}]] SIL otherwise

F[P && Q]]Ch = [[F[[P]]ch; F[[Q]]Ch]]SIL
F[P], = analogous

Figure 4: F recursively descends into an expression looking for old expressions old(e).
Adds a corresponding field f, to the token t and, if the expression is well-defined at that
point, evaluates e and assigns the result to f,.

as we did for the synchronous method call, then exhale the method’s precondition and
finally create a token object with a boolean field called “joinable” set to true. But how
would we then translate the corresponding join statement(s)? The method’s postcon-
dition is formulated in terms of the method’s return values and parameters. In general
we no longer have access to the latter. The join might happen in a different method, but
even if it occurs in the same method as the fork, the heap and the values of local variables
could have changed in the meantime. Ideally, we could somehow capture the entire pro-
gram state and store it in or associate it with the token at the fork statement. At the join
statement, we would then evaluate (inhale) the method’s postcondition in terms of that
program state.

Sadly, SIL currently has no such mechanism. It does have old expressions but they are
hardwired to refer to the pre-state of the surrounding method (the state immediately prior
to a call to that method). Fortunately, we don’t actually need to capture the entire program
heap. Since the set of values that might be missing at the join site includes at most all
arguments and old expression, we can generate a ghost field on the token to “transport”
each of values from the fork site to the join site.

Chalice2SIL generates one ghost field for each method argument and one ghost field for
each old expression in the method’s postcondition. Just before the exhale statement of a
join, it assigns the effective arguments to the argument ghost fields of the token. It then
evaluates the old expressions of the method’s postcondition and assigns the results to the
corresponding ghost fields. The translation scheme F presented in figure 4 shows how
this is done.

There is just one more complication to take care of: old expressions can appear on the

22

D[P = Qlg, = [DIPIgy A (ELPIg, = D[[Q]]Ch)]]SlL
D[if (e) P else Q] = [Dlel, A (Elelg, = DIPI,)
A(=Elele, = DIQI,)] SIL
Dleflg, = [[D[[e]]Ch A= (E[[e]]Ch = null)
A0 < perm(E[el, f)] oL
Dle.g(ay, ...,an)lq, = [[D [elc, A (E[[e]]Ch = null)

A E[G [this/e, x; /a4, ...,xn/an]]]Ch]] oL

Figure 5: Translation scheme for ensuring the definedness of an expression.

right-hand-side of implications, where they might only be defined part of the time (due to
missing permissions and null references). Unfortunately, just expanding implications into
if-statements, like we did when constraining k., is notan option because the left-hand-side
ofthe implication could refer to a return value, which is of course only available at the join
site. Instead, we walk over each old expression and generate a set of conditions that need
to be satisfied for the expression to be defined at the fork site. These are similar to the
defined-ness conditions in [S]P12, p12], which also appear in the Boogie-based Chalice
verifier. Figure 5 shows the most important rules for generating definedness conditions
D[e], for an expression e.

We then use these defined-ness conditions at the fork-site to guard the assignment of the
old values. Listing 14, a translation of the fork statement in listing 13, demonstrates this
on line 16. The defined-ness conditions in the if-condition guarantee that the computa-
tion and assignment of the old value on line 17 cannot fail. When the verifier arrives at a
point at the join site where the ghost field on the token corresponding to the old expres-
sion is read, we can be in one of two cases. Either the old expression was well defined at
the fork-site or it was not. If it was, the verifier will have chosen the path involving the as-
signment of the token ghost field and consequently has information about the contents of
that field. If the old expression was not well-defined at the fork-site, then the assignment
of the ghost field will have been skipped.

3.2.2 Translation of join

With most of the hard work done when the thread was forked, the translation of a join
statement is relatively straightforward. First, we mustassert that the token is still joinable
(we also need write-access to that field in order to set it to false). Then we inhale the
method’s postcondition using the ghost fields on the token as substitutions for the argu-
ments and old expressions. Finally, we have to assign the results of the asynchronous
computation to the variables indicated by the Chalice programmer.

A detail worth mentioning is the representation of results for the inhale statement. Chal-
ice2SIL also creates ghost fields on the token for results. Since a token is only ever joined
once, we can safely inhale the permissions to access those result fields. Conceptually, by
joining with the current thread, the forked thread transfers access to its results along with
all other permissions from its postcondition.

23

(<X NS, B NV)

~

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Listing 13: Example of Chalice program featuring fork and join of method with a possibly
undefined old expression.

class Cell { var f : int; }
class SuperCell { var cell : Cell; }

class Main {
method parallel(d : SuperCell) returns (r: bool)
requires d != null ==> acc(d.cell, rd) & d.cell != null
8&& acc(d.cell.f, rd) && d.cell.f ==
ensures r == (d != null)
ensures r ==> old(d.cell.f == 5)
ensures r ==> (acc(d.cell, rd) & acc(d.cell.f, rd))
{
r :=d != null;
}
method main(d : SuperCell, c : Cell)
requires acc(d.cell) && acc(c.f)
ensures acc(d.cell) && acc(c.f)
{
var r : bool;
d.cell := c;
c.f :=5;
fork tk := parallel(d)
assert c.f == 5; // still have read-access
join r := tk;
assert r;
}
}

24

N

(S N, NN

10

11

12

13

14

15

16

17

18

19

20

21

22

Listing 14: Translation of the fork statement on line 22 in listing 13.

var tk : ref;

tk := new ref;

inhale acc(tk.joinable,write);

tk.joinable := true;

// constrain k_c, the read fraction for this call

// store arguments in token
inhale acc(tk.this,write);
tk.this := this;

inhale acc(tk.d,write);

tk.d := d;
inhale acc(tk.k_m,write);
tk.k_ m =k _c;

//store old values in token
inhale acc(tk.oldl,write);
if(d != null & © < perm(d.cell) & d.cell != null && © < perm(d.cell.f)){
tk.oldl := (d.cell.f == 5);

}
// ’perform” the asynchronous call by exhaling the callee’s precondition
exhale this != null & 0@ < k_c & k_c < write &&

d !'= null ==> acc(d.cell, k _c) & d.cell != null

&% acc(d.cell.f, k_c) && d.cell.f == 5

Listing 15: Translation of the join statement on line 24 in listing 13.

exhale tk.joinable // SIL verifier also needs to assert that tk != null
inhale acc(tk.r,write) && tk.r == (tk.d != null)
&& tk.r ==> tk.oldl
8& tk.r ==> acc(tk.d.cell, tk.k m) && acc(tk.d.cell.f, tk.k_m);
r := tk.r;
tk.joinable := false;

Alternatively, we could have used fresh local variables to represent result values. The
only advantage that ghost fields provide, is that we don’t need to introduce new vari-
ables.

The accessibility of all the other ghost fields on the token requires a bit more work. Nat-
urally, tokens can also be passed to other threads and joined there. The requirement that
the joining thread has exclusive access to the joinable field ensures that only one thread
can join on a given token. Now, while the ghost fields on the token might be invisible to
the Chalice programmer, SIL does not distinguish between ghost fields and ordinary fields
in any way. We need to make sure that every method that tries to access any of the ghost
fields actually has permissions to do so.

Fortunately, ghost fields on a token are only accessed when we also have permission to ac-
cess the joinable field on that token and it is the Chalice programmer’s burden to ensure
that a thread has this permission when attempting to join on a token. If we could some-

25

how link the amount of permission a thread has to each of the ghost fields to the amount
of permission it holds to joinable, we would always end up with a sufficient amount of
permission for the ghost fields.

While SIL provides no built-in support for linking fields together accessibility-wise, we
can achieve a similar effect by translating every accessibility predicate for joinable as an
accessibility predicate for that and all token ghost fields (with the same amount of permis-
sion for each). That way, we can be sure that whenever a thread holds full permissions to
a joinable field, it also holds full permissions to all ghost fields on the token. More for-
mally, given a token ¢, a permission amount p, ghost fields a, ‘- a; (the arguments) and
04 *** 0, (evaluated old expressions), we apply the following transformation:

[acc (t.joinable, p)];,
becomes
[acc (t.joinable,p) A acc (t.this,p) A
A acc (t.aq,p) Aacc(t.ay,p) A+ Aacc (t.ag,p) A
Aacc (t.og,p) Aacc (t.og,p) - acc (t.op)]q,

3.2.3 Limitations of the current fork-join implementation

Joining a thread seems deceptively simple when done in the same method that the thread
was originally forked from. This is because the verifier has seen the assignments to the
token ghost fields first hand. When a thread is joined in a separate method, however, that
context is not available because both Silicon and the Boogie-based implementation verify
each method in complete isolation.

For just joining a thread in a separate method, the programmer needs to pass both the to-
ken and write access to the token’s joinable field to the method that performs the joining
and ensure that the thread has not been joined already. Unfortunately, the postcondition
of an asynchronous method call joined this way is next to useless, because the verifier
has no information about the context of the method call. Specifically, the verifier doesn’t
know anything about the receiver or any of the arguments originally passed to the thread.
As a consequence, any clause of the postcondition that mentions the this pointer or an
argument is useless to the verifier.

Listing 16 demonstrates a simple program that fails to verify because the context of the
forked thread is lost when the token is transferred to the callee (client). The verifier
will complain that there might not be enough permission to satisfy acc(obj.f), because
it doesn’t know that the this pointer used to call work refers to the same object as obj. We
would like to tell the verifier more about how our token was created.

requires tk.thisPtr == obj

While the previous example is not valid Chalice code, there is a mechanism that can be
used to create similar specifications. Listing 17 shows how the eval expression can be
used to provide the verifier with the information necessary to prove that the method sat-
isfies its postcondition.

An [eval (r.a, e)],, expression consists of three parts: the “context” ¢ (the token in our
case), the description of the “eval state” a and an expression e to be evaluated in that state.

26

Listing 16: Limitations with joining in separate methods

class Main{
var ¥ : int;
method work()
requires acc(this.f)
ensures acc(this.f)
{
}

method main()
requires acc(this.f)
ensures acc(this.f)

fork tk := work();
call client(tk, this);

}
method client(tk : token<Main.work>, obj : Main)
requires acc(tk.joinable) && tk.joinable

ensures acc(obj.f) // might not hold

join tk;

Listing 17: eval expression in Chalice

method client(tk : token<Main.work>, obj : Main)
requires acc(tk.joinable) && tk.joinable
requires eval(tk.fork this.work(), this == obj)
ensures acc(obj.f)
{ join tk; }

27

In our case, we specify a “call state” of the form [fork r.m (ay,az,**+, a)],. Here r de-
notes the receiver of the asynchronous method call, m is the name of the method called
and a; stand for the arguments originally passed to the method.

Chalice2SIL supports a very limited form of the eval expression which covers exactly the
use-case outlined above. As long as the eval expression binds to a fork token and has
true asits second operand e, Chalice2SIL translates it as follows:

V[eval(t.fork rm(ay,az, -+, ai), true)] = [E[tly, # null
NE[t]y,this = E[r],
A E[[t]]Ch.a1 = E[[al]]ch

NE [[t]]ch.ak = E[[ak]]Ch]]SIL
This small extension is just expressive enough to associate tokens with parts of the con-
text they were forked from, allowing the joining method to actually take advantage of the
postcondition of the forked method. As the general design of the eval-expressionisunder
discussion, it did not make sense to fully support it.

3.3 Predicates and Functions

Predicates and functions have been part of SIL since its inception, in a form that very much
resembles the functions and predicates from Chalice. As a result, the translation of func-
tions and predicates from Chalice to SIL is relatively straightforward.

3.3.1 Predicates

In contrast to abstract fractional read permissions (rd) in methods, which can assume a
different value for each invocation, the fraction used in predicates remains fixed. This is
essential to ensure that the predicate holds the same amount of permission regardless
of where it was folded. Otherwise the user would have to specify exactly how much per-
mission a predicate contains, which rather defeats the purpose of predicates (information
hiding).

Abstract read permissions mentioned in predicates are thus interpreted by a fixed permis-
sion amount. To implement this, we define an uninterpreted constant function global-
PredicateReadFraction() and declare that this global read fraction is strictly positive
and less than the full/write permission amount.

Itis possible that, in the future, we’d like to have different fractions for different predicates
or even different fractions for each combination of object (this-pointer) and predicate. To
support this scenario, we don’t insert references to globalPredicateReadFraction
() directly into the generated SIL program. Instead, we use an intermediate function
predicateReadFraction(int, ref);alsouninterpreted. Analogously to the “field iden-
tifiers” that we used to index into our copy of the permission mask when we constrain the
read permission fraction for method calls, we generate unique “predicate identifiers” to

28

distinguish between different predicates on the same object. However, at the moment ev-
ery SIL program that Chalice2SIL generates also contains an axiom that makes predicate
read fractions effectively global:

Vi,r. predicateReadFraction(i,r) = globalPredicateReadFraction()

This constraint makes it easier to transfer abstract read permissions between predicates,
giving acc(x.f, rd) afixed meaning across all predicates. Outside of predicates, the user
can refer to the same amount of permission by explicitly mentioning the predicate in an
argument to the abstract read permission. Given two object references x and y, a field
f,apredicate p and a corresponding predicate identifier i,,, Chalice2SIL translates an ac-
cessibility predicate that involves an abstract read fraction inside a predicate body as fol-
lows:

[acc Cx.f, rd(y.p))]]Ch = [acc (E[[x.f]]Ch, predicateReadFraction(iy, E[[y]]Ch))]]SlL

3.3.2 Functions

Ideally, we would want to encode abstract read permissions in functions the same way
we encode them when they occur in method pre/postconditions: constraining a differ-
ent fraction for each call site. Unfortunately, the technique we used for read fractions in
method calls would not work for function calls, because for our solution we need to create
and then destructively update our own copy of the permission mask. Function calls can
occur in method pre/postconditions and even inside other function bodies. All of those
contexts are pure, which means that we cannot introduce and then update new “local”
variables.

But functions being pure also gives us more freedom, since we don’t have to make the dis-
tinction between read permissions and read-write permissions (functions aren’t allowed
to modify the heap anyway). Similarly, as functions always automatically return the same
amount of permission that they received, it doesn’t really matter exactly “how much” per-
mission a function has, only to which heap locations it has access. As a result, Chalice2SIL
translates non-write permission amounts in function preconditions as rd*, which means
“any read-permission”.

[acc (x.f,rd*)], = [3a,0 < a<write. acc(x.f,a)lg,

3.4 Monitors with Deadlock Avoidance

As with predicates, the permissions stored in a monitor need to be fixed and cannot be
chosen every time we lock an object. Otherwise we’d have to track the amount of per-
mission the monitor holds onto at any point in the program as global state and be able to
communicate these permission amounts in method pre- and postcondition. Using a fixed
fractional read permission is how [HLMS11] implements abstract fractional permissions.
So, as with predicates, we define an uninterpreted function that represents the fraction of
permission that the verifier uses whenever it encounters an abstract fractional read per-
mission in a monitor. To make mixing monitors and predicates easier, we use the same
global fraction for monitors as we used for predicates.

The really difficult part of handling monitors, however, is the implementation of the lock-
ing and deadlock prevention itself. In this section we present our partial solution in the

29

hope that it will help in finding a working implementation of deadlock avoidance in SIL, or
failing that, in the hope that it at least serves as a demonstration of the limits of SIL.

3.4.1 Approach to Deadlock Prevention and Locking

For locking and deadlock prevention we need to add two kinds of information to each
object: a boolean indicating whether the object in question is locked and a mu value that
indicates the object’s position in the locking order. To recapitulate, in section 2.1.7 we
saw that mu values are part of the partially ordered set (Mu, «). Only one concrete value
exists: lockbottom, the single smallest element of Mu. All other values of Mu are kept
abstract and only described in terms of their «-relation to one another.

The key idea behind deadlock prevention in Chalice, that a thread can only acquire a lock
on monitor/object m if it is clear that that monitor/object is higher in the locking order
than any other monitor that that thread already has a lock on. In more concrete terms,
locking is allowed when Vo € objects. 0 # m = (holds(0) = o.mu K m.mu).

To use this expression in a SIL assertion (an exhale statement prior to acquiring a lock),
we need to make sure that the heap locations it mentions (0.mu and m.mu) are defined:
that these locations are readable. To ensure that we can access m.mu, we first check m #
null A 0 < perm(m.mu). But then we run into the problem with o.mu. Since o is quantified
over all object references, we would have to require read access to all mu fields in the entire
heap to ensure that o.mu is defined for all object references. Alternatively, one could try to
use 0 < perm(o.mu) to make sure that o0.mu is only accessed when we know that the location
is readable:

0 < perm(o.mu) = —holds(0) V o.mu K m.mu

Unfortunately that is not correct. While a method needs read-access to the mu field to ac-
quire the lock on an object 0, it can then give away all permissions to fields of 04 (it could
fork a thread and hand complete control over that object to the forked thread), while still
holding the lock on the monitor associated with o;. With the implication in the asser-
tion above, we are really filtering out object references for which we do not have access
to the mu field. Temporarily not having any permission to access to 0;.mu would allow us
to acquire the lock on a monitor that is not higher in the locking order than o;. Instead
our assertion should be quantified over all object references o, whether we have access to
o.mu or not.

We need to associate each object with a mu and a flag that indicates whether the object’s
monitor is acquired by the current thread. The only mechanism that SIL provides for as-
sociating information with an object is fields, but using fields is not an option when one
needs to refer to that field in a universal quantifier. The Boogie-based implementation
uses both mu fields and a set of additional masks and that is what we will try to emulate in
our approach.

We add another hidden parameter to each method, the currentThread: ref. This object
has two fields heldMap and muMap, mapping from references to boolean values and from
references to mu values, respectively. For any object reference o, we use heldMap[o] to in-
dicate whether the object o is locked by the current thread at the moment. We use muMap[o]
instead of o.mu inside quantifiers to get around the issue of 0.mu not being readable. Via

30

their preconditions, each method gets to assume the following:

currentThread # null A acc (currentThread.heldMap,write)

A acc (currentThread.muMap, write)

However, the mu field is not an implementation detail of Chalice2SIL or the Boogie-based
Chalice verifier, but an actual field that the user of Chalice has to take into considera-
tion when dealing with monitors. The greatest challenge is thus to keep what the verifier
knows about the muMap and what it knows about mu fields in synchrony. To that end, every
occurrence of an accessibility predicate that mentions mu will be translated according to
the following rule:

[acc (xmu,a)], = [[acc (x.mu, @) A currentThread.muMap[x] = x.mu]]SIL

This makes sure that whenever we gain access to an mu field, we also get a matching entry
in the currentThread’s muMap. Or, conversely, whenever we give away permission to a mu
field, we must also ensure that the muMap is up to date.

With this infrastructure, the implementation of locking-related operations is relatively
straightforward. For the examples that follow, we assume that we have a class C with
asingle int field f.

Object creation [o := new (], is translated as

0 := new ref;

inhale acc(o.f,write); // for each field f of class C
inhale acc(o.mu,write);

inhale o.mu == lockbottom;

inhale currentThread.heldMap[o] == false;

inhale currentThread.muMap[o] == o.mu;

Share an object [share o above a below b], is translated as

exhale o != null;

exhale o.mu == lockbottom;

// Ensure bounds are defined

exhale a != null && b != null;

exhale @ < perm(a.mu) & © < perm(b.mu);

exhale a << b; // Upper bound might be below lower bound
// Constrain value for fresh mu

var m : Mu;

inhale lockbottom << m;

inhale a << m;

inhale m << b;

// Assign mu (to both the field and the map), set held to false
o.mu := m;

currentThread.muMap[o] := o.mu;

currentThread.heldMap[o] := false;

exhale <monitor-invariant>;

[LMSO09] also introduces other forms of Chalice’s share statement allow the pro-
grammer to specify multiple upper and lower bounds or omit them altogether. If no

31

lower bound is specified, the current lock level is used as the lower bound, that is,
the object is shared with a mu that is greater than the mu of any object for which the
thread currently holds a lock. After an object has been shared, its mu field is guar-
anteed to be above lockbottom. This property is used to determine whether an
object is currently shared and can often be found in the precondition of methods
that intend to lock that object.

Acquire alock [acquire o], is translated as

exhale o != null;
exhale © < perm(o.mu);

exhale forall h : ref :: currentThread.heldMap[h] ==
currentThread.muMap[h] << o.mu;

currentThread.heldMap[o] := true;

inhale <monitor-invariant>;

Release alock [release o], is translated as

exhale o != null;

exhale currentThread.heldMap[o];
exhale <monitor-invariant>;
currentThread.heldMap[o] := false;

Unshare an object [unshare o], is translated as

exhale o != null;

exhale write <= perm(o.mu);
exhale lockbottom << o.mu;
exhale currentThread.heldMap[o];

o.mu := lockbottom;
currentThread.heldMap[o] := false;
currentThread.muMap[o] = o.mu;

Forking a thread Chalice2SIL creates a new thread object for the forked thread and ini-
tialises its muMap with the contents with the contents of currentThread’s muMap.
Since the heldMap only represents the locks held by the current thread we do not
copy anything from currentThread’s heldMap.

In the postcondition of each method, we make sure that the mu and held maps are in a
consistent state. The programmer uses the lockchange declaration to list all objects it
changed the lock state of. Without any lockchange declarations, all method postcondi-
tion contain the following assertions:

acc (currentThread.heldMap,write) A acc (currentThread.muMap, write)
A Vo. € objects. old (currentThread.heldMap) [0.] = currentThread.heldMap[o.]
A Yo, € objects. (currentThread.heldMap[o4]) =

old (currentThread.muMap[o4]) = currentThread.muMap[o4]

The second line demands that the locking state of any object must not have been changed.
The last two lines ensure that the lock level of anything that is currently locked didn’t

32

10

11

12

13

14

15

16

Listing 18: Losing information about mu.

class C {

var f : int;

invariant acc(f);

method nop(){}

method main()

{
var X :=new C; var y := new C;
share x;
share y above x;

call nop();
acquire x;
acquire y; release y;
release x;

}

} // Using Syxc: Verification finished with @ error(s)

change. When the user adds lockchange declarations, the bodies of the last two quanti-
fiers are guarded by an implication similar to:

0 & lockchange = body...

3.4.2 Limitations of the current Implementation

As mentioned above, the current implementation is not correct in some cases. We iden-
tified two major problems: one where we lose information about mu, preventing us from
successfully verifying a correct program, and one where we retain too much information
about mu, causing the verification to be potentially unsound.

Listing 18 presents an example of the former problem. In that program we create two
objects x and y and share them in such a way that locks on x always have to be acquired
before y (lines 8 and 9). When we call the method nop online 11, we temporarily give away
all permissions to currentThread.muMap. This means that the verifier must assume that
the contents of the heap location currentThread.muMap have changed completely. When
the verifier reaches the second acquire statement on line 13, it will assert the follow-
ing:

forall h : ref :: currentThread.heldMap[h] ==
currentThread.muMap[h] << y.mu;

Since there is only one locked object at the moment, the verifier effectively checks

currentThread.muMap[x] << y.mu

It remembers that x.mu << y.mu, but has lost all information about muMap[x]. As a result,
the assertion will fail.

33

10

11

12

13

14

15

16

17

18

19

Listing 19: Modified method nop from listing 18, causes verification to succeed.

method nop(x : C)
requires acc(x.mu,rd)
ensures acc(x.mu,rd)

{1}

Listing 20: Keeping too much information about mu.

class C {
var ¥ : int;
invariant acc(f);
method unrelated(x : C)
requires x != null && acc(x.mu)
ensures acc(x.mu)

{1}

method main()

{
var X :=new C; var y := new C;
share x;
share y above x;
acquire x;
fork unrelated(x);
acquire y; release y;
release x;

}

}// Using Syxc: Error 1280: 17.17: Acquiring y failed. waitlevel << mu
might not hold.

We can work around this limitation by explicitly mentioning x.mu in an accessibility pred-
icate on the pre- and postcondition of method nop. That causes the assertion x.mu ==
currentThread.muMap[x] to beincluded in the pre- and postcondition of the translated
SIL method.

In listing 20 we first acquire the lock on x and then fork a new thread, giving away write
permission to x.mu. When we try to acquire y on line 17, the verifier tries to assert
the same expression as in the last example, only here this causes an outdated value for
currentThread.muMap[x] to be used. Since all permissions to the heap location x.mu have
been given away as part of the fork statement in line 16, x.mu might no longer have the
same value.

Both issues are related to the problem of finding a method’s frame, figuring out which
locations a method cannot access or modify. In the first case, we are missing the fact that
the method nop cannot change x.mu, whereas in the second case we ignore the fact that
the method unrelated could potentially have changed x.mu by the time we arrive at the
acquire y statement.

34

4 Evaluation

4.1 SIL as a translation target/verification intermediate language

One of the primary goals of writing Chalice2SIL was to gather experience working with
SIL, both as a translation target and as a verification intermediate language.

4.1.1 Encoding of loops

At the time we started this project, SIL did not have a dedicated while loop node. In-
stead, programs were to be encoded as a flat directed graph of basic blocks: a control-flow
graph (CFG). Loops were encoded as cycles with the “backwards” pointing edge explicitly
marked (so that tools could traverse the CFG as an acyclic graph by ignoring those back
edges). Unfortunately, Silicon - our verifier for SIL - can currently only handle while
loops as they appear in Chalice. In those early days, Silicon would pattern match against
the CFG to find while loops and extract their components (condition, invariant, body), es-
sentially lifting the program back up to the abstraction level of Chalice in terms of control
flow. If Chalice, which only supports while loops, were the only source language that SIL
ever had to support, this approach would have been fine. But since the idea behind SIL was
to eventually have multiple front ends, we decided to capture the fact that we currently
can only verify while loops - and not arbitrary control flow graphs - in the language. As
aresult a explicit loop node was added to the SIL control-flow graph.

4.1.2 Syntactic distinction between assertions and program expressions

Currently, SIL distinguishes between assertions (logical formulae and accessibility pred-
icates) and program expressions on a syntactic level. Some language elements require
assertions as operands (e.g., exhale) while others only accept program expressions (e.g.,
method arguments). In the current implementation of the SIL abstract syntax tree (AST),
there are two distinct and unrelated types: the type of assertions and the type of program
expressions. Having the Scala compiler enforce that we never construct a SIL program
where an accessibility predicate is used as a method argument is nice in theory, but proved
to be more cumbersome than necessary in practice.

Only a partial solution It is still possible to write translators that try to create illegal as-
sertions and will fail due to runtime’ checks built into the SIL AST. While it would
seem better to check as many properties statically as possible, only ending up with
partial checks can resultin a false sense of security. The SIL AST APIis not exception-
free and translators should be prepared deal with exceptions.

Code duplication Logical formulae and program expressions have a lot in common, e.g.
logical operators or literal values. Distinguishing between a program-level true and
and an assertion-level true has little benefit and at the same means that both pro-
ducers and consumers of SIL need to have two pieces of code that handle boolean
literals. Since the Scala types of assertions and program expressions are unrelated,
there is absolutely no opportunity for code reuse.

In the context of X-to-SIL-translators, “runtime” refers to the execution of the translator.

35

Translation from Chalice The Chalice compiler does not distinguish between assertions
and program expressions on a syntactic level and instead enforces restrictions on
where certain expressions can appear in semantic checks during type checking. Un-
fortunately, this makes syntax driven translation from Chalice to SIL highly ambigu-
ous. The translator will come across many Chalice expressions where it is not a pri-
ori clear whether to translate them as SIL assertions or as SIL program expressions.
For instance [5 == 3], can be translated using the equality assertion [5 == 3],
or by first applying the integer equality domain function intEQ and then lifting the
resulting boolean program value up to assertion-level using the boolean domain
predicate eval: [eval(intEQ(5,3))],

Not all expressions can be translated either way and to find out which translation
scheme is the correct one often requires having a look at the entire expression tree
and not just the outermost expression node. This can mean that a translator needs to
walk through Chalice expressions twice, either just trying both translation schemes
in turn or first analysing the expression and then deciding on a translation scheme
to use.

Need to convert For Chalice2SIL it was sometimes necessary to convert between asser-
tions and program expressions. One example of this are expressions of the form
[[old(e)]]Ch where e translates to a SIL assertion. When a method with such an old
expression in its precondition is forked, conceptually, the expression e is evaluated
and its “value” (true or false) stored in a field on the fork-token. Because the right-
hand side of an assignment needs to be a program expression in SIL, we first have
to create a fresh boolean variable and associate the truth value of that variable with
the assertion:

var b : bool;
inhale eval(b) ==

This can always be done and thus making the translator (and later the verifier) jump
through these hoops seems pointless.

Naming I[nthe actual implementation of the SIL AST, assertions are called expressions and
program expressions are called terms. While the implementation uses this terminol-
ogy very consistently, the terms fail to convey the key difference between assertions
and program expressions, resulting in a lot of puzzled faces in conversations with
people who are not intimately familiar with SIL's design.

4.1.3 PTerms vs. DTerms vs. GTerms vs. Terms

SIL makes another distinction on the syntactic level that we think is better handled as a
semantic check. To make sure that domain axioms don’t contain AST nodes that are illegal
in the context of a domain (such as references to heap locations), SIL has four types to
represent program expressions.

DTerm “Domain” terms represent the set of all program expressions that are legal in do-
main axiom specifications. References to quantifier variables are one example.

PTerm “Program” terms represent the set of all program expressions that are legal in
actual program code (such as the right-hand side of assignment statements). Heap
references are one example.

36

GTerm “General” terms represent the set of all program expressions that are legal in all
contexts. Integer literals are one example.

Term Represent the set of all program expressions. Examples include the full permission
amount write or the permission mask lookup perm (x.f).

Even though the SIL AST implementation uses Scala traits to capture the subset relation-
ships between these sets, there is still an enormous amount of code duplication. For in-
stance, it is not enough to have one node type for domain function applications. Because
you need to restrict the set from which the function application node draws its argu-
ments, there is one domain function application node type for each of the four sets: GDo-
mainFunctionApplication, DDomainFunctionApplication, PDomainFunctionAp-
plicationand DomainFunctionApplication.

Luckily, the subset types are all subtypes of DomainFunctionApplication which allows for
code reuse when consuming (pattern matching) these data structures. When it comes to
generating these nodes, however, we essentially had two options. One option was to dupli-
cate alotof code (e.g., have separate translation schemes for DDomainFunctionApplication
and PDomainFunctionApplication). We chose instead to translate to the most specific
type whenever possible (e.g., if all arguments of a domain function application are DTerms
themselves, create aDDomainFunctionApplication) butreturn Termsto accommodate for
all Chalice program expressions. In cases where PTerms are required instead of Terms, we
attempt to downcast to PTerm.

The fact that even the SIL AST implementation itself employs this technique indicates that
maybe in this case runtime checks (running during translation of a program to SIL) are
better suited than trying to encode these constraints in the Scala type system.

The SIL AST implementation makes a similar distinction for assertions. There are GEx-
pressions,DExpressions, PExpressionsand Expressions. We included a more complete
grammar listing in appendix A.

4.1.4 Capturing state in SIL

A pattern that often appears in the Boogie-based implementation of Chalice, is that one
would make a copy of the heap and permission mask (both are ordinary variables from
Boogie’s perspective) then perform a series of operations and assertions on that copy
(e.g.,, inhale, exhale). Describing programs on a higher level of abstraction, SIL does not
allow anything similar. The perm expression is about as close as we get to the permission
mask.

Re-implementing the permission mask as we did to constrain the read fractions (section
3.1.1) seems incredibly wasteful since most tools that work on SIL will have a concept of a
permission map, maybe even specialised code to deal with them and all they see are ma-
nipulations of an abstract data structure (the map created by the Chalice2SIL translation),
described by a couple of axioms. So far this hasn’t been a serious problem, though.

A similar issue is how we currently handle old expression for fork/join. What we would
ideally like to do is to capture the program state at the point where a thread is forked
off and then associate that state with the token. Later when we join on the token, we
just evaluate the old expression in the state associate with the token. We would not have
to worry about the defined-ness of 01d expressions at the point where we fork the token.

37

Listing 21: Error that is not detected by Chalice2SIL+Silicon.

class C {
var x : int;
predicate V { acc(x) }

function failUnfoldingV(): int
{ unfolding V in x }
}

Listing 22: SIL translation of 21

field C::x : Integer
function C::failUnfoldingV() : result

= unfolding acc(this.C::V,write) in (this.C::x)
predicate C::V = acc(this.C::x,write)

Chalice has other features in which old state is referenced. History constraints on monitor
invariants and general eval expressions are examples.

4.2 Chalice2SIL+Silicon compared to Syxc

To evaluate our implementation we compared it to “Syxc”, another Chalice verifier and the
tool from which Silicon was derived. Both Chalice2SIL+Silicon and Syxc use the parser and
type checker from the original Chalice implementation and perform the actual verification
using a combination of symbolic execution and calls to the Z3 SMT solver.

We took a large portion of Syxc’s test suite and compared the results of passing those tests
to Chalice2SIL+Silicon and Syxc, both in terms of correctness and as an ad-hoc perfor-
mance benchmark. For two results to be considered equal, we required that the tools
emitted the same number of error messages on the same lines.

4.2.1 Benchmark: correctness

In total, we looked at 84 test programs (one program usually consisted of multiple test
cases) from the Syxc test suite. Files that the current version Syxc? itself could not han-
dle were not considered. Out of these 84 files, Chalice2SIL+Silicon were able to correctly
verify 45 files without any modifications and additional 5 files with slight modifications.
Another 6 files were only verified correctly in parts. In 5 of those cases Chalice2SIL+Silicon
reported errors not also reported by Syxc. Atleast two of these failures as caused by Silicon
not merging permissions or being able to unfold a predicate nested in another predicate.
For the other case Chalice2SIL+Silicon misses an illegal unfolding in a function (example
in listing 21). This is likely a bug in Silicon as the translation to SIL is very straightforward
and is included in listing 22.

We are left with 28 files for which Chalice2SIL or Silicon couldn’t handle due to missing
features or bugs in the tools themselves. Chalice2SIL fails 9 cases with an unexpected

ZRevision 2bdf7ee59971e2734ccb@aaa2f523786bbld5e74

38

exception and another 10 due to features that we decided not to implement as part of this
project.

In 4 out of those 9 cases an error during field name resolution is responsible for Chal-
ice2SIL crashing. The remaining crashes are due to an exception during the translation
of an expression that involves waitlevel, an exception during the translation of a type
expression or an exception during a substitution of program variables in an expression.
These are likely simple programming errors that should be easy to fix.

Features not implemented as part of this project in Chalice2SIL+Silicon include
e Sequences
e Channels
¢ General eval expressions
 History constraints (o1ld expressions in monitor invariants)
e Counting permissions (implemented in Chalice2SIL, but not in Silicon)

The detailed results of this evaluation have been forwarded to the people who are cur-
rently or will be maintaining Chalice2SIL and Silicon.

4.2.2 Benchmark: performance

In addition to comparing the answers of Chalice2SIL+Silicon and Syxc, we also measured
how long parsing, translation and verification of each test case took. This performance
benchmark is mainly intended to get a rough idea of how high the price of translating to
an intermediate language (SIL) is.

For Chalice2SIL+Silicon we measured the time spent in the Chalice parser/type checker,
Chalice2SIL itself, and Silicon (including Z3) separately whereas for Syxc we only obtained
one measurement per run (excluding JVM start up and argument parsing). For the bench-
marks we used a machine with an Intel Core i7 2700K @ 3.9GHZ, 16GiB of DDR-1600
RAM and a mechanical hard drive. Each test was measured three times to compensate for
measurement errors. The averaged data is included in tables 1 and 2 in appendix B.

Figures 6, 7 and 8 break down the time taken by the Chalice parser/typechecker, Sili-
con and Chalice2SIL for each test case. Constructing the Chalice AST took longer than the
translation to SIL in all but two cases: ForkJoin/predicates_fork_joinand Permis-
sionModel/basic. We omitted the latter from the diagrams for better readability as it
is a bit of an outlier with a Silicon runtime of over 4.5s (Syxc only needed 1.2s). It is not
clear why verification of this test case via Chalice2SIL+Silicon is that slow.

As the runtimes of the tests in the benchmark sometimes vary greatly between different
test cases, looking at absolute times is not a meaningful way to compare Chalice2SIL and
Syxc. Instead we look at the factor by which Chalice2SIL+Silicon is slower than Syxc. In
the majority of cases this factor is between 1.6 and 1.8, but there are also cases where
Chalice2SIL is 2.5+ times slower. Figure 9 shows how factors were distributed in this
benchmark. Two outliers with ratios 3.69 and 5.02 were omitted from this diagram in the
interest of readability.

39

3500 ms

3000 ms

2500 ms

2000 ms

1500 ms

(%)
£
o
S
S
~—

c

)
2
=
u

500 ms

M Chalice2SIL

0ms

W Chalice

siels
suayo1 Suisnal

ulol 3104~ sa1e01paud

a|qeutof

uosuedwod” sia8a3ul

J1seq s4a8ajul

synsaJ Jagaul

s|e20| 4a8a3ul

sjuswngie” 198a1ul
Zsuoneaidwi

||eJ0) SIUBpPUIIIURT BS|aUBYY

asjauayyl

~Ase”spoyjaw juapuadapul deay

U303} HWOo 304

J0U” sues|ooq
ae|NwWIOo) sueajooq
uosliedwod”sueajooq
JI1seq” sueajooq
s}nsaJ”ueajooq
S|e20|” ueajooq
sjuswnsie” uesjooq

sqe

Figure 6: Running Chalice2SIL+Silicon for tests in Basics/,Branching/ and ForkJoin/

2000.0 ms

1800.0 ms

1600.0 ms

1400.0 ms

1200.0 ms

1000.0 ms

800.0 ms

600.0 ms

1 Silicon

400.0 ms

M Chalice2SIL

200.0 ms

0.0 ms

W Chalice

ss200e” 2843w |ds

J1seq” sa1eaipaud

plo

play~4eauiof

sjueLieAul

suoloalipul deay
Anpgeinwwipa"spjay
suoloely suondwnsuod~spialy
suondwnsuod~sp|aly
s|euonipuod”sp|aly

$S9208° Sp|aly
uomnduUNy Ul 22e spialy
syunys-deay juswnsie sddey
2211eyYo” SA” oxAs” Suipiodaluous
UOISIAIp

MeJ” |32

J2UuleIU0D” ||3D
syunys deay ueajooq
9s|ouayyl duiselje

HI Buiseype

3ulselje

191198 aJinboe

Figure 7: Running Chalice2SIL+Silicon for tests in Heaps/,Misc/ and Monitors/

40

3000.0 ms

2500.0 ms

2000.0 ms

1500.0 ms
1 Silicon
1000.0 ms
W Chalice2SIL
M Chalice

500.0 ms

0.0 ms

Figure 8: Running Chalice2SIL+Silicon for tests in PermissionModel/, VariousFea-
tures/

Number of files
30 —

25

20

15

10

Chalice2SIL +Silicon
1.5 2.0 25 3.0 Syxc

Figure 9: Distribution of the factor by which Chalice2SIL+Silicon is slower than Syxc

41

4.3 Implementation status

Chalice2SIL implements most of Chalice’s core functionality and uses nearly all of the fea-
tures that SIL has to offer. However, in addition to monitors and deadlock avoidance there
are a number of gaps that still need to be filled to make Chalice2SIL+Silicon a true alter-
native to Syxc or the original Boogie-based Chalice verifier.

In addition to the tests run as part of the evaluation, we also wrote a set of 94 test programs
along with expected results that served as part of an automated test suite during develop-
ment. Overall, Chalice2SIL should be considered a prototype with room for improvement,
especially in terms of performance.

5 Conclusion

As part of this project, we devised and implemented a translator from Chalice ASTs to SIL
ASTs from scratch. When the project started, not a single line of code existed for the SIL
AST, Silicon or Chalice2SIL. SIL itself was little more than a draft of its syntax on paper.
This turned out to be both a blessing and a curse. On the one hand just about everyone
we talked to had a slightly different idea of how a particular SIL construct was supposed
to behave, at least initially. On the other hand we had the opportunity to help shape SIL
and the design of its AST.

While many parts of the translation from Chalice to SIL were comparatively straightfor-
ward due to the similarity between the two languages, some aspects of Chalice or its un-
derlying permission model were surprisingly hard to implement within the constraints of
SIL. Overall, however, we think that the high-level design of SIL goes in the right direction.
Having permission amounts as first class values and related constructs (acc, exhale, etc.)
as built-in language constructs neatly decouples the representation of permissions in the
verifier from the representation of the program to be verified.

With Chalice2SIL+Silicon we now have a first prototype of an automatic program verifi-
cation tool-chain based on SIL, ready to be extended to include other tools that consume
or transform SIL programs.

42

A Full SIL Term and Expression Grammar

(Expr) ::= ’acc’ ({Location), (Term))
| ‘old" ((Expr))
| ’unfolding’ (Term).(pred-id) 'by’ (Term) ’in’ (Expr)
| (Term) == (Term)
| (unary-op) (Expr)
| (binary-op) (Expr)
| (dom-pred-id)({{Term),---})
| 'V’ (logical-var-id) : {DataType) :: ({Expr))
| '3’ (logical-var-id) : (DataType) :: ({(Expr))
| (GExpr)

(Location) ::= (Term).(field-id)
| (Term).(pred-id)
(PExpr) := "acc’ ({(PLocation), {PTerm))
| ’unfolding’ (PTerm).(pred-id) 'by’ (PTerm) ’in’ {PExpr)
| (PTerm) == (PTerm)
| (unary-op) (PExpr)
| (binary-op) (PExpr)
| (dom-pred-id)({ (PTerm),---})
| (GExpr)

(PLocation) ::= (PTerm).(field-id)
| (PTerm).(pred-id)

(DExpr) ::= (DTerm) == (DTerm)
| (unary-op) (DExpr)
| (binary-op) (DExpr)
| (dom-pred-id)({ (DTerm), -+ })
| 'V’ (logical-var-id) : (DataType) :: ({(DExpr))
| '3’ (logical-var-id) : (DataType) :: ((DExpr))
| (GExpr)

(GExpr) ::= (PExpr) == (PExpr)
| (UnaryOp) (PExpr)
| (BinaryOp) (PExpr)
| (dom-pred-id)({ (PExpr),---})
| ’'True’

| ’False’

(UnaryOp) ::= '~

(BinaryOp) ::= "N |'V' |'="| '’

43

(Term) ::= ’if’ (Term) 'then’ (Term) ’else’ (Term)
| ’old’((Term))
| (func-id)({(Term),---})
| (dom-func-id)({(Term),---})
| ’unfolding’ (Term).(pred-id) 'by’ (Term) 'in’ (Term)
| ((Term)): (DataType)
| (Term).field-id)
| ’‘perm’({Location))
| ’write’
| 0
| E
| (GTerm)
SIL has three literal constants for permission amounts: write denotes the full permission,
0 stands for no permission at all (it is distinct from the integer 0 literal) and E represents
a single epsilon of permission (a counting permission, see section 2.1.3).
(PTerm) ::= "if’ (PTerm) 'then’ (PTerm) 'else’ (PTerm)
| (var-id)
| (func-id)({ (PTerm),---}
| (dom-func-id)({ (PTerm),---})
| ’'unfolding’ (PTerm).(pred-id) 'by’ (PTerm) ’in’ (PTerm)
| ((PTerm)): (DataType)
| (PTerm).(field-id)
| (GTerm)
(DTerm) ::= ’if’ (DTerm) 'then’ (DTerm) 'else’ (DTerm)
| (logical-var-id)
| (dom-func-id)({{DTerm),---})
| (GTerm)
(GTerm) ::= 'if’ (GTerm) 'then’ (GTerm) ’else’ (GTerm)
| (integer-literal)
| (dom-func-id)({ {(GTerm),---})

B Benchmark data

44

6'LT €916 | ¥'E€T L'L9ST | L'269 0F%SE 0TZS sojedlpaid [OpPONUOISSIULID]
L8 06221 | €6 L'09LT | €€€8 L06E L9ES ZonaswyiLe uoissiued [9PONUOISSIULID]
9'q 0818 | L'L9 0°G99T | 0869 €€y L'€ZS JTeqnoad [9poOUOISSIULID]
L8 0159 | ¥'8 L0TOT | €20 €092 08¥%F Ssoupunos 3ulyded [9POJNUOISSIULID]
19 0'T0ZI | 0729 L'TE09 | 0'SSLY L'Z69 018S oIseq [9POJNUOISSIULId]
L8 0'80L | Z0S €€T9Z | 02491 LSSy L'S8¥ Su3{03 3uIsnal UIO0 310,
9'LT LISTT | L'62 L'8SZE | L'SYTZ €TLS LTHS uro("y10j"sa3esrpaid uro[3{104
6% €¥L9 | 6'ST L'96ST | 0°0¥L LZ8E OWLY a[qeurof UI0 310,
G'€T L'09L | 0°€Z L'TZ8T | 0226 €STh ¢£¥Ly | oudsespoyrow juspuadapul deay uro(3}10,
|A4 L9%S | €6 €€6TT | L'9ES 0°L6T L'6SE U903 WO 310§ UI0 310,
S'6 0€ELS | Z€T 09%IT | 0009v L'€LZ €£T71¥ syels guryoueag
90T 0¥%8S | 88T L066 | €6VE €0¥Z 07T0F zsuoneordwr duryouerg
90 €906 | S'6 0°L9ST | 0°€0L 0¥SE 0°0IS [[e10§"S}USPUSIBIUE IS[OUIYY! guryouerg
0¥2 L¥98 | 01 O'ETET | L'LEY €6SE 091§ as[auayy! duryouerg
S'Z €16S | V1T L'ZI0T | €2TE €897 0°ZEY sqe duryouerg
09T SYEL | T'6C €66ET | 0V09 08SE €LEY uostredwod s1o8a3ul soiseq
6'LT €09L | S€ OTVEL | €TPS 0OFbE LSS oIseq s.Io8a3ul soiseq
6 €0E9 | 06 €ZL0T | 00088 £0LZ 072ZF synsa1 1adaul soisegq
06 L¥19 | L'ST €620 | 0VES 08ST €£LEY s[eso[1a3a3ul soiseq
6 eLLY | 06 LYTIIL | €22V L'SLZ L9T¥ syuswng.re 1agdaul soiseq
S'6 025S | 0T 0906 | L'LTE 0622 €£6SE jou”suea[ooq soiseq
vy 06¥8 | T'6T 0'LSET | 092S €£€€€ L'L6Y 9B[NULIOJ SUBI[00(] soiseq
G'GT L'609 | 10T €L90T | L9TF €092 €£06¢€ uostreduwod sueajooq soiseq
00 0L¥S | 06 L'€L6 | 0FSE €09 €£6SE dIseq sueajooq soiseq
6'LT €ETL | T'ST LL6TIT | %Sy €647 £V9¥ sy[nsaJ uea[ooq soiseq
0€T 0L0L | TS 0FSIT | €¥IY €¥%LT £S9% s[edo[ueajooq soiseq
9'LT L0S9 | L9 €L90T | L'L0F 00SZ L'60% sjuswndIe ueajooq soisegq
A3(apIS OXAS AQPIS [EI0L | UODIIS [ISOL @dI[EY) ouwreN dnoun

1 1ed ‘ejep yrewyouag :T d[qeL

45

9L €L221 | TO8T €TESZ | 0Z8IT €959 0°€69 S[IUM SAINILDSNOLIEA
9¥ €¥6L | 61T L'STET | €9€S €€0E¢ 09L% deay p[o~3uIpjojun SaINJEIISNOLIEA
L8 0'ST9 | 0T L'LEOT | L'PSE 09ST 0°LZh JUSISHJIP [[E"SUBOW MAU S3INJBISNOLIEA
90T 08%9 | 91T L'TLOT | €8S €792 01S¥ SHUI SUIMAU S2INJEd{SNOLIBA
19 0¥LL | S8L CETVT | 06SS £T12¢ 0°€ES SI0JONIISUOD S3INJEIISNOLIEA
19 0¥LL | S8L CETIVT | 06SS £12¢ 0°€ES }I9SSE SaUnjead snoLep
00 06TL | €C¢ L'ETZT | L'S6E L'LOE €0TS Jo~suopedI[dwiooe saInjes snoLes
1'C L'L88 | TLT 0201 | 08%S L'€2¢ €0€S padueydpunploy pojun OSIN
06 €7E6 | L8 06LFT | €S€9 LLIE 0928 sso20e a8 ow H[ds OSIN
€6 L789 | S8 LLYPT | 00089 0'6VE L'89% prey tea urof OSIN
€'Sh LTYS | L'9%¥ €€E6 | L7192 0°SST L9T¥ || 9d1eyd sa oxAs"guntodar 10119 OSIN
S8 €0E9 |19 €€E0T | LTES 09LZ L'STH UOISIAIp OSIN
0€T 0'€Z6 | S€T 0'%SST | L'9€9 L'08E L'9€S MEI[[3D OSIN
L8 0.8L | 0ST 0'SZTIT | L'6SE L0LZ Lv6¥ SN | C OSIN
S'€e L'ETL | 01€ €6IZ1 | 08EY L16T7 L'68F plo SIOMUOIN
L6V €088 | S'ST €89%T | €495 00LE OTES SjueLIRAUL SIOMUOIN
00 06TL | 80F L1821 | L'68Y €L0E L¥8Y 191393 aamboe SIOMUOIN
¥y L'SLL | L0T L1921 | 0v6Y 0¥6C LELY oIseq sajesrpard sdeay
09 0959 | 19 0'TE0T | 092¢ L'SST €6b¥ suonoaaipur desy sdeay
S'ST €7L9 | 9€T €91ZT | L'89% L'66Z 08YY AliqeInuur paspley sdeay
L8 L'€S6 | 1'Se OLLLY | L'SL8 076E €£60S suonoey suondwnsuod sp[ey sdeay
6 £¥98 | 092 0LS9T | 0'T9L L¥8E €TIS suondwnsuod sp[oy sdeay
SYIT 07T29 | 661 CISTT | L0SY L'€9C O0'LSY S[EUORIPUOD SP[3Y sdeay
S'8T €80L | 695 L'€0ZT | L'ZEY L9987 £¥8Y $S920€Sp[aYy sdeay
00 0¥8Y | 90 L¥8Y | L'88 €607 L1982 uonduNy U oe SpRY sdeay
90 L'S9L | T9T 090ZT | €ST¥ €€0E €£L8% syjunyd-desyjuswngd.re sddej sdeay
ST 0928 | 10T 0TECT | €8LF €9L2 €9L¥ syjunyd-deay uesjooq sdeay
09T 02.9 |76 €9¢0T | L'22¢ £6ST €£8S¥ as[auayy1 duiserfe sdeay
A4 06EIT | 0°6F €OV | LFTS 09EE L'6LS Jr8uisere sdeay
06 €6LYT | 06 L'9/91 | €62L 06S¢ £88S Sursere sdeay
A3(QpPIS IXAS AS(QPIS [e30], | UODI[IS [ISOL ddI[eyD sweN dnoun
Z Med ‘eyep ylewyouayg :Z 9[qelL

46

References

[BDJ*06]

[BLS]

[Boy03]

[dMB08]
[HLMS11]
[LM09]
[LMS09]
[Sca12]
[Sch11]

[S]P12]

M. Barnett, R. DelLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects: 4th International Symposium, volume 4111 of Lecture.
Springer, 2006.

M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system: An
overview. In 2004, Construction and Analysis of Safe, Secure and Interoperable
Smart devices, volume 3362 of Lecture Notes in Computer Science, pages 49-69.
Springer.

J. Boyland. Checking interference with fractional permissions. In Radhia
Cousot, editor, Static Analysis, volume 2694 of Lecture Notes in Computer Sci-
ence, pages 55-72. Springer Berlin / Heidelberg, 2003. 10.1007 /3-540-44898-
5_4.

L.de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS 2008, volume
4963 of LNCS, pages 337-340. Springer, 2008.

S. Heule, K. R. M. Leino, P. Miiller, and A.]. Summers. Fractional permissions
without the fractions. Formal Techniques for Java-like Programs (FTfJP), 2011.

K. Leino and P. Miiller. A basis for verifying multi-threaded programs. Pro-
gramming Languages and Systems, pages 378-393, 2009.

K. R. M Leino, P. Miiller, and J. Smans. Verification of concurrent programs with
Chalice. Foundations of Security Analysis and Design V, pages 195-222, 2009.

The scala programming language. http://www.scala-lang.org/, 2012.
[Online; accessed 21-November-2012].

M. Schwerhoff. Symbolic execution for Chalice. Master’s thesis, Eidgendssische
Technische Hochschule Ziirich, 2011, 2011.

J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans. Pro-
gram. Lang. Syst., 34(1):2:1-2:58, May 2012.

47

http://www.scala-lang.org/

	Introduction
	Background
	Chalice
	Permissions
	Percentage Permissions
	Counting Permissions
	Fractional (Read) Permissions
	Fork-Join
	Information Hiding through functions and predicates
	Monitors (locks)
	Details on the Boogie-based Chalice verifier

	Semper Intermediate Language (SIL)
	SIL Program Structure
	SIL Statements
	SIL Expressions and Terms
	SIL Domains and Types

	Silicon

	Translation of Chalice
	Fractional Read Permissions
	Methods and fractional permissions
	Method calls with fractional permissions

	Asynchronous method calls (Fork-Join)
	Translation of !fork!
	Translation of !join!
	Limitations of the current fork-join implementation

	Predicates and Functions
	Predicates
	Functions

	Monitors with Deadlock Avoidance
	Approach to Deadlock Prevention and Locking
	Limitations of the current Implementation

	Evaluation
	SIL as a translation target/verification intermediate language
	Encoding of loops
	Syntactic distinction between assertions and program expressions
	PTerms vs. DTerms vs. GTerms vs. Terms
	Capturing state in SIL

	Chalice2SIL+Silicon compared to Syxc
	Benchmark: correctness
	Benchmark: performance

	Implementation status

	Conclusion
	Full SIL Term and Expression Grammar
	Benchmark data

